Modular representations, old and new

Bhama Srinivasan

University of Illinois at Chicago

August 2010

G is a finite group.

The character of a representation of G over an algebraically closed field of characteristic 0 is an "ordinary" character. The set of ordinary characters of G is denoted by Irr(G).

Frobenius computed the character table of PSL(2, p) in 1896.

Frobenius induction takes characters of a subgroup H of G to characters of G.

Richard Brauer developed the modular representation theory of finite groups, starting in the thirties.

- G a finite group
- p a prime integer
- K a sufficiently large field of characteristic 0
- \mathcal{O} a complete discrete valuation ring with quotient field K
- k residue field of \mathcal{O} , char k=p

A representation of G over K is equivalent to a representation over \mathcal{O} , and can then be reduced mod p to get a modular representation of G over k.

Brauer defined the character of a modular representation: a complex-valued function on the p-regular elements of G. Then we can compare ordinary and p-modular (Brauer) characters.

The decomposition map $d: K_0(KG) \to K_0(kG)$, where K_0 denotes the Grothendieck group, basis indexed by simple modules, expresses an ordinary character in terms of Brauer characters by going mod p.

The decomposition matrix D (over \mathbf{Z}) is the transition matrix between ordinary and Brauer characters. Entries of D are decomposition numbers.

The algebra KG is semisimple, but in the cases of interest, kG is not.

$$kG = B_1 \oplus B_2 \oplus \ldots \oplus B_n$$

where the B_i are "block algebras", indecomposable ideals of kG.

Leads to:

- a partition of the ordinary characters, or KG-modules, into blocks
- ullet a partition of the Brauer characters, or kG-modules, into blocks
- a partition of the decomposition matrix into blocks

Example: A_5 , p = 2: Ordinary characters in "Principal Block"

order of element	1	2	3	3	5
classsize	1	15	20	12	12
<i>X</i> ₁	1	1	1	1	1
χ ₂	5	1	-1	0	0
X 3	3	-1	0	$\frac{1-\sqrt{5}}{2}-1$	$\frac{1+\sqrt{5}}{2}-1$
X4	3	-1	0	$\frac{1+\sqrt{5}}{2}-1$	$\frac{1-\sqrt{5}}{2}-1$

Example: A_5 , p=2: Brauer characters in "Principal Block"

order of element	1	3	3	5
classsize	1	20	12	12
$\overline{\psi_1}$	1	1	1	1
$\overline{\psi_2}$	2	-1	$\frac{1+\sqrt{5}}{2}-1$	$\frac{1-\sqrt{5}}{2}-1$
$\overline{\psi_3}$	2	-1	$\frac{1-\sqrt{5}}{2}-1$	$\frac{1+\sqrt{5}}{2}-1$

7 / 36

Decomposition matrix for Principal Block of
$$A_5$$
:
$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

8 / 36

Example: $G = S_n$. If $\chi \in Irr(G)$ then $\chi = \chi_{\lambda}$ where λ is a partition of n. Then there is a Young diagram corresponding to λ and p-hooks, p-cores are defined. Then:

Theorem (Brauer-Nakayama) χ_{λ} , χ_{μ} are in the same *p*-block if and only if λ , μ have the same *p*-core.

Example: Removing 3-hooks to get a 3-core:

$$\begin{pmatrix} * & * & * & * \\ * & * & * & * \\ * & + & + & \\ * & + & \end{pmatrix} \rightarrow \begin{pmatrix} * & * & + & + \\ * & * & + & \\ * & & & \\ * & & & \end{pmatrix} \rightarrow \begin{pmatrix} * & * & \\ * & * & \\ * & & \\ * & & \end{pmatrix}$$

Some main problems of modular representation theory:

- Describe the irreducible modular representations, e.g. their degrees
- Describe the blocks
- Find the decomposition matrix D

 ${f G}$ is a connected reductive algebraic group defined over ${f F}_q$,

 $F: \mathbf{G} \to \mathbf{G}$ a Frobenius morphism,

 $G = \mathbf{G}^F$ is a finite reductive group.

Examples: GL(n, q), U(n, q), Sp(2n, q), $SO^{\pm}(2n, q)$

For GL(n, q), $F: (x_{ij}) \rightarrow (x_{ij}^q)$.

G has subgroups maximal tori, Levi subgroups (centralizers of tori), parabolic subgroups

G = GL(n, q) has subgroups:

- Tori, abelian subgroups (e.g. diagonal matrices)
- Levi subgroups, products of subgroups of the form $GL(m, q^d)$
- Borel subgroups, isomorphic to "upper triangular matrices"
- Parabolic subgroups of the form P = LV, L a product of subgroups of the form GL(m, q), $V \triangleleft P$

Parabolic subgroup P is of the form

And *V* is of the form
$$\begin{pmatrix} I & * & * & \dots & * \\ 0 & I & * & \dots * \\ & \ddots & \ddots & \ddots & \ddots \\ 0 & 0 & 0 & 0 & I \end{pmatrix}$$

Let P = LV as before.

Harish-Chandra induction is the following map:

$$R_L^G: K_0(KL) \to K_0(KG).$$

If $\psi \in \operatorname{Irr}(L)$ then $R_L^G(\psi) = \operatorname{Ind}_P^G(\tilde{\psi})$ where $\tilde{\psi}$ is the character of P obtained by inflating ψ to P.

Now let ℓ be a prime not dividing q.

Suppose L is a Levi subgroup, not necessarily in a parabolic subgroup P of G.

The Deligne-Lusztig linear operator:

$$R_L^G: K_0(\overline{\mathbf{Q}}_I L) \to K_0(\overline{\mathbf{Q}}_I G).$$

If $L \leqslant P \leqslant G$, where P is a parabolic subgroup, R_L^G is just Harish-Chandra induction.

Example: G = GL(n, q). If L is the subgroup of diagonal matrices contained in the (Borel) subgroup B of upper triangular matrices, we can do Harish-Chandra induction. But if L is a torus (Coxeter torus) of order $q^n - 1$, we must do Deligne-Lusztig induction to obtain generalized characters from characters of L.

G is a finite reductive group.

A unipotent character is a constituent of $R_T^G(1)$.

Example:

Let G = GL(n, q). The unipotent characters of G are constituents of Ind_B^G and are indexed by partitions of n. Denoted by χ_{λ} , λ a partition of n.

 ℓ a prime not dividing q, e the order of q mod ℓ

Theorem (Fong-Srinivasan) χ_{λ} , χ_{μ} are in the same ℓ -block if and only if λ , μ have the same e-core.

Example: n=5, ℓ divides q+1, e=2. Then χ_{λ} for 5, 32, 31², 2²1, 1⁵ are in a block. Same for S_5 , p=2.

Example: n=4, ℓ divides q^2+1 , e=4. Then χ_{λ} for 4, 31, 21², 1⁴ are in a block.

$$\begin{pmatrix} * & * \\ * & * \end{pmatrix}$$
 has no 4-hooks.

G = GL(n, q), B upper triangular matrices, E the G-module induced from the trivial character of B.

The endomorphism algebra H_n of E is a Hecke algebra of type A over \mathbb{C} with generators $\{T_1, T_2, \dots T_{n-1}\}$ and some relations, e.g. $T_i^2 = (q-1)T_i + qT_i$.

For certain values of q, H_n is not semisimple and we can talk of its modular representations, decomposition numbers, etc.

Work done on blocks and decomposition matrices by methods described above: Dipper-James, Geck, Gruber, Hiss, Kessar ...

Problems: If $G = S_n$, p a prime, describe the p-modular decomposition matrix of G.

If G = GL(n, q), ℓ a prime not dividing q, describe the ℓ -modular decomposition matrix of G.

New modular representation theory connects decomposition numbers for symmetric groups, Hecke algebras, with Lie theory. Idea of "Categorification":

Replace the action of a group or algebra on a vector space by the action of functors on the Grothendieck group of a suitable abelian category.

For example, the sum of Grothendieck groups $\bigoplus_{n\geq 0} K_0(mod-kS_n)$, or $\bigoplus_{n\geq 0} K_0(mod-H_n)$, basis indexed by partitions of n.

The quantized Kac-Moody algebra $\mathcal{U}_q(\widehat{sl_e})$ over $\mathbf{Q}(q)$ is generated by $e_i, f_i, k_i, k_i^{-1}, \ldots, (0 \leqslant i \leqslant e - 1)$ with some relations.

Consider the Fock space $\bigoplus_{n\geq 0} K_0(mod-FH_n)$, $(H_n$ the Hecke algebra as before), F a field of characteristic 0. Then $\mathcal{U}_{\sigma}(\widehat{sl}_{e})$ acts on this space!

 e_i , f_i are functors on the Fock space, called *i*-induction, *i*-restriction.

Work of Ariki, Grojnowski, Vazirani, Lascoux-Leclerc-Thibon, Varagnolo-Vasserot, ...

Decomposition matrix D for H_n with q a e-th root of unity, appears as transition between two bases of the Fock space.

Blocks appear as weight spaces for the subalgebra generated by the k_i .

Recent results (BS):

The quantized Kac-Moody algebra $\mathcal{U}_q(\widehat{gl_e})$ has generators e_i , f_i , k_i , k_i^{-1} as before for $\mathcal{U}_q(\widehat{sl_e})$, and v_k , k a positive integer. The v_k are described combinatorially by Leclerc-Thibon, in terms of horizontal ribbons.

Let A_n be the category of unipotent representations of GL(n,q). Let

$$\mathcal{A} = (\bigoplus_{n\geqslant 0} \mathcal{K}_0(\mathcal{A}_n)) \otimes_{\mathsf{Z}} \overline{\mathbf{Q}_{\mathsf{I}}}(q),$$

sum of Grothendieck groups of the categories of unipotent representations of GL(n,q) for all n. Then $\mathcal{U}_q(\widehat{gl_e})$ acts on this space. The operators v_k are quantized Lusztig maps on the Grothendieck group.

< □ > < □ > < 亘 > < 亘 > 亘 釣 < ♡ ·

Theorem If $G_n = GL(n,q)$, let $L = G_n \times GL(k,q^e)$. Define maps $\mathcal{L}_k : \mathcal{A} \to \mathcal{A}$ by: $\chi_{\lambda} \to [R_L^{G_{n+ke}}(\chi_{\lambda} \times 1]]$.

Then \mathcal{L}_k coincides with the operator v_k specialized at q=1. (More generally: \mathcal{L}_{μ} where μ is a partition of k.)

Thus we connect $\mathcal{U}_q(\widehat{gl_e})$ (quantum gl) with finite GL. (cf Dipper-James)

An example of a decomposition matrix D for n = 4, e = 4:

$$\begin{pmatrix} 4|| & 1 & 0 & 0 & 0 \\ 31|| & 1 & 1 & 0 & 0 \\ 211|| & 0 & 1 & 1 & 0 \\ 1111|| & 0 & 0 & 1 & 1 \end{pmatrix}$$

From this matrix we can read:

- (Part of) transition between two bases of the Fock space as \widehat{sl}_{e} -module (e=4)
- Decomposition numbers for H_n (also cyclotomic) over characteristic 0 (n = 4)
- (conjecturally) part of decomposition matrix of GL(n,q), ℓ dividing $q^2 + 1$ (n = 4, e = 4)

Summary

- Known: Decomposition numbers for H_n (also cyclotomic) over characteristic 0
- Known: Decomposition numbers for $GL_n(q)$, ℓ large
- Not known: Decomposition numbers for S_n , $GL_n(q)$, all ℓ

An example of a decomposition matrix D for n = 4, e = 4:

$$\begin{pmatrix} 4|| & 1 & 0 & 0 & 0 \\ 31|| & q & 1 & 0 & 0 \\ 211|| & 0 & q & 1 & 0 \\ 1111|| & 0 & 0 & q & 1 \end{pmatrix}$$

Interpret this matrix as a matrix of "q-decomposition numbers".

Leads to: Graded representation theory of S_n , H_n , ...

See A.Kleshchev, Bulletin of AMS 47 (2010), 419-481.

Summary

- Groups of Lie type: reps constructed by induction, H-C induction, D- L induction
- Look for: Blocks, Decomposition Numbers in Modular Rep Theory of S_n , GL(n, q), (cyclotomic) Hecke algebras
- Now linked with affine Kac-Moody algebras in type A.
- Leads to: Graded Representation Theory of symmetric groups, ...

Lie Theory

End of story? We know there is no end.