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1 Introduction

The following diagram, which we call c.F4(2, t), is the subject of this paper.

(c.F4(2, t)) • • • • •
⊂

1 2 2 t t

The numbers 1, 2, 2, t, t are orders and t < ∞. Hence t ∈ {1, 2, 4}. The label
⊂ on the first stroke of the diagram stands for the class of complete graphs,
regarded as point-line geometries with the vertices as points and the edges as
lines.

Several flag-transitive examples are known for this diagram. We will describe
some of them later. We only say here that the Fischer group Fi22 and the Baby
Monster group B occur as automorphism groups of two of them, with t = 1 and
t = 4 respectively.

A number of mathematicians (Ivanov and Wiedorn [14], Ivanov, Pasechnik
and Sphectorov [15], Wiedorn [27]) have been busy to prove that, even if we
do not know all flag-transitive c.F4(2, t)-geometries, nevertheless we know all of
those that satisfy certain hypotheses, which I will discuss in Section 2. They
have succeeded to reach this goal when t = 1 and t = 4, thus obtaining a
characterization of Fi22, its non-split central extension 3·Fi22 and the Baby
Monster group B as automorphism groups of c.F4(2, t)-geometries satisfying
those hypotheses (Ivanov and Wiedorn [14] for Fi22 and 3·Fi22, where t = 1,
and Ivanov, Pasechnik and Sphectorov [15] for B, where t = 4). However, the
case of t = 2 still stands against all efforts. A thorough analysis of the possible
amalgams in that case has been accomplished by Corinna Wiedorn [27], but that
analysis fails to end up with a complete classification. Sorrowfully, Corinna is
no more among us. More than one year ago, A. Ivanov and myself agreed to
take over that job starting from the point that she had reached. However, so
far, we have not been able to make any important progress.

In this paper I will report on the work by A. A. Ivanov, D. V. Pasechnik, S.
V. Shpectorov and C. Wiedorn on this topic, with a particular emphasis on the
case of t = 2, which is still open. I will also give a new construction for one of
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the examples that arise for t = 2.

Added at the last moment. Gernot Stroth has lately informed me that,
perhaps, he can prove that we also have a classification for the case of t = 2,
namely no examples exist besides those that we already know. However, since
so far I could have no access to the details of his proof, I cannot yet take this
good news into account in this paper.

1.1 Organization of the paper

In Sections 2, 3 and 4 we shall report on the work by Ivanov, Pasechnik, Sphec-
torov and Wiedorn on flag-transitive c.F4(s, t)-geometries. We shall firstly dis-
cuss the additional hypotheses that they assume (Section 2). Next we describe
the known examples that satisfy those hypotheses, sticking to the description
that Ivanov, Pasechnik, Sphectorov and Wiedorn have chosen for them (Section
3). Finally, we state the classification theorems of Ivanov and Wiedorn [14]
and Ivanov, Pasechnik and Shpectorov [15] for the cases of t = 1 and t = 4
and the quasi-classification theorem by Wiedorn [27] for t = 2. We shall also
give shortened expositions of the proofs of those theorems, focusing on a few
crucial ideas, as the use of shrinkings and geometries at infinity for instance,
but avoiding details.

In Section 5 we construct an infinite family of geometries associated to
Chevalley groups of type E6 and belonging to the diagram Af.F4 (which in-
cludes c.F4(2, t) as a special case). The smallest member of that family is one of
the known flag-transitive c.F4(2, 2)-geometries. Many Af.F4-geometries can be
obtained by a different constructions, as affine extensions of F4-buildings. We
discuss them too in Section 5.

The last five sections of this paper are appendices containing notions, con-
structions and results essential to fully understand Sections 2-5. Section 6 is
mainly devoted to embeddings and affine extensions. Section 7 deals with affine
polar spaces and their quotients. Section 8 is a concise introduction to shrink-
ings and geometries at infinity. A few facts and notions on F4-geometries and
F4-buildings are recalled in Sections 9 and 10.

We could have referred the reader to the literature for the material of Sections
6-8, but fusing the various sources that one can find in the literature in one single
picture is not so easy. We have preferred to save the reader that labor.

1.2 Notation and conventions

We use the notation of [4] for finite groups. We follow [19] for basic notions of
diagram geometry, except that we call (n − 1)-coverings and (n − 1)-quotients
of geometries of rank n just coverings and quotients for short and we say that a
geometry of rank n is simply connected if it is (n− 1)-simply connected, namely
it is its own universal (n− 1)-cover.

Geometries are defined in [19] in such a way that all geometries are residually
connected, by definition. We keep that convention in this paper.
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Given a geometry G and an element x of G, we denote the residue of x in G
by ResG(x), also Res(x) for short when no ambiguity arises. We will often write
x ∈ G as a shortening of the phrase “x is an element of G”.

As in [19], we denote the Intersection Property by the symbol (IP).

Conventions for geometries with string-shaped diagrams. Let G be a
geometry of rank n belonging to a diagram as follows, where X1, X2,...,Xn−1

denote classes of geometries of rank 2 other than generalized digons and the
integers 1, 2, ..., n are the types:

• • • ... • •
1 2 3 n-1 nX1 X2 Xn−1

We may regard G as a poset by setting x < y for two elements x, y ∈ G if and
only if x and y are incident in G and τ(x) < τ(y), where τ is the type-function
of G.

The residue of an element x ∈ G of type τ(x) = k with 1 < k < n is
a direct sum Res(x) = Res−(x) ⊕ Res+(x) where Res−(x) is the residue of
any {k, k + 1, ..., n}-flag of G containing x and Res+(x) is the residue of any
{1, ..., k − 1, k}-flag containing x. We call Res−(x) and Res+(x) the lower and
upper residue of x, respectively. We can extend this notation to 1- and n-
elements: if τ(x) = n then Res−(x) := Res(x), and similarly for 1-elements.

The elements of G of type 1 and 2 are called points and lines:

• • • ... • •
1 2 3 n-1 n

points lines

X1 X2 Xn−1

We denote the set of points and the set of lines of G by P (G) and L(G) respec-
tively. The rank 2 geometry G|1,2 := (P (G), L(G)) is called the point-line system
of G. The collinearity graph of G is the collinearity graph of G|1,2.

Suppose that G satisfies (IP). Then, denoted by P (x) the set of points inci-
dent with an element x ∈ G, if x 6= y then P (x) 6= P (y), we have x < y in the
poset G if and only if P (x) ⊂ P (y) and, if P (x) ∩ P (y) 6= ∅ then there exists a
unique element z ∈ G such that P (z) = P (x)∩ P (y). In short, the poset (G, <)
is isomorphic to ({P (x)}x∈G ,⊂) and the latter, enriched with ∅ as the minimal
element, is a lower semilattice with respect to ∩.

We denote by G∗ the dual poset of (G, <) and we say that G∗ is the geometry
dual of G. Clearly, the points and the lines of G∗ are the elements of G of type
n and n− 1.

• • ... • • •
1 2 n-2 n-1 n

pointslines

X1 Xn−2 Xn−1

Still on points and lines. Points and lines can be defined in a more general
setting. Let G be a geometry of rank > 1 belonging to a connected diagram.
Let ∆ be the underlying graph of the diagram of G. Chosen a type, say 0, let
∆(0) be the neighborhood of 0 in ∆. The 0-elements of G are taken as points
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while the flags of type ∆(0) are the lines. In other words, we take as points and
lines the points and the lines of the 0-grassmann geometry of G, which indeed
belongs to a string-shaped diagram (see [19, Chapter 5]).

Conventions for F4-geometries. We choose the integers 1, 2, 3 and 4 as
types for the diagram F4, calling the elements of type 3 and 4 planes and symps
respectively. Elements of type 1 and 2 are called points and lines, according to
the convention stated for geometries with string-shaped diagrams.

(F4) • • • •
1 2 3 4

points lines planes symps

We denote by F4(2, t) the F4-diagram with orders 2, 2, t, t:

(F4(2, t)) • • • •
1 2 3 4

2 2 t t

An F4-geometry (in particular, an F4-building) with orders 2, 2, t, t will be called
an F4(2, t)-geometry (F4(2, t)-building).

Conventions for c.F4(2, t)-geometries. We choose 0, 1, 2, 3 and 4 as types
for the diagram c.F4(2, t), as follows:

(c.F4(2, t)) • • • • •
⊂

1 2 2 t t

0 1 2 3 4

points lines planes spaces maxes

The elements of type 0 and 1 are called points and lines. The elements of type
2, 3 and 4 will be called planes, spaces and maxes respectively, as indicated in
the above picture.

Note that, as a complete graph on 4 vertices is the same as an affine plane
of order 2, the diagram c.F4(2, t) can also be regarded as a special case of the
following, where Af denotes the class of affine planes.

(Af.F4) • • • • •
Af

Part I

Flag-transitive c.F4-geometries

2 Looking for the right hypotheses

In this section we shall discuss the hypotheses assumed on flag-transitive c.F4(2, t)-
geometries in [14], [15] and [27]. However, before to come to those hypotheses,
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we must see what flag-transitivity implies.
Throughout this section G is a given flag-transitive c.F4(2, t)-geometry. Lemma

9.1 of Section 9 immediately implies the following:

Lemma 2.1 The residues of the points of G are buildings of type F4.

Lemma 2.2 No two distinct lines of G are incident with the same pair of points.

Proof. Given a point a of G, let L(a) be the set of lines of G incident with a
and let Θa be the equivalence relation defined on L(a) by declaring that two
lines l,m ∈ L(a) correspond in Θa if P (l) = P (m). By Lemma 2.1, Res(a) is a
building. Hence the group induced by Ga on Res(a) contains a group isomorphic
to O+

8 (2) : S3, F4(2) or 2E6(2), according to whether t is 1, 2 or 4. In any case,
Ga,l is maximal in Ga. In other words, Ga acts primitively on L(a). On the
other hand, Ga preserves Θa. Therefore Θa is either the identity relation or the
trivial relation. In the first case no two lines through a have the same points,
as we wanted to prove. In the latter case, there is a unique point b such that
P (l) = {a, b} for every l ∈ L(a), but this is clearly impossible. 2

Lemma 2.3 Property (IP) holds in the residue of every element of G.

Proof. This immediately follows from [19, Lemma 7.25], Lemmas 2.1 and 2.2
and the fact that (IP) holds in every building. 2

Lemma 2.3 and Proposition 7.3 of Section 7 imply the following:

Lemma 2.4 The residues of the maxes of G are standard quotients of affine
polar spaces.

(See Section 7 for the definition of affine polar spaces and their standard quo-
tients.)

It is now time to cope with a difficulty that might sit in the shape of the
diagram c.F4(2, t). The underlying minimal circuit diagram of c.F4(2, t) is the
affine diagram F̃4. So, it would be no wonder if G or some of its covers were
infinite. However we would like to keep infinite geometries out of the door.
Indeed we would like to end up with a classification, but the usual tools we can
use to that goal would be ineffective in the infinite case. So, we need residues
of maxes to be sufficiently tight to force finiteness. To this aim, we assume the
following:

(TR) (Tight Residues) The collinearity graph of the residue of any max of G
has diameter equal to 1.

This property drastically reduces the range of possibilities for residues of maxes
allowed by Lemma 2.4. Explicitly,
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Lemma 2.5 Let (TR) hold. Then the residues of the maxes of G are minimal
standard quotients of an affine polar space P \H where P and H are as follows,
according to whether t is 1, 2 or 4.

(1) Let t = 1. Then P is the O+
8 (2)-polar space and H is isomorphic to the

O7(2)-polar space. The minimal standard quotient of P\H is a tangent geometry
of the O+

6 (2)-polar space.

(2) Let t = 2. Then P is the S8(2)-polar space and H is singular. The minimal
standard quotient of P \ H is the affine extension of the S6(2)-polar space,
naturally embedded in V (6, 2).

(3) Let t = 4. Then P is the O−
10(2)-polar space and H is isomorphic to the

O9(2)-polar space. The minimal standard quotient of P\H is a tangent geometry
of the O−

6 (2)-polar space.

(See Subsection 7.2 for the minimal standard quotient of an affine polar space,
Subsection 7.3 for tangent geometries and Subsection 6.3 for affine extensions.)

Property (TR) has an additional nice effect.

Lemma 2.6 If G satisfies (TR) then (IP) also holds in G.

Proof. Given two elements x and y of G of type at least 1, suppose that
P (x) ∩ P (y) 6= ∅. Pick a point p ∈ P (x) ∩ P (y) and let x′ and y′ be maxes
incident with x and y respectively, possibly, x′ = x or y′ = y. By (TR), P (x)
and P (y) are cliques in the collinearity graphs of Res(x′) and Res(y′). For every
point q ∈ P (x) ∩ P (y) different from p, let pqx and pqy be the lines through p
and q in Res(x′) and Res(y′) respectively. Then pqx is incident with x and pqy is
incident with y. By Lemma 2.2, pqx = pqy. The line pq := pqx = pqy is incident
with either of x and y (possibly, pq = x or pq = y). Hence we can replace the
set of points P (x) ∩ P (y) with the set of lines through p incident with both x
and y, thus turning to Res(p). The latter is a building (Lemma 2.1), hence (IP)
holds in it. Therefore there exists an element z ∈ Res(p) incident with x and y
and such that a 2-element of Res(p) is incident with z if and only if it is incident
with both x and y. By the above, P (z) = P (x)∩P (y). Property (IP) is proved.
2

Another hypothesis can be considered besides (TR). When trying to classify
a class of geometries, it can be useful to focus on their collinearity graphs, turn-
ing the original problem into a problem of local recognition of graphs. However,
for we can safely go from point-residues to neighborhoods in the collinearity
graph and back, without missing any piece of information along the way, we
need a hypothesis that says that, given a point p, every edge that exists in the
neighborhood of p in the collinearity graph is somehow recognizable in Res(p).
In our case, this can be phrased as follows, where Γ(G) stands for the collinearity
graph of G:

(LR) (Local Recognizability) Every 3-clique of Γ(G) is contained in at least
one max of G.
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According to (LR), only two kinds of 3-cliques exist in Γ(G): a 3-clique can be
either contained in a plane or not. In the first case that 3-clique belongs to
exactly seven maxes while in the second case it belongs to exactly one max (at
least one by (LR) and at most one by (IP)).

Properties (TR) and (LR) are indeed the hypotheses assumed in [14], [15],
[11], [12] and [27].

Clearly, each of (TR) and (LR) is preserved when taking universal covers
(but (TR) is not preserved when taking 2-covers).

Property (TR) forces finiteness. More explicitly:

Proposition 2.7 If G satisfies (TR) then Γ(G) has diameter at most 4.

Proof. Assume firstly that G satisfies both (TR) and (LR). Then the previous
statement is the main result of Ivanov and Pasini [12] when t = 2 and it is a by-
product of the classification theorems of Ivanov and Wiedorn [14] and Ivanov,
Pasechnik and Shpectorov [15] when t = 1 and t = 4 (see Theorems 4.1 and 4.2
of Section 4 and the information given on G(3·Fi22) and G(B) in Section 3).

Suppose now that G satisfies (TR) but not (LR). Let p be a point of G and
let Γ(p) be its neighborhood in Γ(G). By (TR), every collinear pair and every
symplectic pair of points of the F4-building Res(p) contributes an edge of Γ(p).
(See Subsection 10 for the definition of symplectic and special pairs of points of
an F4-building.) However, since now (LR) fails to hold in G, additional edges
of Γ(p) are contributed by special pairs of points of Res(p) or pairs of points
of Res(p) at distance 3 in Res(p). It is not difficult to prove that this forces
diam(Γ(G)) ≤ 2. We leave the details of this proof for the reader. 2

Problem 2.8 The situation where G satisfies (TR) but not (LR) has not been
investigated in the literature, but it is worth of consideration. What can we say
on G in that case? Can we prove the following conjecture?

Conjecture 2.9 If G satisfies (TR) and is simply connected then it also satis-
fies (LR).

Problem 2.10 Let G be a simply connected flag-transitive c.F4(2, t)-geometry
satisfying (TR) and (LR) and let G̃ be its universal 2-cover. Is G̃ infinite?

Most likely, (TR) never holds in G̃. (In fact, as we shall see in Subsection
5.3.1, property (TR) fails to hold in G̃ when G is the geometry G(226F4(2)), to
be defined in the next section.)

Is there any c.F4(2, t)-geometry which is its own universal 2-cover, does not
satisfy (TR) but, nevertheless, is finite? As we will see in Subsection 5.3, a few
finite flag-transitive c.F4(2, t)-geometries exist where (TR) fails to hold, but we
do not know if they are 2-simply connected.
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3 The examples

We shall now describe the known flag-transitive c.F4(2, t)-geometries that sat-
isfy (TR) and (LR), sticking to the constructions offered in [14], [15] and [11].
Throughout this section F is an F4(2, t)-building and Φ(F) is the graph with
the points of F as vertices, two points being adjacent in Φ(F) when they are
either collinear or form a symplectic pair (see Subsection 10).

3.1 Preliminaries

All examples considered in [14], [15] and [11] are constructed as follows. A graph
Γ is considered that is locally Φ(F). The graph Γ is related to a group G which
acts transitively on the set of directed edges of Γ and such that the stabilizer Ga

of a in G of a vertex a of Γ acts as a flag-transitive subgroup F of Aut(F) on
the neighborhood Γ(a) of a. The vertices and the edges of Γ are taken as points
and lines respectively of the geometry G that we are going to define. For every
vertex a of Γ, the subgraphs of Γ(a) corresponding to lines, planes and symps
of F in the isomorphism (Ga,Γ(a)) ∼= (F,Φ(F)), joined with {a}, are taken as
planes, spaces and maxes of G on a. This definition is consistent. Indeed, in
each of the cases to consider the pair (G, Γ) satisfies the following:

(C) (Consistency Condition) For every edge {a, b} of Γ, for every class X
of subgraphs of Γ(a) corresponding to the set of lines, planes or symps of
F , and every X ∈ X containing b, there is an element g ∈ G that maps a
to b and X to (X \ {b}) ∪ {a}.

Planes, spaces and maxes of G can also be recovered from Γ as follows. The
maxes of G are maximal cliques of Γ, but not all maximal cliques of Γ are maxes
of G. Indeed Γ admits maximal cliques of different size. The largest ones have
size 4 · (7t+2). These are the maxes of G. Having recognized maxes of G in this
way, we can recover spaces and planes as intersections of maxes. Indeed, given
two maxes X and Y of G, either |X ∩Y | ≤ 2 or |X ∩Y | = 8. If |X ∩Y | = 8 then
X ∩Y is a space. Finally, given three maxes X, Y and Z, either |X ∩Y ∩Z| = 8
(whence X ∩ Y ∩Z = X ∩ Y is a space) or |X ∩ Y ∩Z| = 4 or |X ∩ Y ∩Z| ≤ 2.
If |X ∩ Y ∩ Z| = 4 then X ∩ Y ∩ Z is a plane.

By construction, G belongs to c.F4(2, t) and G acts flag-transitively on it.
Clearly, Γ is the collinearity graph of G. Moreover, G satisfies the following:

(∗) Three distinct points of G form a clique in Γ if and only if there is max of
G that contains them all.

This property is just the conjuction of properties (TR) and (SR) considered in
Section 2.

We shall now go into details, explaining which group G and which graph Γ
are to be chosen. We shall firstly consider the cases of t = 1 and t = 4, keeping
the case of t = 2 for last. Our exposition is based on Ivanov and Wiedorn [14]
for t = 1 and t = 4, Ivanov, Pasechnik and Sphectorov [15] for all cases and
Ivanov and Pasechnik [11] for t = 2.
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3.2 G(Fi22) and G(3·Fi22) (t = 1)

Let Γ(Fi22) be the graph with the 2D-involutions of Aut(Fi22) = Fi22:2 as ver-
tices, two such involutions being adjacent if and only if they commute. (Note
that these involutions are outer automorphisms of Fi22.) The graph Γ(Fi22) is
locally Φ(F), where F is the F4(2, 1)-building. Moreover, Fi22 is transitive on
the set of directed edges of Γ(Fi22) and the pair (Fi22,Γ(Fi22)) satisfies con-
dition (C). Thus, a geometry G(Fi22) exists, belonging to c.F4(2, 1), satisfying
(TR) and (SR) and admitting Fi22 as a flag-transitive automorphism group.
Actually, Aut(G(Fi22)) = Aut(Fi22) = Fi22:2.

This geometry is not simply connected. Its universal cover is a 3-fold cover
G(3·Fi22) with Aut(G(3·Fi22)) = 3·Fi22:2. Accordingly, Γ(Fi22) admits a 3-
fold cover Γ(3·Fi22) which lives in 3·Fi22:2. The geometry G(3·Fi22) arises from
it.

The geometry G(3·Fi22) is simply connected. This is a by-product of Theo-
rem 4.1 of Section 4, but it also follows from Proposition 2.7 and the fact that
Γ(3·Fi22) has diameter equal to 4.

3.3 G(B) (t = 4)

Let Γ(B) be the Baby Monster graph, namely the graph on the set of {3, 4}-
transpositions in the Baby Monster group B in which two such transposition are
adjacent if their product is a central involution in B. The graph Γ(B) is locally
Φ(F), where F is the F4(2, 4)-building. Moreover, B acts transitively on the set
of directed edges of Γ(B) and the pair (B,Γ(B)) satisfies condition (C). Thus,
a geometry G(B) exists, belonging to c.F4(2, 4), satisfying (TR) and (SR) and
admitting B as a flag-transitive automorphism group. Indeed Aut(G(B)) = B.

The geometry G(B) is simply connected. This is a by-product of Theorem
4.2 of Section 4. It also follows from Proposition 2.7, recalling that Γ(B) has
diameter equal to 3.

3.4 G(226F4(2)), G(E6(2)), G(2E6(2)) and G(3·2E6(2)) (t = 2)

Let G be any of the groups 226:F4(2), E6(2), 2E6(2) or 3·2E6(2), where 226:F4(2)
is the extension of the Chevalley group F4(2) by its 26-dimensional GF(2)-
module. In any case G admits a maximal subgroup F ∼= F4(2). Let V be the
set of cosets of F (left cosets, to fix ideas). The transitive action of G on V by left
translation admits several subdegrees but, in any case, one of them is equal to
69615, which is the number of points of the F4(2)-building. Let E be the orbital
of G on V corresponding to that subdegree, E the set of unordered pairs corre-
sponding to members of E and Γ the graph with V as the set of vertices and E as
the set of edges. Then Γ is locally Φ(F), where F is the F4(2)-building. More-
over, (G, Γ) satisfies condition (C). Thus, we obtain geometries G(226F4(2)),
G(E6(2)), G(2E6(2)) and G(3·2E6(2)) belonging to c.F4(2, 2), satisfying (TR)
and (SR) and admitting 226:F4(2), E6(2), 2E6(2) and 3·2E6(2) respectively as
flag-transitive automorphism groups. Actually Aut(G(226F4(2))) = 226:F4(2)
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while Aut(G(E6(2))) = E6(2):2, Aut(G(2E6(2))) = 2E6(2):2 and Aut(G(3·2E6(2))) =
3·2E6(2):2.

The graph Γ has diameter 4, 3, 2 or 4 according to whether G is 226F4(2),
E6(2), 2E6(2) or 3·2E6(2). Hence G(226F4(2)), G(E6(2)) and G(3·2E6(2)) are
simply connected, by Proposition 2.7. The geometry G(2E6(2)) is a quotient of
G(3·2E6(2)).

The geometries G(226F4(2)) and G(E6(2)) can also be produced by con-
structions of more geometrical nature. Indeed, as proved in [12], G(226F4(2)) is
nothing but the affine extension of the 26-dimensional projective embedding of
the F4(2)-building F (see Subsection 6.3 for the definition of affine extensions).
In Section 5 we will obtain G(E6(2)) as a special case of a construction which
works for any building of type E6. On the other hand, the graph-theoretic
constructions given at the beginning of this subsection and in Remark 3.2 (see
below) are so far the only ones available for G(2E6(2)).

Problem 3.1 Find a different, more geometric construction for G(2E6(2)).
(Compare Problem 5.9.)

Remark 3.2 Both G(Fi22) and G(2E6(2)) are subgeometries of G(B). To see
this, we must recall a few properties of Γ(B). There are two types of pairs of
vertices {a, b} at distance 2 in Γ(B), according to whether ab has order 3 or
4. Let {a, b} be a pair of vertices of Γ(B) at distance 2 with (ab)3 = 1 and let
Γ3(a, b) be the subgraph induced by Γ(B) on the set of vertices at distance 3
from either of a and b. Then Γ3(a, b) ∼= Γ(Fi22). We can now recover G(Fi22)
inside G(B). The points and the lines of G(Fi22) are the vertices and the edges
of Γ3(a, b). The 4-elements of G(Fi22) are provided by the 4-elements x of G(B)
with P (x)∩Γ3(a, b) of maximal size, while the 2- and 3-elements of Γ(Fi22) are
the 2- and 3-elements y of G(B) incident to a 4-element as above and such that
P (y) ⊂ Γ3(a, b).

Turning to G(2E6(2)), its collinearity graph is isomorphic to the graph Γ3(a)
induced by Γ(B) on the set of vertices at distance 3 from a given vertex a. The
geometry G(2E6(2)) can be recovered from Γ3(a) like G(Fi22) from Γ3(a, b).

4 A quasi-classification

4.1 The case of t = 1 and t = 4

The next two theorems give a complete classification of flag-transitive c.F4(2, t)-
geometries satisfying (TR) and (LR) when t = 1 and t = 4.

Theorem 4.1 (Ivanov and Wiedorn [14]) G(Fi22) and its cover G(3·Fi22) are
the only flag-transitive c.F4(2, 1)-geometries that satisfy both properties (TR)
and (LR).

Theorem 4.2 (Ivanov, Pasechnik and Shpectorov [15]) G(B) is the unique flag-
transitive c.F4(2, 4)-geometry satisfying (TR) and (LR).
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4.1.1 A sketch of the proof of Theorem 4.1

Let G be a flag-transitive c.F4(2, 1)-geometry satisfying (TR) and (LR). Ivanov
and Wiedorn firstly investigate the graphs defined on the set of 1-elements and
the set of 2-elements of G by taking ‘being parallel inside the same {0, 1, 2}-
residue’ as the adjacency relations. The connected components of these two
graphs are the classes of the equivalence relations called Λ1 and Λ2 in Subsection
8.2. Condition (RS) of 8.1 and its type 2 analogue hold. So, we can consider
the geometry at infinity G∞,2, which is also flag-transitive. Ivanov and Wiedorn
prove that G∞,2 belongs to the following diagram:

(C3.c
∗) • • • •

1 2 3 4

2 2 2 1

⊃

If we find out which group Aut(G∞,2) is, then we are done. Indeed Aut(G∞,2) =
Aut(G) by Proposition 8.4.

Thus, we turn from G to G∞,2. One can prove that (IP) holds in all residues of
G∞,2 of rank 3. Hence the {1, 2, 3}-residues of G∞,2 are polar spaces (isomorphic
to the S6(2)-polar space). So, G∞,2 is the dual of a c-extended dual polar space.
Flag-transitive c-extended dual polar spaces have been classified by Ivanov [9],
[10]. We can exploit that classification to finish (but I warn that this is not
the way that Ivanov and Wiedorn choose in [14]). In view of that, we must
determine the isomorphism type of the {2, 3, 4}-residues of G∞,2. As (IP) holds
in these residues, they are dually isomorphic to standard quotients of affine
polar spaces (Proposition 7.3). Having stated this, a range of possibilities still
remains for those residues. In order to select the right one from it, we ask
shrinkings for help. The classes of Λ1, which provide the 1-elements of G∞,2,
are the point-sets of the shrinkings of G. Hence the stabilizer in Aut(G) of a
shrinking of G is the same as the stabilizer in Aut(G∞,2) of a 1-element of G∞,2.
Let Shr(G) be a shrinking of G. Then Shr(G) is a flag-transitive with diagram
and orders as follows:

(c.C∗
3 ) • • • •

1 2 3 4

1 2 1 1

⊂

The {2, 3, 4}-residues of Shr(G) are isomorphic to the {2, 3, 4}-residues of G.
The latter are C3-buildings. It is well known that every C3-building with orders
1, 1, 2 is isomorphic to the geometry of vertices, edges and 3-cliques of a complete
3-partite graph with all classes of size 3. Denoted this geometry by K, let K∗

be its dual. Thus, the {2, 3, 4}-residues of Shr(G) are isomorphic to K∗. On
the other hand, the {0, 1, 2, 3}-residues of G are isomorphic to the minimal
standard quotient of the affine polar space obtained from the O+

8 (2)-polar space
by removing an O7(2)-hyperplane (Lemma 2.5). Hence the {1, 2, 3}-residues
of Shr(G) are isomorphic to the minimal standard quotient of the affine polar
space obtained from the O+

6 (2)-polar space by removing an O5(2)-hyperplane
(compare Example 8.2). It follows that the collinearity graph of Shr(G) is locally
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the distance 1-or-2 graph of the collinearity graph of K∗. We can now apply a
result of Cuypers [5] to recover Shr(G) as a subgeometry of the F4(2, 1)-building
with Aut(Shr(G)) ∼= U4(2):2 (see also [15, Propsition 5.2]).

By the above, the stabilizer of a 1-element of G∞,2 in Aut(G∞,2) acts as
U4(2):2 ∼= PSO−

6 (2) in the residue of that element. This makes it clear that
the {2, 3, 4}-residues of G∞,2 are dually isomorphic to the affine polar space
obtained by removing an O−

6 (2)-hyperplane from the O7(2)-polar space. By
Ivanov [9, Proposition 2.5], Aut(G∞,2) is either Fi22:2 or 3·Fi22:2.

However, as I have said before, the argument used by Ivanov and Wiedorn
in [14] is different from the above. It is worth to give a shortened exposition of
it, too.

The dual G∞,2,∗ of G∞,2 belongs to the following diagram, which is the same
as that of G∞,2, but switched. The types 1, 2, 3, 4 of G∞,2,∗ correspond to the
types 4, 3, 2, 1 of G∞,2.

(c.C∗
3 ) • • • •

1 2 3 4

1 2 2 2

⊂

The {1, 2, 3}-residues of G∞,2,∗ are the duals of the {2, 3, 4}-residues of G∞,2.
According to what we have previously said on the latter, the {1, 2, 3}-residues
of G∞,2,∗ are isomorphic to the affine polar space obtained by a removing an
O−

6 (2)-hyperplane from the O7(2)-polar space.
The geometry G∞,2,∗ admits shrinkings. Let Shr(G∞,2,∗) be one of them.

The isomorphism type of the {1, 2, 3}-residues of G∞,2,∗ forces Shr(G∞,2,∗) to
belong to the following diagram, where P stands for the Petersen graph (compare
Example 8.2):

(P3) • • •
1 2 2

P

So, Shr(G∞,2,∗) is a flag-transitive P3-geometry. Flag-transitive Pn-geometries
are classified (see Ivanov and Shpectorov [13]). Only two flag-transitive P3-
geometries exist. They arise from M22 and 3·M22 respectively. Shr(G∞,2,∗)
is isomorphic to one of these two geometries. In order to finish, Ivanov and
Wiedorn must combine the previous information on shrinkings with the investi-
gation of another geometry B such that Aut(B) = Aut(G∞,2,∗). The construc-
tion of B by Ivanov and Wiedorn is beautiful but its details are too complicated
for I are can summarize them here. I only mention that they consider a graph
B having the shrinkings of G∞,2,∗ as the vertices, two shrinkings being adjacent
in B precisely when they contain 2-elements supported by the same 2-element
of G∞,2,∗. The shrinkings of G∞,2,∗ are taken as 3-elements of B, like if we
constructed the dual of a geometry at infinity. The 2- and 1-elements of B are
certain 3-cliques and certain subgraphs of B. Since the shrinkings of G∞,2,∗ are
P3-geometries for M22 or 3·M22, the stabilizer in Aut(B) of a 3-element x of B
induces on ResB(x) a group isomorphic to M22, M22:2, 3·M22 or 3·M22:2. With
this information at hand, Ivanov and Wiedorn can prove that B is a truncation
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of a flag-transitive c.C3-geometry B with diagram and orders as below:

(c.C3) • • • •
⊂

1 4 4 2

0 1 2 3

We obtain B from B by removing all 0-elements of B. Flag-transitive c.C3-
geometries with orders as above have been characterized since long ago (Bueken-
hout and Hubaut [3]; see also Del Fra, Ghinelli, Meixner and Pasini [7]). In
view of that characterization, Aut(B) is isomorphic to either Fi22:2 or 3·Fi22:2.
Ivanov and Wiedorn also prove that Aut(B) = Aut(G∞,2). Hence Aut(G) is
either Fi22:2 or 3·Fi22:2.

4.1.2 A sketch of the proof of Theorem 4.2

Let G be a flag-transitive c.F4(2, 4)-geometry satisfying (TR) and (LR). In this
case the geometry at infinity G∞,2 is harder to understand than G itself. No
insight into G can be got from it. On the other hand, shrinkings can be of some
help. Every shrinking Shr(G) of G is a flag-transitive c-extended dual polar
space with orders as follows:

(c.C3) • • • •
⊂

1 2 4 4

1 2 3 4

Its {2, 3, 4}-residues are isomorphic to the dual of the U6(2)-polar space while its
{1, 2, 3}-residues are isomorphic to the minimal standard quotient of the affine
polar space obtained by removing an O7(2)-hyperplane from the O−

8 (2)-polar
space (see Example 8.2). Hence the collinearity graph of Shr(G) is locally the
distance 1-or-2 graph of the dual of the U6(2)-polar space. One can now exploit
the classification of flag-transitive c-extended dual polar spaces by Ivanov [9],
[10] or a result by Cuypers [5] to determine the isomorphism type of Shr(G).
It turns out that Shr(G) is isomorphic to a well known geometry admitting the
Conway group Co2 as its full automorphism group [15, Proposition 5.2].

The isomorphism type of Shr(G) is thus determined, but a lot of work still
remains to do in order to finish the proof. At this stage the authors of [15]
turn to a thorough investigation of the collinearity graph Γ of G, focusing on
the common neighborhood Γ(x, y) of two vertices x and y at distance 2 and the
second neighborhood Γ2(x) of a vertex x. In particular, they prove that, for
every vertex y ∈ Γ2(x), there is exactly one vertex y′ ∈ Γ2(x) different from y
and such that Γ(x, y) = Γ(x, y′). Let πx be the permutation of Γ that fixes all
vertices of Γ\Γ2(x) and switches all pairs {y, y′} ⊂ Γ2(x) with Γ(x, y) = Γ(x, y′).
The authors of [15] prove that πx is an automorphism of Γ (hence it also induces
an automorphism of G). Some amount of work is needed to prove this claim. We
will not go into the details of that proof. We only mention that the information
previously obtained on Shr(G) is also exploited in it, at a certain stage.

If x and z are adjacent vertices of Γ then πz(x) = x, whence πz induces an
automorphism of the neighborhood Γ(x) of x. In fact, the family {πz}z∈Γ(x)
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generates a copy of 2E6(2). So far, we know that the graph Γ is locally Φ(F),
where F is the F4(2, 4)-building, and it admits an automorphism group G such
that, for every vertex x, the stabilizer of Gx of x in G induces on Γ(x) an action
containing 2E6(2). By a result of Ivanov [8], G is the Baby Monster group B
and Γ = Γ(B) (the Baby Monster graph).

4.2 The case of t = 2

Theorem 4.3 (Wiedorn [27]) Besides G(226F4(2)), G(E6(2)) and G(3·2E6(2)),
at most four simply connected flag-transitive c.F4(2, 2)-geometries exist that sat-
isfy (TR).

4.2.1 A sketch of the proof of Theorem 4.3

Let G be a group acting flag-transitively on a c.F4(2, 2)-geometry G satisfying
(TR) and for i = 0, 1, 2, 3, 4 let Gi be the stabilizer in G of the i-element ai

of a given chamber c = {ai}4
i=0 of G. Let A = (Gi)4i=0 be the amalgam of

the subgroups G0, G1, G2, G3, G4 with intersections as in G. Then G is simply
connected if and only if G is the universal completion of A (see [19, Theorem
12.28]). So, we must determine all possibilities for the amalgam A.

Henceforth, for an element x ∈ G we denote by Gx the stabilizer of x in G
and by Kx the kernel of the action of Gx on Res(x) and we put Gx := Gx/Kx.
We also put Gx,y := Gx ∩Gy. If x has type 6= 0, 4, we denote by K+

x and K−
x

the kernels of the actions of Gx on Res+(x) and Res−(x) respectively. In the
previous paragraph we wrote Gi for Gai . Accordingly, we write Ki for Kai , Gi,j

for Gai,aj and so on.
Clearly, G0

∼= F4(2), G1
∼= 2 × S6(2) and G4

∼= 26:S6(2) (recall that, by
Lemma 2.5, Res(a4) is the affine extension of the S6(2)-polar space embedded
in V (6, 2)). Moreover G2 is isomorphic to either S4 × L3(2) or A4 × L3(2) and
G3 is isomorphic to either (23:L3(2))×S3 or (23:L3(2))× 3. However, G2 must
fit with G3. Hence G2

∼= S4 × L3(2) and G3
∼= (23:L3(2))× S3.

Wiedorn firstly proves that |K0| ≤ 2 and that if |K0| = 2 then G0 = K0×G0.
Hence G0,1 = K0 × 21+6+8:S6(2). We must now describe G1. Clearly [G1 :
G0,1] = 2. Hence G1 = G0,1〈t〉, where t switches the two points of the line
a1 and t2 ∈ G0,1. Modulo multiplying t be a suitable element of G0,1 we can
assume that t ∈ K+

a1
. We can do more, choosing t ∈ K+

a1
in such a way that

it moves as little as possible of G0,1. Wiedorn proves that if we can choose
t ∈ CG(G0,1) (which can be only if K0 = 1) then G = G(226F2(4)).

Let G 6= G(226F2(4)). Hence t 6∈ CG(G0,1). Let G′
0,1

∼= 21+6+8:S6(2) be the
commutator subgroup of G0,1. Wiedorn proves that we can choose t in such
a way that it centralizes the setwise stabilizer G′

0,1,Ht
in G′

0,1 of a suitable set
Ht of 4-elements of Res+(a1). More explicitly, recall that the dual (Res+(a1))∗

of Res+(a1) is isomorphic to the S6(2)-polar space. The set Ht is an O+
6 (2)-

hyperplane of the polar space (Res+(a1))∗. With the above constraints, once
Ht has been chosen, the element t is uniquely determined modulo multiplication
by elements of Z(G0,1) = K0×〈z〉, where z is the unique involution of Z(G′

0,1).
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Wiedorn also proves that t has order either 2 or 4 and if t has order 4 then
t2 = z. It is worth giving t a name. We call it the switch element of G1.

At this stage we have got at most four isomorphism types A(1)
ε,η for the

amalgam A(1) := (G0, G1), where ε ∈ {1, 2} is the size of K0 and η ∈ {2, 4}
is the order o(t) of the switch element t. However, when ε = 2 we can replace
t with tk, where k is the unique involution of K0. If o(t) = 2 then o(tk) = 4
and if o(t) = 4 then o(tk) = 2. Thus, three possibilities exist for A(1), namely
A(1)

1,2,A
(1)
1,4 and A(1)

2,∗, where ∗ can be read as 2 or 4, as we like.
Turning to the rank 3 amalgam A(2) = (G0, G1, G2), Wiedorn proves that

each of the amalgams A(1)
1,2 and A(1)

1,4 can be extended in exactly one way to a

realization of A(2), which we will denote by A(2)
1,2,∗ and A(2)

1,4,∗ respectively. On

the other hand, A(1)
2,∗ can be extended in at most to ways. We denote these

two extensions by the symbols A(2)
2,∗,� and A(2)

2,∗,◦. We warn that no explicit

description of A(2)
2,∗,� and A(2)

2,∗,◦ is given in [27]. Wiedorn only gives an indirect

argument which implies that at most two ways exist to extend A(1)
2,∗.

Next Wiedorn proves that, for every choice of (ε, η, θ) = (1, 2, ∗), (1, 4, ∗),
(2, ∗, �) or (2, ∗, ◦) the amalgam A(2)

ε,η,θ can be extended in a unique way to a

rank 4 amalgam A(3)
ε,η,θ. Finally, again by an indirect argument, she proves that

for every choice of (ε, η, θ) there are at most two ways to extend A(3)
ε,η,θ to a rank

5 amalgam A = (G0, G1, G2, G3, G4). We denote those two extensions by the
symbols A(4)

ε,η,θ,� and A(4)
ε,η,θ,◦.

So far, at most eight possibilities exist for A = (G0, G1, G2, G3, G4), cor-
responding to the eight quadruples (1, 2, ∗, �), (1, 2, ∗, ◦), (1, 4, ∗, �), (1, 4, ∗, ◦),
(2, ∗, �, �), (2, ∗, �, ◦), (2, ∗, ◦, �) and (2, ∗, ◦, ◦). However, it might happen that
two of these possibilities are mutually isomorphic or that one of them does not
admit any completion. Moreover, if for some choice of θ, ζ, η, ζ ′ the amalgam
A(4)

2,∗,θ,ζ embodies A(4)
1,η,∗,ζ′ , then these two amalgams define the same geometry.

Each of G(E6(2)) and G(3·2E6(2)) gives rise to an amalgam A(4)
1,η,∗,ζ as well

as an amalgam A(4)
2,∗,θ,ζ . So, at most four possibilities remain for A(4)

ε,η,θ,ζ that
do not correspond to any of the known examples, as stated in Theorem 4.3.

4.2.2 Problems and remarks

A. Ivanov and me have been busy with an attempt to prove that none of the five
extra possibilities mentioned in Theorem 4.3 actually exists, but so far we have
failed. A number of problems that we have faced but we have not been able to
answer are mentioned in the sequel. Some additional information will also be
given. For the rest of this section G is a simply-connected c.F2(2, 2)-geometry
satisying (TR) but different from G(226F4(2)).

Problem 4.4 A detailed description of G4 is missing in [27]. We know that
G4

∼= 26:S6(2) and that K4 = K0 × 21+6+8. We also know the action of an
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S6(2)-subgroup of G4 on K4, but we don’t know enough on the structure of
O2(G4), even if K0 = 1.

When K0 = 1 it is likely that O2(G4) = 21+20 (extraspecial) with S6(2) act-
ing on O2(G4)/Z(O2(G4)) as on the 20-dimensional module ∧3V where V is the
natural 6-dimensional module for S6(2) (compare Remark [?]). If so, then the
switching element t has order o(t) = 2. This would kill both amalgams A(4)

1,4,∗,◦

and A(4)
1,4,∗,�. Hence G(E6(2)) and G(3·2E6(2)) would be the only possibilities

for G when K0 = 1.
One might now wonder if we really have O2(G4) = 21+20 when G is E6(2)

or 3·2E6(2). The answer is certainly affirmative when G = E6(2). Indeed
the construction of G(E6(2)) to be given in the next section shows that in
this case G4 < X for a maximal subgroup X ∼= 21+20:L6(2) of G. Most likely
O2(G4) = 21+20 when G = 3·2E6(2) too. Indeed, among the maximal subgroups
of 2E2(6) listed in [4], 21+20:U6(2) is the only one that might host G4. If really
G4 < 21+20:U6(2) then O2(G4) = 21+20 in this case too.

Problem 4.5 Is it true that the completion of an amalgam A(4)
2,∗,θ,ζ always

contains a completion of an amalgam A(4)
1,η,∗,ζ′? If this would be true, then we

should only prove that o(t) = 2 when K0 = 1 (see the previous problem) and
we would have finished.

Problem 4.6 It is not difficult to prove that, if an amalgam A(4)
1,η,∗,ζ admits a

completion, then it also admits a (possibly non-universal) completion G where
G is simple. By exploiting Proposition 2.7 and the information on µ-subgraphs
of the collinearity graph of G available in [15], one can compute an upper bound
for the index [G : G0]. A lower bound can also be determined. By very rough
computations, we have obtained the following:

k2

27
< |G : G0| <

k4

213
, where k = 32 · 5 · 7 · 13 · 17.

We can now look for a simple group G containing a subgroup G0 = K0 ×F4(2)
with |K0| ≤ 1 and |G : G0| between the above two bounds. It turns out that,
apart from a few linear groups of rank n ≤ 10 and alternating groups An of
degree 27 ≤ n ≤ 29, E6(2), 2E6(2) and F4(4) are the only simple groups of
size compatible with the above. However F4(2) is neither a subgroup of Ln(q)
for n ≤ 10 (Kleidman [17]) nor of A27 (since |F4(2)| does not divide 27!/2).
Hence A28, A29, E6(2), 2E6(2) and F4(4) only survive. On the other hand,
|G4| = |K0| · 221 · |S6(2)| = |K0| · 230 · 34 · 5 · 7 while 225 is the highest power
of 2 dividing 29!. This rules out both A29 and A28. Thus F4(4) only survives
besides E6(2) and 2E6(2). Does it act on a c.F4(2, 2)-geometry as we want?

Remark 4.7 By arguments similar to those used in Subsections 4.1.1 and 4.1.2
one can prove that the shrinkings of G are isomorphic to the affine extension of
the dual of the O7(2)-polar space embedded in V (8, 2) via the spin embedding
(see also Ivanov, Pasechnik and Shpectorov [15, Proposition 5.2]). Perhaps, this
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information can be exploited in the investigation of G. One can also prove that
property (RS) of Section 8 as well as its type 2 analogue hold in G. Hence a
geometry at infinity can also be defined, either as in Section 8 or in other ways
(see [22]).

Remark 4.8 Wiedorn assumes property (LR) in [27], but she never uses it in
her investigation of A. That’s why we have not mentioned (LR) in Theorem
4.3. Anyway, we do not see how to translate (LR) in the language of amalgams.
Such a translation would obviously be impossible if simple connectedness implies
(LR), as suggested in Conjecture 2.9.

5 A geometric construction of G(E6(2)) and more
Af.F4-geometries

The main goal of this section is to produce a family of Af.F4-geometries which
contains G(E6(2)) as its smallest member. We shall firstly recall a construction
of buildings of type E6 and F4 as geometries embedded in vector spaces of
dimension 27 and 26 respectively. After that, we will construct our family of
Af.F4-geometries. In the last part of this section we will discuss a few more
families of Af.F4-geometries, which can be created as affine extensions from
projective embeddings of F4-buildings.

5.1 Preliminaries on buildings of type E6 and F4

The material of this subsection is taken from Chapter 18 of Buekenhout and
Cohen [2]. We will omit many details and all proofs. The reader can find them
in the above quoted chapter.

Given a field F, let M = M3(F) be the algebra of (3 × 3)-matrices over F
and let V = M ×M ×M (a 27-dimensional vector space over F). For a vector
x = (X1, X2, X3) of V , put

(1) f(x) = det(X1) + det(X2) + det(X3)− tr(X1X2X3),

(2) x] = (adj(X1)−X2X3, adj(X3)−X1X2, adj(X2)−X3X1)

where for a matrix X ∈ M we denote by adj(X) the so-called adjoint matrix of
X, with (−1)i+jdet(Xj,i) as the (i, j)-entry, Xj,i being the (2× 2)-submatrix of
X obtained by removing the jth row and the ith column. Thus we have defined
a cubic form f on V and a mapping (.)] : V → V . A symmetric bilinear form
φ can also be defined on V by putting

(3) φ(x, y) = Tr(X1Y1 + X2Y3 + X3Y2)

for any two vectors x = (X1, X2, X3) and y = (Y1, Y2, Y3) of V . We have

(4) f(x + y) = f(x) + f(y) + φ(x], y) + φ(x, y]) (∀x, y ∈ V ).
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Also, x]] = f(x)x for every x ∈ V . Hence x] = 0 implies f(x) = 0 (but the
converse is false in general). A commutative (but non-associative) operation ×
can also be defined, as follows:

(5) x× y := (x + y)] − x] − y].

We are now ready to construct the E6(F)-building, denoted by E throughout
the rest of this section. We choose types as follows:

(E6) • • • • •
1 2 3 4 6

• 5

The elements of type 1, 2 and 3 will be called points, lines and planes respec-
tively. The points of E are the points 〈x〉 of PG(V ) such that x] = 0. Denoted
the set of points of E by P (E), the lines and the planes of E are the lines and
the planes of PG(V ) entirely contained in P (E). Note that two points 〈x〉 and
〈y〉 of E are collinear in E if and only if x× y = 0.

The set P (E) spans PG(V ). Thus, we have realized a projective embedding
of the point-line-plane system E|1,2,3 of E in PG(V ), which sends point, lines
and planes of E to points, lines and planes of PG(V ). It remains to recover the
remaining elements of E as subspaces or subgeometries of PG(V ).

The geometry E|1,2,3 admits two families of maximal singular subspaces (see
Subsection 6.4). One of those two families is formed by 4-dimensional pro-
jective spaces. These are the 4-elements of E . The other family consists of
5-dimensional projective spaces. These are the 5-elements of E .

We shall now define the elements of type 6 (called symps). For every point
〈x〉 ∈ P (E), let σ(x) be the projective subspace of PG(V ) corresponding to the
subspace {x × y}y∈V of V (clearly, the choice of the representative x of 〈x〉 is
irrelevant in this definition). The points and the lines of E contained in σ(x)
form the point-line system of a D5(F)-building, say S(x). The planes of S(x) are
the planes of E contained in σ(x). One of the two families of maximal singular
subspaces of S(x) consists of the 4-elements of E contained in σ(x). The other
family is formed by the intersections σ(x) ∩ y for y a 5-element of E such that
y ∩ σ(x) has projective dimension 4. (The reader should notice that we are
taking the liberty not to distinguish between an element of E of type 4 or 5 and
the subspace of PG(V ) that corresponds to it.)

The incidence relation is defined via inclusion except when an element of
type 5 is involved together with an element of type 4 or 6. Let y be an element
of type 5. If z is a 4-element then y and z are incident if and only if they
intersect in a 3-dimensional subspace of PG(V ). If z = S(x) is an element of
type 6, then y and z are incident if and only if y ∩ σ(x) is 3-dimensional.

The group Aut(f) of all invertible linear mappings of V that preserve f acts
flag-transitively on E with kernel Z0 isomorphic to the group of cubic roots of
1 in F. The quotient Aut(f)/Z0 is the Chevalley group of adjoint type E6(F).
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Let Z be the group of scalar transformations of V . The product Z ·Aut(f)
is a subgroup of the group of all linear transformations of V that preserve f
modulo a scalar. Clearly Z ∩ Aut(f) = Z0 and (Z · Aut(f))/Z ∼= Aut(f)/Z0.
Hence Aut(f) and Z ·Aut(f) induce the same group on E .

Note that, in general, the elements of Aut(f) neither preserve φ nor commute
with the mapping (.)] or the operation ×. However, if g ∈ Aut(f) then x] = 0
if and only if g(x)] = 0.

So far, we have constructed E together with a 27-dimensional projective
embedding ε : E → V . We shall now turn to the F4(F)-building, denoted by F
in the sequel.

The mapping sending a point x of E to S(x) can be extended to a polarity
of E , which we will also denote by the symbol σ. Referring the reader to [2,
Chapter 18] for details, we only say that this polarity permutes a point x with
S(x) and sends every element y of E of type 2, 3 or 4 to ∩x∈P (y)σ(x), where P (y)
is the set of points of y. If y is a 5-element then σ(y) = ∪x∈π(y)σ(z), where π(y)
stands for the set of planes contained in y. A point x of E is σ-absolute if and
only if x ∈ σ(x), a line x is σ-absolute if and only if x ⊂ σ(x), a 4- or 6-element
x is σ-absolute if and only if σ(x) is contained in x, a plane or a 5-element x is
σ-absolute if and only if x = σ(x) (if and only if all points of x are σ-absolute).

The building F is formed by the σ-absolute elements of E of type 1, 2, 3
and 5. If we like, we can also regard σ-absolute elements of type 1 or 2 as
σ-absolute flags of type {1, 6} and {2, 4}. We keep the types 1, 2 and 3 for
σ-absolute elements of E of type 1, 2 or 3 when we regard them as elements of
F but we take 4 as the type of a σ-absolute 5-element of E when we regard it
as an element of F .

(F4) • • • •
1 2 3 4 (= 5 in E)

The {1, 2, 3}-residues of F are isomorphic to polar spaces of symplectic type
while {2, 3, 4}-residues are dually isomorphic to polar spaces of orthogonal type.
In Dynkin notation,

(F4) • • < • •
1 2 3 4

Another description of F is possible. Let ι := (I,O,O), where I is the identity
3 × 3-matrix while O stands for the null matrix. Then f(ι) = 1. As proved in
[2, Chapter 18], a vector x ∈ V represents a σ-absolute point of E if and only if
φ(ι, x) = 0. Hence the points (1-elements) of F are the points of E contained in
the hyperplane Hι of V represented by the equation φ(ι, x) = 0. The σ-absolute
lines and the σ-absolute planes of E are contained in Hι, but not all lines and
planes of E contained in Hι are σ-absolute. The σ-absolute points, lines and
planes incident to a given σ-absolute 5-element x of E form a polar space of
symplectic type, naturally embedded in the 5-dimensional projective space x.
The stabilizer Aut(f)ι of ι in Aut(f) induces on F a flag-transitive group of
automorphisms, isomorphic to the Chevalley group of adjoint type F4(F).

Note that we have defined F as a poset together with a 26-dimensional
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projective embedding e : F → Hι, induced by the 27-dimensional projective
embedding ε : E → V . If x is a symp of F (namely a 4-element of F) and ex

is the embedding of ResF (x) induced by e, then x is a 6-dimensional subspace
of Hι and ex embeds ResF (x) in that subspace as a polar space of symplectic
type.

The building E admits projective embeddings different from ε. Every Weyl
module provides one of them. For instance, with the 5- and 3-elements of E
chosen as points and lines, we can embed E in a 78-dimensional vector space W .
Let us denote this 78-dimensional embedding by ε∗. As the 4- and 3-elements
of F arise from 5- and 3-elements of E , the embedding ε∗ induces a projective
embedding e∗ of the dual F∗ of F in the subspace W ′ of W spanned by the
image ε∗(F∗) of F∗ via ε∗. The embedding e∗ : F∗ → W ′ arises from the
52-dimensional Weyl module associated to the root corresponding to the right
hand node of the Dynkin diagram:

(F4) • • < • •
↓

Hence dim(W ′) = 52. Let x be a symp of F∗ (namely a point of F) and let e∗x
be the embedding induced by e∗ on ResF∗(x). Then e∗x embeds ResF∗(x) as a
polar space of orthogonal type in a 7-dimensional subspace of W ′.

When either char(F) 6= 2 or char(F) = 2 but F is non-perfect, the posets F
and F∗ are not isomorphic. On the other hand, let F be perfect of characteristic
2. Then F ∼= F∗. In this case e is not its own linear hull. Indeed let ẽ be the
absolutely universal embedding of F , which exists whatever F is (Kasikova and
Shult [16]). Since now F ∼= F∗, both e and e∗ are projective embeddings of F ,
hence each of them is a morphic image of ẽ.

Problem 5.1 Is it true that e∗ is its own linear hull? In other words, is e∗

absolutely universal?
Suppose that either char(F) 6= 2 or char(F) = 2 but F is non-perfect. In this

case, is e absolutely universal?

5.2 A construction for G(E6(2))

We keep the notation of the previous subsection. For every k ∈ F \ {0}, the
group Aut(f) is transitive on the set Vk of vectors x ∈ V such that f(x) = k
(see Buekenhout and Cohen [2, Chapter 18]).

Put G := Z · Aut(f) and F3 := {t3}t∈F. The orbits of G on V \ {0} are
joins Vk := ∪(Vsk | s ∈ F3 \ {0}) of orbits of Aut(f). Clearly, Vk = Vh if and
only if h−1k ∈ F3 \ {0}. Moreover, Vk ∪{0} is the union of 1-dimensional linear
subspaces of V (points of PG(V )). We denote by Pk the set of points of PG(V )
contained in Vk ∪ {0}.

Let ι = (I,O,O), as in Subsection 5.1. Then 〈ι〉 ∈ P1. As in Subsection 5.1,
Hι is the hyperplane of V orthogonal to ι with respect to φ, but we take the
liberty to use the symbol Hι also for the corresponding hyperplane of PG(V ).
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Recalling the construction of F as a subgeometry of Hι, we define R(〈ι〉) as
the collection of all projective subspaces of PG(V ) that contain 〈ι〉 and meet
Hι in an element of F .

Lemma 5.2 Let X ∈ R(〈ι〉). Then:
(i) X \ (X ∩Hι) ⊂ P1.
(ii) Let p ∈ X ∩ P1. Then there exists an element g ∈ G such that g(X) = X
and g(〈ι〉) = p. (Compare condition (C) of Section 3.)

Proof. Let x be a non-zero vector of Hι with x] = 0. Then f(x) = 0. Note
also that
iota] = ι. Hence (4) of Subsection 5.1 forces f(ι + tx) = f(ι) = 1 for all t ∈ F.
Therefore, all projective lines, planes and 3-spaces of R(〈ι〉) are contained in
P1 ∪ Hι. Moreover, all points of PG(V ) contained in a 4-element of F are
points of F . Hence the 4-elements of R(〈ι〉) are joins of lines of R(〈ι〉). By the
above, they are contained in P1 ∪Hι. Claim (i) is proved.

Turning to (ii), let X ∈ R(〈ι〉) and p ∈ X ∩ P1. Let L = 〈ι, p〉. Then
L ∈ R(〈ι〉), by (i). We shall firstly prove that there exists an element gL ∈ G
such that gL(L) = L and gL(〈ι〉) = p. Let ε := (E1,2, O,O) ∈ V , where

E1,2 :=

 0 1 0
0 0 0
0 0 0


Then ε ∈ Hι and ε] = 0, namely ε represents a point of F . Without loss,
we may assume that L = 〈ι, ε〉 and p = 〈ι + ε〉. It is easy to see that, for
every choice of three non-singular matrices A,B,C ∈ M with the same de-
terminant, the mapping gA,B,C sending every vector x = (X1, X2, X3) ∈ V
to (AX1B

−1, BX2C
−1, CX3A

−1) belongs to Aut(f). Choose A, B and C as
follows: ε:

A :=

 a r s
0 a 0
0 t b

 for a, b, , r, s, t ∈ F, a, b 6= 0,

B := A − aE1,2 and C is any (3 × 3)-matrix with det(C) = a2b. Then gA,B,C

sends ι to ι + ε and fixes ε. If X = L then (ii) is proved. Let L ⊂ X. As
R(〈ι〉) ∼= F and the stabilizer Gι of 〈ι〉 in G induces a flag-transitive group on F ,
Gι also acts flag-transitively on R(〈ι〉). Hence there exists an element gX ∈ Gι

such that gX(L) = L and gX(X) = g−1
A,B,C(X). The element g := gA,B,CgX has

the properties required in (ii). 2

Let now p ∈ P1 and let g ∈ G map 〈ι〉 onto p. Define R(p) := g(R(〈ι〉)).
Since the stabilizer of ι in Aut(f) yields an automorphism group of F , this
definition does not depend on the choice of g.

We now define an incidence structure G having P1∪
⋃

p∈P1
R(p) as the set of

elements and inclusion as the incidence relation. Types are defined as follows:
the points of P1 are the 0-elements of G. If Y ∈ R(p) for a point p ∈ P1 and
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Y = g(X) for an element g ∈ G sending 〈ι〉 to p and an element X ∈ R(〈ι〉),
then the type of the element X ∩Hι of F is taken as the type τ(Y ) of Y .

Recall that, according to the conventions stated in the introduction of this
paper, only residually connected structures deserve to be called geometries.

Lemma 5.3 The structure G is residually connected (whence it is a geometry).
Moreover:
(1) ResG(p) = R(p) ∼= F for every point p ∈ P1.
(2) If X is an element of G with type 0 < τ(X) < 4 then Res−G (X) is the set of
points and subspaces of the affine space X \ (X ∩Hι).
(3) If X is a 4-element of G then ResG(X) is isomorphic to the affine extension
of the Sp(6, F)-symplectic polar space, embedded in V (6, F).

Proof. We firstly prove that G is connected. As the group G acts transitively
on P1, it transitively permutes the connected component of G. Let X be the
component of G containing 〈ι〉 and GX the stabilizer of X in G. The stabilizer
Gι of 〈ι〉 is contained in GX . However GX is larger than Gι, by (ii) of lemma
5.2. On the other hand, Gι is maximal in G, since the Chevalley group F4(F)
is a maximal subgroup of E6(F). It follows that GX = G, namely X = G, since
G acts transitively on the set of components of G. The connectedness of G is
proved. The residual connectedness of the residues of the elements of G follows
from claims (1), (2) and (3). So, it only remains to prove these claims.

Let Y = g1(X) for X ∈ R(〈ι〉) and g1 ∈ G. Let p ∈ P1 ∩ Y . Then g−1
1 (p) ∈

X. By (ii) of Lemma 5.2, an element g2 ∈ G exists such that g2(X) = X and
g2(〈ι〉) = g−1

1 (p). Hence Y = g1g2(X) and p = g1g2(〈ι〉). Claim (1) is proved.
Claim (2) follows from (i) of Lemma 5.2 and claim (1). Finally, (3) follows from
(2) and the fact that, if X is a 4-element of R(〈ι〉), all points of X ∩Hι belong
to F . 2

Theorem 5.4 The geometry G belongs to the following diagram:

(Af.F4) • • • • •
Af0 1 2 3 4

(Easy, by Lemma 5.3.)

Theorem 5.5 The group G acts flag-transitively on G with Z as the kernel of
that action.

Proof. Let c be a given chamber of G containing 〈ι〉 as the 0-element and let d
be any other chamber of G. We must prove that g(d) = c for a suitable element
g ∈ G/Z. As G/Z is transitive on the point-set P1 of G, there are elements of
G/Z that map the 0-element of d onto 〈ι〉. So, we may assume that 〈ι〉 is the
0-element of d too. The stabilizer Gι of ι in G acts flag-transitively on F and
ResG(〈ι〉) ∼= F . Hence there exists an element g ∈ Gι such that g(d) = c. 2

Corollary 5.6 Let F = GF(2). Then G = G(E6(2)).
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Proof. In this case Z = 1. Hence G = G/Z = E6(2). The group E6(2) contains
only two conjugacy classes of subgroups isomorphic to F4(2), switched by the
polarity of the E6(2)-building. Moreover, the {0, 1, 2, 3}-residues of G are just
as in G(E6(2)), by (3) of Lemma 5.3 (see also Lemma 2.5). The conclusion is
now obvious. 2

Problem 5.7 As noticed in Subsection 3.4, the geometry G(E6(2)) is simply
connected. Is G simply connected whatever F is?

Remark 5.8 Let Ĝ be the group of linear transformations of V that preserve f
modulo a scalar. In general, Ĝ is larger than G. If so, then Ĝ fuses the orbits of
G on PG(V ) in larger orbits. Let P̂1 be the Ĝ-orbit containing P1 and define an
incidence structure Ĝ on it in the same way as G on P1. Then Ĝ is the disjoint
union of copies of G, one copy for each of the orbits of G fused in P̂1.

Problem 5.9 Suppose that F is a quadratic extension of a field F0. Is it possible
to modify the construction of G in such a way as to obtain an Af.F4-geometry for
the twisted group 2E6(F0) with F4-residues isomorphic to the F4(F0)-building?

5.3 More Af.F4-geometries

5.3.1 Affine extensions of buildings of type F4(F)

Let F be the F4(F)-building, with points and lines chosen as in Subsection
5.1, let F∗ be its dual and e : F → Hι and e∗ : F∗ → W ′ the 26- and
52-dimensional embeddings considered in Section 5.1. The affine extensions
Exe(F) and Exe∗(F∗) are flag-transitive Af.F4-geometries. Take {0, 1, 2, 3, 4}
as the type-set for both Exe(F) and Exe∗(F∗), with 0 standing for points and
the types 4, 3, 2 and 1 of F∗ replaced by 1, 2, 3 and 4:

(Af.F4) • • • • •
Af0 1 2 3 4

The {1, 2, 3, 4}-residues of Exe(F) are isomorphic to the affine extension of the
Sp(6, F)-polar space, naturally embedded in V (6, F). This extension is isomor-
phic to the minimal standard quotient of the affine polar space obtained by
removing a singular hyperplane from the Sp(8, F)-polar space. On the other
hand, the {1, 2, 3, 4}-residues of Exe∗(F∗) are isomorphic to the affine extension
of the O(7, F)-polar space. This extension is isomorphic to the affine polar space
obtained by removing a singular hyperplane from the O(9, F)-polar space. Note
that this affine polar space does not admit any proper standard quotient.

If char(F) = 2 and F is perfect then F ∼= F∗ and the embedding e is a
morphic image of e∗. Consequently, Exe∗(F∗) is a 2-cover of Exe(F) (see the
comments at the end of Subsection 5.1).

In particular, let F = GF(2). Then Exe(F) = G(226F4(2)). The latter
is simply connected (Subsection 3.4) but it is not 2-simply connected, since
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Exe∗(F∗) is a proper 2-cover of it. Clearly, property (TR) of Section 2 fails to
hold in Exe∗(F∗).

Problem 5.10 Determine the universal 2-cover of G(226F4(2)). This is the
same as determining the universal representation group of the point-line geom-
etry of the F4(2)-building (see Proposition 6.2).

Problem 5.11 Are Exe(F) and Exe∗(F∗) simply connected for any choice of
the field F? What about their universal 2-covers? (Compare Propositions 6.1
and 6.2.)

5.3.2 More affine extensions

Let F be the metasymplectic space of the D4(F)-building. It is well known that
F admits a projective embedding e of vector dimension 27 or 28, according to
whether char(F) is 2 or different from 2. In any case, Exe(F) is a flag-transitive
Af.F4-geometry. If F = GF(2) then Exe(F) has the same orders as G(Fi22) and
G(3·Fi22), but it has nothing to do with either of them. Needless to say, (TR)
fails to hold in Exe(F).

Suppose now that F is a quadratic extension of a subfield F0 and let E be the
E6(F)-building. It is well known that E contains a subgeometry Ftw isomorphic
to the F4-building of twisted type 2E6(F0). Regarding Ftw as a poset with
set of types {1, 2, 3, 4} as we have done for F , the {1, 2, 3}-residues of Ftw are
isomorphic to the polar space associated to PSU(6, F) while {4, 3, 2}-residues
are isomorphic to the O−(8, F0)-polar space. The 27-dimensional embedding ε
of E induces a projective embedding etw of Ftw. The extension Exetw(Ftw) is a
flag-transitive Af.F4-geometry.

Problem 5.12 The 78-dimensional embedding e∗ : E → W induces a represen-
tation of the dual F∗

tw of Ftw in a subspace S of W . The lines of Ftw are mapped
by e∗ into lines of PG(S), but not onto them. Can we find a Baer subgeometry
S0 of PG(S) such that e∗tw induces a projective embedding e∗0 : F∗

tw → S0?
If S0 existed, then Exe∗0

(F∗
tw) would be an Af.F4-geometry with point-

residues isomorphic to F∗
tw. In particular, for F = GF(4) the extension Exe∗0

(F∗
tw)

would have the same orders as G(B), but (TR) would not hold in it.

Part II

Various basics

6 Representations, projective embeddings, affine
extensions and hyperplane complements

Throughout this section G is a geometry with a string-shaped diagram of rank
n ≥ 2 over the set of types {1, 2, ..., n}. We stick to all conventions stated in
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Subsection 1.2 for geometries of this kind. We do not assume (IP) on G, but we
assume that (IP) holds in the point-line system G|1,2 of G, as it is customary in
the literature on embeddings and hyperplanes.

Leaving geometries with non-string diagrams out of our exposition is not
really restrictive. Indeed, when considering embeddings or hyperplanes of a
geometry belonging to a non-string diagram, we actually deal with its grass-
mann geometry with respect to a given type [19, Chapter 5]. The diagram of a
grassmann geometry is indeed string-shaped.

6.1 Representations and extensions

Following [20], we choose a very general setting for our definitions. We shall
turn later to the definitions usually given in the literature.

Given a group R, let S(R) be its subgroup lattice. A complete representation
of G in R (a representation of G in R, for short) is a mapping ρ : G → S(R)
satisfying all the following:

(R1) 〈ρ(p)〉p∈P (G) = R;

(R2) 〈ρ(p)〉p∈P (x) = ρ(x) for every x ∈ G;

(R3) ρ(p) ∩ ρ(q) = 1 for any two distinct points p, q ∈ P (G).

Note that, regarded G and S(R) as posets, (R2) implies that ρ is a morphism
from G to S(R). Henceforth we write ρ : G → R as a shortening of the phrase
“ρ is a representation of G in R”.

Given a representation ρ : G → R, the extension Exρ(G) of G via ρ (called
‘expansion’ in [19], [20] and [21]) is the geometry over the set of types {0, 1, ..., n}
defined as follows: the elements of R are the 0-elements of Exρ(G) while for
i = 1, 2, ..., n the elements of Exρ(G) of type i are the pairs (aρ(x), x) where
x is an i-element of G and aρ(x), called the support of (aρ(x), x), is a coset of
the subgroup ρ(x) of R. Incidence is defined as follows: a 0-element a and an
i-element (bρ(x), x) are incident if and only if a ∈ bρ(x); two elements (aρ(x), x)
and (bρ(y), y) with 1 ≤ τ(x) < τ(y) ≤ n are incident if and only if x < y in
G and aρ(x) ⊆ bρ(y). The residual connectedness of Exρ(G) follows from (R1)
and (R2). The diagram of Exρ(G) is still string-shaped. The residues of the
0-elements of Exρ(G) are isomorphic to G.

The {0, 1}-residues of Exρ(G) are partial linear spaces, by (R3). In order
to say more on them we need to know more on the mappings induced by ρ on
the lines of G. For instance, given l ∈ L(G), suppose that ρ(l) is abelian and
〈ρ(p), ρ(q)〉 = ρ(l) for any two points p, q ∈ P (l). Then the lower residue of ρ(l)
in Exρ(G) is a net. If moreover ρ(l) = ∪p∈P (l)ρ(p) then that residue is an affine
plane.

When (IP) holds in G and ρ satisfies the following:

(R4) for every choice of p ∈ P (G) and x ∈ G, if ρ(p) ≤ ρ(x) then p ∈ P (x),
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then ρ induces an isomorphism from the poset G to the poset induced by S(R)
on ρ(G) = {ρ(x)}x∈G . In this case the elements of Exρ(G) of type > 0 bijectively
correspond to their supports, whence we can simplify the definition of Exρ(G)
by taking cosets aρ(x) instead of pairs (aρ(x), x) as elements and inclusion as
the incidence relation.

Given two representations ρ1 : G → R1 and ρ2 : G → R2, a morphism from
ρ1 to ρ2 is a homomorphism f : R1 → R2 such that, for every x ∈ G, f induces
an isomorphism from ρ1(x) to ρ2(x). Note that f is surjective, by (R1). Every
morphism from ρ1 to ρ2 induces a covering from Exρ1(G) to Exρ2(G). Moreover,
let R̃ be the universal completion of the amalgam Aρ(G) := {ρ(x)}x∈G , where
we only take a record of the inclusions ρ(x) < ρ(y) for x < y. Let ρ̃ be the
representation of G in R̃ naturally induced by ρ, namely ρ̃(x) = ρ(x) for every
x ∈ G, with ρ(x) being now regarded as a subgroup of R̃. The canonical
projection f̃ : R̃ → R is a morphism from ρ̃ to ρ and, for every morphism
of representations f : ρ̄ → ρ there is unique morphism g : ρ̃ → ρ̄ such that
f̃ = f ◦ g. This property uniquely determines ρ̃ up to isomorphism. The
following also holds (see [20]):

Proposition 6.1 The extension Exρ̃(G) is the universal cover of Exρ(G).

We call ρ̃ the hull of ρ, also the abstract hull of ρ when we need to distinguish
it from linear hulls, to be defined later.

A representation ρ : G → R is said to be abelian if R is abelian. If ρ is
abelian then we can also consider its abelian hull, defining it as the composition
of ρ̃ with the canonical projection of R̃ onto R̃/R̃′, where R̃′ is the commutator
subgroup of R̃.

With G and R as above, a point-line representation of G in R is a (complete)
representation e : G|1,2 → R. Point-line representations may also be called
representations for short, when there is no danger of confusion with complete
representations. If e is a point-line representation of G, we take the liberty of
writing e : G → R instead of e : G|1,2 → R, provided that no ambiguity arises.

Let e : G → R be a point-line representation of G. We can extend e to a
complete representation ρe : G → R by setting ρe(x) := 〈e(p)〉p∈P (x), according
to (R2). We call ρe the completion of e.

Clearly, if f : ē → e is a morphism of point-line representations then f
induces a morphism from the completion ρē of ē to the completion ρe of e. So,
if e is its own hull then ρe is its own hull as well, but the converse fails to hold
in general. Consequently, if ρ̃e and ρẽ are the hull of ρe and the completion of
the hull ẽ of e respectively, then Exρẽ(G) is a 2-cover of Extρ̃e

(G). Nevertheless,
Extρ̃e

(G) is simply connected by Proposition 6.1. Note that Exρẽ
(G) is also

simply connected (but possibly not 2-simply connected), because ρẽ is its own
hull. By combining Proposition 6.1 with [18, Theorem 1] we can say something
more.

Proposition 6.2 Let e be a point-line representation of G. Suppose that G has
rank n ≥ 3 and that G as well as all of its residues of rank at least 3 are simply
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connected. Let ẽ be the hull of e. Then Exẽ(G|1,2) is a truncation of the universal
2-cover of Exe(G). If moreover G satisfies (IP) then Exρẽ

(G) is the universal
2-cover of Exe(G).

6.2 GF (2)-representations

Suppose that all lines of G have exactly three points. A GF(2)-representation
of G is a point-line representation e : G → R such that

(R5) e(p) has order 2 for every point p ∈ P (G) and e(l) is elementary abelian
of order 22 for every line l ∈ L(G).

We refer the reader to Ivanov and Shpectorov [13, Chapter 2] for properties of
these representations. We only make a few remarks here.

Let e : G → R be a GF(2)-representation and let ρe be its completion. Then
the {0, 1}-residues of Exρe

(G) are affine planes of order 2.
In view of (R5), the amalgam A1,2(G) := Ae(G|1,2) = {e(x)}x∈G|1,2 is com-

pletely determined by G|1,2 itself, with no need of any further information on
e. Hence all GF(2)-representations of G have the same hull, which is called the
universal representation of G. The universal completion of A1,2(G) is called the
(universal) representation group of G. When R is abelian, the abelian hull of e
is called the (universal) representation module of G.

Remark 6.3 We warn the reader that, in the literature, it is customary to
consider the amalgam A1,2(G) and its universal completion even if G admits no
GF(2)-representation, as when the universal completion of A1,2(G) collapses to
1, for instance. However, in this paper we never meet situations like these.

6.3 Projective embeddings and affine extensions

Let V be a vector space over a field F and let e : G → V be a point-line
representation of G in the additive group of V . We say that e is a projective
embedding (defined over F) if it satisfies the followings:

(E1) e(p) is 1-dimensional vector subspace of V for every point p ∈ P (G);

(E2) for every line l ∈ L(G), e(l) is a 2-dimensional subspace of V and e(l) =
∪p∈P (l)e(p).

In view of the above, a linear representation e : G → V can also be regarded as
a mapping from G to the set of points and lines of PG(V ). Accordingly, we also
write e : G → PG(V ) instead of e : G → V .

Let ρe be the completion of e. The extension Exρe
(G) (also denoted by

Exte(G) for short) is called the affine extension of G via e. The {0, 1}-residues
of Exρe

(G) are affine planes.
Given two projective embeddings e1 : G → PG(V1) and e2 : G → PG(V2)

defined over the same field F, a (projective) morphism from e1 to e2 is semilinear
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mapping f : V1 → V2 such that f ◦ e1 = e2. Clearly, morphisms of projective
embeddings are also morphisms of representations as defined in Subsection 6.1.

A linear analogue of the abstract hull ẽ of e can also be defined. The elements
of the amalgam Ae(G|1,2) are F-vector spaces. Let V̂ be the largest F-vector
space in which Ae(G|1,2) can be embedded. Then the mapping ê : G → V̂
defined by the clause ê(x) = e(x) for x ∈ G|1,2 but with e(x) regarded as a
subspace of V̂ , is a projective embedding of G in V̂ and the canonical projection
f̂ : V̂ → V is a morphism from ê to e. The pair (ê, f̂) satisfies the following
universal property: for every morphism of projective embeddings f : ē → e
there is unique projective morphism g : ê → ē such that f̂ = f ◦ g. We call ê
the (linear) hull of e. Clearly, ê is also a point-line representation of G. Hence
a morphism of representations exists from the abstract hull ẽ of e to ê.

The category of projective embeddings of a geometry G often admits an
initial object, called the absolutely universal embedding of G (see Kasikova and
Shult [16]. In general, that object is not initial in the category of point-line
representations of G.

Remark 6.4 Suppose that all lines of G have precisely three points and that G
admits a projective embedding. Then the projective embeddings of G are just
the abelian GF(2)-representations of G. The universal representation module of
G affords the absolutely universal embedding of G.

6.4 Subspaces, hyperplanes and their complements

A (proper) subspace of G is a (proper) subset S of P (G) such that every line of
G either is fully contained in S or it meets S in at most one point. A subspace
S is said to be totally singular (also just singular, for short) if all of its points
are pairwise collinear.

A proper subspace of G meeting every line of G non-trivially is a hyperplane
of G. Given a hyperplane H of G, the complement G \ H of H in G is the
substructure of G formed by the points exterior to H and the elements x ∈ G
such that P (x) 6⊆ H, with the incidence relation and the type function inherited
from G.

In general G \H is not residually connected (not even connected). However,
in many interesting cases G \ H is residually connected. Let this be the case.
Then G \H is a geometry. The residues of the points of G \H are the same as in
G. If x is an element of G \H of type τ(x) > 2, then H ∩P (x) is a hyperplane of
Res−G (x) and Res−G\H(x) is the complement of P (x)∩H in Res−G (x). For instance,
if Res−G (x) is a projective geometry then Res−G\H(x) is an affine geometry.

If G admits a projective embedding e : G → PG(V ), then for every projec-
tive hyperplane U of PG(V ) the preimage e−1(U ∩ e(P (G))) is a hyperplane of
G. In many embeddable geometries (as classical polar spaces, for instance) all
hyperplanes arise in this way, provided that e is its own linear hull.
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7 Affine polar spaces and their quotients

7.1 Affine polar spaces

Let P be a non-degenerate polar space of finite rank n ≥ 2. We assume that
all lines of P have at least three points. Let H be a hyperplane of P. Its
complement P \ H is residually connected. When n ≥ 3 it belongs to the
following diagram:

(Af.Cn−1) • • • ..... • • •
Af

When all lines of P have exactly 3 points, the diagram of P \ H can also be
drawn as follows:

(c.Cn−1)
• • • ... • • •

⊂

1 2 2 2 2 t

We call P\H an affine polar space of rank n (affine generalized quadrangle when
n = 2). The next proposition is well known (and easy to prove):

Proposition 7.1 Property (IP) holds in every affine polar space.

The following is also well known (see [19, Proposition 12.50]).

Proposition 7.2 Affine polar spaces of rank n > 2 are simply connected.

Let H be a hyperplane of P. The polar space P induces a possibly degenerate
polar space H on H, of rank n or n− 1. The polar space H is degenerate if and
only if H = p⊥ for a given point p of P (where ⊥ stands for the collinearity
relation of P, as usual). In this case the hyperplane H is said to be singular
with p as its deepest point (but we warn the reader that a singular hyperplane
is not a singular subspace in the sense of Subsection 6.4).

In many cases (in all cases when P is finite), the isomorphism type of H
uniquely determines H up to automorphisms of P. Hence it also determines
P \H up to isomorphisms. In these cases, a symbol denoting the isomorphism
type of H can be used to recall what H is. For instance, if H is isomorphic to
the polar space associated to the symplectic group S6(2) then we say that H is
of S6(2)-type or that it is an S6(2)-hyperplane.

7.2 Standard quotients of affine polar spaces

In general, an affine polar space admits several quotients. Those that satisfy
(IP) are called standard quotients in [6]. They can be described as follows.
Given P and H as above, let ΘH be the equivalence relation on the set of points
of P \ H defined as follows: two points a and b of P \ H correspond in ΘH if
and only if a⊥ ∩H = b⊥ ∩H. Then ΘH can be extended in a natural way to
an equivalence relation on the set of elements of P \H of any type and we can
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consider the quotient (P \H)/ΘH of P \H by the relation ΘH thus extended.
This quotient is the minimal standard quotient of P \H. Any other standard
quotient of P \H can be obtained as (P \H)/Θ for a refinement Θ of ΘH (see
[6]). The following is the main result of Cuypers and Pasini [6]:

Proposition 7.3 Every geometry belonging to the diagram Af.Cn−1 (n ≥ 3)
and satisfying (IP) is a standard quotient of an affine polar space.

In all cases we are aware of, the stabilizer of H in Aut(P) acts flag-transitively on
P \H. It also induces a flag-transitive group on the minimal standard quotient
(P \H)/ΘH . Perhaps this is true in any case. Anyway, it is always true when
P is finite.

The collinearity graph of an affine polar space has diameter at most 3 (some-
times 2) while minimal standard quotients of affine polar spaces have diameter
at most 2 (sometimes just 1). Clearly, a standard quotient of an affine polar
space is minimal if and only if its collinearity graph has diameter at most 2.
So, if an affine polar space has diameter 2, then it does not admit any proper
standard quotient.

Example 7.4 Let Q be the O5(2)-generalized quadrangle and H a hyperplane
of Q. Then H can be either singular or an ovoid or a (3 × 3)-grid. If H is
singular then Q\H is the vertex-edge system of the cube. If H is an ovoid then
Q \ H is the Petersen graph. If H is a grid then P \ H is a dual grid. If H
is non-singular then Q \ H admits no proper quotient. If H be singular then
Q \H admits a 2-fold quotient, isomorphic to the affine plane of order 2.

7.3 Minimal standard quotients as affine extensions or
tangent geometries

Given a projective embedding e : P0 → PG(V ) of a polar space P0, suppose that
for any two non-collinear points x and y of P0 the set e({x, y}⊥⊥) spans a line of
PG(V ). Then the affine extension Exe(P0) is a minimal standard quotient of an
affine polar space. Indeed, let P be a polar space with point-residues isomorphic
to P0 and let H = p⊥ for a point p of P. Then Exe(P0) ∼= (P \H)/ΘH .

We now turn to tangent geometries. An abstract definition of tangent ge-
ometries is stated in [6], according to which tangent geometries of polar spaces
and minimal standard quotients of affine polar spaces are ultimately the same
thing, but we are not interest in it here. A more concrete although slightly less
general definition is also given in [6], which we shall now recall.

Let H be a hyperplane of P and let H be the polar space induced by P on H.
Let e : H → V be a projective embedding of H. For instance, e can be induced
by an embedding of P, but this is not essential for the sequel. Assume that all
non-singular hyperplanes of H arise from e as explained in the final paragraph of
Subsection 6.4. According to this assumption, for every non-singular hyperplane
K of H, 〈e(K)〉⊥e is a non-singular point of PG(V ) and 〈e(K)〉⊥e⊥e = 〈e(K)〉,
where ⊥e is the orthogonality relation associated to e(H) in V . We call 〈e(K)〉⊥e
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the pole of K. Thus, the non-singular hyperplanes of H bijectively correspond to
their poles. Let Te,0(H) be the set of the poles of the non-singular hyperplanes
of H. For i > 0 let Te,i(H) be the set of the i-dimensional subspaces X of PG(V )
such that X meets the image e(H) of H in an (i − 1)-dimensional projective
subspace contained in X⊥e and X \ e(H) ⊆ Te,0(H). Clearly, Te,i(H) = ∅ if
i is too large. Let m be the largest i such that Te,i(H) 6= ∅. Then Te(H) :=
∪m

i=0Te,i(H) equipped with the natural incidence relation (namely inclusion) is
an incidence structure over the set of types {0, 1, ...,m}. In general, Te(H) is
not connected. However, its connected components are residually connected.
We call them projective tangent geometries of H at e, also tangent geometries
of H for short. As proved in [6], the quotient (P \H)/ΘH is isomorphic to one
of these tangent geometries. The other tangent geometries of H at e, if any, are
also isomorphic to minimal standard quotients of affine polar spaces, but they
might arise from polar spaces quite different from P.

8 Shrinkings and geometries at infinity

8.1 Shrinkings

The earliest explicit mention of shrinkings can be found in a paper by Stroth
and Wiedorn [25], but that idea is implicit in other papers too (e.g. Ivanov [9],
Ivanov and Wiedorn [14], Ivanov, Pasechnik and Shpectorov [15]). That con-
struction has been later generalized by Pasini and Wiedorn [22]. Less ambitious
expositions, closer to the setting of [25], are given in [21] and [26]. In the sequel
we place ourselves at a level of generality intermediate between [25] and [22].

Let G be a geometry of rank n+1 with string-shaped diagram and 0, 1, ..., n
as types, elements of type 0, 1 and 2 being called points, lines and planes
respectively. We assume that the lower residues of the planes of G are affine
planes.

Let Λ0 be the binary relation on the line-set L(G) of G defined as follows:
two lines l,m ∈ L(G) correspond in Λ0 if and only if they are parallel in the
lower residue of a plane of G. Let Λ be the transitive closure of Λ0. Similarly,
given an element x ∈ G of type τ(x) > 1, let L(x) be the set of lines of G
incident with x and let Λ0,x be defined on L(x) by declaring that (l,m) ∈ Λ0,x

precisely when l and m are parallel in a {0, 1}-residue of Res−(x). Let Λx be
the transitive closure of Λ0,x. The relation Λx is a possibly proper refinement of
the relation induced by Λ on L(x). In particular, when τ(x) = 2 then Λx is the
usual parallelism of the affine plane Res−(x), but it can happen that Λ induces
the trivial relation on L(x).

Let C be one of the equivalence classes of Λ. We define a geometry Shr(C)
with {1, 2, ..., n} as the set of types and C as the set of 1-elements. For every
i = 2, 3, ..., n, the i-elements of Shr(C) are the pairs (Cx, x) where x is an i-
element of G, which we call the support of (Cx, x), and Cx is a class of Λx such
that Cx ⊆ C. A 1-element l ∈ C is incident with (Cx, x) if and only if l ∈ Cx.
Two elements (Cx, x) and (Cy, y) of type i and j respectively, with 2 ≤ i < j,
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are incident in Shr(C) if and only if their supports x and y are incident in G
and Cx ⊆ Cy. We call Shr(C) a shrinking of G.

For every 1-element l ∈ C of Shr(C), the residue of l in Shr(C) is isomorphic
to the upper residue of l in G. For every type k = 2, 3, ..., n, the {1, 2, ..., k}-
residues of Shr(C) are shrinkings of {0, 1, 2, ..., k}-residues of G. In particular,
the {1, 2}-residues of Shr(C) are shrinkings of the {0, 1, 2}-residues of G.

If G satisfies (IP) then (IP) also holds in Shr(C). In many cases the following
also holds:

(RS) (Residual Stability of Parallelism.) For every element x ∈ G with
type τ(x) > 2, the relation Λ induces Λx on L(x).

If (RS) holds, then the class Cx is uniquely determined by x and C. So, we can
replace the elements of Shr(C) with their supports (with the convention that a
line l ∈ C is its own support), thus regarding Shr(C) as a subgeometry of G.

In general, the isomorphism type of a shrinking Shr(C) depends on the choice
of the class C, but when Aut(G) acts transitively on L(G) then all shrinkings
of G are mutually isomorphic. In this case it is customary to call Shr(C) the
shrinking of G, denoting it by the symbol Shr(G).

Clearly, if G is flag-transitive then Shr(G) is flag-transitive.

Example 8.1 The shrinkings of a (k + 1)-dimensional affine geometry are k-
dimensional affine geometries. So, if the {0, 1, ..., k}-residues of G are affine
geometries then the {1, 2, ..., k}-residues of Shr(C) are still affine geometries.

Example 8.2 The shrinkings of an affine polar space of rank n + 1 ≥ 3 are
affine polar spaces of rank n (Pasini and Wiedorn [22, Proposition 8.1]). More
generally, the shrinkings of a (minimal) standard quotient of an affine polar
space of rank n + 1 are (minimal) standard quotients of affine polar spaces of
rank n.

For instance, let P be the O7(2)-polar space and put G := P \ H, for a
hyperplane H of P. The hyperplane H can be singular or isomorphic to either
the O−

6 (2)-quadrangle or the O+
6 (2)-polar space. If H is singular then Shr(G) is

the cube-graph, if H is the O−
6 (2)-quadrangle then Shr(G) is the Petersen graph

and if H is the O+
6 (2)-polar space then Shr(G) is a dual grid (compare Example

7.4). In the first case G admits a 2-fold quotient, the shrinkings of which are
affine planes of order 2.

Example 8.3 Let e be a projective embedding of a geometry G0 with string-
shaped diagram. Suppose that e admits completion and let G = Exe(G0) be its
affine extension. Then G admits shrinkings and its shrinkings are extensions of
the representations induced by e on the point-residues of G0.

8.2 Geometries at infinity

Different definitions of geometries at infinity can be given, suited to different
situations (see Pasini and Wiedorn [22]). We will consider only one of them
here.
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With G as in the previous subsection, suppose that for a type k > 1 the
{0, 1, ..., k}-residues of G are (k + 1)-dimensional affine geometries. Suppose
that G satisfies condition (RS) of the previous subsection, so that the shrinkings
of G are subgeometries of G. With Λ defined as in the previous subsection, put
Λ1 := Λ and, for i = 2, ..., k, let Λi be the transitive closure of the relation ‘being
parallel inside the same {0, 1, ..., i}-residue’, defined on the set of i-elements of
G. Suppose that Λi satisfies a condition analogous to (RS). (We leave the precise
statement of this condition for the reader.)

Then we can define a geometry G∞,k over the set of types {1, 2, ..., n}, which
we call the geometry at infinity of G of level k. For i = 1, 2, ..., k, the i-elements
of G∞,k are the classes of Λi while, for i > k, the i-elements of G∞,k are just the
same as in G. In particular, the 1-elements of G∞,k bijectively correspond to
the shrinkings of G. The incidence relation is defined as follows. Two elements
X and Y of G∞,k of type i, j ≤ k are declared to be incident if a member of X
is incident in G with a member of Y . Two elements x and y of G∞,k of type
i, j > k are incident in G∞,k if and only if they are incident as elements of G.
An element X of type i ≤ k is incident with an element y of type j > k if and
only if y is incident in G with at least one member of X.

If k = n then G is an affine geometry and G∞,k is its projective geometry at
infinity. When k < n the {1, 2, ..., k}-residues of G∞,k are projective geometries.
If moreover k < n− 1 then the {k +2, ..., n}-residues of G∞,k are the same as in
G and, for every element x of type j > k, Res−G∞,k(x) is the geometry at infinity
of Res−G (x) of level k. (Note that property (RS) as well as its analogues for type
2, 3, ..., k are preserved when taking lower residues.)

Proposition 8.4 Let k < n and suppose that no two distinct elements of G
are incident with the same set of n-elements (as when (IP) holds, for instance).
Then Aut(G∞,k) = Aut(G). Moreover, if Aut(G) acts flag-transitively on G then
Aut(G∞,k) is also flag-transitive.

Proof. The latter claim is obvious. The first claim follows from the fact that,
since k < n, G and G∞,k have the same n-elements and, since no two elements
of G are incident with the same set of n-elements, the action of Aut(G) on G is
uniquely determined by its action on the set of n-elements. 2

Unfortunately, Proposition 8.4 is seldom of great help. Indeed in general
G∞,k is far more difficult to investigate than G, due to the fact that rather odd
geometries can occur as residues of G∞,k of type {k, k + 1} or {k + 1, k + 2}.
However, in a few lucky cases G∞,k turns out to be a well known object. In
those lucky cases we can exploit G∞,k to understand G.

9 A lemma on flag-transitive F4-geometries

Let F be an F4-geometry with finite orders s, s, t, t, where s > 1.
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• • • •
s s t t

1 2 3 4
(1 < s < ∞, 1 ≤ t < ∞)

The next lemma has been exploited in Section 2.

Lemma 9.1 If F is flag-transitive then F is a building, except possibly when
t = 1 and s > 2.

Proof. Suppose t > 1. Then, by Yoshiara [28], either all C3-residues of F
are buildings or s = t = 2 and one of these residues is isomorphic to the flat
C3-geometry for the alternating group A7. The latter case is impossible by
Aschbacher [1]. Hence all C3-residues of F are buildings. By Tits [24], F is
covered by a building F̃ . However Aut(F̃) does not admit any normal subgroup
that can define a proper quotient of F̃ . Hence F = F̃ .

Let t = 1. Then the {1, 2, 3}-residues of F are buildings [19, Theorem 14.13].
On the other hand, {2, 3, 4}-residues arise from suitable sets of latin squares as
explained by Rees [23]. It follows from Rees’s description that when s = 2 these
residues are either buildings or flat quotients of buildings. In this case all C3-
residues of F are covered by buildings and we obtain the conclusion as in the
previous paragraph. 2

Remark 9.2 As far as I know, the case of t = 1 and s > 2 is still open.

10 The graph Φ(F) of an F4-building F
Let F be a building of type F4 and let Γ(F) be its collinearity graph. We recall
that Γ(F) has diameter equal to 3 and there are two kinds of pairs of points
at distance 2 in it, namely symplectic pairs and special pairs. A pair {x, y} of
points at distance two in Γ(F) is said to be symplectic if there are at least two
points collinear with both x and y. If only one point exists collinear with both
x and y then {x, y} is a special pair. Equivalently, {x, y} is symplectic or special
according to whether it is contained in a symp or not.

The following graph, which we denote by Φ(F), has been exploited in Section
3 to define c.F4(2, t)-geometries. The points of F are the vertices of Φ(F), two
points being adjacent in Φ(F) when they either are collinear or form a symplectic
pair. It is not so difficult to prove that Φ(F) has diameter equal to 2.

Clearly, the symps of F are maximal cliques of Φ(F), but not all maximal
cliques of Φ(F) arise from symps. Nevertheless, when F admits finite orders
then we can recover Γ(F) from Φ(F).

Indeed let F be an F4(s, t)-building, s, t < ∞. For a vertex x of Φ(F), let
Φ(x) be the set of vertices adjacent to x in Φ(F), with the convention that
x 6∈ Φ(x). Let {x, y} be an edge of Φ(F). If x and y are collinear points of F
then

|Φ(x) ∩ Φ(y)| = s2(t2 + t + 1)(1 + st + s2t) + s− 1.
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If {x, y} is a symplectic pair then

|Φ(x) ∩ Φ(y)| = s2t2(st + 1)(t + 1) + (s2t + 1)(s2 + s + 1)− 2.

The previous two numbers are never equal. Hence Γ(F) can be recovered from
Φ(F). As the whole of F can be recovered from Γ(F), we can also recover F
from Φ(F).
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