ON THE SURJECTIVITY OF CERTAIN MAPS
C.P. ANIL KUMAR

ABSTRACT. We prove in this article the surjectivity of three maps. We prove in Theorem[I]
the surjectivity of the chinese remainder reduction map associated to projective space of
an ideal with a given factorization into ideals whose radicals are pairwise distinct maximal
ideals. In Theorem [2] we prove the surjectivity of the reduction map of the strong ap-
proximation type for a ring quotiented by an ideal which satisfies unital set condition. In
Theorem [3] we prove for a dedekind domain, for k > 2, the map from k-dimensional special
linear group to the product of projective spaces of k—mutually comaximal ideals associat-
ing the k—rows or k—columns is surjective. Finally this article leads to three interesting
questions [I] [2] [3] mentioned in the introduction section.

1. Introduction

For any commutative ring R with unity and an ideal Z = NQ, with rad(Q,) = M,
[0

a maximal ideal which are pairwise distinct i.e. M, # Mg for o # B we associate a

k—dimensional projective space for any positive integer k > 0.

Here in this article we prove the following three main results. The first main result concerns

the surjectivity of the chinese remainder reduction map associated to a projective space of
an ideal with a given comaximal ideal factorization which is stated as:

Theorem 1. Let R be a commutative ring with unity. LetZT = Q1 Qs ... Qk where rad(Qy) =
M. are pairwise distinct maximal ideals in R. Then the Chinese Remainder Reduction Map
associated to the Projective Space

I+1 I+1 1+1 1+1
PF;™ — PFg xPFg " X ... X IP’IFQk
18 surjective.

We also give a counter example in Section [6.3]| where the surjectivity does not hold in the
case of projective spaces associated to a product of two prime ideals each of which cannot
be expressed as a finite intersection of ideals whose radicals are pairwise distinct maximal
ideals.

The second main result is a result of strong approximation type. Here we give a criterion
called the Unital Set Condition which is given in Definition [7] and prove the following
surjectivity theorem which is stated as:

Theorem 2. Let R be a commutative ring with unity. Let T C R be an ideal which satisfies
the Unital Set Condition[]. Then the reduction map

R
SLy(R) — SLi(z)
18 surjective.
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A survey of results on Strong Approximation can be found in [I]. The third main result con-
cerns the surjectivity of another map from the group SLx(R) to a product of k—projective
spaces associated to k—pairwise comaximal ideals. Before we state the main theorem we
need a definition.

Definition 1. Let R be a commutative ring with unity. Suppose the ring R satisfies the
following four properties.

e (Property 1): For each mazimal ideal M we have M* # ML for all i > 0.
e (Property 2): (| M* = (0).
n>0

e (Property 3): dzm%(%) =1
The examples of such rings are Integers, Principal Ideal Domains, Discrete Valuations
Rings, Dedekind domains (which also includes their localizations at any multiplicatively
closed set). One can actually show that a ring R satisifies these properties if and only if it
is a dedekind domain. So as a consequence the ring R also satisifes the following property

e (Property 4): Every non-zero element r € R is contained in finitely many mazximal

ideals.

The theorem is stated as:

Theorem 3. Let R be a commutative ring with unity. Suppose R is a Dedekind domain
(refer Definition . Let M(R) be the monoid generated by mazximal ideals in R. Let
T,I, ..., Iy, € M(R) be k— pairwise co-mazximal ideals. Let k > 2 be a positive integer.
Consider

SLi(R) = {A = [aijlixk € Mixi(R) | det(A) = 1}.
Then the maps
01,09 : SLi(R) — PRy ' x PR x ... x PFy

given by
01:(A):([an:alg:...:alk],[agl:aggz...:agk],...,[akl:akgz...:akk]),
Ug:(A):([an:agl:...:akl],[alg:aggz...:akg],...,[alk:agk:...:akk])

are surjective.

Then as a consequence of this Theorem [3| we prove in Theorem another surjectivity
theorem where we consider rectangular matrices with entries in a ring R with highest
dimensional minors forming a unital set.

This article leads to the following three open questions.

Question 1. Let R be a commutative ring with unity. Suppose R is a dedekind domain
(refer Definition [1)). Let M(R) be the monoid generated by mazimal ideals in R. Let
T1,I,..., I € M(R) be k— pairwise co-mazximal ideals. Let k > 2 be a positive integer.
Let Gi(R) C SLi(R) be a subgroup. Under what conditions on Gi(R) are the maps

01,02 : Gp(R) — PRy ' x PRy ... x PRy !

given by
01:(A):([an:alg:...:alk],[agl:a22:...:agk],...,[akl:akg:...:akk]),
02:(A):([a11:a21:...:akl],[algzaggz...:akg],...,[alk:a%:...:akk])

surjective?
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The second question is concerning surjectivity of the map where the equation is differ-
ent from the defining equation of SLi(R) C Myxr(R). Before stating the following open
question we mention that we prove another Surjectivity Theorem [I7] for the Sum-Product
equation in Section Now we state the question concerning general varieties in a slightly
general context:

Question 2. Let R be a commutative ring with unity. Suppose R is a Dedekind Domain
(refer Definition . Let M(R) be the monoid generated by maximal ideals in R. Let
Ty, Iy, ..., I € M(R) be k— pairwise co-mazximal ideals. Let k > 2 be a positive integer.
Let Myxi(R) be the set of k x k matrices with entries in R. Let f : Myxp(R) — R be a
polynomial function in the entries. Suppose f(g = [gijlexk) = 0 implies each row of g is
unital. Let Vi(R) = {z = [z4j] € Mpxx(R) | such that f(z11,212,...,2k) = 0}. For what
equations f =0 is the map

o1: Vi(R) — PFY ' x P x ... x PRy
given by
o1:(A)=([a11 :a12: ... a1x), [ag1 t a2 : ...t agk], ..., [ak1 : ag ...t akkl)

surjective?
The third question is the following.

Question 3. (Open Question:) Classify geometically defined spaces which are actually full
Projective Spaces associated to an ideal in a ring.

Here we remark on the Projective Space associated to the ideal as an application of Chinese
Remainder Reduction Isomorphism.

Remark 1. This remark concerns the question as to what spaces can be considered as
projective spaces associated to ideals. The following are some examples.

o Let K be an algebraically closed field. Then we know via segre embedding the space
is (PFE)™ = PFE x PFE x ... x PFL is a projective algebraic variety in a suitable
high dimensional projective space. However it is also a projective space associated to
an ideal. Suppose if R is a commutative ring with unity and M1, Mo, ..., M, are

n
ideals all whose quotients are isomorphic to C then (IP’IF{E)" = PFX where T = ] M;

i=1
via CR-Reduction isomorphism.

e The fields need not be the same as in the above case. If Ki,Ko,... K, are r—fields
and if My, Mao,..., M, are pairwise comazximal ideals in R with /\% = K; then

T s

H]P’IE‘H]EI_ = IP’IF']} where J = [[ M; via CR-reduction isomorphism. For example
i=1 =1

2 2~ oE2

]P)]FR X P]F(C — PF(x(m2+1))

where R = Rlx], My = (x), My = (2? + 1).

2. A Fundamental Lemma on Arithmetic Progressions

In this section we prove the Fundamental Lemma on Arithmetic Progressions for Integers,
Dedekind Domains and Schemes.
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2.1. Fundamental Lemma on Arithmetic progressions for Integers.

Theorem 4 (A Fundamental Lemma on Arithmetic Progressions for Integers).

Let a,b € Z be integers with (a) + (b) = 1. Consider the set {a+nb|n € Z}. Let m € Z
be any non-zero integer. Then there exists an ng € Z and an element of the form a + ngb
such that ged(a + nob,m) = 1.

Proof. Assume a,b are both non-zero. Otherwise the Theorem[]is trivial. Let g1, 2, q3, ..., ¢
are the distinct prime factors of m. Suppose q | ged(m, b) then g t a+nb for all n € Z. Such

prime factors ¢ need not be considered. Let ¢ | m,q { b then there exists t, € Z such that

the exact set of elements in the given arithmetic progression divisible by ¢ is given by

coa+ (tg—29)b,a+ (tg — @)b,a+tgh,a+ (tg + q)b,a + (t; + 29)b. ..

Since there are finitely many such prime factors for m which do not divide b we get a set
of congruence conditions for the multiples of b as n = t; mod ¢. In order to get an ng we
solve a different set of congruence conditions for each such prime factor say for example
n =ty + 1 mod q. By Chinese Remainder Theorem we have such solutions ng for n which
therefore satisfy gcd(a + nob, m) = 1. O

2.2. Fundamental Lemma on Arithmetic progressions for Dedekind Domains.

Theorem 5 (A Fundamental Lemma on Arithmetic Progressions for Dedekind Domains).
Let O be a dedekind domain. Let a,b € O such that sum of the ideals (a) + (b) = O.
Consider the set A= {a+nb|n € O}. Let M C O be any nonzero ideal. Then there exists
an ng € O and an element a +nob € A such that the sum of the ideals (a + ngb) + M = O.

Proof. Assume a,b are both non-zero as otherwise the Theorem [b| is trivial. Let the
ideal M = Q7'Q.?... Q" be the unique factorization into prime ideals. Suppose Q €
{9Q1,Q9,...,9:} and Q@ D M + (b) then a + nb ¢ Q for all n € O because otherwise both
a,b € Q which is a contradiction. Such prime ideals Q@ need not be considered.

Let M C Q and b ¢ Q then there exists tg € O such that
{tla+the Q} =tgo+Q

an arithmetic progression. This can be proved as follows. First of all since b ¢ Q we have
(b) + Q@ = O. So there exists tg such that a +tgb € Q. If a +tb € Q then (t —tg)b € Q.
Sotetg+ Q.

Since there are finitely many such prime ideals Q in the factorization of M such that b ¢ Q
we get a set of congruence conditions for the multiples of b as n = tg mod Q. In order
to get an ng we solve a different set of congruence conditions for each such prime ideal
factors say for example n = tg + 1 mod Q. By Chinese Remainder Theorem we have
such solutions ng for n which therefore satisfy a + ngb ¢ Q for all primes ideal factors

Qe {91,9s,...,9:} and hence the sum of the ideals (a + ngb) + M = O.
This proves the Fundamental Lemma [5| on Arithmetic Progressions. (Il

2.3. Fundamental Lemma on Arithmetic progressions for Schemes.

Theorem 6. Let X be a scheme. Let Y C X be an affine subscheme. Let f,g € O(Y)
be two regular functions on'Y such that the unit reqular function 1y € (f,g) C O(Y). Let
E CY be any finite set of closed points. Then there exists a regular function a € O(Y)
such that f 4+ ag is a non-zero element in the residue field k(M) = % = % at every

MeE.
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Proof. Let the set of closed points be given by E = {M1, Mg, ..., M;}. If g vanishes in
the residue field at M; then for all regular functions a € O(Y), f 4+ ag does not vanish in
the residue field at M;. Otherwise both f, g € M; which is a contradiction to 1y € (f,g).

Now consider the finitely many maximal ideals M € E such that g ¢ M. Then there exists
t pm such that the set

{t| f+tge M} =tpm+ M
a complete arithmetic progression. This can be proved as follows. First of all since g ¢ M

we have (g) + M = (1y). So there exists ¢t such that f 4+ tpg € M. Now if f +tg € M
then (t —tar)g € M. Hence t € ty + M.

Since there are finitely such maximal ideals M such that g ¢ M in the set E we get a finite
set of congruence conditions for the multiples a of g as a = tpy mod M. In order to get
an ag we solve a different set of congruence conditions for each such maximal ideal in F say
for example a =ty +1 mod M. By Chinese Remainder Theorem we have such solutions
ap for a which therefore satisfy f + apg ¢ M for all maximal ideals M € E and hence the
regular function f + ngg does not vanish in the residue field k(M) for every M € E. This
proves the Theorem [6] O

3. A Theorem on Ideal Avoidance

In this section first we prove below the Order Prescription Lemma [I| before stating the
Theorem [7] on Ideal Avoidance.

Lemma 1 (Order Prescription Lemma). Let R be a commutative ring with unity. Let
{M; 11 < i <t} be a finite set of mazimal ideals. For each 1 < i <t let M D T but

t
MT"H 2 T then there exists a function f € T such that f € I\ |JZM,;. In particular

i=1
fe /\/l;nz\./\/l;?"”ﬂrl NZ for1<i<t.
Proof. Let My, Mo, ..., M, be the finite set of maximal ideals for which m; = 0 and let
M1, Myya, ..., M; be the remaining ideals for which m; > 0. So first we observe that

¢ ¢
for 1 < j <7, M; does not contain I( I ./\/lz> So there exists g; € I( I /\/lz) with
i=1,i#£j 1=1,i#]

gj ¢ M;. Then g = Zgz €Z,g¢ Mjforj=1,2....r Let fi € Z\M fori > (r+1).
Let fi; € M;\M,. Then we observe that

f=g9+ > (ﬁHf"”“) < ﬂ(Mml Mml“) <UIM>

i>rgeMMiTt T g i=1
Taking this f, the Lemma [I] follows. O
Theorem 7 (A Theorem on Ideal Avoidance).
Let R be a commutative ring with unity. Suppose for every mazimal ideal M, ﬁ M = (0).

=1
Let T C R be an ideal. Let Ji,Jo,...,Jr C R be r proper ideals (not the ring itself ) such
that

T = UIJZ».
=1
Then Z = (0).
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Proof. Replace the set of ideals {J; : 1 < i < r} by a finite set of maximal ideals {M; :
1 <4 < s} such that each maximal ideal M, contains some ideal J; for some j and for any
ideal J; there exists a maximal ideal M, such that M; > J;. Then we have

S
7= JIM;
i=1
Before applying Order Prescription Lemmal[I] for the ideal Z, if it is non-zero, we observe that

a suitable choice of m; for M; exist because of the hypothesis about intersection property.
So Z = (0). This proves the Theorem O

4. The Unital Lemma

In this section we prove Unital Lemma which is useful to obtain a unit in a k—row unital
vector via an SLg(Z)—Elementary Transformation.

Theorem 8. Let R be a commutative ring with unity. Let k > 2 be a positive integer. Let
k
{ai,a2,...,ar} C R be a unital set i.e. Y (a;) = O. Let J C R be an ideal contained in

=1
only finitely many maximal ideals. Then there exist A € (ag,...,ax) such that a1 + A is a
unit mod J .

Proof. Let {M; : 1 <i <t} be the finite set of maximal ideals containing in 7. For example
J could be a product of maximal ideals. Since the set {a1,as,...,a;} is unital there exists
d € (ag,as,...,a) such that (a1) + (d) = (1). Now we apply the Fundamental Lemma on
Arithmetic Progressions for Schemes [6] where X =Y = Spec(R), E = {M; : 1 <i < t}
to conclude that there exists ng € R such that A = nod and a3 + A = a1 + nod ¢ M, for

1 <+ < t. This proves the Theorem ]

Lemma 2. Let R be a commutative ring with unity. Let k > 2 be a positive integer. Let
k

{a1,a2,...,ar} C R be a unital set i.e. Y (a;) = O. Let E be a finite set of mazimal ideals
=1

in R. Then there exist A € (ag,...,ay) such that a; + A ¢ M for all M € E.

Proof. The proof is essentially similar to the previous Theorem ]

5. Projective Spaces over Arbitrary Commutative Rings with Identity

In this section we define projective spaces associated to certain classes
IZ(R)*,RAD(R)*,RADIN F(R)*
of ideals over arbitrary commutative rings with unity.

Definition 2. Let R be a commutative ring with identity. Let us define the set of non-zero
1deal integers denoted by

IZ(R)* ={Z C R | T is a product of its mazimal ideals }.
and TZ(R) = TZ(R)* U {(0)}.

Definition 3. Let R be a commutative ring with identity. Let us define the set of non-zero
ideals denoted by

RAD(R)* ={Z C R | T is a product of its ideals whose radicals are distinct mazimal ideals }.
and RAD(R) = RAD(R)* U{(0)}. Clearly RAD(R) D ITZ(R).
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Definition 4. Let R be a commutative ring with identity. Let us define the set of non-zero
ideals denoted by

RADINF(R)* ={Z C R |Z is an arbitrary intersection of its ideals whose radicals are all

distinct mazimal ideals }.
and RADIN F(R) = RADINF(R)*U{(0)}. Clearly RADIN F(R) D RAD(R) D IZ(R).

Definition 5. Let R be a commutative ring with identity. Let 0 # Z C R be an nonzero ideal
such that T € RADINF(R). Let (ag,a1,as,...,ax), (bo,b1,ba,...,bx) € RFL. Suppose
each of the sets {ap,a1,az,...,ar}, {bo,b1,bo,..., b} generate the unit ideal R. We say

(ap,a1,az,...,ar) ~ar (bo,b1,b2,...,bx)

if and only if a;bj —a;b; € I for 0 <i < j < k. This relation ~gr is an equivalence relation
(See Lemmal3). The equivalence class of (ag, a1, az, ... ,ay) is denoted by [ag : a1 : az: ... :
ag). Define the k—dimensional projective space corresponding to I denoted by

IP’IF% ={lap:a1:a2:...:ax]| the set {ap,a1,ase,...,ar} C R generates the unit ideal = R}.
Note here we can have elements {ag, a1, az,...,ar} where each a; is not a unit mod Z.

Lemma 3. Using the notation in Definition[d, the relation ~gpr is an equivalence relation.

Proof. The relation is reflexive and symmetric. We need to prove transitivity. Suppose
(ag,a1,az,...,ax),(bo, b1, ba, ..., bx),(co,c1,¢0,...,ck) € RFFY and each of the sets
{ao,a1,aq,...,a;},{bo,b1,ba, ..., bp},{co,c1,ca,...,cr} generate the unit ideal R. First con-
sider the case when Z € RADIN F(R) is an ideal whose radical is a maximal ideal M.
Suppose (a; : 0 <1 <k)~gr (b; :0<i<k), (a;:0<i<k)~ggr (¢:0<1i<Ek). Suppose
without loss of generality a1 ¢ M. So a; is a unit mod Z. We assume a; = 1. Now for
any 0 <17 < j <k we have b;c; = a1b;c; = bia;c; = bicja; = brajc; = arbjc; = bje; mod I.
Hence the transitivity follows for Z. Since every ideal Z € RADIN F(R) is an intersection
of ideals with distinct radical maximal ideals, the Lemma |3| follows for any nonzero ideal
T € RADIN F(R). O

6. ON SURJECTIVITY OF THE CHINESE REMAINDER REDUCTION MAP

6.1. SLi+1—Invariance of the Image of the Chinese Remainder Reduction Map.
Definition 6 (SLjy;—action). Let R be a commutative ring with unity. Let
T € RADINF(R)*.
There is a well defined left action of SLi+1(R) as follows. Let g € SLi11(R). Define
Ly =r7,-1:PFs — PF%

given by Ly([ag: a1 :az...:ar]) =ge([ag:ar:az...:a;]) =r,-1([ap:a1:az...:a;]) =
[bo : by : by :...: by| where
1

(bo, b1, b2, ..., bg) = (ag,a1,a2,...,a,)g .

This action can be extended to a product of such projective spaces.

Lemma 4 (SLg1—Invariance of the Image). Let R be a commutative ring with unity. Let
T, € RADINF(R)* : 1 < i <n be finitely many pairwise co-mazimal ideals in R. Let

n
7=]]z.
=1

The image of the chinese remainder reduction map is a union of SLyy1—orbits.
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Proof. If

n

o : PRy — [ [PF%,

i=1
then the chinese remainder reduction map o is always S L1 —invariant in the sense that
for any g € SLi4+1(R) we have

geo(lap:aj:as...:ag])=oc(gelap:aj:as...: ag]).

Hence this theorem follows. ]
Note 1. Let SLyi1(R) = {A € My 1(R) | det(A) = +£1}. We can similarly conclude

like in Lemma |4| that the image of the Chinese Remainder Reduction Map is SLk_H(R)f
invariant and it is a union of SLyi1(R)—orbits.

6.2. Surjectivity of the Chinese Remainder Reduction Map. Here in this section
we prove the first main Theorem [1| of this article.

Proof. The theorem holds for £k = 1 and any [ > 0 as there is nothing to prove. Now we
prove by induction on k. Let

([alo,an, - ,all], cee [akg, A1y - - - ,akl]) S P}Flgtl X ]P’]Flg—gl X ... X ]P’Flg—zl
By induction we have an element [by : by : bg : ... : Y] € IP’IE‘IQJF;QSMQIC representing the last
k — 1 elements. Now consider the matrix
A Q1 — ap ay - a1
Q...Qr—> bo b1 - b1 b

Now one of the elements in the first row is not in M;. By finding inverse of this element
modulo Q; and hence by a suitable application of SL;y;(R) matrix the matrix A can be
transformed to the following matrix B where we replace the unique non-zero entry in the

first row by 1.
B ( Q9 — 10 -~ 0 0)
Q...Qr— c a - a1 g
If cgisaunit mod Qs ... Q) then we are done as this reduces to ordinary chinese remainder
theorem. Otherwise suppose

co € MaMs. .. Mr\Mr+1M7»+2 co M.

l
Let Y c¢;z; = 1. Now consider any element a € M,41... Mi\(Msy... M,) # 0. Then the
=0
mat;ix
Q1 — 1 o --- 0 0

C= l
Qo...Qr — co+ D acri=a+co(l—axg) 1 -+ -1 ¢
i=1
is obtained from B by SL;;1(R)— matrix. Now the element
a+co(l —axp) ¢ MaU...UM;.
k

Let u € R be such that u(a + ¢o(1 — azp)) =1 mod [[ Q;. Then the matrix C' represents
i=2
the same elements as the matrix D.
Hp_( @— 1.0 - 0 0
T\NDy... O — 1 wuep -+ uc_1 uq

The elements in the matrix C' is in the image of CR-reduction map by the usual Chinese
Remainder Theorem.
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Hence the induction step is completed and the Theorem [1] follows. O

6.3. A Counter Example where Surjectivity need not hold.

Example 1 (Construction of a Counter Example for Surjectivity in One Dimension). Let
R = K|z, y] where K is a field. Consider the prime ideals Py = (x — 1), Po = (y —1). We
note that these are not finite intersection of ideals whose radicals are maximal ideals because
there are infinitely many maximal ideals containing each of these prime ideals. However here
we observe that P1 P2 = P1 NPy by unique factorization domain property and the projective
spaces PIF%;NIPF%;Q,IP’F%DI% makes sense as the relation

NP1y P2y Y P1P2
are all also equivalence relations. Here let a,b,c,d € R be such that each of the pairs
(a,b), (¢,d) generate a unit ideal. We say (a,b) ~1 (c,d) if and only if ad — bc € T where
I =Py or Py or PiPs.

Now consider the Chinese Remainder Reduction map
PFp,p, — PFp, x PFp,
This map is not surjective.

Consider the element ([1:0],[0: 1]) € PFp, x PFp,. If a,b € R represent this element via
congruence conditions then we get

a=1 mod (z—1),a=0 mod (y —1)

b=0 mod (z—1),b=1 mod (y — 1)
So we get a = (y— 1)t and a—1 = —(x — 1)u. So we get that (y — 1)t + (x — 1)u = 1 which
yields a contradiction if we substitute x = 1,y = 1. There is no such "a” and similarly
there is no such "b" as well. So via congruences we cannot obtain a representing element
pair (a,b).
Now let a,b € R generate a unit ideal such that [a : b)) = [1: 0] € PFp and [a : b] = [0 :
1] € PFp, then (x —1) | b,(y — 1) | a. So we have the ideal (a,b) C (x — 1,y — 1) which is
1mpossible.
This proves that the Chinese Remainder Reduction map is not surjective.

7. Surjectivity of the map SLy(R) — SLi(#) and the Unital Set Condition
with respect to an Ideal

Question 4. In this section we answer the question: When is the reduction map

SLy(R) — SLk(g)

surjective?

Definition 7 (Unital Set Condition with respect to an Ideal). Let R be a commutative ring
with unity. Let T C R be an ideal. We say T satisfies unital set condition USC' if for every
unital set {ay,aq,...,ar} C R with k > 2, there exists an element j € (aa, ..., ay) such that
a1+ j is a unit modulo I.

Now we prove the second main Theorem [2| of our article.

Proof. For k = 1 there is nothing to prove. So assume k > 1. Clearly all elementary
matrices Ej;(r),r € R,i # j are in the image. Now consider a diagonal matrix diag(di; =
dy,doo = da, . ..,dgr = di) such that

dldg...dkEl mod 7.
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Let n=didy...d, — 1€ 1.
Define a matrix

€11 €12 €13 T €1(k—1) €1k
€21 €22 €23 T €2(k—1) €2k
€31 €32 €33 T €3(k—1) €3k
E= .
€(k—1)1 ©€(k-1)2 €Ek-1)3 “°° C-1)(k-1) CE(k-1k
€K1 €k2 €k3 T Cl(k—1) €Lk
with ey = nz,ej9 = ez =€z =...= e(k—1)k =N also let

eii:di+a§n+a§n2+...a2_1nk_1ER[oz;‘-:lgigk,lgjg(k‘—l)]

be a polynomial representing a symbolic respective n—adic expansion modulo (n*). Choose
the rest of the entries in the matrix E to be zero. Now this matrix has determinant given
by
€11€22 ...€CkL — (—1)knkz.

The sum of ideals (e1e22 ... ext) + (n¥) = (1) in the polynomial ring R[oz; 1<i<Ek 1<
Jj < (k—1)] because (ejie92...exx) + (n) = (dida...dx) + (n) = (1) and using radical of
ideals. i.e.

rad(A + rad(B)) = rad(rad

= rad(rad(A) + rad(B)) = rad(A + B) for ideals A, B in a Ring
So there exist w, o € R[ozé :1<i<k,1<j<(k—1)] such that

Qel11€93 ... e + wn® = 1.

If we choose for the symbols aé» elements of R such that

e11€22 ..., =1 mod nk

then we get a = 1 mod n*. So we can solve for z so that the determinant

€11€22 . ..Ckk — (—l)knkz =1.

To solve first consider k = 2. If dydy = 1+ tyn + tan? 4 ... + (n*) be its symbolic n — adic
expansion then we should have a}dg + a%dl +t1 =0 mod n. Such an equation is solvable
say for ai or for a2 as dq,dy are units mod n” for all r. To obtain a value t; we know that
dyds — 1 = nt; for some t; € R. So choose t; = t; and there are no remaining t; as k = 2
here in this case.
For a general k. Let the symbolic n—adic expansions be given by

k

didy ...dy =14+ tin+tan® + ...+ tpn* 1+ (nb),
dods . ..dy = so+ s1n+ san® + ... + sp_nt + (nk)
ep1=di+an+am?+... 4+ apnft+ (nk)
Fix a section sec : % — R. Recursively pick representative values in the image of sec in
Rfort;fori=1,...,(k—1),and s; for i =0,...,(k—1). Let e¢;; = d; for all ¢ > 2 then
€11€92 ... epp = dids . . .dp + aqndads . . . dj + aon’dads . .. d + ... + (nk)

So we should have sgaq +¢1 = 0 mod n. So solve for o as sg is a unit mod n. Now solve
for as because spas + ... = 0 mod n recursively by carrying the addendums of the previous
term spaq + t1 which are higher powers of n and so on for the rest of the a/s. The «; gets
multiplied by sg which is a unit mod n. So solving for «; is possible.
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We have proved that the diagonal determinant one matrices in SLk(%) are in the image of
the reduction map o : SLg(R) — SLk(%) by choosing n = dyds...d, — 1 € T for each
diag(di,ds, . .., dy) € SLy(#).

Now we prove the following claim. We note here that k > 1.

Claim 1. All matrices in SL;A%) can be reduced to identity by elementary determinant

one matrices and matrices of the form diag(1,...,u,u™t,... 1) where u € U(%) a unit if

T satisfies the unital set condition.

Proof of Claim. To prove this we observe that we can reduce any element to identity using
elementary matrices and matrices of the form

diag(1,...,u,u™t, ..., 1)

where u € (%) a unit. This reduction can be done because if (a1, as, ..., a;) is a row then
there exists an element ¢ € Z such that {ai,as,...,ax,i} is unital and hence satisifes the
unital set condition. So there exists j € (ag,...,ax,?) such that a; + j is a unit modulo Z.
Now the element ¢ can be ignored so that we can bring a unit mod [ in a row by applying

only elementary determinant one matrices as column operations. This proves the claim for
SLy(%). O

So all matrices are in the image i.e. the reduction map o : SLy(R) — SLy(£) is onto.
This proves the Theorem O

Note 2. In the proof of the following corollary[l], the Theorem[8 is applied as this can be used
to bring a unit modulo the ideal in every row using elementary operations of determinant
one.

Corollary 1. Let R be a commutative ring with unity. Let T C R be an ideal contained in
finitely many maximal ideals. Then the reduction map

SLi(R) — SLi(2)
15 onto.

Proof of Corollary. For k = 1 there is nothing to prove. For k > 1 this corollary follows
from the fact that any ideal Z which is contained in finitely many maximal ideals satisfies
Unital Set Condition USC' using Theorem O

7.1. A Consequence of Unital Lemma.

Lemma 5. Let R be a ring. Let k > 1 be a positive integer. Let (a1,az,...,a) € RF
be a wvector such that a; is a unit for some 1 < i < k. Then there exists k—uvectors
{v1,v9,...,01} C R*1 such that

VIAUVA...ANOA ... NV = a;

Proof. First consider a unital vector (a1, ag, ..., a;) with a; a unit without loss of generality.
Let
v1 = (ag, —al_la,g, +a1_1a4, A (—l)ial_lai, R (—l)kal_lak)t
k—1
= age’f_l + Z(—l)iaflaief_l,vg = alelf_l,vg = eg_l, U = eij.
=2

Then we immediately observe that for 1 < i < k,
vIAVIA. AT N L ANV, = a;

Similarly if any other component a; is a unit. Hence the lemma follows. O
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Lemma 6 (Elementary Row Vector Lemma). Let R be a commutative ring with unity.
Let Z be an ideal which is contained only in finitely many maximal ideals. Let k > 1 be a

k
positive integer. Let {ai,as,...,ar} C R be a unital set i.e. > (a;) = R. Then there exists
i=1
a matriz g in SLi(R) such that
(a1,a2,...,ax)g = (1,0,...,0) mod Z

For k =1 the existence of such a matriz g need not hold.

Proof. We note that if £k = 1 and a; is a unit in R but a; Z 1 mod Z. Then a1g = 1
mod Z does not imply that g € SLi(R).

k .
Now assume k > 1. Let (by,ba,...,bx) € RF such that > (—1)""ta;b; = 1. Now the vector

i=1
(b1,ba,...,bg) is unital. So from the previous lemma [2f there exists to,t3,...,tx € R such
that the element c¢; = by + toby + ... 4 txbg is a unit modulo Z.
Now consider the vector (ci,ba,...,bx) which has a unit mod Z. Hence using Lemma

there exists k—vectors {vy,va, ..., v} C RF~! such that vy Avg A ... Avy € ¢; + T and
VIAUVA...ANOGGAN...Nvpebj+Tifi>1
Now choose
wy = vy, wy = vy — tavr, w3 = v; + t3v1, ..., wy = v; + (=1
Then we have for ¢ > 2
wiAws A AW A ... ANw, €b; +T

and wo Aws A ... ANwr € by +Z. So the following matrix has unit determinant modulo Z.
i.e. treating each w; is a column (k — 1)— vector we have

det (al @z ak) =1 modZ
wy w2 ... Wg
So using Theorem [2] there exists a matrix B € SLi(R) such that we have
B= <a1 42 ak) mod Z.
wp w2 ... Wk

We observe that
(1,0,...,0)B = (a1,a2,...,a;) mod Z.

So we consider g = B~! and this lemma follows. O

8. Surjectivity Example For a Pair of Maximal Ideals in Arbitrary
Commutative Ring With Unity

Example 2. Here we describe explicitly the collection of 2 x 2 determinant one matrices
which map onto the product of spaces IP’IF}\/ X ]P’IE‘}V‘ for two mazimal ideals N', M in the ring
R.

Fix any two sections sy : /%- — R and sp - % — R of the quotient maps 7oy : R —
%, W :R— %.
Consider the following set of matrices

= { <f (st - 1)) s € image(sy), L € image(sM)}
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This set of matrices maps into the subset
PF}, x <{[1 ] € PRy, | t € image(sM)}) C PR}, x PF},

injectively giving rise to distinct elements.

C1 — PFj, x ({[1 ] € PRy, |t € image(sM)}>

There is one more element for each t € image(spq) with [1 : t] as the image corresponding
to the second row. It is given as follows. Since M,N are comazimal the exists elements
p € M, q € N such that the ideals (p),(q) are comaximal i.e. (p) + (q) = 1. Consider
elements r,q € R such that rq — kp = 1 as (p) + (¢) = 1 and for such p,q,r, k, we have
that the ideals (p(1 + qr)), (¢(1 + pk)) are comazimal. So consider elements [, m such that
Ip(1 + qr) — mq(l + pk) = 1 — 1t for any given t € R. Now consider 2 x 2 matrices of

determinant 1.
B (1+7rq) (t+mq) .
Cy = { <(1 +hp) (¢ +Ip) ,t € image(sam)
Now the collection C1 U Co maps injectively into the set IP’]F}\/ x {[1:t] € IP’IF}M | t €

image(sa)}. We shall soon observe that this collection actually maps onto this set bijec-
tively. i.e

(C1 UCs) 2 PFy, x ({[1 (] €PFy, |t € image(sM)}>

o= {(5) ) e imante)

p

Now consider the set

This set maps injectively into the set PFy, x {[0: 1]}

Cs — PF), x {[0: 1]}

We will soon see that the set Cy misses just one element in the set PF), x {[0: 1]}.

Now we describe that one more matriz of determinant one which maps onto the missing
element ([p: 1],[0: 1]) € PF), x PFY,. Consider elements z,1 € R such that lg —xp = 1 as
(p) + (q) = 1. For such integers x,p,l,q we have that the ideals (p(1 + 1q)), (¢(1 + xp)) are
comazimal. So consider elements y,r € R such that rq(1 + xp) —yp(1 +1q) =1 — p — zp?.
Then consider 2 X 2 matrixz of determinant 1 given by

(('fq +p) (1+ lq))

yp  (1+zp)
Now we observe that we have a total collection of two by two matrices of determinant one
mapping injectively into ]P’IE‘}V X ]P’IE‘}M.
We immediately see that for a fized t € image(sa)
{[s: st =1] | s € image(sn)} = {[1 : w] | w € image(sn),[1 : w] # [1: ]} U{[0: 1]}.
We also observe that
{1 +sp:s]|seimage(sy)} ={[1:w]|w e image(sy),[1:w]#[p:1]}U{[0:1]}.

Hence the mapping o1 is onto and similarly the map oo is also onto. So the intermediate
claims of surjectivity of Cy U Ca and the set Cs just missing one element are justified.
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9. UNIQUE FACTORIZATION MAXIMAL IDEAL MONOID OF THE RING

In this section we define the Unique Factorization Monoid of maximal ideals of the Ring.
We start by proving below a theorem.

Theorem 9 (Unique Factorization Theorem). Let R be a commutative ring with unity.
Suppose for any mazimal ideal M* # MY for all i > 0. Let I = MY M. Ml =
NPNG2 NG Then {Mq1, Ma, ... . My} = {N1,No, ... . N.},r = k and with a suitable

permutation or rearrangement of {N1,Na, ..., N;} we have t; = s; for all 1 <i <r =k.
Proof. If M DT then M = M; for some 1 < j < k. So
{Ml,./\/lg, Ce ,Mk} = {Nl,NQ, NN ,Nr},k =T.

Now if the ideal 7 is a power of a maximal ideal then the power is uniquely determined
because M # M**! for all 4 > 0 and all maximal ideals M C R.

Claim 2. If M is a mazimal ideal and S = R\M. Then we have
STIME = (ST M) = {g lae M, sd M}
Conversely zf%’ € STIM? then b e M*. Also
STIME £ STIMIL for all i > 0.

Proof of Claim. Suppose % € S~ M then there exists a € M*, s,u € S such that atu = bsu.
So b € M% as su ¢ M. Also we have STIM? = (S~IM)%. Since M? # Mi*! the other

inequality of sets in the claim follows. O

Claim 3. If T = MU MY ... M}¥ and S = R\M; then ST = S M"L.

l
Proof of Claim. Let g € S7I1Z with b € Z,s € S. Then b = >_bjc; with b; € ./\/ltll,cj €
j=1

M;QMZ’“ So % € S_lMil. Conversely if b € ./\/ltl1 then pick s; € M;\M1,2 <i <k
t2 t3  lk
then for any g € 5’*1/\/1?,% = W”is,’f’v € S717. So S~'M% = §~1T. This proves the

ta t3
882 83 "'Sk

claim. O

Using the previous two claims and upon localization at each M; in the factorization of 7
we observe that the powers are also uniquely determined and this Lemma [9] follows. O

Definition 8 (A Total Valuation Map V, Valuation Vs at M on Monoid M). Let R be
a commutative ring with unity. Suppose for any mazximal ideal M? # ML for all i > 0.
Let max(spec(R)) be any finite set. Let M(max(spec(R))) be the multiplicative monoid of
generated by the mazimal ideals in max(spec(R)).

Define two maps
V.Vpm: M — NU{0}
as

t t
V(7 =[N eM)=> s
i=1

i=1

t
V(T = H./\/;Sl € M) =s; if M = N; otherwise 0.
i=1
This definition of V, Vi is well defined.
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Theorem 10 (Non-Emptiness Theqrem). Let R be a commutative ring with identity. Sup-

pose for each mazimal ideal M, M # ML and N\ M? = (0). Let F C max(Spec(R))
i>0

be a finite set. Let M(F) be the finitely generated monoid by a finite set F. Let T =

MPME M};k € M(F) be a product of mazimal ideals. Then the set

I\< U IJ) # 0.

JEM(F)*

Proof. We can use the Theorem [7] on ideal avoidance for the ring R. Since the monoid is
finitely generated by finitely many maximal ideals in F, we have

7\ IM ) =1\ IJ) #0
(Yz)-n( U 27)
Here M (F) denote the set M (F)\{R}. O

Theorem 11 (Determined Valuative Elements). Let the notation be as in the previous

Theorem . For every ideal T € M(F), let az € I\( U Ij). LetTj € M(F):1<
JEM(F)*
7 <1 are pairwise comazximal. Then

iljlazieli[z\< U jEI)

i=1 JEM (F)*
Proof.

Claim 4. Ifa € R and s ¢ M then

a e M\M™! o as € MOAMTL
Proof of Claim. If a € M® then as € M*. If as € M'*! then since s ¢ M,a € M1, So
one way implication follows. Now the other way implication also follows similarly. This
proves the claim. ]

In the lemma above since the ideals Z; : 1 < ¢ < r are comaximal the valuations with respect
I8

to any maximal ideal in F gets exactly determined for the product []az, and the Theorem
i=1
follows using the previous Claim. O

Definition 9. Let R be a commutative ring with unity. Suppose for each mazimal ideal M
we have M* # ML and Y M? = (0). Let F C max(Spec(R)) be a finite set. Let M(F)
be the finitely generated monoid by a finite set F. Let T € M(F). Define the set

Sy &L I\( U Ij).
JeM(F)*
By Non-Emptiness Theorem 10} this set St is non-empty.
Note 3. Let R be a commutative ring with unity. If two sets S1,S2 C R satisfy the
property that their sum of the ideals (S1) + (S2) = R. It does not imply that there exists
s1 € Sy, 89 € Sy such that ideal(s1) +ideal(sy) = R. However it does imply that there exists
finite set of elements si1, Si2, ..., Si; € Si such that the sum of the ideals
(3117 5125+ -+, s].tl) + (8215 522, ... 7S2t2) = R

Theorem 12 (Comaximality of the Ideals of the Sets Theorem). Let R be a commutative
ring with unity. Suppose for each maximal ideal M C R we have
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* M? #Mi—i-l'
o N Mi=(0).
>0

Let F C max(Spec(R)) be a finite set. Suppose every non-zero element r € R is contained
in finitely many mazimal ideals. Let M (F) be the finitely generated monoid by a finite set
F. There exists a nowhere zero choice multiplicative monoid map ¥ : M(F) — R such
that

(1) (Unit Condition): ¥(R) = 1.

(2) (Choice Set Condition): ¥(I) € Sz for all T € M(F).

(3) (Multiplicativity Condition): IfZ,J € M(F) are comazimal then X(ZJ) = X(2)2(J).

(4) (Comazimality Condition): For ideals I,,T,...,I, € M(F)

T +To+ ...+ T, =1 then (X(Th)) + (2(T2) + ... + (2(Z,) = 1.
Proof. We prove this theorem as follows.

Claim 5. IfZ,7J € M(F) are comaximal then we have (S7) + (S7) = 1 i.e. the ideals of
the sets are comaximal and may not be the sets themselves.

Proof of Claim. Let M be a maximal ideal containing the set Sz then M occurs in the
unique factorization of Z € M (F). Suppose not then Ideal Avoidance Theorem [7| does not

hold as Z =ZM |J ZN. Since there are no common maximal ideals occuring in the unique
NeF
factorization of Z, J the claim follows. O

Define ¥(R) = 1. Let F = {My, Mg, ..., My}. Since every non-zero element is contained
in finitely many maximal ideals we find the points S(M}) € S i inductively as follows.

First we choose any ¥ (M) € Sp,. Now this element is contained in finitely many maximal
ideals. Choose ¥(M2) € Sy, avoiding these finitely many maximal ideals and continue this
process till we find a configuration of elements #(F) = k-elements m; € Spy, inductively
for 1 <14 < k which are pairwise comaximal again using the Theorem [7] on Ideal Avoidance
in every inductive step.

Note that it may so happen that ¥(M;)? = 0 and hence it belongs to all ideals. So we
just cannot raise these values to higher powers. Instead now we find X(M3) € S M2 Which
is comaximal to all the previously found elements corresponding to other maximal ideals
using the Theorem [7| on Ideal Avoidance and also comaximal to maximal ideals other than
M containing ¥(Mj). So continuing this way we have defined ¥ for all powers of maximal
ideals in F. Now extend ¥ multiplicatively to the entire monoid. We use Theorem [11] to
conclude X(Z) € S7z.

Now if Zy +Zo +...+Z, = 1. Let M be any maximal ideal. If M contains all the elements

S(Th), 2(Zs), ..., %(Z,) then M contains £ (M%) and E(Mé-j) for two distinct maximal

ideals M; # M; in F. So comaximality condition follows.

Now the fact that ¥(Z) € Sz implies that 3 is nowhere zero. Now the Theorem (12| follows.
O

Observation 1. In Theorem[IZ while defining the map Y it satisfies the following property
automatically. If A = MY M .. MiB = MPMZ M with My, ..., M; € F then

we not only have
SF(A) = Sp(MY) ... SEM), S£(B) = Sp(MY) ... Sx(M])

Ift; # s; for all 1 < i <, we have for each 1 < 1i,j <, the set of maximal ideals containing
S (ML) other M; is distinct from the set of mazimal ideals containing E(M;j) other than
M;.
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Example 3. e Let R =7. Here ¥ can be defined for the entire monoid M(R). The
map ¥ : M(R) — R given by Z]((ptfpl;2 .. p};’“)) :pilp? .. .p';’“ wherep; : 1 <i <k
are k—distinct primes.

e Let R be a dedekind domain with finitely many maximal ideals. It is a principal

ideal domain. Any element in m; € P\ UP; U 77,?) is a generator as its ideal
J#i

factorization in R is given by (m;) = P;. Here the monoid M (R) is finitely generated.

k k
Then define (][ PF) = [
i=1 i=1

o A dedekind domain R is a principal ideal domain if and only if for every mazimal
ideal M, the set

M\(( U N)UM2> # 0.

NeSpec(R)N#M

Then we could define the map X similar to the ring of integers explicitly.

10. SURJECTIVITY OF THE MAP SLy(R) — PF} x PF),

Question 5. Let R be a commutative ring with unity. Let T, J € RADINF(R)* be two
comaximal ideals. Then when is the map

SLy(R) — PF} x PR,
given by

<‘CL Z)—>[a:b],[c:d]

surjective?

In this section we attempt to answer this question. We know from Section [§| that if Z, J
are two distinct maximal ideals then the map is surjective.

10.1. Representation of Elements in One Dimensional Projective Space associ-
ated to Ideals.

Lemma 7 (A Representation Lemma). Let R be a ring with unity. Let M be a mazimal
ideal. Suppose dimﬁ(%) =1for0<t<(k—1). Let py € MA\M'! represent a basis
M

modulo M1 for the %—vector space %, 0 <t < (k—1). Then the projective space

PFl = {[1:peu] | @ EU(%),O <t<(k-1)}
ilpeu: 1] | € Z/{(M];E_t),o <t< (k-0 o0 1)}

Proof. Clearly if [a : b] € PF) ;. then either a ¢ M or b ¢ M. So without loss of generality
we can assume either a =1 or b = 1. So assume a = 1. Then [1 : b1] = [1 : by] if and only
if b — by € MF. Moreover for each i = 1,2 either for some 0 < t < k,b; € (MH\M*1) or
b; € MF. Also for any 0 <t < k

by € MAMT < by € MEMITL
and fort =k
by € MF = by € MF.

Now let b € M\ M1 and let b = p;u+ M and here u actually can be varied in a coset
of M. Because if
pu+ ML = pal + M
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Then by the basis condition v — v € M.

However we need to answer the question of representing an element b € M\ M'*! in the
required form. If t4+1 = k we are through. Now we will answer the question of representing
the element of projective space if k& >t + 1.

Here first we observe that
b—pu= leyl with z; € M,y € M.

Now again expressing each z; in terms of the basis {p;} modulo M**! and repeating this
process and pushing the powers to s from z’s till we reach M* we can actually assume
that

b= ptv + Mk
for possibly some other v ¢ M.

This representation yields surjectivity and also as now if k > ¢t 4+ 1 then we can actually
vary v in the coset of M*~! without changing the projective element [1 : b].

This proves the lemma [7] O

Lemma 8 (A Fundamental Observation between the Addition and Multiplication in the
Ring). Let R be a commutative ring with unity. Let T = M* where M C R be a mazimal
ideal. Suppose dzm%(%) = 1. Suppose p;,p; € MANM™TL for 0 < i < k. For any
u € R\M there exists v € R\M such that [1 : p;u] = [1 : p;v] € PFL. i.e. pyu — pv € MF.
Moreover u and v can be varied in their respective cosets mod P*~" without changing the
element in the projective space IF’IF}WC.

Proof. Since we have exhibited representing elements in case when the ideal 7 = MPF a power
of a maximal ideal for any fixed set of representatives p; € MY\ Mt for 0 < i < (k—1)
and py = 0 in the previous Lemma [7] this Lemma [§] follows. a

Theorem 13. Let R be a commutative ring with unity. Suppose R is a Dedekind Domain
(refer Definition[1]). Let M(R) be the monoid generated by mazimal ideals in R. Let

Z=MIME . ME e M(R)

be an ideal. Let F be any finite set of maximal ideals containing V (Z). Then the projective
space

PF7 = {[S(Z1) : ©(Z2)y]

u € R\< U /\/l> + I3 where fori=1,2,3 T CZ; € M(R)
MEeF
with I1,Zy are co-mazimal and T1ZoZs = T}

Here the map X is the no where zero choice monoid multiplicative map for the monoid

M(F) from Theorem[13

.
Proof. Consider an element e = (e, e2,...,e,) € HIPIF}M,% Let AU B be a partition of the
i=1 i
set {1,2,...,7} such that if i € A then e; = [1 : X(M")u;] for some u; ¢ M; and if i € B
then e; = [X(M]")v; : 1] for some v; ¢ M;. Here 0 < j; < k;. This representation holds for
e using the representation Lemmal/[7] Using the Chinese Remainder Reduction Isomorphism
in Theorem (1| there exists an element [a : b] € PFL such that [a : b] = e¢; mod Mf’ Let
Ty = [[ M}, Iy = T] M. Let Z3 be the unique ideal which is a product of maximal ideals
i€B i€A
and 717,73 = Z. We observe that Z;,Z, are co-maximal as A, B are disjoint. Now we factor
¥(Zh),%(Zz) from a, b respectively using congruences especially using Lemma 8 Let i € A.
Then a = 1 mod M¥ b = S(MZ)u; mod M¥. Let t2(Z;) =1 mod M. We observe
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both b, ¥ (Zs)t € ./\/lgl\./\/lflel unless j; = k; in which case both b, X(Zy)t € M. Now we
use Lemma [§] to conclude that that there exists x; € R\M; such that b — X(Zs)tx; € Mfz
This proves that

[a:b] =[1:2(To)te]) = [2(Th) : 2(To)zs] € IP]FL;%.

We can do similarly if ¢ € B. So we have factored ¥(Z;), X(Z2) from a,b for all 1 < i <r
respectively obtaining suitable elements z; € R\M; for 1 <i < r. So we get that

[(l : b] = (61,62, .. .,67«) = ([E(Il) : E(Ig)xl], [E(Il) : E(IQ)Z’Q], ey [E(Il) : E(IQ);UT])

Now we obtain the element u € R\( U M) as follows. We solve three sets of congruences
MeF
simultaneously.

The first set of congruences is
w=x; mod MF
The second set of congruences is as follows. For M € F\{M1, Ma,..., My},
u=1 mod M

The third set of congruences is as follows. Since any element » € R is in finitely many
maximal ideals, let G be the finite set of maximal ideals which contain 3(Z;), ¥(Z3). Then
we solve for M € G\ F

u=1 mod M
So by solving these congruences we not only obtain u € R\( U M) we also have that
MeF
there is no common maximal ideal containing u, £(Zy), X(Z2). So [2(Z1) : ¥(Zx)u] € PFL is
not only a well defined element but also the required element.

Now the fact that we can modify u to another @ € u + Z3 provided [%(Z) : ¥(Zo)a] € PFL-
is well defined is a easy consequence.

This proves the Theorem O

Theorem 14. Let R be a commutative ring with unity. Suppose R is a Dedekind Domain
(refer Definition . Let M(R) be the monoid generated by mazximal ideals in R. Let
Z,J € M(R) be two comaximal ideals. Then the map

SLy(R) — PF} x PF),
given by

(Ccl Z) — ([a:b],[c:d])
is surjective.

Proof. Consider the two co-maximal ideals

T S
T =M T =[N € M(R).
i=1 i=1
Let
F={My, Mo, ... M N1, Na, ..., N5}
Let ¥ be the choice monoid multiplicative map for the monoid M (F) from Theorem
Using the previous Theorem [13| consider an element

(S(Th) : 2(T2)ul, [E(J1) : B(J2)v]) € PFy, x PFy,



20 C.P. ANIL KUMAR

where 71,75, 71, J2 € M(R) with Z C Z;,Z; which are co-maximal, and J C Ji, J2 which

are co-maximal where u,v € R\< U ./\/l> Let Zs, J3 € M(R) be the unique ideals such
MeF
that 211213 = I, jljgjg = \7 Let

S R\(UMi>,y € R\(UM)J:& € 13,73 € J3
i=1 i=1
and consider the following matrix
SNy B(T2)(yv+7s))
Now we solve for z,v,13,j3 such that the above matrix has determinant one. For this
purpose let a, 8 € R, I3 € I3,J3 € J3,i3 = I3X(11),j3 = J3aX(J1) and consider the
equation
(1)
(1) E(F2)x(J3a8(T)) — (1) 2(T)y(13BE(Th)) = 1+ ((T2)E(Jh)u — E(Th) E(J2)v)xy

Consider the comaximal ideals
Ky = (2(Th)), K2 = (£())
Now we solve the following congruences for A € R given by
1+ X(Zo)E2(Th)uA € K1, 1+ X(Z1)E(J2)vA € Ko
Such solutions exist because the pairs of ideals ((X(Z2)X(J1)u), K1), (Z(Z1)E(T2)v), K2)

are also comaximal. i.e.
(E(Z2)X(T)u) + (X(Th)) = R
(EZ)E(F2)v) + (3(71)) = R

If Ap is one common solution then the set of common solutions is given by
Ao+ K1Ky = {Ao +a | a € ’Cllcg}
because it 22 ,C% @ ,C%. Moreover we have the sum of the ideals (Ap) + K1K2 = R. So let

KiKo —
(Ap) + (By) = R for some By € K1K;3. Here in the Theorem |§| we choose the set

E=V(IZ)uV(J)UV(E(Z2) UV(X(T2)) a finite set.
Because each set in the union is a finite set. Here choice multiplicative monoid map 3 never
takes a zero value. Now we note that X(Z3)X(72) = X(Z2J2) # 0 by multiplicativity and
So using the Theorem [6] which is the Fundamental Lemma on Arithmetic Progressions for
Schemes there exists an element of the form Cy = Ag + nBy for some n € R such that
(Co) + ZT(S(BL)S(F)) = R.

Now choose x = 1,y = Cj in their respective sets such that their associated principal ideals
are obviously co-maximal and also comaximal to each ideal Z, 7. We observe that
1 + (Z(Ig)Z(jl)u — Z(Zl)Z(jg)v)wy S ’Cl N ICQ = KlICQ = (E(Zl)Z(jl) = E(Iljl))
Now let 1+ (X(Z2)X(Jh ) u—3(Z1)X(T2)v)zy = X(Z1J1)t. We solve for I3, J3 in the following
equation which is obtained from Equation
E(jg)nga - E(Ig)yfgﬁ =t

Now consider the two ideals ¥(J2)zJ3, X(Z2)CoZs. They are comaximal because X(J2)zJ3 =
Y (J2)Js. Also the ideals (X(Z2)),Zs are comaximal with ideals (3(72)), J3 and the ideal
(Cop) is comaximal with (3(72)) and 7 itself hence 73 also. So solving for I35 € Z3, Jsa € J3
is possible in the above equation.

This proves the Theorem ]




SCHEMES AND ARITHMETIC PROGRESSIONS 21

10.2. Unique Factorization of a non-zero element with respect to a Finitely Gen-
erated Monoid Generated by Maximal Ideals.

Definition 10. Let R be a commutative ring with unity. The ring R satisfies the following
properties.

(1) For each mazimal ideal M we have M* # ML for all i > 0.
(2) N M"=(0).
n>0

(8) Every non-zero element r € R is contained in finitely many maximal ideals.

Let M (R) be the monoid generated by mazimal ideals in R. Let F be a finite set of maximal
ideals. Then for any 0 # x € R we can define a valuation Vr with respect to the monoid
F. Since x # 0 for each mazimal ideal M there exists a largest integer i = irg > 0 such
that x € MA\M™L. The maps

V]:ZR*—>M(.7:),VM:R*—>N

are defined as Vr(x) = [ MM and Vp(x) = ipg. Clearly x € Vr(z) and Vr(x) is the
MeF
unique factorization of the element x with respect to the monoid M (F).

10.3. Representation of Elements in Higher Dimensional Projective Space asso-
ciated to Ideals.

Theorem 15. Let R be a commutative ring with unity. Suppose R is a Dedekind Domain
(refer Definition [1)). Let M(R) be the monoid generated by mazimal ideals in R. Let
Z € M(R) be a product of mazximal ideals. Let k > 2 be a positive integer. Let F be any
finite set of mazimal ideals containing V(). Let ¥ be the nowhere zero choice monoid
multiplicative map for the monoid M (F) from Theorem . Then the description of the k—
dimensional projective space is given by

k k
PF% = {[S(Jo)vo : S(J)vr i . S(T)wk] [T DL, Y Ji=R= Y %N(J) =R
i=0 i=0
k
vo,v1,- ., vp € R\ | M) (B(Ji)wi) = R}
MEeF =0
Proof. Let T = M?M? . .../\/l'lfl € M(R). Let [xg: 21 :...:xk] € IPIF% Assume each z; is

non-zero by replacing the element by a non-zero element of Z. This also does not alter the
k

condition ) (x;) = R. We define the ideal J; as follows. Let G = {M1,...,M;} =V (Z).
=0
Consider the unique factorizations of z; with respect to the monoid M (G). Define the ideal

(i

l
in(t;, V.,
for0<i<k,J = HM;nm( Vot () = J; D Vg(z;) D {z;}, T O L.
j=1

k k
So > (Ji) = R. Hence we also have Y ¥(J;) = R for ¥ : M(F) — R where F D G. Now

i=0 i=0
we factor (7;) from z; for 0 < i < k using congruences. First for a fixed 1 < j <, using
the Lemma g we conclude that there exists v;; € R\ M, such that z; — X(J;)vi; € M?
Note if Vg, (w;) > t; then we could choose v;; = 1. By chinese remainder theorem for a

fixed i we lift v;; to an element v; € R\ |J M by solving congruences.
MeF

t.
Vi = Vij mod M]]
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We may need to solve some additional finitely many congruences of the type
v, =1 mod N

to avoid a maximal ideal A and also to ensure the condition that
k

> ((F)vi) = R

i=0
which can be done as every non-zero element is contained in finitely many maximal ideals.
Hence the Theorem [IH follows. O

Now we prove the third main Theorem [3] of our article.

Proof. We prove this theorem by proving the following three claims.

Claim 6 (Well definedness of the map r,-1). Let g € SLi(R). Let

k
([a11 taig ... alk], [agl Tag ... agk],... , [akl Tago ... akk]) € HPng_l

i=1
Consider the matriz A = [a;kxk. Let Ag~t = [bijlpxk. Then the map
k k
rg-1: | [PFE T — [ [PFS
i=1 i=1
given by
([a11 : @12 : ... aggl,[agr tage oot agg), ..., [ak1 = ags ”':akk])r_,:
([b11 :b1g ot big), [b21 tbag oo i bog]y oy [k 2 bRt ot bRk])

g9

k
is well defined. This gives a left action of SLr(R) on the space HPIF%_I.
=1

1=

Proof of Claim. Suppose ([a11 : @12 : ... : a1x], (@21 : @22 : ... @ Qgkl)y- .., [Ak1 : (,N‘L]]zg DL
agr)) = ([a11 2 a1z ...t aggl,fagr cage + ...t agg], ..., faky s ake .. agk]) € H]P’Fg_l
Then we have for every 1 < o, 8,7 < k, aaglay — Gaplay € Lo. Now we observe %}:1;‘5 if
(%1 Qo2 - ftak> gl = (ljal ba2 ... ljak)
Aol Ga2 .. Gok ba1 baz ... bak

Then we have for any fixed 1 < a < k and for every 1 < u<d <k
bapbas — bapbas € ideal(anpioy — Aapaay 1 1 < B <y < k) C I,
and conversely because g is invertible. Moreover
(Gai 1 <i<k)=(Ga;i:1<i<k)=R& (byi:1<i<k)=(bai:1<i<k)=R
This proves the claim. ]

Claim 7 (Invariance of the Image). The image of the map o1 is SLi(R) invariant.

Proof of Claim. We observe that g.o1(A) = 01(Ag™'). Each row of Ag~! is unital if and
only if each row of A is unital. So the claim follows. ]

k
Claim 8. The image of o1 equals HIP’IF%A.
=1

7
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Proof of Claim. Let ([a11 : a12 @ ... ax),a21 : ag2 : ...t agg),. .., [ag1 t aga ...t agg]) €
HIP’IFk L Let A = [aijlkxk € Mygxk(R). Now we reduce the matrix A to an element in

SLk (R) to prove the claim in a step by step manner.

Since each row generates a unit ideal using the Lemma [2] we can right multiply A by an
SLj(R)—matrix so that aj; element is a unit modulo Z;. Now replace the first row by an
equivalent row where a;; = 1. Then we can transform the first row to e¥ = (1,0,0,...,0)
using another S Ly (R)—matrix. Now we use the previous Theoremto represent appropri-
ately the elements of the projective spaces by choosing the map ¥ on the finitely generated
monoid M (F) where

F = V(Il) U V(IQ) U...U V(Ik)

Let the second row be
[E(Im)’l}gl : 2(122)022 P E(ng)vgk]

We have
k k

> (E(Tai)vy) = R, and Ty + Y (S(Tai)vas) = R
=1 =2
by the choice of the monoid. Hence we get

k

(3(Z21)v21)Z1 + Z (Zoi)v2i) = R
1=2

So there exists i1 € 71 such that the vector
(X(Zo1)va1i1, B(Zo2)v22, - - . , B(Lok)var)
is unital in R. Now 7, satisfies unital set condition USC'. So by the Theorem [§ there exists
$1,83,...,8k € R such that the element
k
Y (To2)vao + 3X(Zo1)vori151 + ZE(IQi)UziSi
i=3
is a unit modulo Z>. The second summand in the above expression is in the ideal Z;.
Now we use a suitable column operation on A to transform ass to the above expression.
This does not alter the first row because it replaces the element a2 by an element of Z;.
Hence we could replace the first row of A back by ek Now we have obtained ass a unit
mod Z;. We can make this element a2 = 1 exactly by replacing the second row with another
equivalent projective space element representative in H”IF"%2 however in the same equivalence
class Now by applying suitable column operations we can transform the second row to
ek =(0,1,...,0).
Inductlvely suppose we arrive at the j¥*—row for j < k. Let the j** row be given by
(X(Zj1)vj1 : B(Zjo)vja ..t B(Ljk)vji]
using again the Theorem [15| with respect to the same monoid map X.

We have
k

Z(E(Iji)vji) =R, and T;Z>.. J 1+ Z ﬂ Uﬂ =
=1

by the choice of the monoid. Hence we get

> i) DiTs . T 1+Z Tji)vji) =
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j—1
So there exists t1,ta,...,tj—1 € [[Z; such that the vector
i=1

(E(Zj)vjitr, 2(Tj2)vjate, - - -, B(Zj(-1))vig-1)ti-1, 2(Zj5)vigs - - - B(Zjk)vjk)

is unital in R. Now Z; satisfies unital set condition USC. So by the Theorem [ we make a;;

element an unit mod Z; without actually changing the previous (j — 1)-rows as projective
j—1

space elements because t1,t2,...,t;_1 € (| Z;. Now we make the a;j; = 1 exactly and then
i=1

by applying an SLj(R) matrix make the j*—row equal to e? =(0,0,...,0,1,0,...,0).

We continue this procedure till j = k. We arrive at the identity matrix. Hence the map o

is surjective and the Claim [§] follows. O

Similarly the map o2 is also surjective and the Theorem 3| also follows. O

10.4. A Consequence of Sujectivity.

Theorem 16. Let R be a commutative ring with unity.
(1) Let R be a Dedekind domain (refer Definition[1]).
(2) R has infinitely many mazimal ideals.

Suppose Let M(R) be the monoid generated by mazimal ideals in R. Let Ty,7s,...,I, €
M (R) be r— pairwise co-mazximal ideals. Let k > 2 be a positive integer. Consider forr < k

Grk(R) = {A = [aijlrxk € Myxx(R) | such that the r X r minors generate unit ideal}.
Then the map
71 Grp(R) — PRY ' x PR x . x PR
given by
T:(A) = ([a11 ra12: ... s ax], [aor s ag2 = ...t agk), ..y [ars s are s oLt ang])

are surjective.

Proof. Since the dedekind domain has infinitely many maximal ideals by hypothesis, let

Zrt1,---,Zr € M(R) be pairwise comaximal which are also comaximal to each of Z;,...,Z,.
Such ideals exist. Now using the main Theorem [3| we conclude surjectivity of this map 7.
Hence this Theorem [16] also follows. O

11. Two EXAMPLES FOR SUBGROUPS OF SL(R)

Example 4. Let K be an algebraically closed field. Let R = K|xy,x9,...,2,]. Consider
the standard action of SLo(R) on R?. Let G(R) be the stabilizer subgroup of the element
(1,1)" € R? i.e. Go(R) = {A € SLy(R) | A.(1,1)I" = (1,1)"}. Let M, N be two mazimal
ideals in R. Then the map

Ga(R) — PF}, x PF},
18 not surjective.
We observe that Ga(R) is also given as follows.

Gz(R)={<1Jbrb 1__bb) [be R}

So the image of Go(R) is exzactly {([L +b: —b],[b: 1 —1b]) | b € R} C PF}, x PF} =
PFi x PFj C PF%. The image is precisely

([z1 : 31, [22 : yo]) € PPy x PFk where (x1 + y1) (22 + o) # 0.
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In fact the image does not contain any element from the set

(s 1y < pric) U (Pl x 1251

which is a union of two projective lines meeting at the point ([1: —1],[1 : —1]).

Example 5. In Theorem[3 we have proved that if an ideal I satisfies the Unital Set Con-
dition in[7 then the map

R

7)

is surjective for all k > 0. Any ideal T which is a product of mazximal ideals in R where R
be a commutative ring with unity satisfies USC. So for the group SLi(R) surjectivity onto
SLg(£) always follows. Now here we consider a smaller subgroup Hy,(R) C SLy(R).

SLk(R) — SLk(

Let R be a commutative ring with unity. Suppose R is a Dedekind Domain (refer Defini-
tion . Let M(R) be the monoid generated by mazimal ideals in R. Let T1,Ts,..., Iy €
M(R) be k— pairwise co-maximal ideals. Let k > 2 be a positive integer. Let Hy(R) C
SLi(R) be a subgroup. Suppose

Hi(R) D {A = [aijlexk | ais € 1 + T, a;j € IV if i < j for some fized large integer t}.
i.e. Hi(R) contains matrices in SLi(R) which are lower triangular modulo I} for some

large positive integer t > 0. Then the maps

01,02 : Hy(R) — PFY ' x PFY ! x ... x PRS-

given by
o1:(A) = ([a11:a12: ... a1k, [agr tage ...t agk), .., Akt ag2 t ...t akk]),
o9 (A) = ([a11 2 a1 : ... ap1),[a12 1 age : ...t aka), ..., a1k agk ¢ ...t akg))

are surjective.

This can be proved similarly. In the proof of Theorem@ we make the first row equal to elf
and then it is enough that Hi(R) contains matrices in SLy(R) which are lower triangular
modulo I for some large positive integer t > 0 for the remaining rows in order to transform
the matriz to a identity matriz in the rest of the procedure as we can use I instead of ;.

12. A SURJECTIVITY THEOREM FOR THE SUM-PRODUCT EQUATION
In this section we prove a surjectivity theorem for the Sum-Product Equation.

Remark 2. Let R be a commutative ring with unity. Let k > 0 be a positive integer. Let
(a1,a2,...,ax4+1) be a unital set in R. Suppose ajxy + agxs + ...+ apxp + ap11TK11 = 1
and {x1,x2,...,zk} is also a unital set. i.e. byxy + boxy + ...+ brxy = 1 then we have

(a1 + apr1%r4101)21 + (a2 + Grp1ZTp1b2)z2 + ..o+ (ap + apr1Zk41bk) 2 = 1
i.e. there exists t1,ta, ..., tx € (ag4+1) such that the set {a1 +t1,a2+ta, ..., ar+1t;} is unital
mn R.

Before we state the main theorem in this section we prove the following two important

Lemmas [9]

Lemma 9. Let R be a commutative ring with unity in which every non-zero element is
contained in finitely many mazximal ideals. Let T C R be an ideal. Let x,y € R. Suppose
(x)+(y)+Z = R. Then there exists a,b € R such that axr+by =1 mod Z and (a)+(b) = R.
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Proof. Suppose a1x + b1y + ¢ =1 for some ¢ € Z. Either b; # 0 or a; # 0. Suppose by # 0.
Then by Fundamental Lemma on Arithmetic Progressions for Schemes[6] we have that there
exists t € R such that (a1 — t(biy + 1)) + (b1) = R. So we have

(a1 —t(bry + 1))z + (1 + tx)(bry + 1)
(a1 —t(bry + ) + (b1)
(a1 — t(bry + i)z + (1 + tx)bry + (1 + tx)i

So choosing a = (a; — t(byy +1)),b = (1 + tz)b; we have (a) + (b) = R and ax + by = 1
mod Z. Now the lemma follows. g

1
R
1

Lemma 10. Let R be a commutative ring with unity. Suppose R is a Dedekind domain
(refer Definition . Let T C R be an ideal. Let v > 1 be a positive integer. Suppose
(a1,a2,...,a,) is a unital set modulo Z. Then there exists t1,ta,...,t, € I such that the
set {ay +t1,...,ar +t,} is unital in R.

Proof. Let a1z1 4+ ...+ ayx, +i=1fori € Z. If i = 0 then there is nothing to prove. So
assume i # 0.

Suppose if two of the x;s are non-zero. Say x1 # 0,29 # 0. Let e = aszo + ... + a,xy + 1.
Then a;z1+e = 1. By using Fundamental Lemma for Arithmetic Progressions for Dedekind
Domains [o| there exists ¢ € R such that (z1 — te) + (z2) = R. We also have (z1 — te)a; +
(14 taj)e =1. So we get

ai(z1 — te) + agra(l + tar) + asxs(l +tay) + ... + apxp (1 + tar) +i(1 + tag) =1

Now we have both ideal(x; — te) + ideal(x2) = R,ideal(z1 — te) + ideal(1 + ta;) = R so
ideal(xy — te) + ideal(x2(1 4+ ta1)) = R. There exists s1,s2 € R such that

(x1—te)s1 +xa2(l+tar)se =1 = (x1 —te)sii(1+tar) + z2(1 + tar)s2i(1+tar) = i(1+tay)
Hence we get
(a1+s1(1+tay)i)(z1—te)+(ag+s2(1+tar)i)za(1+tar ) +aszs(1+tar)+. . .+arx,(1+tar) =1

So choosing t; = is1(1 + tay),tas = isa(l +tag) € Z,t3 =ty = ... =0 we get {a; +t; : 1 <
i <r} is a unital set.

Suppose all but one of the z; is zero. Say x1 # 0 and x2,x3,...,x, = 0. Then ajx1 +i=1
and suppose a; = 0 for some j > 2. Then choose t; = i,¢; = 0 for | # j and we have the
set {a1,as,..., aj—1,05 +tj,a541,... ,ar} is unital.

Now if 21 # 0,20 = 23 = ... = 2 = 0,a3,as,...,a, # 0 and r > 3 then we could choose

T9 = a3, xr3 = —ao and we have atleast two of the x;s non-zero which is considered before.

Now consider the possibility where r = 2. Let (a1) + (a2) + Z = R. Now using the previous
Lemma@we have that there exists x1, x2 such that (x1)+ (z2) = R and a1z1 +agze +i =1
for some i € Z. So if x1y; + x2y2 = 1 then x1y17 + x2y2i = i. So we get {a1 + Y1, a2 + yoi}
is a unital set.

This completes the proof of this Lemma ([l

Now we prove the main result of this section on surjectivity theorem for the Sum-Product
Equation.

Theorem 17. Let R be a commutative ring with unity. Suppose R is a Dedekind domain
(refer Definition [1). Let M(R) be the monoid generated by mazimal ideals in R. Let
7y,Ts,..., I, € M(R) be r— pairwise co-maximal ideals. Let r > 2,k > 2 be two positive
integer. Consider

k r
M(r,k)(R) = {A = [ajlrur | D] Jais = 13-

j=li=1
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Then the map
At M(r,k)(R) — PRy x PRy x ... x PRy
given by
)\(A) = ([a11 Laig ...:alk],[agl 1 agy ...:agk],...,[aﬂ LArg ...:ark])
18 surjective.
Proof. For r = 1 the theorem is not true. Choose R = Z. Z; = pZ. The point
. 1 _ ol
[1:-1] € PFz, = PF,

is not in the image of M(1,2)(Z).
Assume r > 2. Let us prove this by induction on r. First we prove for » = 2. Let

(o raw), [yn e .. cyw)) € PR x PRYL

Suppose there exists

(29 o2 ) = (o], [y s wk]) G]P’}Féfl ><IP’IF§;1

k k k
such that J;x?y? = 1+ 49 where i5 € T5. Let j;x?z? = 1 because we have ];(:L‘?) = R.
k

By choosing u; = :L'?, vj = y? — Z?ig we have ];ujvj =1 and

([ur oo s, for oo o)) = (e o)y [yn oo k) E]P’IF‘%_1 ><]P’IF§2_1
So it is enough to prove that there exists ([z9:...: 2], [y ... :9d)) = ([w1 : ...t 2g), [v1

k
yk]) € PF5 ! x PFY. ! such that Zxoyg =1 mod .
]:

k
Sicne 71 + 7o = R, let a € Z1,b € Iy such that a+b=1— > x;y;. Now there exists w; € R

j=1
k k k
such that ) w;y; = 1 because ) (y;) = R. Hence > (x; + aw;)y; =1 —b =1 mod I.
j=1 j=1 j=1
k
Now apriori we do not have )" (z; + aw;) = R. Instead we have
j=1
k k
Z xj+aw;j)+ Iy = R,Z(a:j +aw;j)+ 7 = R.
j=1 j=1

k
Hence )’ (z; + aw;) + Z1Zo = R. So using Lemma |10l we conclude that there exists
j=1
k
t1,to,...,ty € I1Zy such that ) (z; + aw; +t;) = R and
j=1
k

k
> (e awy + g =10+ > gy =1 mod T
j=1 J=1

So chooisng :c? = x; + aw; + tj, y;-) = y; we have proved this Theorem |17 for the case when
r=2.
Now we prove for any positive integer r > 2. Let

F=V(T)UV(L)U...UV(Z,).
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Let ¥ = Xr : M(F) — R be the no where zero choice multiplicative monoid map using
Theorem Let

((E(T)vir : B(T2)viz « .. 2 B(Tik)vik), [E(T21)ver « B(Ta2)vae ¢ ... 2 B(Jak)vak)s - - -,

[2(Fr1)vr s B(Tr2)vrg t - 2 BT )vme]) € [ PR

i=1

Let Z = HI We note that (vi;) +Z = R for every (i,j) € {1,2,...,r} x{1,2,...,k}. We

replace 1),] by w;; € vi; + I such that the following two property holds.
e For every (i,7) # (e, f) € {1,2,...,r} x {1,2,...,k} the sets of maximal ideals
containing w;; and wy are disjoint i.e. V(w;j) NV (wer) = 0.
e For every (i,7), (e, f) € {1,2,...,r} x {1,2,...,k} the sets of maximal ideals con-
taining w;; and X(Jey) are disjoint i.e. V(w;i;) NV (E(Tef)) = 0.
This can be done using the Theorem [5] on Arithmetic Progressions for Dedekind Domains.

This immediately implies that for each i we have a well defined element representing the
same element

[E(\Zl)’wzl : E(Zg)wzg el Z(Zk)wzk] = [Z(jﬂ)vﬂ : Z(%Q)’UQ el Z(Zk)’ulk] S ]P)]F%_I

We observe that any maximal ideal containing the coordinates ¥(J;;)w;j,1 < j < k contains
all ¥(J;;) for 1 < j < k and hence has to be a unit ideal which is a contradiction.

Now for a fixed 1 < j < k we observe that the maximal ideals containing ¥(7;;) outside
V(Z;) distinct for 1 <4 < r. For this purpose we use the Observationand we have J;; D I;
for 1 <14 < r with Z; being mutually comaximal.

We have for 1 < j <k
1127 == 7
i=2 i=2

T
Now consider a maximal ideal M containing the set {[[X(7;;) | 7 = 1,...,k}. Then M
=2

contains one of the factors ¥(J;;) for some 2 <i <r, 1 <j <k.

Again for 1 < j < k, in the factorization of szj, for any maximal ideal M; € F, the
i=2
maximal ideal M; does not occur to the same power for all 1 < j < k. So if M ¢ F then it

is a maximal ideal containing E(./\/lf ), (./\/l] ') for some i # j or if i = j then t; # s; = s;
which contradicts the Observation [l

Now suppose M € F, then it immediately follows that M contains {3(7;;) | j =1,...,k}
for a fixed subscript 1 < i < r which implies that M is a unit ideal which is a contradiction.
So the the set

{{[Z(F) 5 =1,....k}
=2

is unital.

Similarly now the set

{{[2(Fpwi; = ([ [F)wig |5 =1, K},

i=2 =2

is also unital.
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Now consider the element

[ﬁE(Jil)wu : ﬁz(jiz)wig Sl ﬁz(jzk)wzk] c ]P’]Fk(( .

=2 =2 =2 11 2(j¢j)wij)z213...zk>

i=2,5=1

Now we reduce to the case when r = 2 and apply this Theorem [I7] for the above element in

PF*
<( 7 E(\Zj)wij)IQIg...Ik>
i=2,5=1
and the element [£(J11)wi : S(Ji2)wiz © ...+ B(Jik)wix] € PF5 . We note that the two

ideals

r.k
(( I 3(Fjwi)TeTs .. .Ik> I
i=2,j=1
are comaximal.
Now there exists elements by; : 1 < j < k with b1; = X(J1)wi; mod Z; and

[bll : b12 e blk] = [Z(jll)wn : E(j12)w12 e E(jlk)’wlk] c ]P)Fél
and there exists t1,t9,...,t, € 173 ...7Z; such that

k r rk
> by (HE(%j)wz‘j +1; ] 2(«7z‘j)wz'j> =1
j=1 =2

i=2,j=1
Now consider the same element with these representatives
((br1sbiz oot bigly (Do tboo ot bogloevy [br1 s bro i o.. s byy]) € PRE x PRE x ... x PF%

where for r > i > 1 we have b;; = ¥(J;j)w;; and for i = r we have

r.k
T 2(Tig)wss
brj = %(Trj) (wm' + it )
l:[f(ﬂj)wij

Then we observe that .
,
S TTn -1
j=li=1
The map A is surjective and the Theorem [I7] follows for any r > 2. g
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