GEOMETRY OF THE MULTIPLICATIVELY CLOSED SETS
GENERATED BY AT MOST TWO ELEMENTS AND ARBITRARILY
LARGE GAPS

C.P. ANIL KUMAR

ABSTRACT. We prove that the multiplicatively closed subset generated by at most two el-
ements in the set of natural numbers N has arbitrarily large gaps by explicitly constructing
large integer intervals which do not contain any element from the multiplicatively closed
set. We also give a criterion by using a geometric correspondence between maximal singly
generated multiplicatively closed sets and points of the space PFg% as to when a finitely
generated multiplicatively closed set gives rise to a doubly multiplicatively closed line.

In the appendix section we discuss another constructive proof for arbitrarily large gap
intervals where the prime factorization is not known for the right end-point unlike the
constructive proof of the main result of the article in the case of multiplicatively closed set
{pip) | i,7 € NU{0}} with pi < p2, Logp, (p2) irrational for which the prime factorization
is known for both the end-points of the gap interval via the stabilization sequence of the

. . 1
irrational —————.
Logp, (p2)

1. Introduction

1.1. The Main Result. Let N = {1,2,3,...} denote the set of natural numbers. Here in
this article we prove the following main result. This result is stated as follows:

Theorem 1. Let PP # {1} be a nonempty set of at most two natural numbers. Let S =
{1<a;<ay<...<a,<...} CN be the infinite multiplicatively closed set generated by
PP. Then we have

limsup(an4+1 — an) = 00.

n—--ao0

As an application of this Theorem [I| we have the following corollary.

Corollary 1. Let PP = {p; < pa2} be a set of two primes. Consider the multiplicatively
closed set S={1<a; <az <...<ap<...} CN generated by PP. Then we have
limsup(an4+1 — apn) = 0.
n—-o0

1.2. Structure of the Paper.
In section [2] we associate to every multiplicatively closed set a point in the projective space
PFg., and conversely to every point, a maximal singly generated multiplicatively closed

set in Theorem Then we characterize when two points Py, Py € IP’IFE@O give rise to the
same point in terms of Log-Rationality in Theorem [3] In Theorem [d] we give a criterion
for when a finitely generated multiplicatively closed set is contained in doubly generated
multiplicatively closed set and in Theorem [b| we classify doubly multiplicatively closed lines
(Refer Definition [)).

In section [3| we first show that for any two relatively prime numbers 1 < p < g the gaps
between successive approximate inverses of p mod ¢ is increasing in Theorem [6] In Theo-
rems we prove for a sequence of positive rationals converging to an irrational in [0, 1],
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the sequence of approximate inverses eventually stabilize and the gaps between successive
approximate inverses increase.

In section [ we prove our main Theorem [I We consider a multiplicatively closed set S
generated by two positive numbers p1, ps representing two distinct points in PFg. . We
apply Theorems to Logy, (p2) for a suitable sequence of positive rationals obtained in
Lemma [2| and conclude increasing gaps for the stabilized sequence. Then we locate integer
intervals in Lemma3|of arbitrarily large size which has no elements from the multiplicatively
closed set S. This finally proves our main Theorem

1.3. An Open Question. This article leads to the following open question.

Question 1. Let S = {1 < a1 < az2 < ... <} C N be a finitely generated multiplicatively
closed infinite set generated by positive integers dyi, ds, . .., dy. How do we construct explicitly
arbitrarily large integer intervals which do not contain any elements from the set S using
the positive integer di, do, ..., d,"

If a multiplicatively closed set S is generated by r—elements and these generators give rise
to s—distinct points in the projective space PFg. (Refer Definition | with s < r then S
is contained in a multiplicatively closed set T which is generated by s—elements. So the
Theorem [1| can be used to answer Question [If whenever s < 2 in the affirmative using the
same construction(Refer Sec . Even otherwise also, if these s—points generate a doubly
multiplicative closed line (Refer Definition [4f and Theorems then the Theorem |1| can be
used to answer Question [I|in the affirmative using the same construction(Refer Sec [4)).

The Theorem [ and the Example [I] leads to the following interesting question which is
answered in Theorem [bl Before we state the question we need some definitions.

Definition 1. Let Q denote the field of rational numbers. Let Qo denote the set of non-
negative rationals. Define an equivalence relation ~gr on

Q%\0} = D=0\ {0}

We say (a1,a2,...,) ~g (b1,b2,...,) € Q3 \{0} if there exists \ € QT such that a; = \b;
for all i > 1. Let PFg ~ denote the projective space

o _ QMO
]P)]FQZO = 7NR

Definition 2. Let Q denote the field of rational numbers. Define an equivalence relation
on

e\{o}.

i>1
We say (a1, as,...,an) ~r (b1,b2,...,by) if a; = \b; for some A € Q*. Let PFyy denote the

space
E>|91Q\{0}
PFy = =————.
° ~R
Once the inclusions are defined we have PRy = |J PF( = @PF& The space IP’F(%?ZO C PFy

n>1 n
as the subset of points which have integer representatives. We note that two finite tuples
which have positive coordinates are rational multiples of each other then they are positive
rational multiples of each other.
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Definition 3. Let P = {p; = 2,p2 = 3,p3 = 5,...,} C N be the set of primes where
p; denote the " —prime. We say a set S C N is singly generated multiplicatively closed
if S = {1,f,f%,...,} for some f € N, f # 1. We say S is a singly generated mazimal
multiplicatively closed set if T is any singly generated multiplicatively closed set and T D S
then T =S.

Definition 4. Let L be a line obtained by joining two points P, P, € PFy_ ~C PFy. We
say L is a doubly multiplicatively closed line if we consider only integers and (not elements
of Q>0\Z>0) associated to all tuples whose equivalence classes lie on points of L (Refer to
the Proof of Them‘em@ then it gives rise to a doubly generated multiplicatively closed set.
In view of the Example[1] not all lines L are doubly multiplicatively closed lines.

However we note that each point P € PF_ ~gives rise to a unique mazimal singly generated

multiplicatively closed set (See Theorem @

Now the question is stated as follows:

Question 2. Classify all lines L obtained by joining two points P1, P, € PFy =~ C PRy
which are doubly multiplicatively closed lines. -

We answer this question completely in Theorem

1.4. History. Historically the distribution of integers with exactly k—distinct prime factors
has been studied by many authors. It was first shown by Landau [3] that for a fixed k& > 1,
the function defined by

n<x

where fi(n) =1 if n has exactly k-prime factors and 0 otherwise satisfies

xr 0] og r k-1
(1) (k) = (log x) L g(]j_gl))! (14 o(1)).

Among the other authors who have obtained similar or better asymptotic expressions are
Sathe, L.G. [4], Selberg [6],Hensely [I],Hildebrand and Tenenbaum [2].

Let {p1,p2,...,pr} be any set of k—distinct primes. Let Sipi.pa,...pe} Pe the multiplica-
tively closed set generated by 1 and numbers which have exactly and all the factors from
{p1,p2,---,pr}- Let C be the collection of all k—subsets of prime numbers. Consider the

set
Sy, = USC
ceC
Using any of the results say the result by Landau [3] about asymptotics of 7(z, k) we
conclude that there are arbitrarily large gaps in S. We observe here that using Equation
we have

k
lim TR
Tr—>00 €T
If the gaps were bounded then we have that
k
timing R S
T—>00 x

would be a non-zero constant. Hence the gaps must be arbitrarily large in the set Sy.

With an additional bit of effort on the result of Landau [3] we can extend and conclude
arbitrary large gaps for the set
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Now choose a base say b = 2. If we use asymptotics for a multiplicatively closed set T
generated by primes {pi1,p2,...,pr} then we get for Iarge z the following inequality

l l

9% % 1 < 4(Tn(L, ] <H o9 2 1

k logb pz
Zlogb Di

=1

Hence again we have
TNl
o #TOLa])
r—>00 €T

from which we will be able to conclude that there are arbitrarily large gaps in T.

However here in this article we give a more constructive proof for multiplicatively closed
sets which are contained in doubly generated multipicatively closed sets. First we consider
multiplicatively closed sets generated by two primes or two positive integers (> 1) which
are not Log-Rational to each other. We note here that the multiplicatively closed set can
contain numbers with single prime factor unlike the set which is considered in the result by
Landau [3]. Using the technique of rational approximation and stabilization of the sequences
of approximate inverses and increasing gaps between two such successive ones we explicitly
construct by locating large intervals of natural numbers which do not contain any element
in the given multiplicatively closed set there by proving Theorem (1] given below.

2. Geometry of Singly and Doubly Generated Multiplicatively Closed sets
We start the section with a correspondence theorem.

Theorem 2. Let S = {S C N | such that S is mazimal singly generated.} There is a
bijective correspondence between
S +— ]P’IE‘&?ZO
i.e. between mazimal singly generated multiplicatively closed sets and the points of the space
PF’
Q>0-

Proof. The bijection is given as follows. Let

S:{17f7f27"'}

be any singly generated multiplicatively closed set. Let

k _
f= Hpij with piy, piyy - Dip, €Py1iy, .. 1, €N
j=1
To this multiplicatively closed set we associate the point
P=[ . try o iyttt i ] EPF&SZO.
The condition that S is maximal is equivalent to the condition
ged(Tiy, Tigy -+ 575, ) = 1.

Also given any point P in PFg ~there is a unique integer coordinate representative of P
with ged of the coordinates equal to one which gives rise to the integer f € N with f # 1.
This establishes the bijection and hence the Theorem [2| follows. O

Theorem 3 (Log-Rationality). Let P1, P2 be two points (possibly the same point) in PFg. .

Let
¢ T v Si.
Jj=1 Jj=1
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two positive integers (> 1) with their unique prime factorizations such that
) T PO O N S S S E TR
Py = 08 et Syttt S, ]
Let f1, fa be the corresponding positive integers (> 1) under the bijection given in the The-
orem[g then the following are equivalent.
(1) (Log-Rationality:) Logg, (g2) is rational.
(2) Pp =Py
(3) fr= fo .
(4) The multiplicatively closed set T = {gig} | i,7 > 0} is contained in a singly generated
mazximal multiplicatively closed set.

Proof. Suppose Logg, (g2) = " is rational. Then we have g3 = g7". So the distinct prime fac-
tors of g1, go agree and we also have that their exponents are projectively equivalent. Hence
we get Py = P,. So this implies f; = fo = f say. Then we get that T C {1, f, f%,...,}.

For the converse if T C {1, f, f%,...,} for some 1 # f € N then g1 = f", go = f™ and

we have g3 = g7". Hence Logg, (g2) = ™+ is rational. This completes the equivalence of the
statements (1), (2), (3), (4) and also proves the Theorem O

Now we have the following corollary.

Corollary 2. A multiplicatively closed set T = {gig% | 3,7 > 0,91,92 € N\{1}} is not
contained in a singly generated multiplicatively closed set if and only if Logg, (g2), Logg,(g1)
are both irrational if and only if g1, g2 represent two distinct points in the Projective Space

]P’IF@?ZO .

In the theorem that follows we give a criterion as to when a multiplicatively closed set is
contained in a doubly generated multiplicatively closed set.

Theorem 4. Let S = {gilgé2 gl | in, g, ... i € NU{O}} be a multiplicatively closed set
generated by r—elements. Suppose corresponding to these positive integers g; : 1 < i <r
the points [g;] : 1 <i<r € IPIF%;O C PFg’ lie on a projective line L obtained by joining two
points of PRy~ whose corresponding integers are relatively prime. Then S is contained in
a doubly generated multiplicatively closed set.

Proof. Let P, Py € ]P’]F'@f;o be any two distinct points which gives rise to the projective line L.
Let p1,p2 be the positive integers which represent these points Py, P» with ged(p1,p2) = 1.
Then the hypothesis that the points [g;] lie on the projective line P, P, implies that there
exists integers a;, b;, ¢; > 0 such that p‘fipgi = g;" for 1 < i <r. Consider the unique prime
factorization of

t
PL=a"g? g2 =41 g
where we assume without loss of generality that gcd(sy, s2,...,s;) = 1, ged(t1,ta, ..., t;) = 1.

If in addition we have gcd(p1,p2) = 1 then we have s;t; = 0:1 < j <[ but one of s; and
t; is non-zero for each j. In all cases we conclude that ¢; | s;a;, ¢; | tjb; for 1 < j <. So
¢i | ai, e | by o1 < i < ras ged(sy,se,...,s) = 1,gcd(ty,te,...,t;) = 1. Hence the set
T = {pip} | i,j >0} DS and this proves Theorem O

Example 1. Let g; = 45,99 = 20,93 = 30. Then we have giga = g3. So the doubly
generated multiplicatively closed set generated by g1, 9> contains g5 but not g3. However
there is no doubly generated multiplicatively closed set containing all g1, g2, g3 because there
are no two distinct non-trivial common factors of g1, g2, g3 as ged(gi, g2,93) = 5 which is
prime. Now the corresponding exponents satisfy

0:2:1:0:...]+[2:0:1:0:..]=2]1:1:1:0:...].



6 C.P. ANIL KUMAR

since g1gs = gg and the exponent vectors lie on a Projective Line L C PFg.

Note 1. The Theorem can be generalized as follows. LetS = {gilgg2 co gl iy, .y €
NU{0}} be a multiplicatively closed set generated by r—elements. Fix a prime p = 2. Sup-
pose there exists two positive integers p1,p2 such that the monoid {aLogy(p1) + bLog,(p2) |

a,b € Z>o} contains the set {Log,(g;) : 1 <i <r} then the set S C T = {pip} |i,j > 0}.

Note 2. In Ezample |1, for all integer representatives f € N such that [f] € L we have
5 | f. This is the only prime with this property for the line L which is not a doubly
multiplicatively closed line. So does there exist a doubly multiplicatively closed line with
such a prime? Definitely not when there are only two primes involved with the line L.
In the Exzample|l], we have the following properties holding true.
e For all integer representatives f € N such that [f] € L we have 5 | f and this is the
only such prime. Neither of the primes 2,3 satisfy this property.
o There exists numbers g1 = 45, g2 = 20 whose points lie on L and two primes 2,3
such that

3]45,3120,2 20,21 45.

o The lattice M corresponding to L is a two dimensional lattice which does NOT
possess a basis {x,y} such that M NZZ, satisfies the monoid addition property. i.e.

law+by € MNZLy < a>0,b>0]

Theorem 5. A line L joining two points Py, Py € IP’IF@;O C PFg is a doubly multiplicatively

closed line if and only if there exists two points Q1 = [q1], Q2 = [g2] € PFgy. = C PFY with

positive integers
al a2 bl b2

Tl o S N i R
with the following properties.

(1) Trivial Index Property(Alternative): The ged of two by two minors of (Zl ZQ o ZT>
1 2 .- T

s one.
(2) Monoid Addition Property(Alternative): There exists two subscripts i,j such that
a;b; = 0 = a;b; and either a;b; # 0 or a;b; # 0.
In particular if there exists two points Q1,Q2 € LN IP’F%;O such that their corresponding
integer representatives are relatively prime then L is a doubly multiplicatively closed line.

Proof. First we prove the latter assertion. Suppose there exists such points Q1,Q2 on L
and let g1, g2 be the corresponding integers. Let

_ 81,8 S _ Si41 Si42 n
QL =p1'py D] q2 =D Pl DR

be their unique prime factorizations with s; € N: 1 <1i < n, gcd(q1,g2) = 1. Now we choose

q1,92 such that ng(Slv 52y .- 7Sl) =1= ng(Sl+17 S1425 -+ Sn)'

If g € N such that [g] € L then there exist a,b,c € N such that ¢{¢5 = ¢g¢. This implies
clasi:1<i<lc|bs;:l+1<i<n=cl|a,c|b

SogeT=1{qq)|ijeNU{0}}. In this particular case we also have in the matrix

S1 ... 8 0 ‘e 0

0 ... 0 s141 ... Spn
has the property that its ged of two minors equal ged(s;sj : 1 <i <[ I+1<j<n)=1
This proves the latter assertion.
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Now we prove the first assertion. If L has such points Q1,Q2. Let V = Q — span of the
vectors {a = (ai,...,a,),(b1,...,b.)}. Let M = 7Z — span of the vectors {a,b}. Then we
have the following properties.

e Trivial Index Property:
VNnZ =M.
This follows because of the gcd of the 2 x 2 minors is one. i.e. M has a trivial index
in VNZ". Using the theorem for sublattices we get that for the tower of sublattices

Mcvnz cz

that there exists a basis of Z" given by {u1,us,...,u,} and positive integers di, dy

such that {uj,us} is a basis of VN Z" and {dyu1,daus} is a basis of M which has

therefore index djdy which is also ged of the 2 x 2 minors of {djuy,daus}. Since

{dyu1,daus} differ from the basis {a, b} of M by an SLy(Z) matrix we have didy = 1.
e Monoid Addition Property:

aa+pBbe MNZLy < a>0,82>0,

This follows because there exists two subscripts 7, j such that a;b; = 0 = a;b; and

either a;b; # 0 or a;b; # 0 and the coordinate entries of both a, b are non-negative.
So we get that if g € N such that [g] € L then g = qiq% for some i,j € NU {0}. So the
required multiplicatively closed set representing the line is T = {qiqg |i,7 € NU{0}}.
Now we prove the converse. Suppose L is a multiplicatively closed line with the multiplica-

tively closed set being T = {¢iqj | i,j € NU{0}}. So if g € N such that [g] € L then g € T.
Let the prime exponent vectors of g1, g2 be s,t with s = (s1,892,...,8:),t = (t1,t2,...,t).

This proof is a bit long. We prove both the Trivial Index Property and the Monoid Addition
Property for {s,t}.

Claim 1. Let V be a two dimensional Q—vector space spanned by s = (81,82,...,57),t =
(t1,t2,...,t,). Let M = VNZ". Then there exists a basis {s,w} for M where the coordinate
entries of w are all non-negative.

Proof of Claim. We observe that V is the corresponding affine space defined by the projec-
tive line L and also that M = V NZ" is a two dimensional lattice. Now by a theorem on
sublattices of Z" it follows that there exists a basis of Z" say

{u = (uy,ug,...,u.),v=(v1,0v9,... ,UT),wl,wQ, ... ,wT_Q}

and positive integers dy, ds such that {dyu,dsv} is a basis of M with d; | d2. Since M con-
tains a ged one vector either s or t we have dy = 1. If cu+ v = s then ged(a, 8) = 1 because
() + (B8) = (aur, quy, ..., auy) + (Bur, Ba, ..., Bor) D (aur + B, aug + Bug, ..., auy +

Buy) = (81,82, -.,8) = Z. Hence there exists (: ﬁ) € SL9(Z) such that

0
u S
a B v w
<’7 5) 02><(7“72) wl — wl
Or—2)x2  Lr—2)x(r—2) : :
wr72 wr72

where w = yu + dv. Apriori w need not have non-negative entries. However we note that
the Q— Span of {u, dav}, {u,v}, {s, w} are all equal to the two dimensional Q— vector space
V defined by the projective line L. Using a unipotent lower triangular matrix over Z we
need to consider only those entries of w whose corresponding entries in s are zero. Now by
a similar procedure we conclude that Q@ — Span of {u,dsv}, {u,v}, {t,x} are the same for
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some unital x € Z". Now the vector ¢ which has non-negative entries lies in the span of
s,w. i.et =es+ pw with € € Q,u € Q*. Now if s; = 0,w; # 0 then sign(w;) = sign(u).
If this sign is negative then we consider —w instead of w. Then we get that the w; has
non-negative sign whenever s; is zero. Now again using unipotent lower triangular matrix
over Z we make the sign of the remaining entries of w non-negative. Hence we arrive at
a basis {s,w} such that both have non-negative integer entries and whose Z—span is the
same as Z—apan of {u,v} and whose Q—span is exactly V. We obtain {s,w} from {u,v}
by an SLy(Z) transformation with determinant +1. Now we also have the Z—span M of
{u,dgv} is contained in the Z—span of {s,w}. Here we observe that on the other hand
V NZ" contains Z—span of {s,w} as this span has integer entries. Hence we have dy = 1
and

Z — Span of{u,v} = Z — Span of{s,w} =M =V NZ".

So we have obtained a basis {s,w} of M = V NZ" with non-negative entries. This proves
the Claim [l ]

Claim 2 (Trivial Index Property). Let {s,w} be the basis of M obtained from the Claim|[i]
Let

w1 W2

Qo =pi'py ... e=play . p
Since M NZ corresponds to a doubly multiplicatively closed set T = {q’iqg |i,7 € NU{0}}
we have

[}

{pe |i.j ey ={ada|i.j €L}
e The Z — span of {s,t} is the same as Z — span of {s,w}.
o [f for some o, € Q,as+ ft € Z" then o, P € Z.

Proof of Claim. Since p1,e corresponds to points in M N Z%, we have p; = flféz and

e= fM™fm2 So we have {piel | i,j € Z} C {fif] | i,j € Z}. The other way containment
is immediate. Now the rest of the claim for exponents follows as {s,w} is a Z—basis for
M =V NZ" and Q—basis for V. This proves the trivial index property for {s,t¢}. O

Claim 3 (Monoid Addition Property). The basis {s,t} has monoid addition property.
Proof of Claim. Now suppose if all the coordinate entries of s is positive. Then for some
large m € N we have ms — ¢t has non-negative entries which is a contradiction. Hence there

exist a subscript ¢ such that s; = 0,¢; # 0. Similarly there exist a subscript j such that
tj = 0,s; # 0. This proves the monoid addition property that

as+pte MNZiy s a>0,82>0.

0

This completes the proof of Theorem O

Example 2. Let g1 = 10,92 = 15. Then the line joining the points [¢1], [g2] is a multiplica-
tively closed line using Theorem[5, where as the line in Example[]] joining [§1 = 20], [g2 = 45]
is not multiplicatively closed. Now we could also use Theorem[J] to prove this fact in another
way.
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3. Irrationals and Behaviour of Rational Approximations, Arithmetic
Progressions,Stabilization

We start this section by proving a theorem below on increasing gaps for the successive
approximate inverses.

Theorem 6 (Increasing Gaps between Successive Approximate Inverses). Let p,q be two
positive integers with ged(p,q) = 1,p < q. Consider the arithmetic progressions pZ™ and
qZ7" . Consider the sequence (pZ* UqZ*TU{0})N{0,1,2,...,qp} in the set {0,1,2,...,qp}.

lO = 01p7 2p7 3p7 s 7l1p7q

(ll + 1)p7 (ll + 2)p7 cee l2p> 2Q7

(l2+Dp,... . L, iq

(li+Dp,....(¢—L)p,ap

Now consider the sequence of numbers
lo=0}0{li[q=5 =1+ Yp—jal (4 +Dp—jg < min{{li+1)p—iq}}
= {ljuljzv ce 7lj'r}

={0=Ilp=1;;, =p'—1 mod q}ifp=1

:{Ozljl :lo<lj2 =0 <lj3 <. < (le:pfl—l mod q)} ifp#£1
Then the gaps lj,, , — lj; in the above sequence is increasing.
Proof. If p = 1 then there is nothing to prove. So assume p > 1. First we observe that p
is a unit in Z/qZ = {0,1,2...,q — 1}. The values (I; + 1) tend to the inverse of p because
the least possible value for (I; + 1)p — ig is one. If we consider the sequence of multiples
{(l;, + 1)p mod q, (l;, + 1)p mod q, ..., (lj, + 1)p mod q} then the values are distinct and
decrease to 1 as multiplies of p given by 0,p,2p, ..., (g — 1)p gives rise to all residue classes
modulo g. Now suppose we consider three consecutive elements in the sequence [;,, [ l
then we have

Jit+10 Ydit2

(lji +1)p = kj,q + xj,
(lj¢+1 +1)p = Kjina + x5,
(lj¢+2 +1)p = Kjiyol + iy
and the residue classes satisfy x;, > xj,,, > xj,,,

and moreover for any ¢t <1;,,, —l;, we have

if (I, +1+t)p = kq + = then = > x;,
because of the minimality condition on (I;, + 1)p — jiq as the lesser than (I;, + 1) multiples

of p are not as close to multiples of ¢ where we compare multiplies of p to numbers which
are smaller and multiples of ¢. So we have

(ljz'-‘rl +1+t)p= (lji-H =1 )p+ (lji +1+t)p= (ka'+1 — kj, + k)q + Tjioy —Xj; T+ T

Now note in the right hand side we have the following inequalities for the residue classes
mod q.

0<zj, <gq

0 <z, <q

0<wj, —xj,, <q

0<zj,, <wj,, —xj,+tr<zr<gq
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This is a subtle argument about the residue classes. Hence we have [;,_, > 1;,,, +t for all

t <lj, —lj, and for t = 1;, , — 1, we have x = z;,_, so a candidate for the residue class is

(2j,,, — xj,) and
(lj¢+1 +1+1t)p= (Qk,ji+l - kji)q + (21‘J€+1 - xji)
So we have if 0 < (2xj,,, — x;;) then the residue class is (2z;, , — x;,) and
0< (2$ji+1 - sz’) = Tj; 1 + Tjipr — Tjy < Tjyq < (
So lj,p = 2lj,y — 1, o b,y — Uiy = lj,, — 1, Otherwise if 0 < xj,,, < 2w, <zj <¢q
then the residue class is given by ¢ + 2z;, , — x;, and we observe that
q>q+ 25, — x5 > xj,, because ¢ > q + x5, — x5 >0

we conclude that [;,, ., > 2l;,., —1; or I, —lj ., > lj,, — ;. Tt is also clear that the

residue classes decrease to one. Now the Theorem [6] follows. The sequence
{1:l0—|—1:lj1 +1,lj2—|—1,...,le+1}
is the sequence of approximate inverses of p mod gq. ]

Theorem 7 (Stabilization and Eventual Invariance). Let p,,q, be a sequence of positive
integers with ged(py, ¢n) = 1 and suppose 2—3 18 a cauchy sequence converging to an irrational

number 0 < o < 1. Define as in the previous lemma the sequence l;(n) and consider the set

{0 = ljl(n)(n) < le(n)(n) = ll(n) < ljd(n)(n) <...< ljrn(n)(n) = p;l — 1 mod qn}.
The wvalues ji(n) stabilize and also lj,(ny(n) is eventually a constant as n — oo for a

stabilized j;.

Proof. We can assume that p, < ¢, and p, # 1. If p, = 1 for infinitely many positive
integer n > 0 then fl’—: — 0 which is a contradiction. We observe that [;(n) = LZI—:J and
i
(6
n — oo because in the inductive definition, we have j;(n) satisfies the property that
(L) (n) + Dpn = ji(n)gn < min_ {(li(n) + 1)pn — iqn}
0<i<j;(n)

Ji

for fixed ,;(n) is eventually | ] as n — oco. Also we have the sequence j;(n) stabilizes as

or equivalently that

Pn . . Pn .
L +1)— —ji(n) < li(n) +1)— —i}.
(o) + D2 = i) < _min (1) + D2~
Now if n — oo then we get that (l;(n) + 1) —i — (L] +1)a — i which is independent
of n. Now the independence of n here implies the stabilization of j;(n) follows as n — oo.
This completes the proof of this Theorem [7] ]

Theorem 8. Let p,, g, be a sequence of positive integers with ged(pp, qn) = 1 with p, < qn
and suppose Z—: is a cauchy sequence converging to an irrational number 0 < o < 1. Define

as in the previous lemma the sequence l;(n) and consider the set

{0= ljl(n)(n) < l]g(n)(n) =li(n) < lj3(n)(n) <...< len(n)(n) = p;l — 1 mod q}.

Using previous lemma let j; = lim ji(n),l; = lim li(n). Then we have
n—-—ao0 n—=o0

lim 1;

o, — 1l =00
00 Ji+1 Ji

Proof. We can assume that p,, # 1 eventually. We observe that using the previous Theoreny7]
we have for every

ieN, lji+2 - lji+1 21 — ;-

Jit1
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If the above limit is not infinity (say equal to d) then eventually [;, form an arithmetic
progression with common difference d. Then (I, + 1) = [2] is in arithmetic progression
with common difference d. On the one hand the sequence

Ji :

[l —ji 0

a
On the other hand the sequence has a distribution if /;, are in arithemetic progression.
Because if lj, = [j, + kd with k € N and fractional parts zj, are such that % + z;, =

[2] =1, + 1. Then we get (I, +kd + 1)a — j; = 2, \, 0. However the fractional parts

{{j;, +kd+ 1o —ji} = {(l;, + kd + 1)a} are distributed in the unit interval uniformly as
k € N by Weyl’s Criterion. So this is a contradiction and the lemma follows. O

We mention Weyl’s Equidistributive Criterion here (See also [7].)
Theorem 9. Let o be a positive irrational. Let 0 < a < b<1. Forx € RT, let {z} denote
the fractional part of x. Then we have
#{nla<{na} <b,1 <n< N}
N

— (b—a) as N — o0

4. The Main Theorem and Construction of Arbitrarily Large Gaps
Before we prove the main Theorem [I| we prove the following three lemmas.

Lemma 1. Let p; < py be two natural numbers such that ged(p1,p2) = 1. Then
o FEither p; = 1.
e Or Logy, (p2), Logp, (p1) are both simultaneously irrationals.

Proof. If p1 = 1 then there is nothing to prove. Suppose Logy, (p2) = “+ for some positive
integers m,n > 0. Then we have pj = p!" a contradiction to unique factorization into
primes. So Logy, (p2) is irrational. O

Definition 5. We say a pair (p1,p2) € N? is an irrational pair if p1 # 1 and py # 1 and
both Logy, (p2), Logy, (p1) are irrationals. For example a GC D—one pair (p1,p2) € N? where
p1 # 1 # po is an irrational pair.

Lemma 2. Let (p1,p2) € N2 be such that p1 < ps and is an irrational pair. Let a =
Logy,(p1) < 1. Let x2(i) = [%]. For every positive integer i let
2 = —1 + x3(i)a.

Define a subsequence with the property that zx; < zg;_, = min{z1, z2, . .. ,zkj,l}. Then

(1) Zk]. \‘ 0.

(2) kj — kj—1 is increasing.

(3) ‘lz'm (kj - kj_l) = OQ.

j—00

Proof. First we define a sequence of number parts 0 < y; < 1 defined by the equation

1
i+ — = |—| = x9(2).
bt L =11 =m0
Define a subsequence with the property that yr, < yx,_, = min{y1,y2,...,yk;—1}. Since
the number parts of {< | i € N} is also dense in [0, 1] we have that Yr; 0.

We also have for every 4, z; = y;a. So 2, also satisfies the property that

Zk; < Zkj_y = min{zl, 29, ... 7Zk]-—1}
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Now we have z2(k;) = %9 + Yk, and yg, (0. Since yj,a < 1 then
(2 (kj)or) = kj.
Now we apply the previous Theorems as follows. The sequence
ks =a— ks —r @ asj — o0
xa(k;j) 2 (k;)

In Theorems [7], [§] we choose o which is an irrational satisfying the property that 0 < o < 1

and the sequence of rationals m’a_) = % — a as j — oo where ged(pj,qj) = 1. Now by
J J

the very definition of zj, and using the properties of stabilization and eventual invariance
we have

o x9(kj) — x2(kj—1) is increasing.
L lzm (IL‘Q(k‘J) — 1'2(]{5’]'71)) == OQ.
j—>00
This implies we also have
e k; — k;_1 is increasing.
[} lzm (kJ] — k‘jfl) = OQ.
j—>00

This proves the Lemma O

Now we prove the following Lemma [3]

Lemma 3. Let p; < pa be two integers such that (p1,p2) is an irrational pair. Using the
notations of the previous Lemma@, we have for any integer 0 <t < k;jy1 — k; there are no
numbers of the form plfp% in the integer interval excluding the end-points.

ki+t k;
21 px2( J)pg).

(p N

Proof. Let a = Logp,(p1) < 1. Here we use the following fact. We have |z2(kj)o] = kj.

Suppose if there exists such a number pgj < phpd < p:f2(kj)p§ then we have

]{Jj+t< a + ba <t—|—x2(k‘j)a<t—|—kj+1
—)]{Jj < —t+a+ba <SL‘2(k‘j)O& < k‘j +1
—kj+t—a<ba<kj+t—a+1l
So we have that b # 0. Similarly b # z2(k;). If b = x2(k;) then we get that k; =k; +t—a
which implies t = a. Hence p?p% is an end-point which is not considered.

Let ba = kj +1 —a+z. Consider the case kj +¢—a < kj11. Then by definition of zy, 2,
and since b # x2(k;) we have z > 2, > 2, ,. Hence

Jj+1

kj<k:j+z:—t+a+ba<z2(kj)a:k‘j—|—zkj <k‘j—|—1.

Hence we get 2z < zg; which is a contradiction. Hence we must have k; +t —a > kji;
which implies t > kj;1 —k; +a > kj1 — k; which is again a contradiction to the hypothesis
0 <t < kjr1 — kj. This proves the Lemma [3] O

Using these three Lemmas we prove our main Theorem [I] of this article and its
Corollary [}

Proof. Suppose S = {1, [ 2, .. } a singly generated multiplicatively closed set then we
immediately have lim (f/t1 — f7) = oo.
j—>OO

Now suppose S = {gig) | i,j > 0} and Logg, (g2) is rational then S is contained in a singly
generated multiplicatively closed set T using the Theorem So there exists arbitrarily
large gaps in S as well.
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Now suppose S = {pip} | 4,7 > 0} and Logy, (p1) is irrational. Then in Lemma |3| we
substitute ¢t = kj11 — k; — 1 and we obtain a gap of size
kj kej+t kj kj kjy1—k;—1
0 < pf2( J)pg _pzj :pg(p?( 5) _p2]) > pé :p21+1 J
Hence the limit superior of the gaps tend to infinity in the multiplicatively closed set S
using Lemma [2 Now the Theorem [I] follows. O

Note 3. Via the sequence kj we know the prime factorization of the end points of the

intervals (pgﬁt,p:fz(kj)pg) for 0 <t < kji1 — kj which are all gap intervals.

To prove Corollarywe can use Theoremby observing that using Lemmathe pair (p1, p2)
is an irrational pair if both py, p are primes which also implies that both Logy, (p2), Logp, (p1)
are irrational.

Here we give an example.

Example 3 (Main Example). Consider the irrational ﬁz@)' The first few terms of the
sequence k; which is defined by the fractional parts
2k < 2y = min{21, 29, ... 2k -1}

s given by

{1,3,5,17,29,41,94, 147, 200, 253, 306, 971, 1636, 2301, 2966, 3631, 4296, 4961, 5626, 6291,
6956, 7621, 8286, 8951, 9616, 10281, 10946, 11611, 12276, 12941, 13606, 14271, 14936, 15601,
47468, 79335, 190537}

The corresponding first few terms of the sequence xa(k;) is given by

{2,5,8,27,46,65,149, 233,317,401, 485, 1539, 2593, 3647, 4701, 5755, 6809, 7863, 8917, 9971,
11025,12079, 13133, 14187, 15241, 16295, 17349, 18403, 19457, 20511, 21565, 22619, 23673,
24727,75235,125743,301994}

The first few terms of the rational approzimation seqence to o is given by

1 35 17 29 41 94 147 200 253 306 971 1636 2301 2966 3631 4296 4961

5626 6291 6956 7621 8286 8951 9616 10281 10946 11611 12276 12941 13606

8917799717 110257 12079’ 131337 14187 152417 16295° 17349’ 18403 19457 205117 21565’
14271 14936 15601 47468 79335 190537}

22619’ 236737 24727 75235’ 125743 301994

190537
301994

This stabilized segence for approximate inverses for the fraction is given by

{1,2,5,8,27,46,65, 149, 233, 317, 401, 485, 1539, 2593, 3647, 4701, 5755, 6809, 7863, 8917, 9971
11025, 12079, 13133, 14187, 15241, 16295, 17349, 18403, 19457, 20511, 21565, 22619, 23673,
24727, 75235, 125743, 301994}

We note that it matches with xo(kj). Actually this can be obtained for any suitable rational
approximation sequence for a. The first few gaps of intervals with the prime factorization
of end-points of the gap intervals of the form

kjy1—1

(o xz(kj)pgjﬂ*kj*l)

..Dy
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using this method is given by
(32...2%23Y),(3%...2531), (316, 28311 (328 . 227311y (340 246311y (393 265352)

3146 o 2149352) (3199 L 2233352) (3252 o 2317352)(3305 o 2401352) (3970 o 24853664)
31635 o 215393664) (32300 o 225933664) (32965 L 236473664) (33630 o 247013664)

34295 o 257553664), (34960 o 268093664)’ (35625 o 278633664)’ (36290 o 289173664)’

(
(
(
(36955 o 299713664), (37620 o 2110253664)’ (38285 o 2120793664)7 (38950 o 2131333664)’
(39615 o 2141873664)’ (310280 o 2152413664)’ (310945 o 2162953664)’ (311610 o 2173493664)’
(312275 o 2184033664)’ (312940 o 2194573664)7 (313605 o 2205113664)’ (314270 o 2215653664),
(314935 o 2226193664)’ (315600 o 2236733664), (347467 o 224727331866)’

(

379334 275235331866) (3190536 21257433111201)

5. Appendix

In this appendix section we prove some interesting lemmas about gaps, also present some
motivating examples and give another constructive proof and discuss advantages and dis-
advantages with respect to the above given constructive proof.

We begin with a lemma.
Lemma 4. (1) Let S C N be an infinite set. If
1,...
timin g EE O )

n—>o0 n

=0
there are arbitrarily large gaps in S.
(2) Let S; C N: 1< i<k be k—infinite subsets. If for each 1 <i <k
SiNL,...,
(SN

n—>o0 n

=0

k
there are arbitrarily large gaps in S = |J S;.
i=1

Proof. To prove (1) we observe that if the gaps we bounded then limin f W > 0.

n——ao0
To prove (2) we have
k
ni,... Nl ...
0< tim PEOLon) g, Z#(s’ L-onl)
n—>o0 n n—>ooi:1 n
Hence using (1) the gaps in S is unbounded. O

Example 4. The following sets have arbitrarily large gaps.
o A multiplicatively closed set gemerated by finitely many positive integers > 1.
e The set of all integers which have exactly k—prime factors.
e The set of all integers which have atmost k—prime factors.

Theorem 10. Let S, Sy be two infinite subsets of N. Let S3 = S1US2,Sy = S1S9 = {512 |
$;i €S4,i=1,2}. LetS;={1<a; <ajp<...} fori=1,2,3,4. Then
(1) limsup(a;(j41) — aij) = oo for i =1,2 # limsup(a;;j+1) — aij) = oo for i =3,4.

j—00 j—ro0
(2) lim (al(j_H) —aij) = 00, limsup(ag(jH) —agj) = oo then limsup(a3(j+1)—a3j) =00
J—>00 j—ro0 J—00

and does not imply limsup(ay(j41) — a4j) = 0.
Jj—ro0
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(3) lim (a;(j41) — aij) = oo for i = 1,2 = limsup(ay(j11) — asj) = oo.
J— j—ro0
Proof. Let us prove (1) by giving a counter example.
e Consider the set of natural numbers N. Decompose N into two sets S, So as follows.

Keep the first element of N in S;. The next two elements in So. The next three
elements in S; and so on i.e.

= JH{@+1)6+1)—2,..., 2+ 1)(i +1)}
i>0
= J{i(2i+1) =20+ 1,...,i(2 + 1)}
i>1
Then S{ US; = N.
e Partion the set of primes P into two infinite subsets of primes PP;,PPy. Let S;
be the multiplicatively closed set generated by PP; for ¢ = 1,2. Then S;S9 = N
and limsup(a(j+1) — aij) = oo for i = 1,2 by an application of chinese remainder
—00
theorém.
Let us prove (2). Given any N > 0 there exists M such that ay(41) — a1p > N for all
k > M and there exists infintely many [ > M such that ayq1)—az > N. Also choose large
enough [ = lp > M such that if ajx, > a9, then kg > M. If ag, < ag(ly+1) are consecutive
in S1 USy then we have produced a gap more than N. If ag, < ajx, are consecutive then
e We have either ag, < aig, < ajky4+1) as consecutive integers in Sy U Ss.
e Or ay, < ajg, < ay(y4+1) as consecutive integers in Sy U Sy.
In the first case we are done again. In the second case we have either ajy, — ag, >
%, ag(lg+1) — Q1ky > % Hence we have produced a gap more than & 5+ Moreover these gaps
can be produced arbitrary number of times by choosing M larger and larger for any positive
integer N. So we have limsup(asz(j;1) — as;) = oo.
]-}OO

Now for second part of (2) we give a counter example. Let S; = {n? | n € N}. Let
Se = {n € N | n is square free}. Then S;So = N. We have lim (al(jH) —ay;) = 00. Also
j—
by an application of chinese remainder theorem we have lzmsup(ag( i+1) — @25) = 00.
Jj—ro0

Let us prove (3). Fix a large integer K. Let T) = {1l <aj1 <app<...<ain},To={1<
ag < agy < ... < agy}. Suppose a4y —ay > K forallt > N —1 and a4y —age > K
for all ¢t > M — 1. Let ainaan, a, a4, be two successive numbers in the set S1S2. Then
we have either N > N or M > M. We note that for N > N we have

Ay Qo — GING2M = (alN — alN)a2M > K if M > M.
For

aq oy — ainboy > (alN —ayN)agy > K if M > M.
The argument is similar if M > M. This holds for any large K. So limsup(ag(js1) — a45) =

Jj—00
0.@)

Hence we have completed the proof of this theorem. O

Theorem 11. Let S; : 1 < ¢ < n be finitely many infinite subsets of N. Let Sp,41 =
US“S”_;_Q HS —{8182 sn]sieSi,lgign}. LetSi:{1<a¢1<ai2<...}:1§

=

~.

< n+ 2. If lzm ( ai(j+1) — @ij) = oo fori=1,...,n then limsup(a;j11) — ay) = oo for
j—o0

—n+1,n+2.

~.
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Proof. The proof of this theorem is left to the interested reader. O

Corollary 3. (1) The set of natural numbers N cannot be written as a finite product of
sets S1S9...S, where the gaps in S; diverges to oo for 1 < i <n.
(2) The set of natural numbers N cannot be written as a finite union of sets S U Sg U
.. US, where the gaps in S; diverges to oo for 1 <i < n.
(8) The multiplicatively closed subset S of N generated by finitely many positive integers
> 1 has arbitrarily large gaps.

Theorem 12 (Another Constructive Proof). The multiplicatively closed subset of N gen-
erated by finitely many positive integers S has arbitrarily large gaps.

Proof. We give here another constructive proof in this Theorem. Let K be an arbitrary
positive integer. Let nq,ns9,...,ni be the generators of the multiplicatively closed set.

Define [Logy,(K)] = a;. Then we have for all
t; > a;,t; € N,nfﬂr1 - nfl = nfl(nZ -1) > nfl > K.

The gap between nﬁlntf .. ni’“ and the next number [ in the set $1Ss...Sy is at least K.
Let | = ni'n3?... ’“ be the next number. Then there is at least one ¢ = 7o such that
S; > t;.

So we get that ni'n3?...n* — nﬁlntf . nfj >nlta— lb > n ‘(n; simtig b) > nfz > K. O

Note 4. The difference between this constructive proof and the other constructive proof is
that we do not exactly know the right end point | of this Gap-Interval as we do not know its
prime factorization exactly. However we were able to locate a point n*ng? .. nzk and a gap
interval of size at least K with this integer as the left end point for every positive integer
K > 0.

In the proof of the Main Theorem (1| we know the prime factorizations of both the end
points of the gap interval via the stabilization sequence. Sometimes knowing factorizations
18 helpful.

In an attempt to answer Question [I| we prove a lemma which says that the same technique
may or may not be extendable for more than two generators.

Lemma 5. Let G = {p1 < p2 < . < pl} be a finite set of primes. Let k be any positive
integer. Consider the monoid T = {ZxZLogplpl | z; € NU{0}}. Consider the set T}, =

TN(k,k+1). Let z, = min(T, — k). Let zk; be a monotone decreasing sequence converging
to zero constructed from zi defined by the property that

Zk; < 2y = MIn{21, 22, - -5 2k 1)
then the sequence of integers {kj11 — k; : j € N} need not be increasing.

Proof. Consider the following example. Let {p1 =2 < ps = 3 < p3 = 5}. By calculating
the logarithm of numbers to the base 5 in the sequence {237 | 0 <4, j < 50} or by actually
showing inequalities we obtain
® ko =0,z =20 = Logs(2) —
kl = 1,Zk1 =Z1 = L0g5(2 3)
]CQ = 2, Ry = 22 = Log5(33)
/{33 = 3, Zk3 = Z3 = L0g5(27)
ky =T, 2y, = 27 = Logs(22.3° )
k5 = 8, Zk5 = Zg§ — L0g5(217.3) 8.
]C(j = 13, Zkﬁ = Z13 = L0g5(28.314) —13.
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o ky =14, 2, = 214 = Logs(2%3.3%) — 14.
We can show the inequalities zp, > 2i, > 2k, > 2ky > 2y > Zhs > 2k > 2k, and
ki—ko=ko—ki=ks—ko=1<ky—ks=4>ks—kys=1<ks—ks=b>kr—kg=1
which is not increasing. This proves the lemma. However we mention that it is possible
that ljmsup(kj+1 — kj) = oo which additionally requires a proof. O
j—ro0
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