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Abstract

We study automorphisms α of a totally disconnected, locally compact
group G which are expansive in the sense that

∩
n∈Z α

n(U) = {1} for
some identity neighbourhood U ⊆ G. Notably, we prove that the au-
tomorphism induced by α on a quotient group G/N of Gmodulo an α-
stable closed normal subgroup N is always expansive. Further results
involve the contraction groups Uα := {g ∈ G : αn(g) → 1 as n → ∞}.
If α is expansive, then UαUα−1 is an open identity neighbourhood
in G. We give examples where UαUα−1 fails to be a subgroup. How-
ever, UαUα−1 is an α-stable, nilpotent open subgroup of G if G is a
closed subgroup of GLn(Qp). Further results are devoted to the divisi-
ble and torsion parts of Uα, and to the so-called “nub” U0 = Uα∩Uα−1

of an expansive automorphism.

Classification: 22D05 (primary); 22D45, 22E20, 37A25, 37P20 (secondary)
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Introduction and statement of results

We consider automorphisms α : G → G of a totally disconnected locally com-
pact topological group G which are expansive in the sense that

∩
n∈Z α

n(U) =
{1} for some identity neighbourhood U ⊆ G. Expansive automorphisms of
totally disconnected, compact groups were studied by [12], [20] and
recently in [28]; our goal is to improve the understanding in the case of
non-compact groups. Special cases of expansive automorphisms are auto-
morphisms α : G → G which are contractive in the sense that αn(g) → 1
as n → ∞ for each g ∈ G (see Remark 1.10). The structure of totally dis-
connected, locally compact groups admitting contractive automorphisms was
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elucidated in [9] (building on earlier work like [22] and [24]), and the results
obtained there can also be used as tools in the investigation of expansive
automorphisms (as we shall see). Other key ingredients are the structure
theory of totally disconnected, locally compact groups ([26], [27]), in which
contractive automorphisms play an important role (as worked out in [1]).

Note that every automorphism α of a discrete group G (e.g., α = idG) is
expansive (as we may choose U = {1} then). Therefore discrete groups and
their automorphisms are part of the theory of expansive automorphisms. As
a consequence, groups permitting expansive automorphisms need not have
any particular algebraic properties.

Our first main result generalizes [28, Proposition 6.1] (devoted to the case of
compact groups). As usual, a subset H ⊆ G is called α-stable if α(H) = H.

Theorem A. Let α : G → G be an automorphism of a totally disconnected,
locally compact group, N ⊆ G be an α-stable closed normal subgroup and
ᾱ : G/N → G/N , gN 7→ α(g)N be the automorphism of G/N induced by α.
Then α is expansive if and only if both α|N and ᾱ are expansive.

Composition series play a central role in the study of contractive automor-
phisms [9]. In the case of expansive automorphisms, composition series need
not exist. However, there are series which get as close as possible to such.

Theorem B. If α : G → G is an expansive automorphism of a totally discon-
nected, locally compact group G, then there exist α-stable closed subgroups

G = G0 ⊇ G1 ⊇ · · · ⊇ Gn = {1}

of G such that Gj is normal in Gj−1 for j ∈ {1, . . . , n} and each of the quo-
tient groups Gj−1/Gj is discrete, abelian or topologically perfect. Moreover,
one can achieve that every αj-stable closed normal subgroup of Gj−1/Gj is
discrete or open, where αj : Gj−1/Gj → Gj−1/Gj, gGj 7→ α(g)Gj.

In addition, one may assume that all abelian, non-discrete factors Gj−1/Gj

are simple contraction groups with respect to the automorphism or its in-
verse, or isomorphic to an infinite power CZ

p of a cyclic group of prime order,
endowed with the right-shift (cf. Remark 6.1 and Proposition 6.2). Topolog-
ical perfectness means that the commutator group is dense.
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According to [27], a compact open subgroup V ⊆ G is called tidy for α if it
has the following properties:

T1 V = V+V−, where V+ :=
∩∞

n=0 α
n(V ) and V− :=

∩∞
n=0 α

−n(V );

T2 The α-stable subgroups V++ :=
∪

n∈N0
αn(V+) and

∪
n∈N0

α−n(V−) =:
V−− are closed in G.

Note that V+ ⊆ α(V+) ⊆ α2(V+) ⊆ · · · and V− ⊆ α−1(V−) ⊆ α−2(V−) ⊆ · · ·
here. Following [28], the intersection U0 of all subgroups V which are tidy
for α is called the nub of α; it is a compact, α-stable subgroup of G.

We mention that a totally disconnected, locally compact group admitting an
expansive automorphism α is always metrizable (cf. [13]) and has a second
countable, α-stable open subgroup (Lemma 1.1 (a)).

If α : G → G is an automorphism of a totally disconnected, locally compact
group G, then

Uα := {g ∈ G : αn(g) → 1 as n → ∞}

is a subgroup of G called the associated contraction group. In general, Uα

need not be closed. However, if α is expansive, then the topology on Uα “can
be made locally compact,” i.e., it can be refined to a totally disconnected,
locally compact group topology τ ∗ with respect to which α|Uα is contractive
(see [23, Proposition 9] for this fact, or our Lemma 2.3). In this way, the
structure theory of locally compact contraction groups (see [22], [24] and [9])
becomes available. In particular, the set

Tα := tor(Uα)

of all torsion elements in the group Uα and the set

Dα := div(Uα)

of divisible elements are α-stable closed subgroups of (Uα, τ
∗), and (Uα, τ

∗) =
Dα × Tα internally as a topological group, if we endow Dα and Tα with the
topology induced by (Uα, τ

∗) (see [9, Theorem B]).

Theorem C. Let G be a totally disconnected, locally compact group and
α : G → G be an automorphism such that Uα can be made locally compact
(for example, any expansive automorphism). Then Dα = div(Uα) is an α-
stable closed subgroup of G.
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The nub U0 of an expansive automorphism need not have an open normalizer
(Remark 7.1), in which case not both of Uα and Uα−1 normalize U0. Nonethe-
less, U0 is always normalized (and even centralized) by both Dα and Dα−1 .

Theorem D. Let G be a totally disconnected, locally compact group and
α : G → G be an automorphism such that Uα can be made locally compact
(for example, any expansive automorphism). Then then the nub U0 of α
centralizes the divisible part Dα of Uα. Also Tα centralizes Dα. Moreover,
Dα ∩ Tα = {1}, and Uα = DαTα is a closed, α-stable subgroup of G which is
isomorphic to Dα × Tα as a topological group.

We also consider classes of examples. If a Lie group G over a totally discon-
nected local field K admits an expansive analytic automorphism, then its Lie
algebra L(G) is nilpotent (Proposition 8.1). In the case of p-adic Lie groups
for a prime number p, we obtain:

Theorem E. Let G be a p-adic Lie group which is linear in the sense that
there exists an injective continuous homomorphism G → GLn(Qp) for some
n ∈ N. Let α : G → G be an expansive automorphism. Then G has an open
α-stable subgroup which is nilpotent.

If α : G → G is an expansive automorphism of a totally disconnected, lo-
cally compact group G, then UαUα−1 is an open subset of G (see Proposi-
tion 1.1). In many examples, UαUα−1 happens to be a subgroup of G (for
instance, for all expansive automorphisms of closed subgroups G ⊆ GLn(Qp),
see Proposition 8.8). However, this is not always so which could be seen from
Remark 8.7. We also consider the localized completion Gp,q of a Baumslag-
Solitar group BS(p, q) = ⟨a, t : tapt−1 = aq⟩ with primes p ̸= q, as recently
studied in [4]. Then BS(p, q) ⊆ Gp,q. We show:

Theorem F. Let α : Gp,q → Gp,q be conjugation by t. Then α is expansive
but UαUα−1 is not a subgroup of Gp,q.

Acknowledgement. The second author was supported by the German Aca-
demic Exchange Service (DAAD) and the second author wishes to thank
DAAD and Institut für Mathematik, Universität Paderborn, Paderborn, Ger-
many for providing the facilities during his stay.

4



1 Preliminaries and basic facts

We write N = {1, 2, . . .}, N0 := N ∪ {0} and Z := N0 ∪ −N. If J is a finite
set, we let #J be its cardinality. We write X ⊆ Y for inclusion of sets, while
X ⊂ Y means thatX is a proper subset of Y . As usual, we writeN�G ifN is
a normal subgroup of G. All topological groups considered in this article are
assumed Hausdorff, and locally compact topological groups are simply called
locally compact groups. Totally disconnected, locally compact non-discete
topological fields (like the field of p-adic numbers) will be called local fields
(see [25] for further information). See [3] and [21] for basic information on
Lie groups over local (and more general complete ultrametric) fields (which
we always assume finite-dimensional). If we say that α is an automorphism
of a topological group, then we assume that both α and α−1 are continuous;
similarly, both α and α−1 are assumed analytic if α is an automorphism of
an analytic Lie group over a local field. We write Aut(G) for the group of all
automorphisms of a topological groupG. If a subgroupN ⊆ G is stable under
all α ∈ Aut(G), then N is called topologically characteristic. A topological
group G is called topologically perfect if its commutator group [G,G] is dense
in G. If F is a finite group and X a set, we write FX :=

∏
x∈X F for

the direct power endowed with the compact product topology. By contrast,
F (X) ⊆ FX is the subgroup of all (gx)x∈X ∈ FX such that gx = 1 for all but
finitely many x ∈ X. We shall always endow F (X) with the discrete topology.
Surjective, open, continuous homomorphisms between topological groups are
called quotient morphisms.

If α : G → G is an automorphism of a locally compact group, choose a Haar
measure λ on G and define the module of α via

∆G(α) := λ(α(K))/λ(K),

for any compact subset K ⊆ G with non-empty interior. If α : G → G is an
automorphism of a totally disconnected, locally compact group, we define the
nub U0, the contraction group Uα and its subgroups Tα and Dα as explained
in the introduction. If V ⊆ G is a compact open subgroup, we shall use the
subgroups V+, V++, V− and V−− defined there, and abbreviate

V0 := V+ ∩ V− =
∩
n∈Z

αn(V ). (1)

We shall also need the so-called Levi factor

Mα := {g ∈ G : {αn(g) : n ∈ Z} is relatively compact};
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it is known that Mα is an α-stable closed subgroup of G [1, p. 224]. The
following lemma compiles basic facts concerning expansive automorphisms.

Lemma 1.1 If α is an expansive automorphism of a totally disconnected,
locally compact group G, then the following holds:

(a) G is metrizable and has an α-stable, σ-compact open subgroup;

(b) V−− = Uα and V++ = Uα−1 for each compact open subgroup V ⊆ G
such that V0 = {1};

(c) G has a compact open subgroup V such that V = V+V− and V0 = {1};

(d) UαUα−1 is open in G;

(e) α|H is expansive, for each α-stable subgroup H ⊆ G.

Proof. (a) Because α is expansive, there exists an identity neighbourhood V
such that

∩
n∈Z α

n(V ) = {1}. After shrinking V , we may assume that V is
compact. Because V is compact and (

∩n
k=−n α

k(V ))k∈N a decreasing sequence
of closed identity neighbourhoods in V with intersection {1}, the members
of the sequence form a basis of identity neighbourhoods. Hence G is metriz-
able. The subgroup of G generated by

∪
n∈Z α

n(V ) is α-stable, open and
σ-compact.

(b) By [1, Proposition 3.16], we have V−− = UαV0 and thus V−− = Uα.
Likewise, V++ = Uα−1 .

(c) and (d): Using expansiveness and van Dantzig’s Theorem [10, Theo-
rem 7.7], we find a compact open subgroup W ⊆ G such that

∩
n∈Z α

n(W ) =
{1}. By [26, Lemma 1], there exists m ∈ N such that V :=

∩m
k=1 α

k(W ) sat-
isfies V = V+V−. Then V0 ⊆ W0 = {1} and thus V0 = {1}, proving (c). The
latter entails Uα = V−− and Uα−1 = V++, by (b). In particular, V− ⊆ Uα and
V+ ⊆ Uα−1 , entailing that V = V+V− ⊆ UαUα−1 . Thus UαUα−1 is an identity
neighbourhood. Given g ∈ Uα and h ∈ Uα−1 , the map G → G, x 7→ gxh is a
homeomorphism which takes UαUα−1 onto itself and 1 to gh. Hence UαUα−1

has gh in its interior and thus UαUα−1 is open.
(f) If V ⊆ G is an identity neighbourhood with

∩
n∈Z α

n(V ) = {1}, then
V ∩H is an identity neighbourhood in H and

∩
n∈Z α

n(V ∩H) = {1}. 2

The first statement of Lemma 1.1 (a) also follows from [13, Lemma 2.4].
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1.2 Let α be an automorphism of a totally disconnected, locally compact
group G and U0 be the nub of α. The following facts are useful:

(a) The closure of Uα in G is Uα = UαU0 (see [1, Corollary 3.30] if G is
metrizable; the general case follows with [11]).

(b) U0 = Uα ∩ Uα−1 (see [1, Corollary 3.27] if G is metrizable; the general
case follows with [11]).

(c) U0 ∩ Uα and U0 ∩ Uα−1 are dense in U0 (see [28, Theorem 4.1 (v) and
Proposition 5.4 (i)]).

(d) If N ⊆ G is a closed α-stable subgroup, q : G → G/N the canonical
quotient morphism and ᾱ the automorphism of G/N induced by α,
then q(Uα) = Uᾱ (see [1, Theorem 3.8] if G is metrizable, [11] in the
general case).

(e) Uα is closed if and only if Uα−1 is closed, if and only if G has small sub-
groups tidy for α, i.e., every identity neighbourhood of G contains some
tidy subgroup (see [1, Theorem 3.32] if G is metrizable; the general case
can be deduced using the techniques from [11]).

(f) Pα := {g ∈ G : αN0(g) is relatively compact} normalizes Uα (see [1,
Proposition 3.4]). Hence Mα = Pα ∩ Pα−1 and U0 ⊆ Mα normalize Uα.

The following results help to show that certain automorphisms are expansive.

Proposition 1.3 Let α be an automorphism of a totally disconnected, locally
compact group G. Then the following holds:

(a) α is expansive if and only if its restriction α|Mα to the Levi factor is
expansive.

(b) If Uα is closed, then α is expansive if and only if UαUα−1 is open in G,
if and only if Mα is discrete.

Proof. (a) In view of Lemma 1.1 (e), we only need to show that if α|Mα is
expansive, then so is α. Let P ⊆ Mα be a compact, open identity neigh-
bourhood such that

∩
n∈Z α

n(P ) = {1}. There is a compact identity neigh-
bourhood Q ⊆ G such that Q ∩ Mα = P . If g ∈ I :=

∩
n∈Z α

n(Q), then
αn(g) ∈ Q for each n ∈ Z, whence αZ(g) is relatively compact and thus
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g ∈ Mα. Hence I ⊆ Mα. Since I is α-stable and I ⊆ Q ∩ Mα = P , we
deduce that I =

∩
n∈Z α

n(I) ⊆
∩

n∈Z α
n(P ) = {1}. Thus

∩
n∈Z α

n(Q) = {1}
and thus α is expansive.

(b) If α is expansive, then UαUα−1 is open by Lemma 1.1 (d). If Uα is
closed, then the set UαMαUα−1 is open in G and the product map

Uα ×Mα × Uα−1 → UαMαUα−1 , (x, y, z) 7→ xyz

is a homeomorphism (by 1.2 (e) above and part (f) from the theorem in [5]).
Hence UαUα−1∩Mα = {1}. If UαUα−1 is open, this implies thatMα is discrete.
If Mα is discrete, then α|Mα is expansive and hence also α, by (a). 2

1.4 If α is an automorphism of a totally disconnected, compact group G,
then Uα and Uα−1 are normal in G (since G = Mα = Mα−1 in 1.2 (f)), and
hence so is the nub U0 = Uα ∩ Uα−1 .

1.5 Recall that a group G is called a torsion group of finite exponent if there
exists m ∈ N such that gm = 1 for all g ∈ G. If such a group is a subgroup
of a topological group H, then also gm = 1 for all g in the closure H of G
in H, and thus also H is a torsion group of finite exponent.

1.6 Let α be an expansive automorphism of a totally disconnected, compact
group G. Then the following holds:

(a) The nub U0 is open in G (see [28, Lemma 5.1]), whence also Uα and
Uα−1 are open in G (by 1.2 (b)).

(b) G is a torsion group of finite exponent [By (a) and 1.4, U0 is a normal
subgroup and G/U0 is finite, hence a torsion group of finite exponent.
It therefore suffices to show that U0 is a torsion group of finite expo-
nent. This is immediate from [28, Proposition 4.4, Theorem 6.2 and
Proposition 6.3]).

(c) Since Uα and Uα−1 are normal in G, the set UαUα−1 is an open α-stable
subgroup ofG contained inU0. ThusU0=UαUα−1 by [28, Corollary 4.3].

Lemma 1.7 Let α be an automorphism of a totally disconnected, locally
compact group G and U0 be the nub of α. Let H ⊆ G be a closed, α-stable
subgroup. Then the following holds:
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(a) Then nub of α|H is contained in U0.

(b) If U0 ⊆ H, then the nub of α|H coincides with U0.

Proof. (a) Let W be the nub of α|H . Using 1.2 (b) twice, we deduce that
W = Uα|H ∩ U(α|H)−1 ⊆ Uα ∩ Uα−1 = U0.

(b) Since U0 ⊆ H, we have Uα ∩ U0 ⊆ Uα ∩ H = Uα|H and thus U0 =
U0 ∩ Uα ⊆ Uα|H (using 1.2 (c)). Likewise, U0 ⊆ U(α|H)−1 . Hence U0 ⊆ Uα|H ∩
U(α|H)−1 = W . Since W ⊆ U0 by (a), equality follows. 2

We shall also need certain facts concerning contractive automorphisms.

1.8 Let α be a contractive automorphism of a topological group G.

(a) If G ̸= {1}, then G is infinite and non-discrete. [If x ∈ G \ {1}, then
αn(x) ̸= 1 for all n and αn(x) → 1, entailing that the topological group
G is not discrete and hence infinite.]

(b) If G is locally compact, then α is compactly contractive, i.e., for each
identity neighbourhood U ⊆ G and compact set K ⊆ G there exists
m ∈ N such that αn(K) ⊆ U for all n ≥ m (see [22, Lemma 1.4 (iv)]).
Moreover, G is non-compact (unless G = {1}); see [22, 3.1].

1.9 Let α be a contractive automorphism of a totally disconnected, locally
compact group G. Then the following holds:

(a) If G ̸= {1}, then ∆G(α
−1) is an integer≥ 2 (see [9, Proposition 1.1 (e)]).

(b) If G = G0 ⊃ G1 ⊃ G2 ⊃ · · · ⊃ Gn = {1} is a series of α-stable closed
subgroups of G such that Gj is a proper normal subgroup of Gj−1 for
all j ∈ {1, . . . , n}, then n is bounded by the number of prime factors
of ∆G(α

−1) (see [9, Lemma 3.5]).

(c) G = div(G)× tor(G) as a topological group for a divisible torsion free
group div(G) and a torsion group tor(G) of finite exponent (cf. [9,
Theorem B]).

(d) If N ⊆ G is an α-stable closed normal subgroup, q : G → G/N the
canonical quotient morphism and ᾱ the automorphism of G/N induced
by α, then q(div(G)) = div(G/N) and q(tor(G)) = tor(G/N). [The
inclusions q(div(G)) ⊆ div(G/N) q(tor(G)) ⊆ tor(G/N) are clear.
Since G/N = q(div(G) tor(G)) = q(div(G))q(tor(G)) and G/N =
div(G/N)× tor(G/N), equality follows.]
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Remark 1.10 If an automorphism α : G → G of a totally disconnected,
locally compact group is contractive, then it is also expansive. To see this,
let V ⊆ G be any compact neighbourhood of the identity. If g ∈ G \ {1},
then G \ {g} is an identity neighbourhood, whence there exists n ∈ N such
that αn(V ) ⊆ G\{g} (see 1.8 (b)). Thus g ̸∈ αn(V ) and we have shown that∩

n∈Z α
n(V ) = {1}.

2 Making contraction groups locally compact

The problem of refining group topologies on contraction groups was studied
by Siebert [23]. The following special case is useful for our purposes.

Definition 2.1 Let G be a topological group, with topology τ , and

α : (G, τ) → (G, τ)

be a contractive automorphism. We say that (G,α) (or simply G) can be
made locally compact if there exists a locally compact topology τ ∗ on G
making it a topological group such that τ ⊆ τ ∗ and α : (G, τ ∗) → (G, τ ∗) is
a contractive automorphism. The topology τ ∗ is unique (if it exists), as will
be recalled presently. We write G∗ for G, endowed with the topology τ ∗. If τ
is totally disconnected, then also τ ∗ is totally disconnected (as the inclusion
map G∗ → G is continuous).

The following fact is also obtained in [23, Corollary 8] as part of a more
general theory.

Lemma 2.2 τ ∗ is uniquely determined by the properties from Definition 2.1.

Proof. Assume that τ̂ is a group topology on G with the same properties
as τ ∗. We show that the identity map

ϕ : (G, τ̂) → (G, τ ∗), x 7→ x

is continuous. Reversing the roles of τ̂ and τ ∗, also ϕ−1 will be continuous and
thus τ̂ = τ ∗. Because ϕ is a homomorphism, we need only prove its continuity
at 1. By local compactness, there exists a compact identity neighbourhood
V ⊆ (G, τ̂). After replacing V with the closure of its interior V 0, we may
assume that V 0 is dense in V . Then V is also compact in (G, τ). Let
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U ⊆ (G, τ ∗) be an arbitrary identity neighbourhood, and W ⊆ (G, τ ∗) be
a compact identity neighbourhood such that WW−1 ⊆ U . Then W is also
compact in (G, τ), hence closed in (G, τ) and hence closed in (G, τ̂). Since
α : (G, τ ∗) → (G, τ ∗) is contractive, we have G =

∪
n∈N0

α−n(W ). Hence V
is the countable union of the closed subsets V ∩α−n(W ), for n ∈ N0. By the
Baire Category Theorem, there exists m ∈ N0 such that V ∩ α−m(W ) has
non-empty interior in V . Because V 0 is dense in V , we deduce that α−n(W )∩
V 0 has non-empty interior in V 0, and so W has non-empty interior W 0 in
(G, τ̂). Then W 0(W 0)−1 is an identity neighbourhood in (G, τ̂) and hence U
is an identity neighbourhood in (G, τ̂). Since U = ϕ−1(U), we see that ϕ is
continuous at 1. 2

See also [23, Proposition 9] for the following fact.

Lemma 2.3 Let G be a totally disconnected, locally compact group. If an
automorphism α : G → G is expansive, then (Uα, α|Uα) and (Uα−1 , α−1|Uα−1 )
can be made locally compact.

Proof. Let V ⊆ G be a compact open subgroup such that
∩

n∈Z α
n(V ) =

{1}. Then αn(V−) = V− ∩
∩n

k=1 α
k(V ) is open in V− for each n ∈ N0.

Since V− is compact and
∩

n∈N0
αn(V−) =

∩
n∈Z α

n(V ) = {1}, the open sub-
groups αn(V−) form a basis of identity neighbourhoods in V−, for n ∈ N0.
If n ∈ N and g ∈ Uα = V−− =

∪
k∈N0

α−k(V−) (see Proposition 1.1 (c)),

then g ∈ α−k(V−) for some k ∈ N0 and αn(V−) is an open subgroup of
the topological group α−k(V−). Hence, there exists m ∈ N0 such that
gαm(V−)g

−1 ⊆ αn(V−). By the preceding, there exists a group topology τ ∗

on Uα for which {αn(V−) : n ∈ N0} is a basis of identity neighbourhoods.
Thus V− is an open subgroup of (Uα, τ

∗), and the latter group induces the
given compact topology on V−. Thus (Uα, τ

∗) is a totally disconnected, lo-
cally compact group and α is still continuous (being continuous on the open
subgroup V−) as well as α

−1 (being continuous on the subgroup α(V−) which
is open in V−). Since Uα =

∪
n∈N0

α−n(V−) and (αn(V−))n∈N0 is a basis
of identity neighbourhoods, it readily follows that the automorphism α of
(Uα, τ

∗) is contractive. 2

Remark 2.4 Uα can also be made locally compact if α is an arbitrary (not
necessarily expansive) analytic automorphism of a Lie group G over a local
field (see Proposition 13.3 (b) in the extended preprint version of [7]).
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Example 2.5 The right-shift α is an automorphism of the compact group
G := (Zp)

Z, where Zp is the additive group of p-adic integers. The contraction
group Uα is non-trivial, as it is the group of all (zn)n∈Z such that zn → 0 as
n → −∞. Then Uα cannot be locally compact, because tor(Uα) ⊆ tor(G) =
{0} and div(Uα) ⊆ div(G) = {0}. Thus, if Uα could be made locally compact,
then we would have Uα = div(Uα) + tor(Uα) = {0}, contradicting Uα ̸= {0}.

Lemma 2.6 Let G be a topological group and α : G → G a contractive au-
tomorphism such that (G,α) can be made locally compact. Then we have:

(a) (H,α|H) can be made locally compact for each closed α-stable sub-
group H of G (or G∗), and H∗ carries the topology induced by G∗.

(b) If ϕ : G → H is a continuous homomorphism to a topological group H
admitting an automorphism β : H → H such that β ◦ ϕ = ϕ ◦ α, then
β|ϕ(G) is contractive, ϕ(G) can be made locally compact and

G∗ → ϕ(G)∗, x 7→ ϕ(x)

is a topological quotient map.

Proof. (a) Let τ and τ ∗ be as in Definition 2.1. Since τ ⊆ τ ∗, H is closed
in G∗ (in either case) and hence H is a locally compact group in the topol-
ogy σ on H induced by G∗, which is finer than the topology induced by G
and turns α|H into a contractive automorphism of (H, σ). Thus H∗ = (H, σ).

(b) Let σ be the topology on ϕ(G) turning G∗ → (ϕ(G), σ), x 7→ ϕ(x)
into a quotient map. Then σ is finer than the topology induced on ϕ(G)
by H. Moreover, (ϕ(G), σ) ∼= G∗/ kerϕ is locally compact. Since β|ϕ(G) ◦ϕ =
ϕ ◦ α : G∗ → (ϕ(G), σ) is continuous, the map β|ϕ(G) is continuous with
respect to the quotient topology σ. Also (β|ϕ(G))

−1 is continuous, by an
analogous argument. Finally, β|ϕ(G) : (ϕ(G), σ) → (ϕ(G), σ) is contractive:
Since βn ◦ ϕ = ϕ ◦ αn, this follows from the facts that α : G∗ → G∗ is
contractive and ϕ : G∗ → ϕ(G)∗ is continuous. 2

The following observation is crucial for many of our arguments.

Proposition 2.7 Let α be an expansive automorphism of a totally discon-
nected, locally compact group G and

G = G0 ⊇ G1 ⊇ · · · ⊇ Gn

12



be α-stable closed subgroups of G such that Gj is normal in Gj−1 for all
j ∈ {1, . . . , n}. Let J be the set of all j ∈ {1, . . . , n} such that Gj−1/Gj is
not discrete. Then

#J ≤ ℓα + ℓα−1 ,

where ℓα is the number of prime factors of ∆U∗
α
(α−1|U∗

α
) and ℓα−1 is the

number of prime factors of ∆U∗
α−1

(α|U∗
α−1

).

Proof. Let Jα (resp., Jα−1) be the set of all j ∈ {1, . . . , n} such that Uα∩Gj ⊂
Uα ∩Gj−1 (resp., Uα−1 ∩Gj ⊂ Uα−1 ∩Gj−1). If j ∈ {1, . . . , n} \ (Jα ∪ Jα−1),
then Uα∩Gj = Uα∩Gj−1 and Uα−1 ∩Gj = Uα−1 ∩Gj−1. Since α is expansive,
(Uα ∩ Gj−1)(Uα−1 ∩ Gj−1) is open in Gj−1 (see 1.1 (d) and (e)). We deduce
that Gj is open in Gj−1 and thus j ̸∈ J . Hence J ⊆ Jα ∪ Jα−1 , whence
#J ≤ #Jα +#Jα−1 ≤ ℓα + ℓα−1 (using 1.9 (b) in the last step). 2

We shall use a simple fact.

Lemma 2.8 . Let K be a compact group and D ⊆ K be a subgroup which is
divisible. Then also the closure D is divisible. If K is totally disconnected,
then D = {1}.

Proof. For each m ∈ N, the map fm : D → D, g 7→ gm is continuous and
hence has compact image. As the image contains D by hypothesis, we see
that fm(D) = D. Thus D is divisible.

If K is totally disconnected, then K is a pro-finite group. In particular, the
homomorphisms f : K → F to finite groups F separate points on D. But
each f(D) is both finite and divisible and therefore the trivial group. Hence
also D = {1}. 2

Lemma 2.9 Let α be an automorphism of a totally disconnected, locally
compact group G. If Uα can be made locally compact (e.g., if α is expansive),
then the following holds:

(a) Uα ∩ U0 = Tα ∩ U0;

(b) U0 = Tα ∩ U0;

(c) Tα ∩ Uα = Tα;

(d) Tα = TαU0.

13



If both Uα and Uα−1 can be made locally compact, then we also have:

(e) U0 = Tα ∩ Tα−1.

Proof. (a) By Lemma 2.6 (a), Uα∩U0 can be made locally compact. Thus α
restricts to a contractive automorphism β of (Uα∩U0)

∗, enabling us to write
(Uα∩U0)

∗ = DβTβ. Since U0 is compact and totally disconnected, its divisible
subgroup Dβ has to be trivial, by Lemma 2.8. Thus Uα∩U0 = Uβ = Tβ ⊆ Tα

and hence Uα ∩ U0 = Tα ∩ U0.
(b) Since U0 = Uα ∩ U0 (see 1.2 (c)), the assertion is immediate from (a).
(c) Tα ⊆ Tα∩Uα is trivial. Because Tα is a torsion group of finite exponent

(see 1.9 (c)), also Tα is a torsion group, see 1.5. Let β the restriction of α to
the closed α-stable subgroup Tα∩U∗α of U∗α. Then Tα∩Uα = DβTβ. Since Dβ

is torsion-free (see 1.9 (c)) and Tα a torsion group, Dβ = {1} follows. Thus
Tα ∩ Uα = Tβ ⊆ Tα.

(d) We have Tα ⊆ Uα = UαU0 (see 1.2 (a)). Since U0 ⊆ Tα by (b), we
deduce that Tα = (Uα ∩ Tα)U0 = TαU0 (using (c) for the last equality).

(e) We have U0 = Uα∩Uα−1 ⊇ Tα∩Tα−1 (see 1.2 (b)) and U0 = Tα ∩ U0∩
Tα−1 ∩ U0 ⊆ Tα ∩ Tα−1 (using (b)). 2

Lemma 2.10 Let α be an automorphism of a locally compact group G and
H ⊆ G be an α-stable subgroup such that α|H is contractive. Then the closure
H ⊆ G is σ-compact.

Proof. LetK ⊆ H be a compact identity neighbourhood. Then
∪

n∈Z α
n(K)

is a σ-compact subset of H and generates a σ-compact subgroup S of H.
Since S is an α-stable open subgroup of H and α|H is contractive, we have
H ⊆ S and thus S = H (since S is closed). Hence H = S is σ-compact. 2

3 Proof of Theorem A

Let G be a totally disconnected, locally compact group, α be an expansive
automorphism of G and N ⊆ G be an α-stable, closed normal subgroup. Let
q : G → G/N be the canonical quotient morphism and α be the automor-
phism of G/N induced by α (determined by α ◦ q = q ◦ α). Then α|N is
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expansive, by Lemma 1.1 (e). We show also that α is expansive. By Proposi-
tion 1.3 (a), we need only to show that α restricts to an expansive automor-
phism of Mα. After replacing G with q−1(Mα) (which is closed since Mα is
closed), we may assume that G/N = Mα. Let U be a subgroup of G/N tidy
for α. Then U = U+ = U− as αZ(g) is relatively compact for each g ∈ U (cf.
[26, Lemma 9]) and thus U is an α-stable, compact open subgroup of G/N .
After replacing G with q−1(U), we may assume that G/N is compact. Using
[28, Proposition 5.1] and the metrizability of G/N , we find a descending se-
quence (Hn)n∈N of α-stable closed normal subgroups Hn of G/N such that α
induces an expansive automorphism αn on (G/N)/Hn for each n ∈ N and
G/N is the projective limit G/N = lim

←−
(G/N)/Hn. Set Ln := q−1(Hn); then

(Ln)n∈N is a descending sequence of α-stable closed normal subgroups of G,
with

∩
n∈N Ln = N .

There exists m ∈ N such that Ln is open in Lm for all n ≥ m. Indeed, if this
was wrong, we could find a subsequence (Lnk

)k∈N such that, for each k ∈ N,
the normal subgroup Lnk+1

is not open in Lnk
. This contradicts Proposi-

tion 2.7.

After passing to a subsequence, we may assume that Ln is open in L1 for each
n ∈ N. Hence Ln contains both Uα ∩ L1 and Uα−1 ∩ L1. As a consequence,
N =

∩
n∈N Ln contains both Uα ∩ L1 and Uα−1 ∩ L1. Hence N is open in L1

(and in each Ln), using that α|L1 is expansive and thus (Uα ∩L1)(Uα−1 ∩L1)
an open subset of L1 (see 1.1 (d) and (e)). This implies that the compact
group H1

∼= L1/N is discrete and hence a finite group. Since H1 ⊇ H2 ⊇ · · ·
with

∩
n∈NHn = {1}, we deduce that Hn = {1} for some n. Since ᾱ cor-

responds to the expansive automorphism αn on (G/N)/Hn
∼= G/N , we see

that ᾱ is expansive.

Conversely, assume that both α|N and α : G/N → G/N are expansive.1 Then
there is an open identity neighbourhood P ⊆ G/N such that

∩
n∈Z α

n(P ) =
{1}, and an open identity neighbourhood Q ⊆ N such that

∩
n∈Z α

n(Q) =
{1}. After shrinking Q, we may assume that Q ⊆ q−1(P ). Then Q = N ∩ V
for some open identity neighbourhood V ⊆ G. After replacing V with V ∩
q−1(P ), we may assume that V ⊆ q−1(P ). We have N = q−1(

∩
n∈Z α

n(P )) =∩
n∈Z α

n(q−1(P )), entailing that I :=
∩

n∈Z α
n(V ) is an α-stable subset of N .

1Compare also [28, Proposition 6.1]. The compactness of G assumed there is inessential
for this part of the proof of [28, Proposition 6.1].
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Since I = I ∩ N ⊆ V ∩ N = Q, we deduce that I =
∩

n∈Z α
n(I) ⊆∩

n∈Z α
n(Q) = {1}. Hence I = {1} and α is expansive. 2

4 Proof of Theorem B

The following lemma is useful.

Lemma 4.1 Let α be an expansive automorphism of a totally disconnected,
locally compact group G such that every α-stable, closed normal subgroup
N ⊆ G is open or discrete. Let C ⊆ G be the topologically characteristic
subgroup2 of G generated by Uα ∪ Uα−1. Let [C,C] be the closure of the
commutator group of C. Then C is an open normal subgroup of G, and one
of the following cases occurs:

(a) [C,C] is open in G, in which case C = [C,C] is topologically perfect.

(b) [C,C] is discrete.

Proof. C is an open subgroup of G as it contains the open set UαUα−1

(see 1.1 (d)). The closed subgroup [C,C] is topologically characteristic in C,
whence it is topologically characteristic in G and hence α-stable and nor-
mal. Therefore [C,C] is open or discrete. If [C,C] is open, then it contains
Uα ∪ Uα−1 . Hence [C,C] = C, using that C is the smallest topologically
characteristic subgroup of G which contains Uα ∪ Uα−1 . 2

Proof of Theorem B. Define ℓα and ℓα−1 as in Proposition 2.7. For every
series

Σ: G = G0 �G1 � · · ·�Gn = {1}

of α-stable closed subgroups of G, let JΣ be the set of all j ∈ {1, . . . , n}
such that Gj−1/Gj is not discrete. Then JΣ ≤ ℓα + ℓα−1 , by Proposition 2.7,
entailing that the maximum

m := max
Σ

JΣ

over all series Σ exists. Let Σ: G = G0�G1� · · ·�Gn = {1} be a series with
JΣ = m. Let N ⊆ Gj−1 be an α-stable closed normal subgroup with Gj ⊆ N .
If neither Gj−1/N nor N/Gj was discrete, we would have JΣ∪{N} = JΣ + 1,

2Thus C is the subgroup generated by
∪

β∈Aut(G) β(Uα ∪ Uα−1).
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a contradiction. Thus N will be open in Gj−1 or Gj open in N .

For j ∈ JΣ, let qj : Gj−1 → Gj−1/Gj be the canonical quotient morphism,
αj : Gj−1/Gj → Gj−1/Gj be the automorphism induced by α and Cj ⊆
Gj−1/Gj be the topologically characteristic subgroup generated by Uαj

∪
Uα−1

j
. If [Cj, Cj] is open in Gj−1/Gj, define Mj := Nj := q−1j (Cj); thus

Gj−1/Mj
∼= (Gj−1/Gj)/Cj and Mj/Nj = {1} are discrete and Nj/Gj

∼= Cj

is topologically perfect. If [Cj, Cj] is discrete, we define Mj := q−1j (Cj) and

Nj := q−1j ([Cj, Cj]) (by Lemma 4.1, only these two cases can occur). Then

Gj−1/Mj
∼= (Gj−1/Gj)/Cj is discrete, Mj/Nj

∼= Cj/[Cj, Cj] is abelian and

Nj/Gj
∼= [Cj, Cj] is discrete. Hence

Σ′ := Σ ∪
∪
j∈JΣ

{Mj, Nj}

is a series of α-stable closed subnormal subgroups such that all non-discrete
subfactors are abelian or topologically perfect. Since #JΣ′ = #JΣ is maxi-
mal, all non-discrete subfactors of Σ′ have the property that all stable closed
normal subgroups are open or discrete. 2

5 Proof of Theorem C

After replacing G with the closure of Dα in G, we may assume that G = Dα.
Since U0 normalizes Uα (see 1.2 (f)), we deduce from G = Uα = UαU0 (see
1.2(a)) that all of G normalizes Uα. Thus Uα � G. Since Tα = tor(Uα) is
characteristic in Uα, we deduce that also Tα is a normal subgroup of G and
hence also Tα. Let q : G → G/Tα be the canonical quotient morphism and
ᾱ : G/Tα → G/Tα be the automorphism induced by α. Since Tα is a torsion
group of finite exponent, also Tα is a torsion group (see 1.5). Therefore
Dα ∩ Tα = {1}, using that Dα is torsion-free (see 1.9 (c)). Hence

q|Dα : Dα → G/Tα, g 7→ gTα

is injective. Since Uα = DαTα, using 1.2 (d) we obtain q(Dα) = q(Uα) =
Uᾱ, where Uᾱ can be made locally compact by Lemma 2.6 (b). Being a
homomorphic image of a divisible group, Uᾱ is divisible and hence coincides
with Dᾱ. If we can show that Dᾱ is closed, then

q|D∗
α
: D∗α → Dᾱ
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will be a continuous bijective homomorphism between σ-compact locally
compact groups and hence an isomorphism of topological groups (see [10,
Theorem 5.29]). After replacing G with G/Tα, we may therefore assume
that Tα = {1}, Uα = Dα and Dα is dense in G. Since U0 = U0 ∩ Tα = {1} by
Lemma 2.9 (b), we deduce with 1.2 (a) that Dα = Uα = UαU0 = G is closed
in G. 2

Corollary 5.1 Let G be a totally disconnected, locally compact group and α
be an automorphism of G such that Uα and Uα−1 can be made locally compact
(e.g., any expansive automorphism). Then Dα ∩Dα−1 = {1}.

Proof. Since Dα and Dα−1 are closed and α-stable, their intersection H :=
Dα ∩ Dα−1 is a totally disconnected, locally compact contraction group for
both α|H and α−1|H . Hence H = {1}. Indeed, if H ̸= {1} then both
∆H(α|H) and ∆H(α|−1H ) = ∆H(α|H)−1 would be integers ≥ 2 (see 1.9 (a)),
which is impossible. 2

6 Abelian expansion groups

We show that, after passing to a refinement if necessary, only abelian, non-
discrete groups of a special form will occur in Theorem B.

Remark 6.1 In the situation of Theorem B, let I be the set of all indices
j ∈ {1, . . . , n} such that Gj−1/Gj is abelian and non-discrete. Let αj be
the automorphism of Gj−1/Gj induced by α and qj : Gj−1 → Gj−1/Gj be
the quotient homomorphism, for j ∈ I. Then Uαj

Uα−1
j

is an open αj-stable

subgroup of Gj−1/Gj and hence Hj := q−1j (Uαj
Uα−1

j
) is an α-stable open

normal subgroup of Gj−1. Then Gj−1/Hj is discrete and all stable, closed,
proper subgroups of Hj/Gj are discrete. After inserting the Hj into the series
for all j ∈ I, we may thus assume without loss of generality that all abelian,
non-discrete subfactors Gj−1/Gj have the property that all of their αj-stable,
closed, proper subgroups are discrete, and that Gj−1/Gj = Uαj

Uα−1
j
.

Let Gj be a topological group and αj ∈ Aut(Gj) for j ∈ {1, 2}. We say
that (G1, α1) and (G2, α2) are isomorphic if there exists an isomorphism
ϕ : G1 → G2 of topological groups such that α2 ◦ ϕ = ϕ ◦ α1.
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Proposition 6.2 Let A ̸= {1} be an abelian, totally disconnected, locally
compact group and α : A → A be an expansive automorphism. Assume that
A = UαUα−1 and assume that every α-stable proper closed subgroup of A is
discrete. Then there exists a prime number p such that (A,α) isomorphic to
one of the following:

(a) Qn
p for some n ∈ N, together with a contractive linear automorphism

β : Qn
p → Qn

p not admitting non-trivial proper β-stable vector subspaces;

(b) Qn
p for some n ∈ N, together with β−1 for a contractive linear auto-

morphism β : Qn
p → Qn

p not admitting non-trivial proper β-stable vector
subspaces;

(c) C
(−N)
p × CN0

p with the right-shift;

(d) C
(−N)
p × CN0

p with the left-shift;

(e) CZ
p with the right-shift.

Proof. Let Dα be the divisible part and Tα be the torsion part of Uα, and
define Dα−1 and Tα−1 analogously. If Dα ̸= {1}, then Dα = D∗α is an α-stable
closed subgroup (see Theorem C) which is non-discrete (see 1.8 (a)) and thus
A = Dα. By 1.8 (a) and the hypotheses, Dα is a divisible simple contraction
group and hence of the form described in (a) (see [9, Theorem A]). Likewise,
A is of the form described in (b) whenever Dα−1 ̸= {1}.

Throughout the rest of the proof, assume that Dα = Dα−1 = {1}. Then
A = UαUα−1 = TαTα−1 .

Since the nub U0 of α is an α-stable closed subgroup of A, it either is all
of A or discrete. Being also compact, it is finite in the latter case, and thus
{1} is an open α-stable (normal) subgroup of U0. Now [28, Corollary 4.4]
(proper such do not exist) shows that U0 = {1}.

Case U0 = {1}: Then Tα = Uα = UαU0 and Tα−1 = Uα−1 = Uα−1U0 are
closed α-stable subgroups of A (using 1.2 (a)). If Tα ̸= {1}, then Tα is non-
discrete. Hence Tα = A by the hypotheses, and this is a simple contraction
group which is a torsion group and hence of the form described in (c) (see
[9, Theorem A]). Likewise, A is of the form described in (d) if Tα−1 ̸= {1}.

Case A = U0: Then A is compact and is irreducible in the sense of
[28, Definition 6.1] as all its proper α-stable closed (normal) subgroups are
finite, and moreover A is infinite (as Uα or Uα−1 is non-trivial and hence non-
discrete, being a contraction group). Hence, by [28, Proposition 6.3], (A,α)
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is isomorphic to the right-shift of F Z for a finite simple group F . Since A is
abelian, F ∼= Cp for some p and thus A is of the form described in (e). 2

Remark 6.3 Let G be a totally disconnected, locally compact group and
α : G → G be an expansive automorphism. If G is abelian, then the map

π : U∗α × U∗α−1 → G, (x, y) 7→ xy

is a continuous, open homomorphism with discrete kernel. For non-abelianG,
the map still has open image (see Lemma 1.1 (d)), is a local homeomorphism,
and equivariant with respect to the natural left and right actions of Uα and
Uα−1 , respectively.

[To see this, let V ⊆ G be a compact open subgroup such that V+∩V− = {1}
and V = V+V− (see Lemma 1.1 (c)). Then V− and V+ are open subgroups
of U∗α and U∗α−1 , respectively (see proof of Lemma 2.3). Then π(V+×V−) = V
is open in G and π|V+×V− is injective, as vw = v′w′ for v, v′ ∈ V+, w,w

′ ∈ V−
implies v−1v′ = w(w′)−1 ∈ V+ ∩ V− = {1} and thus v = v′ and w = w′.
Since V+ × V− is compact, π restricts to a homeomorphism V+ × V− → V .
Since π(gv, wh) = gπ(v, w)h for g ∈ Uα, h ∈ Uα−1 and (v, w) ∈ V+×V−, also
π|gV+×V−h is a homeomorphism onto an open set.]

Remark 6.4 It can happen that Uα is closed for an expansive automor-
phism α of a totally disconnected, locally compact group G, but Uᾱ is not
closed for the induced automorphism ᾱ on G/N for some α-stable closed
normal subgroup N ⊆ G. The following example also illustrates Remark 6.3.

Given a non-trivial finite abelian group (F,+), consider the restricted prod-
ucts H1 := F (−N) × FN0 and H2 := F−N × F (N0), with V1 := FN0 and
V2 := F−N, respectively, as compact open subgroups. Let α be the right-shift
on G := H1 × H2 (i.e., on both H1 and H2). Then α is an automorphism
and it is expansive as

∩
n∈Z α

n(V1 × V2) = {0}. Moreover, Uα = H1 and
Uα−1 = H2 are closed. Also, let ᾱ be the right-shift on F Z. Then

q : G → F Z, (f, g) 7→ f + g

is a continuous surjective homomorphism. Restricted to the compact open
subgroup V1×V2, the map q is an isomorphism of topological groups. Hence q
is open, has discrete kernel, and is a quotient morphism. Finally, Uᾱ =
F (−N) × FN0 is a dense proper subgroup in F Z. Hence Uᾱ is not closed
in F Z ∼= G/ ker(q).
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Another property can be observed.

Proposition 6.5 Let G be a totally disconnected, locally compact group that
is abelian, and α : G → G be an expansive automorphism. Then the torsion
subgroup tor(G) is closed in G.

Proof. Since V := UαUα−1 is an open subgroup of G, we need only show
that V ∩ tor(G) = tor(V ) is closed. After replacing G with its α-stable
subgroup V , we may therefore assume that G = UαUα−1 . Since Dα and
Dα−1 are torsion-free (see 1.9 (c)) and Dα ∩ Dα−1 = {1} by Corollary 5.1,
we deduce that DαDα−1 is isomorphic to Dα × Dα−1 as an abstract group
and hence torsion-free. Hence DαDα−1 ∩TαTα−1 = {1}. Combining this with
G = UαUα−1 = DαDα−1TαTα−1 , we see that

G = (DαDα−1)× (TαTα−1) = Dα ×Dα−1 × TαTα−1

internally as an abstract group. Now TαTα−1 ⊆ tor(G) ⊆ tor(G). If TαTα−1

was a proper subset of tor(G), then the torsion group tor(G)/TαTα−1 would
be isomorphic to a non-trivial subgroup of G/TαTα−1

∼= DαDα−1 , which is
torsion-free. The contradiction shows that TαTα−1 = tor(G) = tor(G). 2

7 Proof of Theorem D

Since U0 ⊆ Uα, we may replace G with Uα without changing the nub (see 1.7),
nor Tα, nor Dα. We may therefore assume that Uα is dense in G. Since U0

normalizes Uα (see 1.2 (f)), Uα is a normal subgroup of G = UαU0 (exploiting
1.2 (a)). Hence also the characteristic subgroups Dα and Tα of Uα are normal
in G. Therefore also Tα is normal in G. Since Tα is a torsion group (see
1.9 (c) and 1.5) and Dα torsion-free (see 1.9 (c)), we see that Dα ∩Tα = {1}.
Moreover, using that TαU0 = Tα by Lemma 2.9 (d), we obtain G = UαU0 =
DαTαU0 = DαTα. Hence G = Dα × Tα as an abstract group. In particular,
Dα centralizes Tα. Thus Dα also centralizes U0 ⊆ Tα. Since Tα is σ-compact
by Lemma 2.10, also Dα×Tα is a σ-compact locally compact group. Because
also G is locally compact and the product map π : Dα×Tα → G, (x, y) 7→ xy
is a continuous isomorphism of abstract groups, we deduce with [10, 5.29]
that π is an isomorphism of topological groups. 2
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Remark 7.1 We mention that the nub U0 of an expansive automorphism
α : G → G need not have an open normalizer in G. To see this, let F
be a finite group which is a semidirect product F = N o H of a normal
subgroup N and a subgroup H which is not normal in F (e.g., F might be
the dihedral group C3 o C2). Let G be the group of all (nk, hk)k∈Z ∈ F Z

such that (nk)k∈Z ∈ N (−N) ×NN0 =: M . Thus G = M oHZ as an abstract
group. Endow G with the topology making it the direct product topological
space of the restricted product M and the compact group HZ. Then G is a
topological group, being the ascending union of the open subgroups

H{k∈Z : k<−m} × F {k∈Z : k≥−m}

for m ∈ N, which are topological groups. The right-shift α is an automor-
phism of G. We have Uα = M o (H(−N) × HN0) and Uα−1 = H−N × H(N0).
Thus Uα = G, Uα−1 = HZ and U0 = Uα∩Uα−1 = HZ (using 1.2 (b)). Since H
is not normal in F , we see that U0 = HZ is not normal in G. If the nor-
malizer NG(U0) was open in G, then (being α-stable), it would contain the
dense subgroup Uα of G and hence coincide with G (a contradiction). Thus
NG(U0) is not open.

8 Example: p-adic Lie groups

Let K be a local field and |.| be an absolute value on K defining its topology
(see [25]). We pick an algebraic closure K containing K and use the same
symbol, |.|, for the unique extension of the absolute value on K to an absolute
value on K (see [18, Theorem 16.1]). If E is a finite-dimensional K-vector
space and β : E → E a K-linear automorphism, we write R(β) for the set
of all absolute values |λ| of zeros λ of the characteristic polynomial of β

in K. We let Ẽλ ⊆ E ⊗K K be the generalized eigenspace of β ⊗K idK for the
eigenvalue λ. For ρ ∈ R(β), we let

Eρ :=

⊕
|λ|=ρ

Ẽλ

 ∩ E.

Then E =
⊕

ρ∈R(β)Eρ (see [15, Chapter II, §1]) and we recall that

E = Uβ ⊕Mβ ⊕ Uβ−1
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with
Mβ = E1, Uβ =

⊕
ρ<1

Eρ and Uβ−1 =
⊕
ρ>1

Eρ (2)

(cf. Lemma 9.5 in the preprint version of [7]).

If G is a Lie group over K, then its tangent space L(G) := T1(G) at the
identity element carries a natural Lie algebra structure, and L(α) : L(G) →
L(H) is a Lie algebra homomorphism for each K-analytic homomorphism
α : G → H between K-analytic Lie groups. We abbreviate Ad(g) := L(Ig),
where Ig : G → G, x 7→ gxg−1 for g ∈ G (cf. [21] for further information).

Proposition 8.1 Let α be an analytic automorphism of a Lie group G over
a local field. Consider the following conditions:

(a) α is expansive;

(b) β := L(α) : L(G) → L(G) is expansive;

(c) 1 ̸∈ R(β);

(d) L(G) is a nilpotent Lie algebra.

Then (a)⇒(b), (b)⇔(c) and (c)⇒(d). If Uα is closed (e.g., if G is a p-adic
Lie group), then (a), (b) and (c) are equivalent.

Proof. (a)⇒(b): By contraposition. If (b) is false, then β is not expansive.
To deduce that α is not expansive, let V ⊆ G be an identity neighbourhood.
Since Uβ is a vector subspace of L(G) by (2) and hence closed, using Proposi-
tion 1.3 (b) we deduce that Mβ is not discrete and hence a non-trivial vector
subspace (in view of (2)). But then G contains a so-called centre manifold W
around the fixed point 1 of α, which can be chosen as a submanifold of G
contained in V that is stable under α and satisfies T1(W ) = Mα (whence
W ̸= {1}); see Proposition 13.3. (a) and Theorem 1.10 (c) in the preprint
version of [7]. Then {1} ̸= W ⊆

∩
n∈Z α

n(V ), and thus α is not expansive.

(b)⇔(c): Since Uβ is closed, β is expansive if and only if Mβ = L(G)1
is discrete. Since L(G)1 is a vector space, the latter holds if and only if
L(G)1 = {0}, i.e., 1 ̸∈ R(β).

(c)⇒(d). If (c) holds, then β is a Lie algebra automorphism of L(G) and
|λ| ̸= 1 for all eigenvalues λ of β ⊗K idK in K, entailing that none of the λ
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is a root of unity. Hence L(G) is nilpotent (see Exercise 21 (b) among the
exercises for Part I of [3], §4).

To prove the final assertion, we recall that Uα and Uα−1 are immersed Lie
subgroups of G with Lie algebras Uβ and Uβ−1 , respectively (see Proposition
13.2 in the preprint version of [7]). If 1 ̸∈ R(β), then L(G) = Uβ ⊕ Uβ−1 ,
entailing that the product map Uα × Uα−1 → G, (x, y) 7→ xy has invertible
differential at (1, 1) (the addition map Uβ × Uβ−1 → L(G) = Uβ ⊕ Uβ−1).
Thus, by the inverse function theorem [21], UαUα−1 is an identity neighbour-
hood in G and hence open. If Uα is closed (which holds in the p-adic case by
[24, Theorem 3.5 (ii)]), Proposition 1.3 (b) now shows that α is expansive. 2

8.2 For each continuous homomorphism θ : Qp → GLn(Qp), there exists a
nilpotent n×n-matrix x ∈ Qn×n

p such that θ(t) = exp(tx) for all t ∈ Qp, using
the matrix exponential function [17, Theorem 1.1]. Thus θ′(0) = x uniquely
determines θ, and so does θ|W for any 0-neighbourhood W ⊆ Qp.

Lemma 8.3 Let α be a contractive automorphism of a p-adic Lie group G.
Then the following holds:

(a) For each g ∈ G, there is a unique continuous homomorphism θg : Qp →
G such that θg(1) = g. Moreover, {θ′g(0) : g ∈ G} = L(G).

(b) If h ⊆ L(G) is an L(α)-stable Lie subalgebra, then there exists an α-
stable Lie subgroup H of G with L(H) = h.

Proof. (a) Let ∗ : L(G)×L(G) → L(G) be the Campbell-Hausdorff multipli-
cation on the nilpotent Lie algebra L(G). Because (G,α) and ((L(G), ∗), L(α))
are locally isomorphic contraction groups, they are isomorphic (see [24, Propo-
sition 2.2]). The nilpotent group (L(G), ∗) inherits unique divisibility from
(L(G),+), since ng (in the vector space L(G)) coincides with gn (in (L(G), ∗)).
It is clear from this that θg(t) = tg is the unique continuous homomorphism
Qp → (L(G), ∗) with θg(1) = g. It satisfies g = θ′g(0).

(b) We may work with the isomorphic group (L(G), ∗) instead of G. Now
H := h is an L(α)-stable Lie subgroup of (L(G), ∗) with Lie algebra h. 2
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Lemma 8.4 Let G be a linear p-adic Lie group. Assume that G is generated
by

∪
θ∈Θ θ(Qp) for a set Θ of continuous homomorphisms θ : Qp → G, and

L(G) is generated by {θ′(0) : θ ∈ Θ} as a Lie algebra. Then the centre of G
coincides with the kernel of Ad: G → Aut(L(G)).

Proof. Let g ∈ G. For each θ ∈ Θ, the map Ig ◦ θ : Qp → G, t 7→ gθ(t)g−1

is a continuous homomorphism such that (Ig ◦ θ)′(0) = Ad(g)θ′(0). Thus,
by 8.2, Ig ◦ θ = θ if and only if Ad(g)θ′(0) = θ′(0). Since

∪
θ∈Θ θ(Qp)

generates G, we see that g ∈ Z(G) if and only if Ad(g)θ′(0) = θ′(0) for all
θ ∈ Θ. The latter is equivalent to Ad(g)(x) = x for all x ∈ L(G), because
{x ∈ L(G) : Ad(g)(x) = x} is a Lie subalgebra of L(G) and L(G) is generated
by θ′(0) for θ ∈ Θ by hypothesis. 2

Proof of Theorem E. After replacing G with an open subgroup, we may
assume that G is generated by Uα ∪ Uα−1 (see Lemma 1.1 (d)). We prove
that G is nilpotent in this case, by induction on the dimension dim(G) of G
as a p-adic manifold. If dim(G) = 0, then G is discrete, whence Uα = Uα−1 =
{1} and G = ⟨Uα ∪ Uα−1⟩ = {1} is nilpotent.

Now assume that dim(G) > 0. After replacing G with an isomorphic group,
we may assume that G is a subgroup of GLn(Qp) for some n ∈ N, and that
the inclusion map G → GLn(Qp) is continuous (but not necessarily a homeo-
morphism onto its image). Then L(G) is a non-zero nilpotent Lie algebra (see
(a)⇒(d) in Proposition 8.1) and so it has centre Z(L(G)) ̸= {0}. The centre
is L(α)-stable, and the restriction β of L(α) to the centre is expansive (like
L(α)). Hence Z(L(G)) = Uβ⊕Uβ−1 . After replacing α with α−1 if necessary,
we may assume that Uβ−1 ̸= {0}. According to Lemma 8.3 (b), there is an
α-stable Lie subgroup H ⊆ Uα−1 with L(H) = Uβ. We claim that H is in the
centre Z(G) of G. If this is true, then Z(G) has positive dimension. Thus
G/Z(G) is a Lie group of dimension dim(G/Z(G)) < dim(G), and it is a
linear Lie group as it injects into Aut(L(G)), by Lemma 8.4.3 By induction,
G/Z(G) is nilpotent and hence so is G.

To prove the claim, let h ∈ H and θ : Qp → H ⊆ Uα−1 be a continuous
homomorphism with θ(1) = h (see Lemma 8.3 (a)). Then x := θ′(0) ∈

3Let Θ be the set of continuous homomorphisms from Qp to Uα or Uα−1 . By G =
⟨Uα ∪ Uα−1⟩ and Lemma 8.3 (a), the first hypothesis of Lemma 8.4 is satisfied. Since
L(G) = L(Uα) + L(Uα−1) and L(Uα) ∪ L(Uα−1) = {θ′(0) : θ ∈ Θ} by Lemma 8.3 (a) and
“(a)⇒(c)” in Lemma 8.1, also the second hypothesis of Lemma 8.4 is satisfied.
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L(H) ⊆ Z(L(G)), entailing that ad(x) := [x, •] = 0. Now θ(t) = exp(tx) for
all t ∈ Qp, by 8.2. For |t| small, Ad(θ(t)) = Ad(exp(tx)) = et ad(x) = idL(G),
using Corollary 3 in [3, Chapter III, §4, no. 4]). Thus Ad ◦θ = idL(G), by
the uniqueness assertion of 8.2, applied to Ad ◦θ : Qp → Aut(L(G)). In
particular, Ad(h) = Ad(θ(1)) = idL(G) and thus h ∈ Z(G), by Lemma 8.4.2

8.5 If G is a totally disconnected, locally compact group which is a nilpotent
group, let {1} = Z0 � Z1 � · · · � Zn = G be its ascending central series
defined recursively via Zk := q−1k (Z(G/Zk−1)), where qk : G → G/Zk−1 is the
canonical quotient morphism. Let α be an expansive automorphism of G
and αk the induced automorphism of Gk/Gk−1.

Proposition 8.6 If Zk/Zk−1 = Uαk
Uα−1

k
for all k ∈ {1, . . . , n} in the situa-

tion of 8.5, then G = UαUα−1. In particular, UαUα−1 is a subgroup of G.

Proof. If n = 0, thenG = {1} = UαUα−1 . If n ≥ 1, let β be the expansive au-
tomorphism of G/Z(G) induced by α, and q : G → G/Z(G) be the canonical
quotient morphism. Then Z1 = Z(G) = (Uα∩Z(G))(Uα−1∩Z(G)) by the hy-
potheses and G/Z(G) = UβUβ−1 by induction. Since q(UαUα−1) = UβUβ−1 =
G/Z(G), we have G = UαUα−1Z(G) = UαUα−1(Uα ∩ Z(G))(Uα−1 ∩ Z(G)) =
Uα(Uα ∩ Z(G))Uα−1(Uα−1 ∩ Z(G)) = UαUα−1 . 2

Note that we can easily achieve that G/Zn−1 = UαnUα−1
n

after replacing G
with its open subgroup generated by Uα∪Uα−1 . However, the hypotheses on
Zk/Zk−1 for k < n cannot always be achieved by passing to an open subgroup
(as the following example illustrates).

Remark 8.7 The following example shows that even for nilpotent p-adic
Lie groups with an expansive automorphism α, the set UαUα−1 may fail to
be a subgroup.

Let H = Q3
p be the 3-dimensional p-adic Heisenberg group whose binary

operation is given by

(x1, y1, z1)(x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2 + x1y2)

for all (x1, y1, z1), (x2, y2, z2) ∈ H. Let N = {(0, 0, z) ∈ H : |z| ≤ 1}. Then N
is a compact central subgroup of H. Identify G = H/N with Qp × Qp ×
(Qp/Zp) as a set. Define α : G → G by

α(x, y, z + Zp) = (px, p−1y, z + Zp)
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for all (x, y, z+Zp) ∈ G. Then α is a continuous automorphism of the p-adic
Lie group G with Mα = {(0, 0, z + Zp) : z ∈ Qp}, Uα = {(x, 0, 0) : x ∈ Qp}
and Uα−1 = {(0, y, 0) : y ∈ Qp}. Since Mα is discrete, α is an expansive
automorphism. As [Uα, Uα−1 ] = {(0, 0, z + Zp) : z ∈ Qp} and UαUα−1 =
{(x, y, xy + Zp) : x, y ∈ Qp}, we get that UαUα−1 is a not a subgroup.

Proposition 8.8 Let G be a closed subgroup of GLn(Qp) and α be an ex-
pansive automorphism of G. Then UαUα−1 is an open (unipotent algebraic)
subgroup of G.

Proof. Replacing G by the group generated by Uα and Uα−1 , we may assume
by Theorem E that G is a closed nilpotent subgroup of GLn(Qp). Let G be
the Zariski closure of G. Then G is defined over Qp and G is nilpotent (cf.
Proposition 1.3 (b) and Corollary 1 in 2.4 of [2]). Since Uα and Uα−1 con-
sists of one-parameter (unipotent) subgroups, G is Zariski-connected. This
implies that the set of unipotent elements form a subgroup Gu, known as
the unipotent radical (cf. Theorem 10.6 of [2]). Since Uα and Uα−1 consists
of one-parameter (unipotent) subgroups, Uα, Uα−1 ⊆ Gu. This implies that
G = Gu, that is G is an unipotent algebraic group, hence G is defined over Qp

(cf. 4.5 of [2] and the fact that Qp-closed and defined over Qp are same as
characteristic of Qp is zero) and G ⊆ G(Qp).

For i ≥ 1, let Di = [G(Qp), Di−1] with D0 = G(Qp) and Gi = [G,Gi−1]
with G0 = G. Then Dk+1 is trivial for some k ≥ 1 as G is unipotent and
Gi ⊂ Di. Thus, Gk is a closed α-stable subgroup of Dk which is a vector
space. Let V be the maximal vector subspace of Gk. Then V is a closed
α-stable central subgroup of G. The automorphism β : Gk/V → Gk/V de-
fined by β(x + V ) = α(x) + V for x ∈ Gk is expansive. Since V is the
maximal vector subspace of Gk and Gk is a closed subgroup of the p-adic
vector space Dk, we get that Gk/V is a compact subgroup of the p-adic vec-
tor space Dk/V . Since the automorphism group of a compact p-adic analytic
group is compact, compact p-adic analytic groups do not admit expansive
automorphisms unless finite, hence V = Gk. This implies that Gk = Dk and
Gk = V = (Uα∩V )(Uα−1∩V ). Since G/Gk is a closed subgroup of G(Qp)/Dk

which is a linear (p-adic algebraic) group, the result follows by induction. 2

Remark 8.9 In the case of linear p-adic Lie groups, even if UαUα−1 is an
open subgroup for an expansive automorphism, the following example shows
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that it is not possible to have either of Uα or Uα−1 to normalize the other.

LetH be the 3-dimensional p-adic Heisenberg group defined as in Remark 8.7.
For i = 1, 2, define αi : H → H by

α1(x, y, z) = (px, p−2y, p−1z), α2(x, y, z) = (p2x, p−1y, pz)

for (x, y, z) ∈ H. Let G = H ×H and α = α1 × α2. Then

Uα = {(x, 0, 0) : x ∈ Qp} × {(a, 0, c) : a, c ∈ Qp}

and
Uα−1 = {(0, y, z) : y, z ∈ Qp} × {(0, b, 0) | b ∈ Qp}.

Thus UαUα−1 = G. Since {(x, 0, 0) : x ∈ Qp} and {(0, y, 0) : y ∈ Qp} are not
normal subgroups of H, neither Uα or Uα−1 normalize the other.

9 Example: Baumslag-Solitar groups

Throughout this section, we fix primes p ̸= q. We let

BS(p, q) := ⟨a, t|tapt−1 = aq⟩

be the Baumslag-Solitar group. Then ⟨a⟩∩g⟨a⟩g−1 has finite index in ⟨a⟩ for
each g ∈ BS(p, q), and

∩
g g⟨a⟩g−1 = {1}, hence the Schlichting completion

Gp,q of BS(p, q) can be formed, which is a certain totally disconnected, locally

compact group in which BS(p, q) is dense, and in whichK := ⟨a⟩ is a compact
open subgroup (see [4], cf. [19] and [8]). We are interested in the inner
automorphism

α : Gp,q → Gp,q, x 7→ txt−1 .

Proof of Theorem F. By [4, Proposition 8.1], K contains an open subgroup
V ∼= Zp × Zq and K/V is a cyclic group of order diving gcd(p, q) = 1. Thus
K = V ∼= Zp × Zq. After multiplication with a unit, We may assume that
the isomorphism takes a to (1, 1).

Let G = Zn (Qp×Qq) be the semidirect product of Z and Qp×Qq given by
(n, u, v)(m,u′, v′) = (n+m,u+(q/p)nu′, v+(q/p)nv′) for all n,m ∈ Z, u, u′ ∈
Qp and v, v′ ∈ Qq. The isomorphism K ∼= Zp × Zq gives a homomorphism
from ⟨a⟩ to G. Since (1, 0, 0)(0, p, p)(−1, 0, 0) = (0, q, q), sending t 7→ (1, 0, 0)
yields a group homomorphism ϕ : BS(p, q) → G. Since ϕ|⟨a⟩ is a continuous
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homomorphism, ϕ extends to a continuous homomorphism of Gp,q into G
which would also be denoted by ϕ. Since ϕ|K is an isomorphism, ker(ϕ)
is discrete. Moreover, as ϕ(Gp,q) contains both (1, 0, 0) and Zp × Zq, ϕ is
surjective.

Let β be the inner automorphism of G given by (1, 0, 0). Then ϕ ◦ α = β ◦ ϕ
and β is expansive. Since the kernel of ϕ is discrete, expansiveness of α follows
from Theorem A. As the open subgroup K ∼= Zp × Zq satisfies an ascending
chain condition on closed subgroups (see, e.g., [6, Proposition 3.2]), Uα is
closed by [24, Lemma 3.2].

In case UαUα−1 is a group, we will now show that ϕ is an isomorphism which
would lead to a contradiction as Gp,q is not solvable but G is solvable.4

Suppose N := UαUα−1 is a group. Then ϕ|N is an isomorphism of N with
Qp × Qq (using that Uα

∼= Qq and Uα−1
∼= Qp).

5 Now the group generated
by t and N is an open subgroup of G containing both t and a, hence Gp,q =
⟨t, N⟩ = ⟨t⟩N (as t normalizes N). This implies that ϕ is an isomorphism.2
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