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QUANTUM RANDOM WALK APPROXIMATION

IN BANACH ALGEBRA

B. KRISHNA DAS AND J. MARTIN LINDSAY

Abstract. Quantum random walks in a unital Banach algebra are considered.
Belton’s discrete approximation scheme is extended to sesquilinear quantum
stochastic cocycles through dyadic discretisation of time. We recover approxi-
mation results for Markov-regular quantum stochastic mapping cocycles, and

obtain a new random walk approximation theorem for a class of isometric co-
cycles which includes all the unitary cocycles which induce Lévy processes on
(the CQG algebra of) a separable compact quantum group.

Introduction

Quantum stochastic analysis was recently extended to Banach space by view-
ing processes as sesquilinear maps ([DLT]), thereby unifying the ‘standard’ quan-
tum stochastic theory of operator processes on a Hilbert space ([HuP]), mapping
processes on a C∗-algebra or operator space ([Eva], [LW1]), see [Par], [Mey], [L],
and convolution processes on a quantum group or coalgebra ([Sch], [LiS]). In the
sesquilinear theory, stochastic cocycles are analysed via some elementary theory of
evolutions in unital Banach algebras ([DL1]).

The aim of the present paper is to extend Belton’s discrete approximation scheme
for quantum stochastic cocycles ([Be2]) to Banach-algebra-valued sesquilinear co-
cycles and to apply this to various discrete approximation schemes for operator co-
cycles and mapping cocycles on operator spaces by appropriate choices of Banach
algebra. For operator cocycles, we obtain new results, extending those of [AtP]
(cf. [Sah] and [Be2]) for isometric cocycles which are Markov-regular, equivalently
have bounded stochastic generator. The class of isometric cocycle covered, namely
direct sums of Markov-regular isometric cocycles, includes all those which imple-
ment the quantum Lévy processes on the CQG algebra of a separable compact
quantum group.

Accordingly, the processes considered in this paper are families (qt)t≥0 of sesquilin-
ear maps E × E → A for a unital Banach algebra A and exponential domain E in
symmetric Fock space over L2(R+; k). The Hilbert space k serves as the multi-
plicity space of the quantum noise. Natural adaptedness and regularity conditions
are assumed, together with a time-homogeneous evolution property, or stochastic
cocycle condition.

The plan of the paper is as follows. After a brief section of preliminaries we recall
relevant results from [DLT] in Section 2. Discrete approximation of sesquilinear
cocycles is treated in Section 3, and in Section 4 we apply our results to random
walk approximation schemes for mapping cocycles. In the final section we consider
random walk approximation for isometric operator cocycles in the Markov-regular
case, and for a class of isometric cocycles in the non-Markov regular case.

2000 Mathematics Subject Classification. Primary 46L53, 81S25.
Key words and phrases. Noncommutative probability, quantum stochastic cocycle, quantum

Wiener integral.
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2 KRISHNA DAS AND LINDSAY

Notations. For vector spaces V , V ′ andW we write V̂ for C⊕V , v̂ for
(
1
v

)
(v ∈ V ),

and SL(V ′, V ;W ) for the space of sesquilinear maps V ′ × V →W (abbreviated to
SL(V ;W ) when V ′ = V ). All sesquilinear maps are linear in their second argument.
Basic examples of such maps are those of the form |w⟩qT for T ∈ L(V ;V ′) and
w ∈W where V and V ′ are inner product spaces:

qT : V ′ × V → C, (v′, v) 7→ ⟨v′, T v⟩ and |w⟩ : C →W, λ 7→ λw. (0.1)

For a subinterval J of R+ and n ∈ N, we define the n-symplices over J as follows:

∆
(n)
J := {t ∈ Jn : t1 < · · · < tn} and ∆

[n]
J := {t ∈ Jn : t1 ≤ · · · ≤ tn},

abbreviated to ∆(n) and ∆[n] when J = R+. For a vector-valued function f on R+

and subinterval J of R+, we write fJ for the function on R+ which agrees with f
on J and vanishes outside J .

For Hilbert spaces H and h and vector e ∈ h, the operator

IH ⊗ |e⟩ : H → H⊗ h, u 7→ u⊗ e

is denoted by Ee, and its adjoint IH ⊗⟨e| by Ee, with context dictating the Hilbert
space H. Thus Ee ∈ B(H⊗ h;H) and EeEf = ⟨e, f⟩IH.

1. Preliminaries

We need a specific tensor construction for concrete operator spaces. Let V be an
operator space in B(H;H′) and set B = B(h; h′), for Hilbert spaces h and h′. The
matrix space tensor product of V with B is the operator space in B(H⊗h;H′⊗h′) =
B(H;H′)⊗B defined as follows:

V ⊗M B :=
{
T ∈ B(H;H′)⊗B : Ec

′
TEc ∈ V for all c′ ∈ h′, c ∈ h

}
.

Let W be another concrete operator space, (in other words an operator space re-
alised as a closed subspace of B(K,K′) for some Hilbert spaces K and K′). If
ϕ ∈ CB(V;W) then the map ϕ ⊗M idB ∈ CB(V ⊗M B;W ⊗M B) ([LW1]) is the
unique extension of ϕ⊗ idB . The following extended composition is very useful.
For ϕi ∈ CB

(
V;V ⊗M B(hi; h

′
i)
)
(i = 1, 2),

ϕ1 • ϕ2 := (ϕ1 ⊗M idB(h2;h′2)
) ◦ ϕ2 ∈ CB

(
V;V ⊗M B(h; h′)

)
. (1.1)

Here h = h1 ⊗ h2 and h′ = h′1 ⊗ h′2, so B(h1; h
′
1)⊗M B(h2; h

′
2) = B(h; h′).

We need the following observation of Wills and Skalski, proved in [Be2].

Lemma 1.1. For a sequence of completely bounded maps (ϕn)n≥1 and infinite-
dimensional Hilbert space h, if ϕn ⊗M idB(h) → 0 strongly then ∥ϕn∥cb → 0.

For more on matrix spaces see [LW1], or [L]; an appropriate reference for operator
spaces is [EfR].

We note the following elementary fact for ease of reference.

Lemma 1.2. Let A be a Banach algebra, let x0 ∈ A and let a be a step function
R+ → A with discontinuity set D. Then the integral equation

f(t) = x0 +

∫ t

0

ds f(s)a(s) (t ≥ 0).

and the differential equation

f(0) = x0 and f ′(s) = f(s)a(s) (s ∈ R+ \D),

have the same unique solution in C
(
R+;A

)
.
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2. Sesquilinear quantum stochastic calculus in Banach space

In this section we recall sesquilinear quantum stochastic theory from [DLT]. Fix
now, and for the rest of the paper, a complex Hilbert space k referred to as the
noise dimension space, a Banach space X and a unital Banach algebra A.

For a subinterval J of R+, let KJ := L2(J ; k) and, for f ∈ KJ , write f̂ for the

corresponding k̂-valued function given by f̂(s) := f̂(s). The space of step functions
in KJ is denoted by SJ (we take right-continuous versions) and we denote by SDJ
the subspace of step function with the set of discontinuities lies in positive dyadic
rationals D+. The symmetric Fock space over KJ is denoted FJ ; the exponential
vectors ε(f) := ((n!)−1/2f⊗n)n≥0 (f ∈ KJ ) are linearly independent and EJ :=
Lin{ε(f) : f ∈ SJ} and ED

J := Lin{ε(f) : f ∈ SDJ} are both dense in KJ ; when
J = R+, we drop the subscript J .

A family of maps q = (qt)t≥0 in SL(E ;X) is an X-valued sesquilinear process, or
SL process in X if, for all g′, g ∈ S and t ∈ R+,

(i) qt(ε(g
′), ε(g)) = qt(ε(g

′
[0,t[), ε(g[0,t[))⟨ε(g

′
[t,∞[), ε(g[t,∞[)⟩.

It is a continuous SL process in X if, for all ε, ε′ ∈ E ,
(ii) s 7→ qs(ε

′, ε) is continuous.

We denote the linear space of SL processes in X by SLP(X, k), and the subspace
of continuous SL processes by SLPc(X, k), and, for q ∈ SLP(X, k), define

qg
′,g
t := qt(ε(g

′
[0,t[), ε(g[0,t[)) (g′, g ∈ Sloc, t ∈ R+),

where Sloc ⊂ L2
loc(R+; k) denotes the space of (right-continuous) step functions.

Thus q ∈ SLPc(X, k) if and only if q ∈ SLP(X, k) and qg
′,g ∈ C(R+;X) for all

g′, g ∈ Sloc.
Multiple quantum Wiener integrals are the key to construct the solution of a

sesquilinear differential equation; these are defined as follows. For n ∈ N, υn ∈
SL(k̂⊗n;X) and t ≥ 0, define a map Λnt (υn) ∈ SL(E ;X) by sesquilinear extension
of the prescription

Λnt (υn)(ε(g
′), ε(g)) := exp⟨g′, g⟩

∫
∆

[n]

[0,t[

ds υn
(
ĝ′

⊗n
(s), ĝ⊗n(s)

)
(g′, g ∈ S),

for the convention

ĥ⊗n(s) := ĥ(s1)⊗ · · · ⊗ ĥ(sn), (s ∈ ∆[n]).

For υ0 ∈ SL(C;X), Λ0
· (υ0) is the constant SL process |υ0(1, 1)⟩ qI .

The following estimate is evident:∥∥Λnt (υn)(ε(g′), ε(g))∥∥ ≤ | exp⟨g′, g⟩|Cυnn (g′, g)
tn

n!
(t ∈ R+)

where

Cυnn (g′, g) := max
{∥∥υn(ĉ(1)⊗ · · · ⊗ ĉ(n), d̂(1)⊗ · · · ⊗ d̂(n)

)∥∥ :

c(1), . . . , c(n) ∈ Ran g′, d(1), . . . , d(n) ∈ Ran g
}
. (2.1)

This leads us to define SLW(X, k), the space of time-independent Wiener inte-

grands, is the space of sequences U = (υn)n≥0, in which υn ∈ SL(k̂⊗n;X) for each
n ∈ Z+ and

∀g′,g∈S ∀α∈R+

∑
n≥0

αn

n!
Cυnn (g′, g) <∞. (2.2)

Thus for U = (υn)n≥0 ∈ SLW(X, k), Λt(U) := p.w.
∑
n≥0 Λ

n
t (υn) (t ≥ 0)

defines an SL process Λ(U) in X.



4 KRISHNA DAS AND LINDSAY

Now the construction of the solution of a sesquilinear quantum stochastic dif-
ferential equation, which essentially shadows the Picard iteration method, is as

follows. For ν ∈ SL(k̂;A) define ν⊗ =
(
ν⊗n

)
n≥0

by ν⊗0 := |1A⟩ qI and, for n ∈ N,
ν⊗n : k̂⊗n × k̂⊗n → A is the ‘sesquilinearisation’ of the map

k̂n × k̂n → A, (ζ, η) 7→
−−−→∏
1≤i≤n

ν(ζi, ηi).

Then

Cν
⊗n
n (g′, g) ≤ Cν(g′, g)n (n ∈ Z+, g

′, g ∈ S),
so ν⊗ ∈ SLW(A, k); set qν := Λ(ν⊗).

Definition. Let ν ∈ SL(k̂;A). Then q ∈ SLPc(A, k) is a solution of the left
sesquilinear quantum stochastic differential equation

dqt = qt dΛν(t), q0 = |1A⟩qI (2.3)

if, for all g′, g ∈ S and t ∈ R+,

qt(ε(g
′), ε(g)) = ⟨ε(g′), ε(g)⟩1A +

∫ t

0

ds qs(ε(g
′), ε(g))ν(ĝ′(s), ĝ(s)).

Theorem 2.1 ([DLT], Theorem 5.1). Let ν ∈ SL(k̂;A). Then qν is the unique
solution of the sesquilinear quantum stochastic differential equation (2.3).

The notion of sesquilinear quantum stochastic cocycle and its relation with
sesquilinear quantum stochastic differential equations is discussed next.

Definition. A process q ∈ SLP(A, k) is a (left) sesquilinear stochastic cocycle in
A if it satisfies

qg
′,g

0 = 1A and qg
′,g
s+t = qg

′,g
s qLsg

′,Lsg
t (g′, g ∈ Sloc, s, t ∈ R+),

where (Lt)t≥0 is the semigroup of left shift on L2(R+; k). Moreover if q ∈ SLPc(A, k)
is a sesquilinear stochastic cocycle in A then q is said to be Markov regular.

We denote the classes of left SL cocycles and Markov-regular left SL cocycles
by SLSC(A, k) and SLSCc(A, k) respectively. Note that, for c′, c ∈ k, qc

′,c is a

semigroup in A; we refer to {qc′,c : c′, c ∈ k} as the family of associated semigroups
of q. Then the cocycle q is Markov regular if and only if each of its associated
semigroups is norm continuous.

Sesquilinear cocycles are constructed by solving sesquilinear quantum stochastic
differential equations and, under certain regularity conditions the converse holds.
We summarise this in the following theorem, where we write Bconj for bounded
conjugate-linear.

Theorem 2.2 ([DLT], Theorems 6.2 and 6.3). Let ν ∈ SL(k̂;A). Then qν ∈
SLSCc(A, k) and its associated semigroup generators are given by

βc′,c = ν(ĉ′, ĉ) + ⟨c′, c⟩1A (c′, c ∈ k). (2.4)

Conversely, let q ∈ SLSCc(A, k), and suppose that there are separating families of
maps (φi ∈ B(A;Xi))i∈I and (φ′

i′ ∈ B(A;X′
i′))i′∈I′ for Banach spaces Xi and X′

i′

such that, for all ε′, ε ∈ E, t ∈ R+, i ∈ I and i′ ∈ I ′,

(i) φi ◦ qt(ε′, ·) ∈ B(E ;Xi) and φ′
i′ ◦ qt(·, ε) ∈ Bconj(E ;X′

i′);
(ii) the maps s 7→ φi ◦ qs(ε′, ·) and s 7→ φ′

i′ ◦ qs(·, ε) are continuous at 0.

Then q = qν for a unique map ν ∈ SL(k̂;A).
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Now we consider the vacuum-adapted analogue of sesquilinear processes and
establish their relationship with standard sesquilinear processes. These are used
in the next section to obtain random walk approximation first for vacuum-adapted
sesquilinear cocycles.

Let SLPΩ(X, k) (SLPΩ
c (X, k)) denote the vacuum-adapted analogue of the spaces

of (continuous) SL processes in X that we have been considering, namely the classes

of families (qt)t≥0 in SL(k̂;X) satisfying

(i)Ω qt(ε(g
′), ε(g)) = qt(ε(g

′
[0,t[), ε(g[0,t[)) for all g, g

′ ∈ S and t ∈ R+,

and for continuous processes,

(ii)Ω s 7→ qs(ε
′, ε) is continuous, for all ε, ε′ ∈ E .

Adaptedness switching

q 7→ qΩ where qΩt (ε(g
′), ε(g)) := qt(ε(g

′
[0,t[), ε(g[0,t[)),

gives a linear isomorphism SLP(X, k) → SLPΩ(X, k), which restricts to an iso-
morphism SLPc(X, k) → SLPΩ

c (X, k). Vacuum-adapted multiple quantum Wiener
integrals are defined by sesquilinear extension of the prescription

ΛΩ
t (U)(ε(g′), ε(g)) :=

∑
m≥0

∫
∆

[m]

[0,t[

ds υm
(
ĝ′

⊗m
(s), ĝ⊗m(s)

)
(g′, g ∈ S),

for U =
(
υm

)
m≥0

∈ SLW(X, k), yielding a process ΛΩ(U) ∈ SLPΩ
c (X, k). In

particular, for λ ∈ SL(k̂;A), we may define qΩ,λ := ΛΩ
(
λ⊗

)
∈ SLPΩ

c (A, k). Thus,
for g′, g ∈ S,

qΩ,λt (ε(g′), ε(g)) =
∑
m≥0

∫
∆

[m]

[0,t[

ds λ⊗m
(
ĝ′

⊗m
(s), ĝ⊗m(s)

)
(2.5)

which is continuous in t, and satisfies qΩ,λ0 (ε(g′), ε(g)) = 1A and

d

dt
qΩ,λt (ε(g′), ε(g)) = qΩ,λt (ε(g′), ε(g))λ

(
ĝ′(t), ĝ(t)

)
t ∈ R+ \ (Disc g′ ∪Disc g).

(2.6)

Proposition 2.3. Let ν ∈ SL(k̂;A). Then

(qν)Ω = qΩ,ν+δ.

Proof. Let g′, g ∈ S and let D = Disc g′ ∪Disc g. It follows from adaptedness, (2.6)
and Theorem 2.1, that the functions

F1 : t 7→
(
qν
)Ω
t

(
ε(g′[0,t[), ε(g[0,t[)

)
and F2 : t 7→

(
qΩ,ν+δt

)(
ε(g′[0,t[), ε(g[0,t[)

)
satisfy the hypotheses of Lemma 1.2. The result follows. �

3. Discrete approximation

In this section we show how sesquilinear quantum stochastic cocycles may be ap-
proximated by quantum random walks, by shadowing Belton’s approach to discrete
approximation ([Be2]). The notations

PΩ ∈ B(F), ε̃(g) ∈ FJ , and ∆ ∈ B(k̂)

(where J is a subinterval of R+), stand for the vacuum projection PCΩ where Ω =
ε(0), the truncated exponential vector (1, g, 0, 0, · · · ) for g ∈ KJ , and the quantum
Itô projection P{0}⊕k. (Below J will be a vanishingly small interval.)

The discrete counterpart to the symmetric Fock space F is the countable tensor

product Υ :=
⊗∞

n=0 k̂n, with respect to the stabilising sequence (ω0, ω1, · · · ), in
which k̂n = k̂ and ωn =

(
1
0

)
∈ k̂n for each n. Meyer and Journé referred to this
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as toy Fock space ([Mey]). Set Υ0) := C, for n ∈ Z+ set Υ[n,∞[ :=
⊗∞

i=n k̂i (with
respect to the stabilising sequence (ωn, ωn+1, · · · )),

ω[n,∞[ :=

∞⊗
i=n

ωi ∈ Υ[n,∞[

and ∆⊥
[n,∞[ = PCω[n,∞[

∈ B(Υ). Also, for m ∈ {0, 1, · · · , n− 1}, set

ω[m,n[ :=
n−1⊗
i=m

ωi, Υ[m,n[ :=
n−1⊗
i=m

k̂i and Υ◦
[m,n[ :=

⊗n−1

i=m
k̂i.

Thus, for l,m ∈ Z+ with 0 ≤ l < m <∞,

Υ = Υ[0,l[ ⊗Υ[l,m[ ⊗Υ[m,∞[.

For h > 0 and n ∈ N, let J (h) ∈ B(Υ;F) and J
(h)
n ∈ B(Υ[0,n[;F[0,hn[) be the

isometries determined by the inner product preserving prescriptions

J (h)
( ∞⊗
j=0

ĉ(j)
)
=

∞⊗
j=0

ε̃
(
h−1/2c(j)[jh,(j+1)h[

)
for

(
c(j)

)
j≥0

∈ c00(k);

J (h)
n

( n−1⊗
j=0

ĉ(j)
)
=

n−1⊗
j=0

ε̃
(
h−1/2c(j)[jh,(j+1)h[

)
, for c(0), · · · , c(n− 1) ∈ k.

There are induced maps

Ξ(h)
n ,ΩΞ(h)

n : SL(Υ◦
[0,n[;A) → SL(E[0,nh[⊗F[nh,∞[;A) ⊂ SL(E ;A) (3.1)

determined by

Ξ(h)
n (υn)(ζ

′ ⊗ η′, ζ ⊗ η) = υn(J
(h) ∗
n ζ ′, J (h) ∗

n ζ)⟨η′, η⟩, respectively,

ΩΞ(h)
n (υn)(ζ

′ ⊗ η′, ζ ⊗ η) = υn(J
(h) ∗
n ζ ′, J (h) ∗

n ζ)⟨η′, PΩη⟩

(ζ ′, ζ ∈ E[0,nh[, η′, η ∈ F[nh,∞[). For n ∈ Z+, let P
n;h ∈ B(K) be the orthogonal

projection with range k ⊗ 1[nh,(n+1)h[ (under the identification K = k ⊗ L2(R+)),

and let Ph be the orthogonal projection whose range consists of the subspace of
functions which are constant on all intervals of the form [mh, (m+ 1)h[ (m ∈ Z+).
In terms of the notation

g[n;h] := h−1

∫ (n+1)h

nh

dt g(t) (g ∈ K, n ∈ Z+),

for the average of g over the interval [nh, (n+ 1)h], we have the identities

Pn;hg = g[n;h][nh,(n+1)h[, Ph = st.

∞∑
n=0

Pn;h,

J∗
hε(g) =

∞⊗
n=0

̂√
hg[n;h] and JhJ

∗
hε(g) =

∞⊗
n=0

ε̃
(
g[n;h]⊗ 1[nh,(n+1)h[

)
,

and the following key facts (cf. [Be1]); our proof exploits the following version of
Euler’s formula: for z, w ∈ C,

w(h) → w as h→ 0 =⇒ (1 + hz)w(h)/h → ezw as h→ 0.

Lemma 3.1. As h→ 0, Ph → IK and JhJ
∗
h → IF in the strong operator topology.

Proof. For contraction operators, strong operator convergence to an isometry fol-
lows from weak operator convergence with respect to a total family of vectors.
Accordingly, let c ∈ k, 0 ≤ r ≤ t and g′, g ∈ S. The first part follows from
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the inequality ∥(IK − Ph)c[r,t[∥ ≤ 2
√
h∥c∥ (h > 0). For the second part, set

D := {T1 < · · · < TN} = Disc g′ ∪Disc g and T0 = 0, then for 0 < h < meshD,

⟨J∗
hε(g

′), J∗
hε(g)⟩ = e0(h)

(
1 + ha1(h)

)
· · · eN−1(h)

(
1 + haN (h)

)
where, for k = 0, · · · , N − 1 and j = 1, · · · , N ,

ek(h) :=
(
1 + h⟨g′(Tk), g(Tk)⟩

)⌊Tk+1/h⌋−⌊1+Tk/h⌋ and

aj(h) := ⟨g′[⌊Tj/h];h⌋, g[⌊Tj/h⌋;h]⟩.

In view of the uniform bound |aj(h)| ≤ ∥g′∥∞∥g∥∞ and the fact that h
(
⌊Tk+1/h⌋−

⌊1 + Tk/h⌋
)
→ (Tk+1 − Tk) as h→ 0, the result follows from Euler’s formula:

⟨J∗
hε(g

′), J∗
hε(g)⟩ →

N−1∏
k=0

e(Tk+1−Tk)⟨g′(Tk),g(Tk)⟩ = e⟨g
′,g⟩ = ⟨ε(g′), ε(g)⟩

as h→ 0. �

In order to establish a combinatorial identity for tensor powers of a sesquilin-

ear map ν ∈ SL(k̂;A), we need some positioning notation for tensor components
(cf. [LW2]). For m,n ∈ Z+ with m < n define

δ, δ⊥ ∈ SL(k̂;A), δ⊥[m,n[ ∈ SL(Υ◦
[m,n[;A) and δ⊥[m,∞[ ∈ SL(Υ[m,∞[;A), by

δ = |1A⟩q∆, δ⊥ = |1A⟩q∆⊥ δ⊥[m,n[ :=
⊗n−1

j=m
δ⊥, and δ⊥[m,∞[ := |1A⟩q∆⊥

[m,∞[
,

where the notation (0.1) is invoked and ∆⊥
[m,∞[ ∈ B(Υ[m,∞[) denotes the orthogonal

projection with range Cω[m,∞[. For ν ∈ SL(k̂;A), n ∈ Z+ and α ⊂ {0, · · · , n− 1},
define ν[α, n] ∈ SL(Υ◦

[0,n[;A) by

ν[α, n] = γ0⊗ · · ·⊗γn−1 where γi =

{
ν if i ∈ α
δ⊥ if i /∈ α

with the convention ν[∅, 0] := ν⊗0 ∈ SL(C;A), (z, w) 7→ zw1A.
For n ∈ Z+ and a subset α of {0, · · · , n−1} (understood as ∅ if n = 0), we define

two associated subsets of {0, · · · , n}:
−−•
α := α ∪ {n} and

−−◦
α := α.

Lemma 3.2. For ν ∈ SL(k̂;A) and n ∈ Z+,

(ν + δ⊥)⊗n =
∑

α⊂{0,··· ,n−1}

ν[α, n].

Proof. Set ν̃ := ν + δ⊥. We prove the result by induction on n. The identity holds
for n = 0; suppose therefore that it holds for n = 1, · · · , p. Let β ⊂ {0, · · · , p},
then for α := β∩{0, · · · , p−1} there are two mutually exclusive possibilities: either

β =
−−•
α or β =

−−◦
α , moreover

ν[
−−•
α , p+ 1] = ν[α, p]⊗ ν and ν[

−−◦
α , p+ 1] = ν[α, p]⊗ δ⊥.

Thus ∑
β⊂{0,··· ,p}

ν[β, p+ 1] =
∑

α⊂{0,··· ,p−1}

(
ν[

−−•
α , p+ 1] + ν[

−−◦
α , p+ 1]

)
=

∑
α⊂{0,··· ,p−1}

ν[α, p]⊗ (ν + δ⊥) = ν̃⊗p⊗ ν̃ = ν̃⊗(p+1)

and so the identity holds for n = p+ 1, as required. �
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For α ⊂⊂ Z+, set

ν[α] := ν[α, n]⊗ δ⊥[n,∞[ ∈ SL(Υ◦
[0,n[ ⊗Υ[n,∞[;A) (3.2)

where n = 1 +maxα, with the convention max ∅ := −1.
Now let h > 0 and, for m ∈ N, set

⟨h⟩∆
(m)
[0,t[ :=

∪
α⊂{0,··· ,N−1}

|α|=m

[hα1, h(1+α1)[ × · · ·× [hαm, h(1+αm)[, where N = [t/h],

and ⟨h⟩∆
(0)
[0,t[ = ∆

(0)
[0,t[. Note that the union is a disjoint one; it approximates the

corresponding m-symplex:

⟨h⟩∆
(m)
[0,t[ ⊂ ∆

(m)
[0,t[ with

∣∣∆(m)
[0,t[ \

⟨h⟩∆
(m)
[0,t[

∣∣ ≤ {
hmtm−1/(m− 1)! if m ≤ t/h;
tm/m! if m > t/h.

Definition. Let U =
(
υm

)
m≥0

∈ SLW(A, k). The step-size h, discrete multiple

vacuum-adapted quantum Wiener integral of U is defined by sesquilinear extension
of the prescription

⟨h⟩ΛΩ
t (U)(ε(g′), ε(g)) =

∞∑
m=0

∫
⟨h⟩∆

(m)

[0,t[

ds υm(ĝ′
⊗m

(s), ĝ⊗m(s)) (g′, g ∈ S).

Recalling the bounding constants (2.1), the following estimates are now evident:

∥⟨h⟩ΛΩ
t (U)(ε(g′), ε(g))∥ ≤

∞∑
m=0

Cυmm (g′, g)tm/m! (3.3)

∥ΛΩ
t (U)(ε(g′), ε(g))− ⟨h⟩ΛΩ

t (U)(ε(g′), ε(g))∥ ≤∑
1≤m≤[t/h]

hmtm−1

(m− 1)!
Cυmm (g′, g) +

∑
m>[t/h]

tm

m!
Cυmm (g′, g). (3.4)

The standard h-scaling operator for discrete approximation is defined as follows:

Sh := h−1/2∆⊥ +∆ =

[
h−1/2 0
0 1k

]
∈ B(k̂) = B(C⊕ k).

For ν ∈ SL(k̂;A) define its h-scaling by Σh(ν) := ν ◦ (Sh × Sh) ∈ SL(k̂;A).

Proposition 3.3. Let ν ∈ SL(k̂;A), and let t > 0, ε ∈ EPhS and ε′ ∈ E. Then,

⟨h⟩ΛΩ
t (Σh(ν)

⊗)(ε′, ε) =
∑

α⊂{0,...,N−1}

ν[α]
(
J∗
hε

′, J∗
hε

)
where N = ⌊t/h⌋.

Proof. Let g′ ∈ S and g ∈ PhS. First note that, for each m ∈ Z+,∫
⟨h⟩∆

(m)

[0,t[

ds Σh(ν)
⊗m(

ĝ′
⊗m

(s), ĝ⊗m(s)
)
=

∑
α⊂{0,··· ,N−1}

#α=m

−−−−→∏
1≤j≤m

∫ h(1+αj)

hαj

dsj Σh(ν)
(
ĝ′(sj), ĝ(sj)

)
.

Now, for α = {a1, · · · , am} ⊂ {0, · · · , N − 1},∫ h(1+aj)

haj

dsj Σh(ν)
(
ĝ′(sj), ĝ(sj)

)
=

∫ h(1+aj)

haj

dsj Σh(ν)
(
ĝ′(sj),

̂h−1/2g(aj , h)
)

= ν
( ̂g(aj , h), ̂g(aj , h)

)
,
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so
−−−−→∏
1≤j≤m

∫ h(1+aj)

haj

dsj Σh(ν)
(
ĝ′(sj), ĝ(sj)

)
= ν[α]

(
J∗
hε(g

′), J∗
hε(g

′)
)
.

The result follows. �

Recall the definition of ΩΞ
(h)
n defined in (3.1).

Definition. Let γ ∈ SL(k̂;A). The vacuum-embedded quantum random walk with
generator γ and step size h is the process ⟨h⟩qΩ,γ ∈ SLPΩ(A, k) defined by

⟨h⟩qΩ,γt := ΩΞ
(h)
⌊t/h⌋

(
γ⊗⌊t/h⌋) (t ≥ 0).

As an immediate consequence of Lemma 3.2 and Proposition 3.3, we see that
vacuum embedded random walks enjoy a discrete multiple Wiener integral decom-
position.

Proposition 3.4. Let λ ∈ SL(k̂;A), ε′ ∈ E and ε ∈ EPhS. Then

⟨h⟩qΩ,λ+δ
⊥

t (ε′, ε) = ⟨h⟩ΛΩ
t

(
λ⊗
h

)
(ε′, ε) (t ∈ R+).

We can now establish the vacuum-embedded sesquilinear random walk approxi-
mation result. The following notations are used:

SD = {f ∈ S : Disc f ⊂ D}, ED = Lin{ε(g) : g ∈ SD} and D>0 = D∩ ]0,∞[

where D denotes the field of dyadic rationals. Thus SD and ED are dense in K and
F respectively.

Theorem 3.5. Let λ ∈ SL(k̂;A) and let
(
hn, γn

)
be a sequence in D>0×SL(k̂;A)

satisfying

Σhn(γn − δ⊥) → λ pointwise on k̂× k̂ and hn → 0 as n→ ∞.

Then, for all ε′ ∈ E, ε ∈ ED and T ∈ R+,

sup
t∈[0,T ]

∥∥⟨hn⟩qΩ,γnt (ε′, ε)− qΩ,λt (ε′, ε)
∥∥ → 0 as n→ ∞.

Proof. Set ε′ = ε(g′) and ε = ε(g) where g′ ∈ S and g ∈ SD, let T > 0 and let n ∈ N
be sufficiently large that Phng = g. By Proposition 3.4 and the definition in (2.5),
we must show that supt∈[0,T ] α(n, t) → 0 as n→ ∞, where

α(n, t) :=
∥∥⟨hn⟩ΛΩ

t

(
λ⊗n

)
(ε′, ε)− ΛΩ

t (λ
⊗)(ε′, ε)

∥∥ and λn := Σhn(γn − δ⊥).

Define constants

C1(n) := max
{
∥(λn − λ)(ĉ′, ĉ)∥ : c′ ∈ Ran g′, c ∈ Ran g

}
and

C2(n) := max
{
max{∥λ(ĉ′, ĉ)∥∥λn(ĉ′, ĉ)∥} : c′ ∈ Ran g′, c ∈ Ran g

}
,

and set U = λ⊗n − λ⊗. Thus υ0 = 0 and the bounding constants for the resulting
quantum Wiener integrals satisfy Cυmm (g′, g) ≤ mC1(n)C2(n)

m−1 (m ∈ N), and

C1(n) → 0 and C2(n) → max
{
∥λ(ĉ′, ĉ)∥ : c′ ∈ Ran g′, c ∈ Ran g

}
as n→ ∞.

Therefore, using (3.3) and (3.4), and setting Cλ(g′, g) := Cλ1 (g
′, g),

sup
t∈[0,T ]

α(n, t) ≤ sup
t∈[0,T ]

(∥∥⟨hn⟩ΛΩ
t

(
λ⊗n − λ⊗

)
(ε′, ε)

∥∥+
∥∥(⟨hn⟩ΛΩ

t − ΛΩ
t

)
(λ⊗)(ε′, ε)

∥∥)
≤ C1(n)

∞∑
m=1

mC2(n)
m−1T

m

m!
+ hn

∞∑
m=1

mCλ(g′, g)m
Tm−1

(m− 1)!
,

which tends to 0 as n→ ∞, as required. �
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Next we define identity-embeded quantum random walks and obtain the identity-
embeded quantum random walk approximation result.

Definition. Let γ ∈ SL(k̂;A). The identity-embedded quantum random walk with
generator γ and step size h, is the process ⟨h⟩qγ ∈ SLP(A, k) defined by

⟨h⟩qγt := Ξ
(h)
⌊t/h⌋

(
γ⊗⌊t/h⌋) (t ≥ 0).

Note that, from the definitions, for g′, g ∈ S, and N = ⌊t/h⌋,
⟨h⟩qγt (ε(g

′), ε(g)) = ⟨h⟩qΩ,γt (ε(g′), ε(g)) ⟨ε(g′[Nh,∞[), ε(g[Nh,∞[)⟩. (3.5)

Theorem 3.6. Let ν ∈ SL(k̂;A), and let
(
hn, γn

)
be a sequence in D>0×SL(k̂;A)

satisfying

Σhn(γn − ι) → ν pointwise on k̂× k̂ and hn → 0 as n→ ∞,

where ι := |1A⟩qI ∈ SL(k̂;A). Then

sup
t∈[0,T ]

∥∥⟨hn⟩qγnt (ε′, ε)− qνt (ε
′, ε)

∥∥ → 0 as n→ ∞ (ε′ ∈ E , ε ∈ ED, T ∈ R+).

Proof. Let g′ ∈ S, g ∈ SD and T > 0. From Theorem 2.3 we have

qνt (ε(g
′), ε(g)) = qΩ,ν+δt (ε(g′), ε(g)) ⟨ε(g′[t,∞[), ε(g[t,∞[)⟩ (t ∈ R+)

Therefore, by (3.5), it suffices to show that

sup
t∈[0,T ]

∥∥ΩΞ(hn)
⌊t/hn⌋(γn)(ε(g

′), ε(g))− qΩ,ν+δt (ε(g′), ε(g))
∥∥ = 0.

This follows from Theorem 3.5, since

Σhn(γn − δ⊥) = Σhn(γn − ι) + δ → ν + δ pointwise as n→ ∞.

�
Remark. Given ν ∈ SL(k̂;A) and any sequence (hn) in R>0, letting γn ∈ SL(k̂;A)
be the map defined by

γn

((α
c′

)
,

(
β

c

))
:=

⟨(α
c′

)
,

(
β

c

)⟩
+ ν

((√hnα
c′

)
,

(√
hnβ

c

))
,

we have Σhn(γn − ι) = ν for each n ∈ N; we may call the sequence (γn) resulting
from the choice hn = 2−n (n ∈ N), the dyadic random walk approximation.

4. Random walk approximation for mapping cocycles

In this section we obtain random walk approximation results for mapping cocy-
cles on a concrete operator space V from discrete approximation results obtained
in the previous section.

Recall the matrix space tensor product and extended composition of maps de-
fined in Section 1. Let B(h; h′) be the ambient full operator space of V. For a map

ψ ∈ L
(
D̂;CB(V;V⊗M |k̂⟩)

)
, we use the following subscript notation ψζ := ψ(ζ), ζ ∈

D̂. Define Σh(ψ) ∈ L
(
D̂;CB(V;V ⊗M |k̂⟩)

)
by Σh(ψ)ζ :=

(
Ih′ ⊗ Sh

)
ψShζ(·) and,

in the extended composition notation (1.1) define the identity-embedded quantum
random walk with generator ψ and step size h to be the cb column-bounded process
given by

⟨h⟩kψt,ε(g[0,t[)(x) := (Ih′ ⊗ J
(h)
N )

(
ψ
ĝ(0;h)

• · · · • ψ ̂g((N−1);h)

)
(x)⊗ |Ω[hN,∞[⟩

(x ∈ V, g ∈ S) where N = ⌊t/h⌋.
In case ψ ∈ CB

(
V;V ⊗M B(k̂)

)
, the random walk is given by

⟨h⟩kψt (x) :=
(
Ih′ ⊗ J

(h)
N

)
ψ•N (x)

(
Ih ⊗ J

(h)
N

)∗ ⊗ I[Nh,∞[, where N = ⌊t/h⌋.
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Remark. The random walk ⟨h⟩kψ is (completely) contractive if the map ψ is; simi-
larly, it inherits (complete) positivity/*-homomorphic properties from ψ when V is
a C∗-algebra; when ψ is unital, ⟨h⟩kψ is ‘almost unital’:

⟨h⟩kψt (1) = Ih ⊗ J
(h)
N J

(h)∗
N ⊗ I[Nh,∞[ where N = ⌊t/h⌋.

For ϕ ∈ L
(
D̂;CB(V;V ⊗M |k̂⟩)

)
, the mapping cocycle which satisfies the QSDE

dkt = kt dΛϕ(t), k0 = ιVF

where ιVF is the ampliation (see [LW2], or [L]), is denoted k
ϕ.

Given an element ϕ of L
(
D̂;CB(V;V ⊗M |k̂⟩)

)
define the associated sesquilinear

map νϕ ∈ SL(D̂;CB(V)) by νϕ(η, ζ) = Eηϕζ(.) (η, ζ ∈ D̂). Then the associated
sesquilinear process of kϕ is qνϕ (see Proposition 5.3, [DLT]), that is qνϕ(ε′, ε) =

Eε
′
kϕt,ε(.) for all t ∈ R+ and ε, ε′ ∈ ED.

Theorem 4.1. Let ϕ, ψ1, ψ2, · · · ∈ L
(
D̂;CB(V;V⊗M |k̂⟩)

)
and h1, h2, · · · ∈ D>0 be

such that

∀c′∈k,c∈D

∥∥E ĉ′(Σhn(ψn − ι)− ϕ)ĉ(·)
∥∥
cb

→ 0 and hn → 0 as n→ ∞.

Then the following hold, for all T > 0.

(a) For all ε′ ∈ E and ε ∈ ED
D ,

sup
t∈[0,T ]

∥∥Eε′(⟨hn⟩kψn

t,ε − kϕt,ε
)
(·)

∥∥
cb

→ 0 as n→ ∞.

(b) Suppose that the cocycle kϕ, as well as each map ψn, is completely contrac-
tive. Then, for all ω ∈ B(F)∗,

sup
t∈[0,T ]

∥∥( idV ⊗M ω
)
◦
(⟨hn⟩kψn

t − kϕt
)∥∥

cb
→ 0 as n→ ∞.

(c) Suppose that V is a C∗-algebra, the cocycle kϕ is *-homomorphic and each
map ψn is completely positive and contractive. Then, for all a ∈ V and
ξ ∈ h⊗F ,

sup
t∈[0,T ]

∥∥⟨hn⟩kψn

t (a)ξ − kϕt (a)ξ
∥∥ → 0 as n→ ∞.

Proof. (a) This is precisely the conclusion obtained from applying Theorem 3.6 to
the associated sesquilinear maps and process.

(b) This follows from (a), by the remark preceding the theorem and uniform
boundedness.

(c) In this case, by the operator Schwarz inequality, if a ∈ V, ξ ∈ h ⊗ F and
n ∈ N, then

∥(κn(a)− κ(a))ξ∥2 ≤ ωξ ◦ (κn − κ)(a∗a) + 2Reωκ(a)ξ,ξ ◦ (κ− κn)(a)

for κn := ⟨hn⟩kψn

t and κ = kϕt , so (c) follows from (b) and uniform boundedness. �

Remarks. Quantum random walk approximation for mapping cocyles is obtained
in [Be2]; in [DL2] strengthened forms of these results are obtained, in an ab-
stract operator space setting. For comparison, we summarise these now. Without
the dyadic restriction on (hn), Belton obtains slightly stronger conclusions under

slightly stronger hypotheses. He assumes that ϕ, ψ1, ψ2, · · · ∈ CB
(
V;V ⊗M B(k̂)

)
and proves that if∥∥(Σhn(ψn − ι)− ϕ

)
⊗M idB(k̂) (X)

∥∥ → 0 and hn → 0 as n→ ∞, (4.1)
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for all X ∈ V ⊗M B(k̂), then

sup
t∈[0,T ]

∥∥(⟨hn⟩kψn

t,ε − kϕt,ε
)
(x)

∥∥ → 0 as n→ ∞ (x ∈ V, ε ∈ E , T > 0)

whereas, if ∥∥Σhn(ψn − ι)− ϕ
∥∥
cb

→ 0 and hn → 0 as n→ ∞ (4.2)

then
sup
t∈[0,T ]

∥∥⟨hn⟩kψn

t,ε − kϕt,ε
∥∥
cb

→ 0 as n→ ∞ (ε ∈ E , T > 0),

and if either V is a C∗-algebra and each map is ψn is *-homomorphic with range

in the spatial tensor product V ⊗ B(k̂), or V is a von Neumann algebra and each
map ψn is normal and *-homomorphic, then kϕ is *-homomorphic, moreover he
constructs such a sequence (ψn)n≥0 for maps ϕ enjoying the standard form of sto-
chastic generator (see [L]) for generators of Markov-regular quantum stochastic
flows (i.e. unital ∗-homomorphic quantum stochastic cocycles). As noted by Bel-
ton, if dim k = ∞ then the hypotheses (4.1) and (4.2) are actually equivalent, by
Lemma 1.1.

5. Random walk approximation for isometric operator cocycles

In this section we consider isometric operator cocycles which are Markov-regular,
equivalently have bounded stochastic generator, and the class of direct sums of
Markov-regular isometric cocycles. Direct sums of unitary cocycles arise naturally
in the theory of Lévy processes on compact quantum groups, where they implement
quantum Lévy processes on the underlying Hopf*-algebra ([DaL]).

Fix a Hilbert space h. For G ∈ B(h ⊗ k̂), its h-scaling is the operator Σh(G) ∈
B(h⊗ k̂) defined by Σh(G) := (Ih⊗Sh)G(Ih⊗Sh). Given G ∈ B(h⊗ k̂), the random
walk generated by G is constructed in terms of the extended compositions of G’s,
defined recursively as follows:

G•m+1 := (G⊗ Ik̂⊗m)(Σ∗ ⊗ Ik̂⊗m)(Ik̂ ⊗G•m)(Σ⊗ Ik̂⊗m)

with G•0 := Ih, where Σ here denotes the tensor flip h⊗ k̂ → k̂⊗ h.

Definition. Let G ∈ B(h⊗ k̂) and h > 0. The identity-embedded quantum random
walk with generator G and step size h, is the operator process ⟨h⟩XG defined by

⟨h⟩XG
t := (Ih ⊗ J

(h)
N )F •N (Ih ⊗ J

(h)
N )∗ ⊗ IF[Nh,∞[

(t ≥ 0, N = ⌊t/h⌋).

The quantum stochastic operator cocycle generated by F ∈ B(h ⊗ k̂), denoted
XF , is the unique strong solution of the operator quantum stochastic differential
equation

dXt = XtΛF (t), X0 = Ih⊗F

which is ‘strongly regular, that is satisfiesXt,ε := XtEε ∈ B(h; h⊗F) and (XtEε)t>0

is locally uniformly bounded (see [L]). For any such F there is its associated
sesquilinear map

νF ∈ SL(k̂;B(h)), (ζ, η) 7→ EζFEη,

so that Eε
′
XFEε = qνF (ε′, ε) for all ε, ε′ ∈ E .

Theorem 5.1. Let F ∈ B(h⊗ k̂) and let (hm, Gm) be a sequence in D>0×B(h⊗ k̂)
satisfying

EζΣhm(Gm − Ih⊗k̂)Eη → EζFEη and hm → 0 as m→ ∞ (ζ, η ∈ k̂).

Then for all T ≥ 0, ε′ ∈ E and ε ∈ ED,

sup
t∈[0,T ]

∥Eε
′
(⟨hm⟩XGm

t,ε −XF
t,ε)∥ → 0 as m→ ∞.
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Proof. Let ν, γn ∈ SL(k̂;B(h)) be the sesquilinear maps associated to F and Gn,
as above. Then the hypothesis of Theorem 3.6 is satisfied for ν and γn. The result
therefore follows from the fact that Eε

′ ⟨hn⟩XGm
t,ε = ⟨hn⟩qγmt (ε′, ε) for all m,n ∈ N,

ε′, ε ∈ E , and t ∈ R+.
�

Remark. In [AtP], Theorem 13, a similar approximation result is obtained under
the following hypothesis on the convergence of scaled generators:

sup
∥u∥61

∥∥∥(Σhm(Gm − Ih⊗k̂)− F
)
Eu

∥∥∥
HS(k̂;h⊗k̂)

→ 0 and hm → 0 as m→ ∞.

This assumption is considerably stronger than ours when k is infinite-dimensional.

Let XF be the Markov-regular quantum stochastic isometric cocycle with sto-

chastic generator F ∈ B(h⊗ k̂) having block matrix form

F =

[
iH − 1

2L
∗L −L∗W

L W − I

]
(5.1)

where H ∈ B(h) is bounded selfadjoint, L ∈ B(h; h ⊗ k) and W ∈ B(h ⊗ k) is
isometric. Now define isometries associated to F as follows (cf. [Sah] Theorem
4.2, [Be2] Example 6.2 ):

Gh := eh
1/2RL

[
eihH 0
0 W

]
(5.2)

where RL :=
[
0 −L∗

L 0

]
. Then a straightforward calculation confirms that

Σh(G
h − Ih⊗k̂) = F +O(

√
h) as h→ 0. (5.3)

Theorem 5.2. Let X be a Markov-regular isometric quantum stochastic operator

cocycle. with stochastic generator F ∈ B(h⊗ k̂) and let (hn) be a sequence in D>0

converging to 0. Then there is a sequence of isometries (Gn) in B(h⊗ k̂) such that
for all t ∈ R+ and ξ ∈ h⊗F ,

⟨hn⟩XGn
t ξ → Xtξ as n→ ∞.

Proof. By the isometry of X, it suffices to find contractions (Gn) in B(h⊗ k̂) such
that

⟨ξ′, (⟨hn⟩XGn
t −Xt)ξ⟩ → 0 as n→ ∞ (5.4)

for all ξ, ξ ∈ h⊗E . Isometry for X implies that its stochastic generator F has the
form (5.1). Set Gn := Ghn as in (5.2). Then, by (5.3), (hn, Gn) and F satisfy the
hypothesis of Theorem 5.1 and so (5.4) holds, as required.

�

When h decomposes as an orthogonal sum
⊕

n>1 hn,
⊕

n≥0 QSiCMr(hn, k) de-

notes the class of quantum stochastic isometric cocycles U on h of the form
⊕

n≥1 U
n,

where Un is a Markov-regular isometric cocycle on hn⊗F , for each n. We finish by
showing that this class is approximable by isometric quantum random walks. To
this end, we use the notation

h6N := {(un) ∈ h : un = 0 for n > N}.

Corollary 5.3. Let h =
⊕

n≥0 hn, let

U =
⊕
n≥0

Un ∈
⊕
n≥0

QSiCMr(hn, k),

and set

G
(h)
6N :=

N⊕
n=1

G(h)
n ⊕

⊕
n>N

Ihn⊗k̂ (h > 0, N ∈ N),



14 KRISHNA DAS AND LINDSAY

where G
(h)
n is the isometry defined as in (5.2), in terms of the stochastic generator

of Un. Then, for any sequence (hN ) in D>0 converging to 0,

⟨hN ⟩X
G

(hN )

6N

t ξ → Utξ as N → ∞ (ξ ∈ h⊗F , t ∈ R+).

Proof. Let ξ ∈ h ⊗ F and ϵ > 0. Choose p ∈ N and ξ′ ∈ h6p ⊗ F such that
∥ξ − ξ′∥ < ϵ and set

U6p
t :=

p⊕
n=1

Unt ⊕
⊕
n>p

Ihn⊗F ∈ B(h⊗F) (t ∈ R+),

noting that (U6p
t )t>0 ∈ QSiCMr(h, k). Then

Utξ
′ = U6p

t ξ′ (t ∈ R+),

⟨h⟩X
G

(h)
6N

t ξ′ = ⟨h⟩X
G

(h)
6p

t ξ′ (N > p, h > 0, t ∈ R+),

and, by Theorem 5.2,

⟨hN ⟩X
G

(hN )

6p

t ξ′ → U6p
t ξ′ as N → ∞.

The result therefore follows by the uniform boundedness of all the operators con-
cerned and the arbitrariness of ϵ. �

Remark. It is not hard to see that the strong-operator convergence in these two
results is again locally uniform in t.
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U. Franz & M. Schürmann), Lecture Notes in Math. 1865, Springer-Verlag, Heidelberg
2005, pp. 181–271.

[LiS] J.M. Lindsay and A.G. Skalski, Quantum stochastic convolution cocycles II, Comm. Math.
Phys. 280 (2008) no. 3, 575–610.

[LW1] J.M. Lindsay and S.J. Wills, Existence of Feller cocycles on a C∗-algebra, Bull. London
Math. Soc. 33 (2001) no.5, 613–621.



QRW IN BANACH ALGEBRA 15

[LW2] — —, Homomorphic Feller cocycles on a C∗-algebra, J. London Math. Soc. 68 (2003)
no.1, 255–272.

[Mey] P.-A. Meyer, “Quantum Probability for Probabilists” (2nd edition), Lecture Notes in Math.
1538, Springer-Verlag, Berlin 1995.

[Par] K.R. Parthasarathy, “Introduction to Quantum Stochastic Calculus,” Monographs in
Mathematics 85, Birkhäuser, Basel, 1992.
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