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Abstract

We show that any set of n pairwise disjoint ovals in a finite pro-
jective plane of even order has a unique common tangent. As a con-
sequence, any set of q+1 pairwise disjoint ovoids in PG(3, q), q even,
has exactly q2+1 common tangent lines, constituting a regular spread.
Also, if q−1 ovoids in PG(3, q) intersect pairwise exactly in two given
points x ̸= y and share two tangent planes πx, πy at these two points,
then these ovoids share exactly (q + 1)2 common tangent lines, and
they consist of the transversals to the pair xy, πx ∩ πy of skew lines.
There is a similar (but more complicated) result for the common tan-
gent lines to q ovoids in PG(3, q) which are mutually tangent at a
common point and share a common tangent plane through this point.
It is also shown that the common tangent lines to any pair of disjoint
ovoids of PG(3, q), q even, form a regular spread.

1 Introduction

Let us recall that an oval in a finite projective plane of order n is a
set of n + 1 points no three of which are collinear. It follows that an
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oval has exactly n + 1 tangent lines, one such through each point of
the oval. When A is an oval in a projective plane π of odd order n,
then the set A∗ of the tangent lines to A form an oval in the dual
projective plane π∗; we have A∗∗ = A. However, when n is even, any
oval A in a plane of order n has a unique point x ̸∈ A such that the
tangent lines to A are precisely the lines through x. The point x is
called the nucleus of A.

When q is an odd prime power, a famous theorem due to Segre
says that the ovals in the Desarguesian plane PG(2, q) are precisely
the conics (i.e., the set of all points, the homogeneous co-ordinates
of which satisfy homogeneous quadratic equation). However, when
q = 2e is large, classification of ovals in PG(2, q) is a hopelessly difficult
problem.

For prime powers q, an ovoid in the three-dimensional projective
space PG(3, q) is a set of points which meet every plane in a point or
an oval. A trivial count shows that there are exactly q2 + 1 points on
it, and it has exactly q2 + 1 tangent planes, one at each of its point.
Indeed, the set O∗ of tangent planes to O form an ovoid in the dual
of PG(3, q). When q > 2, the ovoids in PG(3, q) are precisely the
point sets of PG(3, q) of the largest possible size no three of which are
collinear.

When q is an odd prime power, there is a beautiful three-dimensional
analogue, due to Barlotti and Panella (see [F], 1.4.50) of Segre’s the-
orem. In this case, the ovoids in PG(3, q) are precisely the elliptic
quadrics (i.e., non-degenerate quadrics of Witt index one).

The situation with ovoids is more interesting for q = 2e. When
e = 1 or e is even, the elliptic quadrics are the only known ovoids
in PG(3, q). When e > 1 is odd, apart from the elliptic quadrics,
there is only one more isomorphism class of known ovoids, namely
the Tits ovoids. Despite serious attempts by many researchers, no
other examples of ovoids have turned up. Thus we have the following
conjecture, which is perhaps the most tantalising open problem in
finite geometry.

Conjecture 1.1 Up to isomorphism, the elliptic quadrics and Tits
ovoids are the only ovoids in PG(3, q).

This conjecture gains extra importance due to a related result of
Dembowski. Recall that a finite inversive plane of order n > 1 is
nothing but a Steiner 3-design with parameters (n2 + 1, n + 1, 1). In
other words, it is an one-point extension of an affine plane of order n.
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A well-known but apparently inaccessible conjecture asserts that the
order of any finite affine plane (equivalently, a finite projective plane) is
a prime power. The corresponding problem for inversive planes may be
more accessible. Indeed, the only known finite inversive planes are the
“egg-like” ones, i.e., those which arise as the non-trivial plane sections
of ovoids in PG(3, q). We still do not know if all finite inversive planes
are egg-like. But this is a theorem of Demboswki in the even order
case. If the order of a finite inversive plane is even, then indeed it is
a power of 2, and the points and blocks of the inversive plane are (up
to isomorphism) the points and non-trivial plane sections of an ovoid
in PG(3, q). Thus, the classification of inversive planes of even order
is equivalent to the classification of ovoids in PG(3, q), q even.

It is our hope that if we could gain a good understanding of how the
ovoids (known or unknown) must intersect, then it would be possible
to see that there is no “space” in PG(3, q) for any unknown ovoid. This
motivates our previous papers [1], [2] as well as the current paper.

Recall that O∗ is the dual ovoid consisting of the tangent planes
to a given ovoid O. The following remarkable result is due to Bruen
and Hirschfield [4]. We cannot resist the temptation to reproduce its
simple and elegant proof. Let O1 and O2 be two ovoids in PG(3, q).
Let us count the number of pairs (x, π) where x ∈ O1, π ∈ O∗

2 and
x ∈ π. Since each point on O2 is on a unique tangent plane to O2

and each point off O2 is on q+1 tangent planes to O2, the number of
such pairs is #(O1 ∩O2) + (q+ 1)(q2 + 1−#(O1 ∩O2)). A dual way
of counting these pairs (effect the interchanges O∗

2 ↔ O1, O∗
1 ↔ O2)

yields #(O∗
1 ∩ O∗

2) + (q + 1)(q2 + 1 − #(O∗
1 ∩ O∗

2)) as their number.
Equating the two answers, we get:

Theorem 1.2 (Bruen and Hirschfield): For any two ovoids O1 and
O2 in PG(3, q), we have #(O∗

1 ∩ O∗
2) = #(O1 ∩ O2).

Notice that this result is valid for any prime power q (even or
odd). This result is all the more remarkable since its analogue for
ovals is false. (For instance, there are disjoint ovals sharing a tangent,
compare Theorem 2.1 below.) So this result cries out for a geometric
explanation. In this context, it seems very natural to ask.

Question 1.3 Is it true that any common point of two ovoids in
PG(3, q) lie on a common tangent plane to them?
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Notice that, if the answer to this questions was in the affirmative,
then the map x 7→ πx, sending any common point x to the unique com-
mon tangent plane πx through x, would provide a bijection between
O1 ∩ O2 and O∗

1 ∩ O∗
2, thus explaining Theorem 1.2. Unfortunately,

we find that the answer to this question is in the negative, at least
for q > 2, even. To explain our answer, let us introduce the following
notation. For ovoids O1,O2, let I(O1,O2) be the set of all pairs (x, π)
where x ∈ O1 ∩ O2, π ∈ O∗

1 ∩ O∗
2 and x ∈ π. In Section 3 of this

paper, we show that for q = 2e and ovoids O1,O2 of PG(3, q) which
do not share all tangent lines, we have #I(O1,O2) ≤ 2. Therefore, if
Question 1.3 had an affirmative answer, then it would follow that we
have #(O1 ∩ O2) ≤ 2 for any such pair of ovoids. But this is easily
disproved when q > 2. So we are forced to ask the following vague
question.

Revised Question 1.4 For ovoids O1,O2 in PG(3, q), is there a ge-
ometrically defined (“natural”) bijection between O1∩O2 and O∗

1∩O∗
2?

We recall that a linear complex in PG(3, q) is the set of all ab-
solute lines with respect to a symplectic polarity of PG(3, q) (i.e. a
polarity for which all points are absolute). If P is the set of all points
of PG(3, q) and L is a linear complex in PG(3, q) then the incidence
system (P,L) is denoted by W (q). Since the action of the collineation
group PGL(4, q) by conjugation is transitive on the set of all sym-
plectic polarities, the incidence system W (q) is uniquely defined, up
to isomorphism. It is a generalized quadrangle of order (q, q) (Cf.
[Payne + Thas]). (An...) ovoid of W (q) is a set of q2 + 1 points no
two of which are collinear. It is easy to see that every ovoid of W (q)
is an ovoid of PG(3, q).

Now consider the following construction. Let q = 2e and O be an
ovoid of PG(3, q). Consider the incidence system W (O) whose points
are the points of PG(3, q) and whose lines are the tangent lines to O.
For each point x, the union of the q + 1 tangent lines to O through
x is a plane πx. (This is true only for q even and may be seen by
dualizing the statement that the ovals which are the non-trivial the
plane sections of O have their respective nudes.) Then x ↔ πx defines
a symplectic polarity of PG(3, q) whose absolute lines are precisely the
lines of W (O). Thus, for each ovoid of O of PG(3, q), q even, W (O)
is a copy of W (q) and O is an ovoid of this copy of W (q). Thus, each
ovoid of PG(3, q) is an ovoid of (a unique copy of) W (q). In view of
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this observation, the classification of the ovoids of PG(3, q), q even, is
equivalent to the classification of the ovoids of W (q).

Remark 1.5 The above construction/observation is due to Segre. The
two uses of the word “ovoid” (ovoid of PG(3, q) versus ovoid of W (q))
has apparently led to endless confusions, compounded by Segre’s ob-
servation. So we clarify further. The action of PGL(4, q) on the
class of all ovoids of PG(3, q) induce a natural partition of this class.
PGL(4, q) itself is transitive on the cells of this partition, while the
stabilizer of each cell is a copy of the symplectic group PSP (4, q), to
wit, the group of collineations of the common copy of W (q) defined by
the ovoids in the given cell.

In [2], we proved that any two of the known ovoids of W (q) meet
in 1, q+1, 2q+1, q+

√
2q+1 or q−

√
2q+1 points. In [1] we combined

coding theory and group action to prove that any known ovoid of
W (q) meets all possible ovoids of W (q) oddly. This last result was
generalized by Butler [3] as follows:

Theorem 1.6 (Butler) Let q = 2e and O1,O2 be two ovoids of PG(3, q)
such that W (O1) ̸= W (O2). Then #(O1 ∩ O2) is an odd number.

In other words, any two ovoids in each of the cells of Remark 1.5 have
pairwise odd intersection.

In the next section, we use counting arguments to show that any
n pairwise disjoint ovals in a projective plane of even order n have a
unique common tangent line (Lemma 2.1). As an immediate conse-
quence of this lemma, we show that, for even q, the common tangent
lines to any q + 1 pairwise disjoint ovoids in PG(3, q) form a spread.
However, we defer the proof of regularity of this spread to the final
section.

It is easy to see that any three mutually skew lines in PG(3, q)
have exactly q + 1 transversals (lines meeting all three given lines).
Such a set of q + 1 transversals is called a regulus in PG(3, q). The
transversals to the lines in any regulus form another regulus, called
the opposite of the given regulus. Thus, any three pairwise skew lines
of PG(3, q) are together in a unique regulus. A spread of PG(3, q)
is a set of q2 + 1 mutually skew lines (partitioning the point set). A
spread Σ in PG(3, q) is said to be regular if for any three disjoint lines
ℓ1, ℓ2, ℓ3 ∈ Σ, the unique regulus containing ℓ1, ℓ2, ℓ3 is contained in
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Σ. (Thus, the regulus contained in a regular spread form the circles
of an inversive plane of order q.)

The Klein correspondence is a bijection between the set of lines of
PG(3, q) and the set of points of a hyperbolic quadric Q+(5, q) (the
Klein quadric) in PG(5, q) which takes intersecting pairs of lines to
collinear pairs of points. (Two points of Q+(5, q) are collinear if the
line joining them is contained in Q+(5, q)).

In Section 3, we observe that the existence of the Klein correspon-
dence immediately implies that there are only three possibilities for
the intersection of distinct linear complexes L1, L2 in PG(3, q). One
of these possibilities is a regular spread. In view of the preceding
discussion, this observation has immediate implications for the set of
common tangent lines between two ovoids in PG(3, q) in case q is even.
One consequence is the bound on the size of I(O1,O2) quoted above.
We also prove that, for any two disjoint ovoids O1,O2 of PG(3, 2e),
the common tangent lines to O1 and O2 form a regular spread. (How-
ever, this does not imply the main result of Section 2. The counting
argument in Section 2 appears to be indispensable.) If q − 1 ovoids
of PG(3, q), q even, intersect pairwise in two common points x ̸= y
(exactly) and share then two tangent planes πx, πy at x and y (respec-
tively), then the common tangent lines to these ovoids are precisely
the tranversals to the pair xy, πx ∩ πy of skew lines. Also, if q ovoids
Oi, 1 ≤ i ≤ q, of PG(3, q), q even, intersect pairwise exactly at a point
x and share a common tangent plane πx at x, then either (i) these
ovoids have the same set of tangent lines (i.e., W (O1) = · · · = W (O2)),
or (ii) they have exactly q + 1 common tangent lines, namely those
lines through x which are contained in πx, or (iii) there is a unique
line ℓ0 with x ∈ ℓ0 ⊆ πr such that the q ovoids have exactly q2 + q+1
common tangent lines, namely the tangent lines of O1 which intersect
ℓ0.

For the unproved general results on finite projective geometries
quoted here, the reader may consult [5].

2 Counting arguments

We begin with

Lemma 2.1 Let Ci, 1 ≤ i ≤ n, be n pairwise disjoint ovals in a finite
projective plane π of even order n. Then these ovals have a unique
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common tangent line. (Every other line is a tangent to at most one
of these ovals.)

(Note that, in this lemma, the plane π is not assumed to be desar-
guesian. Conceivably, n may not even be a power of two.)

Proof: Notice that there is a unique point x of π which is not
covered by the given ovals (the total number of points of π is n2+n+
1 = n(n+ 1) + 1).

Let xi be the nucleus of Ci and put m = {x, x1, . . . , xn}. We do
not assume a priori that these points are distinct. Thus, we have
#(m) ≤ n + 1. Notice that every line ℓ of π intersects m. (This is
trivial if x ∈ ℓ. Otherwise, the ovals Ci induce a partition of ℓ into
singletons and doubletons. Since #(ℓ) = n+ 1 is odd, at least one of
the cells in this partition is a singleton. That is, ℓ is a tangent line
to at least one Ci. The nucleus xi of this oval lies on ℓ as well as on
m.) Therefore a standard argument shows that m is a line of π (and,
indeed, #(m) = n + 1). Since the line m passes through the nucleus
xi of Ci, for each i, m is a common tangent line to all these ovals. No
other line through x can be a tangent to any of these ovals. If ℓ is a
line of π not passing through x, then ℓ meets the line m in a unique
point xi, and hence ℓ is a tangent to exactly one oval Ci. �

As an immediate consequence of Lemma 2.1, we have:

Theorem 2.2 Let Oi, 1 ≤ i ≤ q+1 be q+1, pairwise disjoint ovoids
of PG(3, q), q = 2e. (Thus they partition the point set of PG(3, q).)
Then the set of common tangent lines to these q + 1 ovoids form a
regular spread of PG(3, q) (and every line outside this spread is a
tangent line to exactly one of these ovoids).

Proof: Take any plane π in PG(3, q). The ovoids Oi induce a
partition of the q(q+1)+ 1 points of π into q+1 sets : q of size q+1
and one of size 1. Therefore π is a tangent plane to exactly one Oi,
and it meets the remaining q ovoids in ovals. The non-trivial sections
of the given ovoids with π constitute a set of q pairwise disjoint ovals
in the projective plane π of even order q. Lemma 2.1 implies that π
contains exactly one common tangent line to the q+1 ovoids. The set
Σ of common tangent lines (to the given ovoids) contain exactly one
line from every plane of PG(3, q). Therefore Σ is a spread of PG(3, q).
Corollary 3.4 below implies that this spread is regular.

Now let ℓ ̸∈ Σ be a line. Since #(ℓ) = q + 1 is odd and the
given partition by ovoids induces a partition of ℓ into singletons and
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doubletons, it follows that ℓ is a tangent to at least one of the given
ovoids. Fix a plane π ⊇ ℓ. Since ℓ ̸∈ Σ, ℓ is not a common tangent to
the non-trivial π sections of the Oi’s. Therefore Lemma 2.1 implies
that ℓ is a tangent to at most one of these ovoids. Thus, any line ℓ ̸∈ Σ
is a tangent to a unique Oi. �

Example 2.3 (Butler, [3]) Take a regular spread Σ of PG(3, q). Such
a spread is unique up to isomorphism. Let H be the line-wise stabilizer
in PGL(4, q) of the spread Σ. It is a cyclic group of order q+1, acting
regularly on each line from Σ. Take a linear complex L ⊇ Σ. (There
are exactly q + 1 such linear complexes, see Remark 3 below.) Now
suppose q = 2e, and let O be an ovoid of the copy of W (q) with line
set L. Then the H-images of O constitute a partition of the point-set
of PG(3, q) into q + 1 ovoids, one of which is the given (arbitrary)
ovoid O of PG(3, q). The non-trivial sections of these ovoids by any
plane of PG(3, q) give a set of q disjoint ovals in a plane of order q.

Question 2.4 What is the odd-order analogue (if any) of Lemma 2.1
and Theorem 2.2?

3 Klein correspondence

The following lemma is an immediate consequence of (the existence
of) the Klein correspondence.

Lemma 3.1 Let L1 and L2 be two distinct linear complexes in PG(3, q).
Then L1 ∩ L2 is one of the following:

(i) the set of q2 + 1 lines in a regular spread,
(ii) the set of q2+q+1 lines in L1 which meet a given line ℓ0 ∈ L1

(including ℓ0 itself)
(iii) the set of (q+1)2 lines which meet a given pair of Skew lines

of PG(3, q).

Proof: Under the Klein correspondence, Li goes to a non-degenerate
quadric Qi ⊆ Q+(5, q) of projective dimension 4. Let Qi = Q+(5, q)∩
Hi where Hi is a hyperplane in PG(5, q). Thus L1 ∩ L2 goes to
Q1 ∩Q2 = F ∩Q+(5, q), where F = H1 ∩H2 is a 3-dimensional pro-
jective subspace of PG(5, q). Thus, Q1 ∩Q2 is a quadric in H1 ∩H2,
possibly degenerate. Notice that Q1 is of Witt index 2, i.e., it does
not contain any plane. So, Q1 ∩ Q2 cannot be the union of two
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planes. Therefore, Q1 ∩ Q2 is either an elliptic quadric Q−(3, q) or
a 3-dimensional cone (over a planar conic) or a hyperbolic quadric
Q+(3, q). The pull back L1∩L2 of these three objects under the Klein
correspondence is as in (i), (ii) and (iii) (respectively). �

In view of the discussion in Section 1, this lemma has the following
immediate consequence. (Note that Lemma 3.1 is valid for any prime
power q, but the following Corollary is proved only for q = 2e.)

Corollary 3.2 Let O1,O2 be two ovoids of PG(3, q), q = 2e. Then
either W (O1) = W (O2) (i.e., O1 and O2 share all the (q + 1)(q2 + 1)
tangent lines) or the common tangent lines to O1 and O2 are as in
(i), (ii) or (iii) of Lemma 3.1.

For ovoids O1,O2 of PG(3, q), let us introduce the notation:

I(O1,O2) := {(x, π) : x ∈ O1 ∩ O2, π ∈ O∗
1 ∩ O∗

2, x ∈ π}, and i(O1,O2) = #(I(O1,O2)).

Notice that, when W (O1) = W (O2), we trivially have #(O1 ∩
O2) = i(O1,O2) = #(O∗

1 ∩ O∗
2). On the other hand, when W (O1) ̸=

W (O2), we shall have #(O1∩O2) = #(O∗
1∩O∗

2) by Theorem 1.2, but:

Theorem 3.3 Let O1,O2 be distinct ovoids of PG(3, q), q even, which
do not share all their tangent lines. Then i(O1,O2) ≤ 2. More pre-
cisely, i(O1,O2) = 0, 1 or 2 according as the common tangent lines to
O1 and O2 are as in (i), (ii) or (iii), respectively.

Proof: For any point x of PG(3, q), let π
(1)
x and π

(2)
x be the union

of the tangent lines through x to O1 and O2 respectively. Thus π
(1)
x

and π
(2)
x are planes through x. (They are the images of x under the

symplectic polarity corresponding to O1 and O2, respectively.) For

x ∈ Oi, π
(i)
x is the tangent plane to Oi through x. Also, for any point

x we have π
(1)
x = π

(2)
x if, and only if, x is in q + 1 common tangent

lines to O1 and O2. And, when π
(1)
x ̸= π

(2)
x , π

(1)
x ∩ π

(2)
x is the unique

common tangent line to O1 and O2 through x. Thus, each point is
in one or q + 1 common tangent lines to O1 and O2. (Corollary 3.2
confirms this assertion.) More importantly, letting A denote the set
of all points x which are in q + 1 common tangent lines, we see that

I(O1,O2) = {(x, π(1)
x ) : x ∈ A ∩ O1}.

Hence i(O1,O2) = #(A ∩ O1).
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But, if the common tangent lines to O1 and O2 are as in (i) then
A = ∅, if they are as in (ii) then A is a tangent line to O1 (and also to
O2). If they are as in (iii), then A = ℓ1 ⊔ ℓ2 where ℓ1, ℓ2 are the skew
lines of PG(3, q) such that the common tangent lines to O1 and O2

are precisely the tranversals to ℓ1 and ℓ2. In the last case, exactly one
of the two lines ℓ1, ℓ2 meet O1 in two points and the other is disjoint
from O1. (Indeed, ℓ1, ℓ2 are images of each other under the symplectic
polarity corresponding to O1.) �

As applications of Theorem 3.3, we get the following results.

Corollary 3.4 Let O1,O2 be two disjoint ovoids of PG(3, q), q even.
Then the common tangent lines to O1,O2 form a regular spread.

Proof: Theorem 1.6 implies that W (O1) ̸= W (O2). So that Theo-
rem 3.3 applies. Since O1∩O2 = ∅, we have i(O1,O2) = 0. Therefore,
by Theorem 3.3, the common tangent lines form a regular spread. �

Corollary 3.5 Let O1,O2 be two ovoids of PG(3, q) which have ex-
actly two common points x ̸= y and two common tangent planes
πx and πy through x and y, respectively. Then the common tangent
lines to O1 and O2 are precisely the transversals to the pair of lines
xy, πx ∩ πy.

Proof: Since #(O1∩O2) = 2, Theorem 1.6 implies that W (O1) ̸=
W (O2). Therefore Theorem 3.3 applies, and we have the result since
i(O1,O2) = 2 by hypothesis. �

Corollary 3.6 Let O1,O2 be two ovoids of PG(3, q), q even, which
share exactly one point x and also a tangent plane πx through x. Then,
either O1 and O2 have all tangents in common, or there is a line ℓ0
such that x ∈ ℓ0 ⊆ πx and the common tangent lines to O1 and O2

are precisely the q2 + q + 1 tangent lines to O1 meeting ℓ0.

Proof: If O1,O2 do not share all (q + 1)(q2 + 1) tangent lines,
then Theorem 3.3 applies. The result follows since i(O1,O2) = 1 by
hypothesis. �

Now, the following results are easy.

Theorem 3.7 Let Oi, 1 ≤ i ≤ q − 1, be q − 1 ovoids of PG(3, q),
q even, which share two common points x ̸= y, and no two of which
have any third point in common. Suppose also that these ovoids share
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tangent planes πx, πy at x, y. Then, these q − 1 ovoids have exactly
(q + 1)2 common tangent lines (namely the transversals to the pair
xy, πx ∩ πy of lines). Every other line is tangent to at most one of
these ovoids.

Proof: Under the hypotheses, Corollary 3.5 describes the tangent
lines common to Oi and Oj for any two indices 1 ≤ i ̸= j ≤ q− 1, and
this description is independent of the choice of i, j. �

Similarly, Corollary 3.6 implies the following result. (However, we
repeat that Corollary 3.4 by itself does not seem to imply Theorem
2.2.)

Theorem 3.8 Let Oi, 1 ≤ i ≤ q, be q ovoids of PG(3, q), q even,
pairwise intersecting at a common point x. Suppose also that these
ovoids share a tangent plane πx at x. Then, either all these ovoids
have the same set of tangent lines, or they have exactly q + 1 tangent
lines (namely the lines ℓ such that x ∈ ℓ ⊆ πx), or there is a unique
line ℓ0, x ∈ ℓ0 ⊆ πx such that the common tangent lines to these ovoids
are precisely the q2 + q + 1 tangent lines of any of them which meet
ℓ0.

Example 3.9 Take any ovoid O of PG(3, q). Fix two points x ̸= y
in O. Let πx, πy be the tangent planes to O at x, y respectively. Let
ℓ1 be the line joining x and y, and let ℓ2 be the intersection of πx and
πy. Thus, ℓ1, ℓ2 are skew lines. The pointwise stabilizer in PGL(4, q).
of ℓ1 ⊔ ℓ2 is a cyclic group of order q− 1. The images under H of the
ovoid O constitutes a set of q − 1 ovoids satisfying the hypothesis of
Theorem 3.7.

Remark 3.10 The examples 2.3 and 3.9 show that the cases (i) and
(iii) of Lemma 3.1 and Corollary 3.2 actually occur. Indeed, pursuing
the argument in Lemma 3.1 a little further, it is easy to see that (a)
each regular spread of PG(3, q) is contained in exactly q + 1 linear
complexes, (b) the configuration consisting of the lines of W (q) meet-
ing a given line of W (q) occurs in exactly q linear complexes, and (c)
the set of transversals to a pair of skew lines in PG(3, q) is contained
in exactly q − 1 linear complexes. Thus, all three cases occur. We do
not know if all three cases of Theorem 3.8 actually occur.
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