Splitting of low rank ACM bundles on hypersurfaces of high dimension

Amit Tripathi

Indian Statistical Institute, Bangalore Centre
8th Mile Mysore Road, Bangalore, 560059 India
SPLITTING OF LOW RANK ACM BUNDLES ON HYPERSURFACES
OF HIGH DIMENSION

AMIT TRIPATHI

Abstract. Let X be a smooth projective hypersurface. In this note we show that any rank 3 (resp. rank 4) arithmetically Cohen-Macaulay vector bundle over X splits when $\dim X \geq 7$ (resp. $\dim X \geq 9$).

1. Introduction

Let $X \subset \mathbb{P}^{n+1}$ be a smooth hypersurface where $n \geq 3$. By Grothendieck-Lefschetz theorem [7], we know the structure of the set of all line bundles on X. Vector bundles over X are not so well understood. An obvious question about vector bundles on any projective variety is the splitting problem - When can we say that a given vector bundle is a direct sum of line bundles? The proper objects in the category of vector bundles over X to look for the splitting behaviour are arithmetically Cohen-Macaulay bundles. We recall the definition,

Definition 1.1. An arithmetically Cohen-Macaulay (ACM) bundle on X is a vector bundle E satisfying

$$H^i(X, E(m)) = 0, \forall m \in \mathbb{Z} \text{ and } 0 < i < \dim X$$

The importance of this definition lies in a well known criterion of Horrocks [10] - ACM bundles are precisely the bundles on \mathbb{P}^n that are split. Viewing \mathbb{P}^n as a hypersurface of degree 1 in \mathbb{P}^{n+1}, one may ask if for hypersurfaces with degree $d > 1$, such a splitting holds. When $d > 1$, there exists indecomposable ACM bundles on hypersurfaces (see [13] for a specific example or [15] for a class of examples), though several splitting results are available for various degrees and ranks. In particular, fixing $d = 2$, the ACM bundles on quadrics have been completely classified, see [12]. The case of cubic surfaces in \mathbb{P}^3 has been investigated in [3].

In a different direction, we can fix the rank of the bundle and let degree vary. Here the general conjectural picture is that any ACM bundle of a fixed rank, over a sufficiently high dimensional hypersurface (irrespective of its degree) is split. The precise conjecture is,
Conjecture (Buchweitz, Greuel and Schreyer [2]): Let \(X \subset \mathbb{P}^n \) be a hypersurface. Let \(E \) be an ACM bundle on \(X \). If \(\text{rank} \ E < 2^e \), where \(e = \left\lfloor \frac{n - 2}{2} \right\rfloor \), then \(E \) splits. (Here \([q]\) denotes the largest integer \(\leq q \).

Splitting of ACM bundles of rank 2 on hypersurfaces have been understood fairly well. We summarize the results known. When \(d = 1 \), splitting follows by the Horrock’s criterion, so we assume \(d \geq 2 \). Let \(E \) be a rank 2 ACM bundle on \(X \), then \(E \) splits if,

1. \(\text{dim}(X) \geq 5 \) (see [11] and [13]).
2. \(\text{dim}(X) = 4 \) and \(X \) is general hypersurface and \(d \geq 3 \) (see [13] and [16]).
3. \(\text{dim}(X) = 3 \) and \(X \) is general hypersurface and \(d \geq 6 \) (see [14] and [16]).

The case of a general hypersurface of low degree in \(\mathbb{P}^4 \) and \(\mathbb{P}^5 \) have also been studied by Chiantini and Madonna in [4], [5], [6].

For rank \(\geq 3 \), very few results are known. To our knowledge, the only general splitting result in this direction is by Tadakazu [17] who found a splitting criterion for any rank \(k \) ACM bundle on a general hypersurface depending on the degree and the dimension of hypersurface.

The conjecture mentioned above predicts that any ACM bundle of rank 3 (resp. rank 4) over a hypersurface in \(\mathbb{P}^6 \) (resp. \(\mathbb{P}^8 \)) splits. In this note, we prove a weaker version,

Theorem 1.2 (Corollary 3.3 + Corollary 3.4). Let \(E \) be an ACM bundle on a smooth hypersurface \(X \subset \mathbb{P}^{n+1} \). Then \(E \) splits if,

1. \(\text{rank} \ E = 3 \) and \(n \geq 7 \).
2. \(\text{rank} \ E = 4 \) and \(n \geq 9 \).

For rank 2 ACM bundles, our method gives another proof for splitting when \(n \geq 5 \).

2. **Preliminaries**

We will work over an algebraically closed field of characteristic zero.

Let \(X \subset \mathbb{P}^{n+1} \) be a hypersurface of degree \(d \geq 2 \). We set a conventional notation

\[
H^i_\ast(X, \mathcal{F}) := \bigoplus_{m \in \mathbb{Z}} H^i(X, \mathcal{F}(m))
\]

where \(\mathcal{F} \) denotes a coherent sheaf on \(X \).

Let \(E \) be a rank \(k \) ACM bundle on \(X \). We take a minimal (1-step) resolution of \(E \) on \(\mathbb{P}^{n+1} \),

\[
0 \to \widetilde{F}_1 \to \widetilde{F}_0 \to E \to 0
\]

where \(\widetilde{F}_0 \) is direct sum of line bundles on \(\mathbb{P}^{n+1} \). By Auslander-Buchsbaum formula, \(\widetilde{F}_1 \) is a bundle and by Horrock’s criterion it is also a split bundle on \(\mathbb{P}^{n+1} \).
Restricting (1) to X, we get,

$$0 \to \text{Tor}^{1}_{\mathbb{P}^{n+1}}(E, \mathcal{O}_X) \to F_1 \to F_0 \to E \to 0$$

where $F_i = \tilde{F}_i \otimes \mathcal{O}_X$ for $i = 0, 1$. To compute the Tor term, we tensor the short exact sequence $0 \to \mathcal{O}_{\mathbb{P}^{n+1}}(-d) \to \mathcal{O}_{\mathbb{P}^{n+1}} \to \mathcal{O}_X \to 0$ with E,

$$0 \to \text{Tor}^{1}_{\mathbb{P}^{n+1}}(E, \mathcal{O}_X) \to E(-d) \to E \to E \otimes \mathcal{O}_X \to 0$$

The map $E \to E \otimes \mathcal{O}_X$ is an isomorphism, thus we get $\text{Tor}^{1}_{\mathbb{P}^{n+1}}(E, \mathcal{O}_X) \cong E(-d)$. Exact sequence (2) breaks up into 2 short exact sequences,

$$0 \to G \to F_0 \to E \to 0$$

(3)

$$0 \to E(-d) \to F_1 \to G \to 0$$

(4)

Since $H^0(X, F_0) \to H^0(X, E)$ is a surjection of graded rings, $H^1(X, G) = 0$. It follows that G is also ACM.

3. Proof of the main results

Lemma 3.1. Let E be any non-split bundle (not necessarily ACM) on a hypersurface $X \subset \mathbb{P}^{n+1}, n \geq 3$. Assume further that $H^1(X, E^\vee) = 0$. Let the exact sequence (3) be a minimal (1-step) resolution of E on X, then G does not admit a line bundle as a direct summand.

Proof. We will assume the contrary. Let $G = G' \oplus L$ where L is a line bundle. By Grothendieck-Lefschetz theorem, L is of the form $\mathcal{O}_X(a)$. There exists following pushout diagram,

$$\begin{array}{ccc}
0 & \to & G' \\
\downarrow & & \downarrow \\
G & \to & F_0' \\
\downarrow & & \downarrow \\
E & \to & 0
\end{array}$$

(5)

$$\begin{array}{ccc}
0 & \to & G \\
\downarrow & & \downarrow \\
F_0 & \to & E \\
\downarrow & & \downarrow \\
E & \to & 0
\end{array}$$

where $G \to G'$ is the natural projection and F_0' is the pushout. Completion of the diagram (5) gives $\eta : 0 \to L \to F_0 \to F_0' \to 0$. Applying $\text{Hom}_X(-, L)$ to the top horizontal sequence gives,

$$\cdots \to \text{Ext}^1(E, L) \to \text{Ext}^1(F_0', L) \to \text{Ext}^1(G', L) \to \cdots$$

In the above sequence $\eta \to \eta'$ where $\eta' : 0 \to L \to G \to G' \to 0$ is split. By assumption $\text{Ext}^1(E, L) \cong H^1(X, E^\vee \otimes L) = 0$, thus η splits. Therefore F_0' is a direct sum of line bundles of rank $r - 1$, by Krull-Schmidt theorem [1]. This implies that $0 \to G' \to F_0' \to E \to 0$ is a 1-step resolution of E which contradicts the minimality of the resolution (3). \qed
On any projective variety \(Z \), for a short exact sequence of vector bundles \(0 \to F_0 \to F_1 \to F_2 \to 0 \) and any positive integer \(k \), there exists a resolution of \(k \)-th exterior power of \(F_2 \),

\[
0 \to \text{Sym}^k(F_0) \to \cdots \to \text{Sym}^{k-i}(F_0) \otimes \wedge^i F_1 \to \cdots \to \wedge^k F_1 \to \wedge^k F_2 \to 0
\]

We will call this resolution the \(\text{Sym} - \wedge \) sequence of index \(k \) associated to the given short exact sequence. There exists a similar resolution of \(k \)-th symmetric power of \(F_2 \) (by interchanging symmetric product and wedge product) which we will call \(\wedge - \text{Sym} \) sequence of index \(k \) associated to the given sequence.

\[
0 \to \wedge^k(F_0) \to \cdots \to \wedge^{k-i}(F_0) \otimes \text{Sym}^i F_1 \to \cdots \text{Sym}^k F_1 \to \text{Sym}^k F_2 \to 0
\]

For details see [18].

We will now prove a result from which Theorem 1.2 will follow.

Theorem 3.2. Let \(E \) be any rank \(k \) bundle (not necessarily ACM) on a smooth hypersurface \(X \subset \mathbb{P}^{n+1} \) with \(n \geq 2k + 1 \). Assume further that \(E \) satisfies the following two conditions,

1. \(H^i_*(X; E) = 0 \), \(i \in \{2, 3, \ldots, k+1\} \cup \{n-1\} \)
2. \(H^i_*(X; \wedge^m E) = 0 \), \(i = 2m - 1, 2m, \ldots, k+m \) for each \(m \in \{2, \ldots, k-1\} \)

Then \(E \) splits.

Despite the odd assumptions, the proof is very simple and we just use hypothesis of the theorem in \(\wedge - \text{Sym} \) sequence for various indices to prove certain cohomological vanishings (6), which is then used in a \(\text{Sym} - \wedge \) sequence to prove the theorem.

Proof of theorem 3.2. We write \(\wedge - \text{Sym} \) sequence of some index \(l \in \{2, \ldots, k\} \) for the short exact sequence (4),

\[
0 \to \wedge^l E(-d) \to \wedge^{l-1} E(-d) \otimes F_1 \to \cdots \\
\cdots \to E(-d) \otimes \text{Sym}^{l-1} F_1 \to \text{Sym}^l F_1 \to \text{Sym}^l G \to 0
\]

This breaks up into short exact sequences,

\[
0 \to J_{j-1,l} \to \wedge^{l-j} E(-d) \otimes \text{Sym}^j F_1 \to J_{j,l} \to 0
\]

where \(J_{0,l} = \wedge^l E(-d) \), \(J_{j,l} \) is defined inductively for \(j = 1, \ldots l - 1 \) and \(J_{l,l} = \text{Sym}^l G \).

By assumption in the theorem and the fact that \(F_1 \) is split, we get \(H^i_*(X; J_{j,l}) = 0 \), for \(i = 2l - j - 1, 2l - j, \ldots, k + l - j \). This implies

\[
H^i_*(X; \text{Sym}^l G) = 0 \text{ for } i = l - 1, l, \ldots, k
\]

Now we look at \(\text{Sym} - \wedge \) sequence of the index \(k (= \text{rank } E) \) for the sequence (4),

\[
0 \to \text{Sym}^k G \to \text{Sym}^{k-1} G \otimes F_0 \to \cdots G \otimes \wedge^{k-1} F_0 \to \wedge^k F_0 \to \wedge^k E \to 0
\]

\[\text{We were unable to find any standard terminology in the literature for the given resolution.}\]
This breaks up into short exact sequences,

$$0 \to M_{j-1} \to \operatorname{Sym}^{k-j}G \otimes \wedge^j F_0 \to M_j \to 0$$

where $M_0 = \operatorname{Sym}^k G$ and M_j is defined inductively for $j = 1, \ldots, k$ as

$$M_j = \operatorname{coker}(M_{j-1} \to \operatorname{Sym}^{k-j}G \otimes \wedge^j F_0)$$

Note that $M_k = \wedge^k E = \mathcal{O}_X(e)$ for some $e \in \mathbb{Z}$. Using the vanishing given by (6) in sequence (7) (and the fact that F_0 are split bundles),

$$H^i_c(X, M_j) = 0 \text{ for } i = k - j - 1, k - j$$

Therefore the short exact sequence $0 \to M_{k-1} \to \wedge^k F_0 \to \wedge^k E \to 0$ splits. In particular, M_{k-1} splits. This implies that the following sequence splits,

$$0 \to M_{k-2} \to G \otimes \wedge^{k-1} F_0 \to M_{k-1} \to 0$$

In particular, G has a line bundle as a direct summand. Thus by lemma 3.1, E splits.

\[\square \]

Corollary 3.3. Let E be a rank 3 ACM bundle on a smooth hypersurface X with $\dim(X) \geq 7$, then E splits.

Proof. We note that $\wedge^i E$ is ACM when $i = 1, 2, 3$. In particular, both the assumptions of theorem 3.2 are satisfied. Thus E splits. \[\square \]

Corollary 3.4. Let E be a rank 4 ACM bundle on a smooth hypersurface X with $\dim(X) \geq 9$, then E splits.

Proof. As before, we note that $\wedge^i E$ is ACM when $i = 1, 3, 4$. By theorem 3.2, E splits, if we can show that $H^i_c(X, \wedge^2 E) = 0$ for $i = 3, 4, 5, 6$. Since E splits $\iff E^c(m)$ splits for some $m \in \mathbb{Z}$, so we can assume that E^c is globally generated. Then there exists a section $s \in H^0(X, E^c)$ of proper codimension i.e. the zero locus Z of s has codimension 4 in X. This implies that there exists a resolution of \mathcal{O}_Z (see [8], pp. 448),

$$0 \to \wedge^4 E \to \wedge^3 E \to \ldots \to E \to \mathcal{O}_X \to \mathcal{O}_Z \to 0$$

We note that Z is Cohen-Macaulay subscheme of X. A cohomological computation gives $H^i_c(X, \wedge^2 E) = 0$ for $i = 3, 4, 5, 6$ when $\dim(X) \geq 9$. \[\square \]

Remark: It is easy to verify the hypothesis of theorem 3.2 for any rank 2 ACM bundle when $n \geq 5$ which provides another proof for this well known splitting result.

4. **Acknowledgement**

I thank G.V Ravindra who introduced me to this area. I thank Jishnu Biswas and Suresh Nayak for providing support and motivation.
REFERENCES

DEPARTMENT OF MATHEMATICS, INDIAN STATISTICAL INSTITUTE, BANGALORE - 560019, INDIA

E-mail address: amittr@gmail.com