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Abstract

We show equivalence of distality and pointwise distality of certain
actions. We also show that a compactly generated locally compact
group of polynomial growth has a compact normal subgroup K such
that G/K is distal and the conjugacy action of G on K is ergodic;
moreover, if G itself is (pointwise) distal then G is Lie projective. We
prove a decomposition theorem for contraction groups of an automor-
phism under a certain condition. We give a necessary and sufficient
condition for distality of an automorphism in terms of its contraction
group. We compare classes of (pointwise) distal groups and groups
whose closed subgroups are unimodular. In particular, we study rela-
tion between distality, unimodularity and contraction subgroups.
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1 Introduction

Let Γ be a (topological) semigroup acting on a Hausdorff space X by con-
tinuous self-maps. We say that the action of Γ on X is distal if for any two
distinct points x, y ∈ X, the closure of {(γ(x), γ(y)) | γ ∈ Γ} does not in-
tersect the diagonal {(a, a) | a ∈ X} and we say that the action of Γ on X
is pointwise distal if for each γ ∈ Γ, the action of {γn}n∈N on X is distal.
The notion of distality was introduced by Hilbert (cf. Ellis [10]) and studied
by many in different contexts: see Ellis [10], Furstenberg [11] and Raja-Shah
[28] and the references cited therein.
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Let G be a locally compact (Hausdorff) group and let e denote the identity
of G. Let Γ be a semigroup acting continuously on G by endomorphisms.
Then the Γ-action on G is distal if and only if e 6∈ Γx for all x ∈ G \ {e}.
The group G itself is said to be distal (resp. pointwise distal) if the conjugacy
action of G on G is distal (resp. pointwise distal).

It can easily be seen that the class of distal groups is closed under compact
extensions. Abelian groups, discrete groups and compact groups are obvi-
ously distal. Nilpotent groups, connected groups of polynomial growth are
distal (cf. [29]): recall that a locally compact group G with left Haar measure
λG is said to be a group of polynomial growth if for each relatively compact
neighborhood U of e in G there is a k ∈ N such that {λG(Un)

nk | n ≥ 1} is
bounded. It may also be noted that p-adic Lie groups of type R and p-adic
Lie groups of polynomial growth are pointwise distal (cf. Raja [24] and [25]):
pointwise distal groups are called noncontracting in Raja [24] and Rosenblatt
[29].

Clearly, distal actions are pointwise distal but there are pointwise distal
actions which are not distal (see Jaworski-Raja [19] and Rosenblatt [29] for
instance). The following types of groups were studied in [21] and [22].

A locally compact (resp. discrete) group Γ is called a generalized FC-
group (resp. polycyclic) if G has a series Γ = Γ0 ⊃ Γ1 ⊃ · · · ⊃ Γn = {e} of
closed normal subgroups such that Γi/Γi+1 is a compactly generated group
with relatively compact conjugacy classes (resp. Γi/Γi+1 is cyclic) for i =
0, 1, ..., n − 1. Note that polycyclic groups and compactly generated groups
of polynomial growth are generalized FC-groups. More detailed results on
generalized FC-groups may be found in [22].

Proposition 1 of [22] shows that a generalized FC-group G contains a
compact normal subgroup K such that G/K is a Lie group. We improve on
this result and show that if a generalized FC-group G is pointwise distal, then
it is Lie projective, that is, G has arbitrarily small compact normal subgroups
Ki such that G/Ki is a Lie group (see Theorem 3.2). This would enable Lie
theoretic considerations on generalized FC-groups that are pointwise distal.

Distal actions of generalized FC-groups were considered in [19], [27] and
in [31]. We quote some related results: For the action of a polycyclic group
Γ on a totally disconnected group and for the action of a generalized FC-
group on a compact metrizable group, distality and pointwise distality are
equivalent, (see Corollary 2.4 of [19] and Theorem 4.1 of [27]). We prove
this equivalence for actions of generalized FC-groups on any locally compact
group (Theorem 3.5).
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We next look at the contraction group of automorphisms. Let Aut(G)
denote the group of bi-continuous automorphisms of G. For α ∈ Aut(G) and
for a α-invariant compact subgroup K, we define the K-contraction group of
α by

CK(α) = {g ∈ G | αn(g)K → K}.
The group C{e}(α) is denoted by C(α) and is called the contraction group of
α. It is easy to see that C(α) = {e} if the {αn}n∈N-action on G is distal. It is
an interesting question to look at the converse: if the {αn}n∈N-action on G is
not distal, is it possible to find a x 6= e such that αn(x) → e as n →∞? Using
exponential map of Lie groups and results by Abels in [2], the converse can
easily be seen to hold for (connected) Lie groups and, it was proved in case
of totally disconnected groups by Baumgartner and Willis (cf. [3]). Recently
the converse is also proved in case of compact groups by Jaworski (cf. [18]).
Here we first establish that an automorphism α is distal (i.e. {αn}n∈Z-action
is distal) if and only if CK(α±1) = K for any α-invariant compact subgroup
K (see Theorem 4.3) and using the recent result of [18] on compact groups,
we prove that {αn}n∈N-action is distal if and only if C(α) = {e}, for any
automorphism α on a locally compact group (see Corollary 4.13). Main
ingredient in the proof of the above results is a decomposition theorem of the
type CK(α) = C(α)K(see Theorem 4.4).

We further explore properties of distal groups. It can easily be seen that
pointwise distal groups are unimodular: recall that a locally compact group
G is called unimodular if the left Haar measure is also right-invariant. But
obviously the converse need not be true as any non-compact semisimple con-
nected Lie group is unimodular but it is not pointwise distal. But closed
subgroups of pointwise distal groups are also pointwise distal and hence, any
pointwise distal group has the property that all its closed subgroups are uni-
modular. We now attempt to see how far one could progress in the converse
direction. Main result in Section 5 is Theorem 5.2 which relates pointwise
distality, contraction groups and unimodularity of closed subgroups. It may
also be noted that such class of unimodular groups arises in the classification
of groups that admit recurrent random walks (see [12] for any unexplained
notions) and study of contraction subgroups on such groups plays a crucial
role in [12]. Here, we prove that CK(α) is relatively compact for any inner
automorphism α and for any compact α-invariant subgroup K of G if and
only if closed subgroups of G are unimodular (see Theorem 5.2).

The following Proposition is useful in reducing the action on general
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groups to that on metrizable groups.

Proposition 1.1 Let Γ be a σ-compact locally compact group acting on a σ-
compact locally compact group G by automorphisms. Then for each countable
collection {Un} of neighborhoods of the identity e in G there exists a Γ-
invariant compact normal subgroup L in G such that L ⊂ ∩Un and G/L is
metrizable with a countable basis for its open sets.

Proof Consider the semidirect product ΓnG whose underlying space is the
product space Γ×G with binary operation given by (α, x)(β, y) = (αβ, xα(y))
for all α, β ∈ Γ and x, y ∈ G. Then Γ n G is a σ-compact locally compact
group. Let {Un} be a countable collection of neighborhoods of e in G. Then
{Γ×Un} is a countable collection of neighborhoods of the identity in ΓnG,
hence by Theorem 8.7 of [16] we get that there is a compact normal subgroup
K of Γ n G such that K ⊂ ∩(Γ × Un) and (Γ n G)/K is metrizable with a
countable basis for its open sets.

Let L = G∩K where G is identified with {e}×G. Then it can easily be
verified that L is a compact normal subgroup of G such that L ⊂ ∩Un. Let
ϕ : Γ n G → (Γ n G)/K be the canonical projection. Since K is compact,
ϕ is a closed map. In particular, ϕ(G) is a closed subgroup of (Γ n G)/K,
hence G/L ' ϕ(G). This shows that G/L is metrizable with a countable
basis for its open sets.

Since K and G are normal subgroups of Γ n G, L = G ∩K is a normal
subgroup of ΓnG and hence L is Γ-invariant. ¤

2 Actions on Compact Groups

In this section we discuss actions of semigroups on a compact group. Let
(X,B,m) be a probability space. The action of a semigroup of measure
preserving transformations Γ on X is said to be ergodic if for any Γ-invariant
set B ∈ B, we have m(B) = 0 or 1. For a compact group K and Γ ⊂
Aut(K), the Γ-action on the homogeneous space K/H for any closed Γ-
invariant subgroup H, ergodicity is defined with respect to the K-invariant
probability measure on K/H.

Throughout this section, let K denote a compact group and let Γ denote
a topological semigroup acting (continuously) on K by automorphisms.
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The following is a generalization of Proposition 2.1 of [27] to not nec-
essarily metrizable groups for semigroup actions. Also, note that the proof
given here is different and somewhat simpler.

Proposition 2.1 There exists a unique minimal closed (resp. closed normal)
Γ-invariant subgroup C (resp. C1) of K such that the Γ-action on K/C (resp.
K/C1) is distal. Moreover, the Γ-action on C (resp. C1) is ergodic and
C ⊂ C1.

Moreover, if K is metrizable, then C is normal in K and C is also the
largest closed Γ-invariant subgroup such that the Γ-action on C is ergodic.

Proof Without loss of any generality, we may assume that Γ ⊂ Aut(K).
Let K be the set of compact subgroups L of K such that the Γ-action on
K/L is distal. Here K is nonempty as K ∈ L. Let C = ∩{L | L ∈ K}. Then
C is a compact Γ-invariant subgroup. Now we show that Γ acts distally on
K/C, i.e. C ∈ K. Let xC ∈ K/C. Suppose C belongs to the closure of
{γ(x)C | γ ∈ Γ} in K/C. Then for every L ∈ K, since C ⊂ L, we have that
L belongs to the closure of {γ(x)L | γ ∈ Γ} in K/L and since the Γ-action
on K/L is distal, x ∈ L, and hence x ∈ C. Therefore, the Γ-action on K/C
is distal.

Now we show that the Γ-action on C is ergodic. Suppose π is an irre-
ducible unitary representation of C such that πΓ = {π ◦ γ | γ ∈ Γ} is finite
up to unitary equivalence. Then there exist γ1, . . . , γn ∈ Γ such that for any
γ ∈ Γ, π ◦ γ is unitarily equivalent to π ◦ γi for some i. This implies that
the finite-dimensional unitary representation π̃ = ⊕π ◦ γi is Γ-invariant. Let
C ′ = Ker(π̃) and let n be the dimension of π̃. Suppose γd(x)C ′ → C ′ in
C/C ′ for some x ∈ C. Then π̃(γd(x)) → In where In is the trivial operator
on Cn. Since π̃ is Γ-invariant, π̃ ◦ γd = u−1

d π̃ud for some ud ∈ Un(C), hence

π̃(γd(x)) = u−1
d π̃(x)ud → In.

Since Un(C) is compact, we get that π̃(x) = In, that is x ∈ Ker(π̃) = C ′.
This shows that the Γ-action on C/C ′ is distal. Since the Γ-action on K/C is
distal, it easily follows that the Γ-action on K/C ′ is also distal. This proves
that C ′ ∈ K, hence the minimality of C in K implies that C = C ′. Thus, π̃
is the trivial unitary representation of C. Now it follows from Theorem 2.1
of [4] that the Γ-action on C is ergodic.

Now we want to show the existence of a unique minimal closed normal
Γ-invariant subgroup C1 such that the Γ-action on K/C1 is distal and the Γ-
action on C1 is ergodic. Take Γ1 = Γ.Inn(K). This is a closed subsemigroup
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of Aut(K) as Inn(K) is a normal compact subgroup of Aut(K). Then from
above we get that there exists a unique minimal closed Γ1-invariant subgroup
C1 of K such that the Γ1-action on K/C1 is distal and the Γ1-action on C1

is ergodic. Here, C1 is normal in K as Inn(K) ⊂ Γ1. Also, Γ acts distally on
K/C1. Moreover, any Γ-invariant normal subgroup is also Γ1-invariant and
hence C1 is the unique minimal closed normal Γ-invariant group such that Γ
acts distally on G/C1. It is easy to verify that for any inner automorphism
α defined by x ∈ K, π ◦ α is unitarily equivalent to π, where equivalence
is given by π(x). This implies that the Γ-action on C1 is ergodic (see also
Lemma 2.4 of [27]). Also, the group C as above is contained in C1.

Now suppose K is metrizable. Then there exits a dense Γ-orbit in C1.
This implies that there exists a dense Γ-orbit in C1/C. But since the Γ-action
on C1/C is distal, we have that C1 = C and hence C is normal. Let C2 be
a Γ-invariant subgroup of K such that the Γ-action on C2 is ergodic. We
need to show that C2 ⊂ C. Then the Γ-action on C2C/C is also ergodic and
hence it has a dense Γ-orbit. But the Γ-action on K/C is distal and hence
C2 ⊂ C. This completes the proof. ¤

Remark 2.2 1. As we assume that Γ is a semigroup contained in Aut(K),
let [Γ] be the subgroup generated by Γ in Aut(K), From Theorem 1 of [10],
it is obvious that the Γ-action on K is distal if and only if the [Γ]-action on
K is distal (see also the proof of Theorem 3.1 in [28]). By Theorem 2.1 of
[4], the same statement holds for ergodic actions on a compact group. In
this case we get in Proposition 2.1 that the Γ-action on K/C (resp. on C) is
distal (resp. ergodic) iff the [Γ]-action on K/C (resp. on C) is distal (resp.
ergodic).

2. If Γ (and hence [Γ]) is compactly generated then metrizability of K is
not essential in the second assertion because in this case, by Proposition 1.1
we get that K has arbitrarily small compact normal Γ-invariant subgroups
Kd such that K/Kd is metrizable and we can argue as above for the Γ-action
on each K/Kd and get the desired assertion for K. ¤

Corollary 2.3 Let K be a compact metrizable group, Γ ⊂ Aut(K) be a
semigroup and let L be a Γ-invariant closed subgroup of K. Then the Γ-action
on K/L is distal if and only if the Γ-action is not ergodic on H/C, for any
pair of compact Γ-invariant subgroups C and H of K such that L ⊂ C ⊂ H
and C 6= H.
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Proof Suppose there exist Γ-invariant subgroups H and C with L ⊂ C ⊂
H and C 6= H such that the Γ-action on H/C is ergodic. Then as K is
metrizable, so is H/C and hence there exists a dense Γ-orbit in H/C, (see
Theorem 5.6 of [32] for single transformation and the proof works for any
semigroup action also). This in turn implies that the Γ-action on H/C '
(H/L)/(C/L) is not distal. Since any factor action of a distal action is distal,
the Γ-action is not distal on H/L, hence on K/L (cf. [10]). We now prove
the converse. Suppose the Γ-action on K/L is not distal. By Proposition
2.1, there exists a closed normal Γ-invariant subgroup H ′ of K such that the
Γ-action on H ′ is ergodic and it is distal on K/H ′. Let H = H ′L and C = L.
Then the Γ-action on H/C ' H ′/H ′ ∩L is ergodic. Here H 6= C, otherwise,
H ′ ⊂ L and since the Γ-action on K/H ′ is distal, the Γ-action on K/L is
also distal, a contradiction to our assumption. This completes the proof. ¤

We say that (Γ, K) satisfies DCC (descending chain condition) if for each
sequence {Kn}n∈N of compact Γ-invariant subgroups of K such that Kn ⊃
Kn+1, n ∈ N, there exists n0 ∈ N such that Kn = Kn0 for all n ≥ n0.

The following proposition may be proved along the lines of Theorem 3.15
of [20] but here we give a simpler proof using Proposition 2.1.

Lemma 2.4 Suppose Γ is a group of automorphisms of a compact metrizable
group K such that (Γ, K) satisfies DCC. Then there exists a compact normal
Γ-invariant subgroup C of K such that K/C is a real Lie group, the Γ-action
on K/C is distal and the Γ-action on C is ergodic.

Proof From Proposition 2.1, there exists a compact normal Γ-invariant
subgroup C such that the Γ-action on K/C is distal and the Γ-action on C
is ergodic. It is easy to verify that (Γ, K/C) also satisfies DCC. Hence it is
enough to prove that if the Γ-action on K is distal and (Γ, K) satisfies DCC,
then K is a Lie group.

Since Inn(K) is a compact normal subgroup of Aut(K), Γ.Inn(K) also
acts distally on K. Note that if (Γ, K) satisfies DCC, so does (Γ.Inn(K), K).
Hence we may also assume that Γ = Γ.Inn(K). Note that since K is a
metric group and the action of Γ is distal, it is not ergodic on any nontrivial
subgroup of K (see Corollary 2.3 or see [26]).

Suppose K is not a real Lie group. By Theorem 2.1 of [4], there exists
a non-trivial finite-dimensional unitary representation π of K such that π
is Γ-invariant (see also [27]). Let K1 = Ker(π). Then K1 6= K is a Γ-
invariant compact normal subgroup of K such that K/K1 is a real Lie group
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as π defines an injection of K/K1 into a finite-dimensional unitary group.
Proceeding this way we obtain a strictly decreasing sequence {Kn} of Γ-
invariant closed (normal) subgroups of K such that K0 = K. This is a
contradiction to the hypothesis that (Γ, K) satisfies DCC. Hence K is a real
Lie group. ¤

Lemma 2.5 Suppose Γ is a subgroup of Aut(K) and there exists a Γ-invariant
compact normal subgroup C in K such that K/C is a Lie group. Suppose
also that γ ∈ Aut(K) is such that γ normalizes Γ and {γn}n∈Z acts distally
on K. Then there exists a compact normal Γ-invariant subgroup C ′ ⊂ C
such that γ(C ′) = C ′ and K/C ′ is a Lie group. In particular C ′ is invariant
under the group generated by γ and Γ.

Proof Let C ′ = ∩n∈Zγn(C). It is clearly γ-invariant and normal in K.
Moreover, for any γ′ ∈ Γ, for each n, let γn = γ−nγ′γn then γn ∈ Γ and
γ′(γn(C)) = γn(γn(C)) = γn(C). Hence γ′(C ′) = C ′.

Let G = K/C. Then G is a Lie group and we define a map φ : K/C ′ → GZ

as follows: φ(g) = (gn)n∈Z, where gn = γn(g)C ∈ G. It is easy to see that
φ is a continuous bijective homomorphism from K/C ′ onto φ(K/C ′) ⊂ GZ,
and φ◦γ = α◦φ, where α denotes the shift map on GZ. Here, ({αn}n∈Z, GZ)
satisfies DCC (cf. [20]). Now since {γn}n∈Z acts distally on K, it also acts
distally on K/C ′ (cf. [28], Theorem 3.1). Now by Lemma 2.4, K/C ′ is a Lie
group. ¤

Proposition 2.6 Suppose Γ is a generalized FC-group and its action on K
is pointwise distal. Then there exist compact normal Γ-invariant subgroups
Kd of K such that ∩dKd = {e} and each K/Kd is a Lie group.

Proof Let π : Γ → Aut(K) be the natural map. Then π(Γ) is isomorphic
to Γ/ ker π where ker π = {γ ∈ Γ | γ(k) = k for all k ∈ K} is a closed
normal subgroup of Γ. Therefore, Γ/ ker π, and hence π(Γ), is a generalized
FC-group. Also, any π(Γ)-invariant group is Γ-invariant. Without loss of
any generality we may assume that Γ ⊂ Aut(K). Moreover, since Inn(K) is
a compact normal subgroup of Aut(K), Γ.Inn(K) is also a generalized FC-
group. Hence we may also assume that Γ = Γ.Inn(K). Then Γ0 = Inn(K0),
the group of inner automorphisms of K0. In particular, Γ0 is compact. There
exists a compact normal subgroup L in Γ such that Γ/L is discrete and it
has a polycyclic subgroup of finite index (see Proposition 2.8 of [19]). In
particular, Γ/L is finitely generated. Let F = {γi ∈ Γ | i = 1, . . . , n}
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be such that the followings hold: Γ is generated by L and F , there exist
L = Γ0 ⊂ . . . ⊂ Γn = Γ, each Γi is a normal subgroup of Γ and it is
generated by γi and Γi−1, 1 ≤ i ≤ n.

Here, LnK is compact and hence Lie projective and there exist compact
normal subgroups Hd in LnK such that ∩dHd = {e} and each (LnK)/Hd

is a Lie group. Let Cd = K ∩ Hd. Then each Cd is a L-invariant normal
subgroup in K, each K/Cd is a Lie group and ∩dCd = {e}. Applying Lemma
2.5 successively for Γi and γi+1, 0 ≤ i ≤ n − 1, we get that there exist
compact normal Γ-invariant subgroups Kd ⊂ Cd such that K/Kd is a Lie
group. Clearly, ∩dKd = {e}. ¤

3 Distal and Pointwise Distal Groups

In this section we compare distality and pointwise distality of certain actions.
We know from Rosenblatt [29] that distality, pointwise distality and polyno-
mial growth are all equivalent properties for a connected Lie group. This is
not true in general as there are abelian extensions of compact groups that
are pointwise distal but not distal (see Example 2.5 of [19]). There are also
examples for Z-extensions of compact groups which are not poinwise distal.
Our first result generalizes the result of Rosenblatt [29] mentioned above.

Theorem 3.1 Let G be a compactly generated locally compact group of poly-
nomial growth. Then G has a compact normal subgroup C such that G/C is
distal and the conjugacy action of G on C is ergodic.

Proof We first assume that G is Lie group such that G0 has no nontrivial
compact normal subgroup. Since G/G0 is discrete, it is enough if we show
that the conjugacy action of G on G0 is distal. For each g ∈ G, let αg denote
the automorphism of G0 defined by the conjugation action of g restricted to
G0 and let dαg denote the corresponding Lie algebra automorphism of the
Lie algebra G of G0. Since G0 has no nontrivial compact normal subgroup,
Theorem 1 of [21] implies that the eigenvalue of dαg are of absolute value 1.
Hence by Theorem 1 of [1] and Theorem 1.1 of [2], the conjugacy action of
G on G0 is distal.

Suppose G is not a Lie group. Then G has a maximal compact normal
subgroup K such that G/K is a Lie group (see [21]). Since (G/K)0 has
no nontrivial compact normal subgroup, from above, G/K is distal. By
Proposition 2.1 and Remark 2.2 (2), we have that K has a maximal compact

9



G-invariant (normal) subgroup C such that conjugacy action of G on K/C
and hence, on G/C is distal and the conjugacy action of G on C is ergodic.
¤

We know that distal groups are pointwise distal and we also know that
the converse is not true (see for instance, Example 2.5 of [19]). As noted
above, pointwise distal Lie groups are distal. We now compare distality and
pointwise distality of a particular class of locally compact groups.

Theorem 3.2 Let G be a generalized FC-group. Suppose G is pointwise-
distal. Then G is Lie projective. Moreover, G is distal.

Proof It is easy to see from Theorem 3.1 of [28] and Theorem 9 of [29] that
any Lie projective pointwise distal group is distal. Thus, it is sufficient to
prove that any pointwise distal generalized FC-group is Lie projective.

Suppose G is a generalized FC-group. Then there exists a maximal
compact normal subgroup K in G such that G/K is a Lie group (cf. [22]).
Since the conjugacy action of G on K is pointwise distal, by Proposition 2.6
there exist closed normal subgroups Kd of K invariant under the conjugacy
action of G such that each K/Kd is a Lie group and ∩dKd = {e}. That is,
each Kd is normal in G and since G/K = (G/Kd)/(K/Kd), where G/K and
K/Kd are Lie groups, we get that G/Kd is a Lie group for every d. This
shows that G is Lie projective. ¤

Since any compactly generated locally compact group of polynomial growth
is a generalized FC-group (see [22]) we have the following:

Corollary 3.3 Let G be a compactly generated locally compact pointwise-
distal group of polynomial growth. Then G is Lie projective. Moreover, G is
distal.

Remark 3.4 From Theorem 3.1 and Corollary 3.3, it follows that any com-
pactly generated locally compact group of polynomial growth has a compact
normal subgroup C such that G/C is distal and Lie projective and the con-
jugacy action of G on C is ergodic. ¤

We next compare distality and pointwise distality of an action of a gener-
alized FC-group on a locally compact group. Note that it is proved in case
of metrizable compact groups in [26] by a different method.
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Theorem 3.5 Let G be a locally compact group and let Γ be a generalized
FC-group acting on G by automorphisms. Then the Γ-action on G is distal
if and only if the Γ-action on G is pointwise distal.

Proof One way implication “only if” is obvious. Now suppose the Γ-action
on G is pointwise distal. Let G0 be the connected component of the identity
in G. Then there is a maximal compact normal subgroup K of G0 such that
G0/K is a Lie group. Since K is maximal, K is characteristic in G and hence
Γ-invariant. Since the Γ-action on K is pointwise distal. By Lemma 2.6, K
has compact normal Γ-invariant subgroups Kd such that ∩Kd = {e} and
K/Kd is a Lie group. Since the G0-action on K is by inner automorphisms
of K, each Kd is normal in G0 and hence G0/Kd is a Lie group. By Theorem
3.1 of [28], the Γ-action on each G0/Kd is pointwise distal and hence, it is
distal by Theorem 1.1 of [2]. Since this is true for each d and ∩dKd = {e},
we get that the Γ-action on G0 is distal. Now it is enough to prove that
the Γ-action on G/G0 is distal. We know that the Γ-action on G/G0 is
pointwise distal by Theorem 3.3 of [28]. Hence we may assume that G is
a totally disconnected group. Since the connected component Γ0 of Γ acts
trivially on G and Γ/Γ0 is also a generalised FC-group and its action on G
is pointwise distal, we may assume that Γ is totally disconnected. By [22], Γ
contains a compact normal subgroup L such that Γ/L is a Lie group. Since
Γ, and hence, Γ/L is also totally disconnected, Γ/L is discrete. As Γ/L is a
discrete generalized FC-group, Γ/L has a polycyclic subgroup of finite index
(cf. [22]), Hence by Lemma 2.3 of [19] (which is also valid for any non-metric
group by [17], see also [19]), we get that the Γ-action of G is distal. This
completes the proof. ¤

4 Distality and Contraction Groups

In this section we get a necessary and sufficient condition for distality of an
automorphism of a locally compact group in terms of its contraction group.
Let α ∈ Aut(G). We recall that α is distal on G if the {αn}n∈Z-action on G
is distal.

Recall that for an α-invariant subgroup K of G, the K-contraction group
of α is defined as CK(α) = {x ∈ G | αn(x)K → K as n → ∞} and we
denote C{e}(α) by C(α) which is known as the contraction group of α.

It is evident that for any automorphism α, if the {αn}n∈N-action is distal,
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then C(α) is trivial. We prove the converse in this section. Recently, the
converse has been proved in case of compact groups (cf. [18]). We first note
the converse for (connected) Lie groups.

Proposition 4.1 Let G be a real Lie group and let α ∈ Aut(G). Then
C(α) = {e} if and only if the {αn | n ∈ N}-action on G is distal. In
particular, α is distal on G if and only if C(α±1) = {e}.
Proof Suppose C(α) = {e}. Since G/G0 is discrete, the {αn | n ∈ N}-
action on G/G0 is distal. Hence we may assume that G is a connected Lie
group. Let G be Lie algebra of G and dα be the differential of α on G. We
first consider the case when G is a compact connected abelian group. Since
C(α) = {e}, eigenvalues of dα are all of absolute value greater than or equal
to one. Since G is a compact abelian Lie group, |det ( dα)| = 1. This implies
that eigenvalues of dα are of absolute value one. Thus, α is distal on G (cf.
[1] and [2]).

Now assume that G is any connected real Lie group. Then there are two
α-invariant subspaces V1 and V0 such that G = V1⊕V0, V1 = C( dα−1) is the
Lie algebra of C(α−1) and dα restricted to V0 has eigenvalues of absolute
value one (see Proposition 3.2.6 of [15]). Since G = V1 ⊕ V0, V1 is an ideal
in G (see Proposition 3.2.6 of [15]). Let H = C(α−1). Then H is a closed
connected nilpotent α-invariant normal subgroup of G. Since eigenvalues of
dα are of absolute value one on G/V1 ' V0, eigenvalues of dα on the Lie
algebra of G/H (which is a factor of V0) are of absolute value one. This
implies that α is distal on G/H (cf. [1] and [2]). So, it is sufficient to prove
that the {αn | n ∈ N}-action on H is distal. Let K be the maximal central
torus in H. Then K is α-invariant and C(α−1)K is dense in H/K which is
a simply connected nilpotent Lie group. This implies that H = C(α−1)K.
Since C(α) = {e}, it follows from the first case that α is distal on K. So, it
is sufficient to prove that the {αn | n ∈ N}-action is distal on H/K. Since
H = C(α−1)K, H/K is a simply connected nilpotent Lie group such that
α−n(x) → e as n → ∞ for all x ∈ H/K. Let V be the Lie algebra of H/K
and β ∈ GL(V ) be the differential of α on H/K. Since H/K is a simply
connected nilpotent Lie group, exponential is a diffeomorphism of V onto
H/K. So it is sufficient to prove that the {βn | n ∈ N}-action on V is distal.
Since α−n(x) → e as n →∞ for all x ∈ H/K, β−n(v) → 0 as n →∞ for all
v ∈ V . This implies that ||β−n|| → 0 as n →∞. Now for any v ∈ V ,

‖v‖ ≤ (‖β−n‖)(‖βn(v)‖)
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for all n ∈ N. This implies that the {βn | n ∈ N}-action on V is distal. ¤

Before we proceed to consider the general case, we first look at following
particular cases.

Proposition 4.2 Suppose G is a closed subgroup of a linear group GL(n,F)
over a local field F or G is a real Lie group. Then the following are equivalent:

(1) C(α) = {e} for any inner automorphism α of G;

(2) G is pointwise distal;

(3) G is distal.

In addition if G is compactly generated and F is non-archimedian, then (1)–
(3) are equivalent to

(4) G contains arbitrarily small compact open invariant subgroups.

Proof It is clear that for any locally compact group G, (4) ⇒ (3) ⇒ (2) ⇒
(1). Thus, to prove (1)-(3) are equivalent, it is sufficient to prove that (1) ⇒
(3). If F is an archimedian local field, then closed subgroups of GL(n,F) are
real Lie groups. Thus, it is sufficient to consider the case of real Lie groups
and the case of closed subgroups of GL(n,F) when F is a non-archimedian
local field. Assume that G is a real Lie group. Then equivalent of (1) and
(2) follows from Proposition 4.1 and equivalence of (2) and (3) follows from
Theorem 1.2 of [2].

We now assume that F is non-archimedian and G is a closed subgroup of
GL(n,F). Then G is a totally disconnected group, hence (1) ⇒ (2) follows
from Proposition 2.1 of [19]. We now prove that (2) ⇒ (3). Assume that
G is pointwise distal. Let Φ: G → M(n,F) be such that Φ(g) = g − I for
all g ∈ G. Then Φ is a homeomorphism of G onto Φ(G) endowed with the
topology induced from M(n,F). Let V be the smallest subspace of M(n,F)
such that V ∩ Φ(G) is a neighborhood of 0 in Φ(G). We now claim that for
any g ∈ G, V is g-invariant and (gmvg−m)m∈Z is relatively compact for all
v ∈ V . Let g ∈ G. Since F is non-archimedean, G is a totally disconnected
locally compact group. Then by Proposition 2.1 of [19], there is a basis
of compact open subgroups {Ki} at e in G such that gKig

−1 = Ki for all
i ≥ 1. Since V ∩ Φ(G) is a neighborhood of 0 in Φ(G), there exists a i such
that Φ(Ki) ⊂ V . Let W be the subspace of V spanned by Φ(Ki). Then
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Φ(Ki) ⊂ W ∩ Φ(G) is a neighborhood of 0 in Φ(G). Since V is the smallest
such subspace V = W . For any v ∈ Φ(Ki), gmvg−m ∈ Φ(Ki) for all m ∈ Z
and hence (gmvg−m)m∈Z is relatively compact as Φ(Ki) is compact in V .
Since V = W is spanned by Φ(Ki), we get that (gmvg−m)m∈Z is relatively
compact for all v ∈ V . Since gΦ(Ki)g

−1 = Φ(gKig
−1) = Φ(Ki) and W = V

is spanned by Φ(Ki), gV g−1 = V . Thus, V is G-invariant and (gmvg−m)m∈Z
is relatively compact for any g ∈ G and v ∈ V .

Let x ∈ G be such that gmxg−1
m → e. Then gmvg−1

m → 0 in Φ(G) for v =
Φ(x). Since V ∩Φ(G) is a neighborhood of 0 in Φ(G), gmvg−1

m ∈ V ∩Φ(G) ⊂ V
for large m. Since V is G-invariant, we get that v ∈ V .

Let Ψ: G → GL(V ) be such that Ψ(g)(w) = gwg−1 for all g ∈ G and
for all w ∈ V . Then Lemma 3.2 of [12] implies that there exist a compact
subgroup K and a unipotent subgroup U of GL(V ) such that K normalizes
U and Ψ(G) ⊂ KnU . Now Ψ(gm)(v) = gmvg−1

m → 0. Since K is compact, 0
is a limit point of U(v). Since U is a unipotent group, by Kolchin’s Theorem
there exists a flag 0 = V0 ⊂ · · · ⊂ Vn = V of U -invariant subspaces of V ,
that is, dimension of each Vi is i. This implies that U is trivial on Vi/Vi−1

for 1 ≤ i ≤ n. Considering the action of U on V/Vn−1 and using 0 is a limit
point of U(v), we get that v ∈ Vn−1. Proceeding this way one can show that
v = 0. This implies that x = I. This proves (3).

In addition if G is compactly generated, then the statement that (1)
implies (4) follows from Lemma 3.2 of [12]. ¤

Theorem 4.3 Let G be a locally compact group and α ∈ Aut(G). Then the
following are equivalent:

(1) α is distal;

(2) for any α-invariant compact subgroup L of G, CL(α±1) = L.

We first prove a decomposition theorem for contraction groups, under
certain conditions. Note that in a locally compact group G, there exists a
unique maximal compact normal subgroup in G0 and it is characteristic in
G.

Theorem 4.4 Let G be a locally compact group and let α ∈ Aut(G). Then
CL(α) = C(α)L for any α-invariant compact subgroup L of G if any one of
the following conditions is satisfied:
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1. G0 is a Lie group.

2. For the maximal compact normal subgroup K of G0, the {αn}n∈N-action
on K is distal.

The above decomposition theorem generalizes results for (connected) Lie
groups (cf. [14]) and for totally disconnected groups (cf. [3], [17]) as these
groups satisfy condition (1) above. However, it is not true for all compact
groups if the automorphism is not distal; see [18] for a counter example.

Towards the proof of the theorem, we prove following preliminary results.

Proposition 4.5 Let G be a connected locally compact group, α ∈ Aut(G)
and let K be the maximal compact normal subgroup of G. Suppose the
{αn}n∈N-action on K is distal. Then C(α) is closed and for any compact
α-invariant subgroup L of G, CL(α) = Ln C(α).

Proof We know that G/K is a Lie group without any compact cental sub-
group of positive dimension. Let α′ be the automorphism on G/K induced by
α which is defined as α′(xK) = α(x)K for all x ∈ G. Then C(α′) is closed in
G/K and it is a simply connected nilpotent group (cf. [9]). Therefore, CK(α)
is closed in G. Since the {αn}n∈N-action, and hence, the {αn}n∈Z-action on
K is distal, C(α) ∩K is trivial.

We first assume that G is a Lie group. Then CK(α) = KC(α), (cf. [14],
Theorem 2.4). Then C(α) ⊂ CK(α) as the latter group is closed. Moreover,
C(α) is a closed connected nilpotent Lie subgroup; let H denote the maximal
compact (central) subgroup of it. Then α(H) = H and it is normal in CK(α).
Moreover, since CK(α)/K = C(α′) is simply connected and nilpotent, it has
no non-trivial compact subgroups and hence H ⊂ K. Now take A = {xt}t∈R
be a one-parameter subgroup in C(α). Then either A is closed in G or its
closure Ā is compact (cf. [13]); in the latter case it is contained in H, but since
C(α)∩H ⊂ C(α)∩K = {e}, xt = e for all t ∈ R and hence {xt}t∈R is closed.
This implies that C(α) itself is closed (cf. [13]). Moreover, since C(α) is a
closed simply connected nilpotent group, it does not contain any non-trivial
compact subgroup, we have C(α) ∩ L = ∅ and hence CL(α) = Ln C(α).

Suppose G is a connected (not necessarily Lie) group. Since the action of
Γ = {αn}n∈ZnInn(K) on K is distal, there exist Γ-invariant compact normal
subgroups Ki of K such that ∩iKi = {e} and K/Ki are Lie groups (see
Proposition 2.6). Since G is connected and K is a compact normal subgroup
of G, the action of G on K is by inner automorphisms of K. This implies that
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Ki’s are normal in G. Since G/K and K/Ki are real Lie groups, G/Ki’s are
connected real Lie groups. From above, CKi

(α) is closed for each i. It follows
from Theorem 2.4 of [14] that for each i, CLKi

(α) = CKi
(α)L, which in turn

is closed. Moreover, it is easy to see that since ∩iKi = {e}. C(α) = ∩iCKi
(α)

and CL(α) = ∩iCLKi
(α). Hence C(α) is closed and CL(α) = C(α)L. Now

we have from above that (C(α)Ki/Ki) ∩ (LKi/Ki) = {Ki} in G/Ki. Hence
C(α) ∩ L = {e}. Therefore, CL(α) = L n C(α). In particular, since K is
normal in G, we get that CK(α) = K × C(α). ¤

Lemma 4.6 Let G be a locally compact group and α ∈ Aut(G). Suppose
there is a directed family {Ki}i∈I of compact α-invariant subgroups such that
∩iKi = {e} and Ki ⊂ Kj for i > j. Then for any α-invariant compact
subgroup L of G such that CL(α) ⊂ CKi

(α)L and CKi
(α) ∩ L ⊂ Ki for all

i ∈ I, we have CL(α) = C(α)L.

Proof Let g ∈ CL(α). Then g = xiai for xi ∈ CKi
(α) and ai ∈ L. Passing

to a subnet, we may assume that ai → a in L and hence xi → x for some
x ∈ G. Therefore we have that g = xa. We now claim that x ∈ C(α) which
would complete the proof.

Let U be a neighborhood of e in G. Then there is a neighborhood V of
e in G such that V V ⊂ U . Since ∩iKi = {e}, there is a j ∈ I such that
Kj ⊂ V . For i ≥ j, Ki ⊂ Kj and xiai = g = xjaj, hence CKi

(α) ⊂ CKj
(α)

and x−1
j xi = aja

−1
i ∈ CKj

(α)CKi
(α) ∩ L ⊂ CKj

(α) ∩ L ⊂ Kj. This implies
that xi = xjbi for some bi ∈ Kj for all i ≥ j.

Since Kj ⊂ V , there is a N such that αn(xj) ∈ V for all n ≥ N . This
implies for i ≥ j, that αn(xi) = αn(xj)α

n(bi) ∈ V Kj ⊂ V V for all n ≥ N .
Since xi → x, αn(x) ∈ V V ⊂ U for all n ≥ N . Therefore, αn(x) → e and
x ∈ C(α). ¤

Lemma 4.7 Let G be a locally compact group such that G0 is a Lie group
and let α ∈ Aut(G). Then there exists an open almost connected subgroup
H in G such that H = C × G0, where C is a compact totally disconnected
subgroup contained in Z(G0) and the following holds: If c ∈ C is such that
α(c) ∈ H, then α(c) ∈ C.

Proof Since G0 is a Lie group, there exists a neighborhood V of the identity
e in G such that V ∩ G0 does not contain any nontrivial subgroup. For
α ∈ Aut(G), choose a neighborhood U of e in G such that Uα(U) ⊂ V . Let
M be an open almost connected subgroup in G. Then M is Lie projective
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and it has a compact normal subgroup C contained in U such that M/C
is a Lie group. Therefore, CG0 is open and we take H = CG0. Moreover,
C ∩G0 ⊂ U ∩G0 ⊂ V ∩G0, and hence C ∩G0 = {e}. This implies that C is
totally disconnected and H = C ×G0, hence C ⊂ Z(G0). Let c ∈ C be such
that α(c) ∈ H. Then α(c) = c1g1 = g1c1 for some c1 ∈ C and g1 ∈ G0. Then
g1 = c−1

1 α(c) = α(c)c−1
1 ∈ Cα(C) ∩G0. Also, gn

1 = c−n
1 α(cn) ∈ Cα(C) ∩G0.

Hence g1 generates a compact group in Cα(C) ∩ G0 which is contained in
Uα(U) ∩G0. Hence g1 = e, i.e. α(c) = c1 ∈ C. This completes the proof. ¤

Proposition 4.8 Let G be a locally compact group and let K be the maximal
compact normal subgroup of G0. Let α ∈ Aut(G). Then CG0(α) = CK(α)G0,
where CG0(α) = {x ∈ G | αn(x)G0 → G0 in G/G0}. Moreover, if G0 is a
Lie group, then CG0(α) = C(α)G0.

Proof We know that K is characteristic in G and G0/K has no non-trivial
compact normal subgroup hence it is a Lie group. Also CK(α)/K is the same
as C(α′), where α′ ∈ Aut(G/K) is the automorphism induced by α. Hence it
is enough to assume that G0 is a Lie group and prove that CG0(α) ⊂ C(α)G0

as this would imply both the assertions in the statement. Let x ∈ CG0(α).
Then αn(x)G0 → G0 in G/G0 as n → ∞. Let H = C × G0 be an open
subgroup in G as in Lemma 4.7. There exists N ∈ N such that αn(x) ∈ H
for all n ≥ N . Let y ∈ H be such that y = αN(x). Then y ∈ CG0(α)
and αn(y) ∈ H for all n. Then y = cg = gc for c ∈ C and g ∈ G0.
Then αn(y) = αn(c)αn(g) = αn(g)αn(c) ∈ H. Since G0 is α-invariant,
αn(c) ∈ H and hence αn(c) ∈ C. Moreover, as αn(y)G0 → G0, we have
that αn(c)G0 → G0 and hence αn(c) → e as C ∩ G0 = {e}. In particular,
c ∈ C(α) and y = cg ∈ C(α)G0. Now x = α−N(y) ∈ C(α)G0. This completes
the proof. ¤

We also need the following simple result on compact groups which may
be known.

Lemma 4.9 Let C be a compact group and let K be a closed normal subgroup
of C. Suppose K ′ is a closed normal subgroup of K such that K/K ′ is a Lie
group. Then for L = ∩c∈CcK ′c−1, K/L is a Lie group.

Proof Since C is compact, it is Lie projective. Let {Cd} be the collection of
closed normal subgroups of C such that C/Cd are Lie groups and ∩dCd = {e}.
Then C ′

d = K∩Cd is normal in C and K/C ′
d are Lie groups. Since ∩dC

′
d = {e}
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and K/K ′ is a Lie group, we get that C ′
d ⊂ K ′ for some d. This implies that

C ′
d ⊂ L, hence K/L is a Lie group. ¤

Proof of Theorem 4.4 Let G, α and L be as in the hypothesis. We also
know that CLG0(α) = CG0(α)L from the result on the totally disconnected
group G/G0 (see Theorem 3.8 of [3] which is valid for non-metrizable groups
by [17]). If G0 is a Lie group, from Proposition 4.8, CG0(α) = C(α)G0, hence
CL(α) = C(α)(CL(α) ∩ G0)L = C(α)(CL∩G0(α) ∩ G0)L = C(α)L from the
result on Lie groups.

Now let K be the maximal compact normal subgroup of G0 and assume
that the {αn}n∈N-action on K is distal. Using CG0(α) = CK(α)G0 from
Proposition 4.8, we get that CL(α) ⊂ CK(α)G0L and hence,

CL(α) = (CK(α)G0 ∩ CL(α))L. (1)

Now suppose
CK(α) = C(α)K. (2)

Also, since the {αn}n∈N-action on K is distal, from Proposition 4.5

CL(α) ∩G0 = (C(α) ∩G0)(L ∩G0) ⊂ C(α)L. (3)

Hence using (2), (3), as K ⊂ G0, (1) gives

CL(α) = (C(α)G0 ∩ CL(α))L = C(α)(G0 ∩ CL(α))L = C(α)L.

Thus, we only need to prove (2).
If G0 is Lie group, then from above CK(α) = C(α)K. Now we assume

that G is any locally compact group. Since G0/K is a Lie group, by Lemma
4.7, there exist an open subgroup H in G containing K and a compact totally
disconnected subgroup C1 of H/K such that H/K = C1 × (G0/K) and if
c ∈ C1 with α′(c) ∈ H/K, then α′(c) ∈ C1 where α′ is the automorphism
induced by α on G/K. Let C be the compact subgroup of G containing K
such that C/K = C1. If c ∈ C is such that α(c) ∈ H, then from above, we
have that α(c) ∈ C.

Let x ∈ CK(α). As H is open and K ⊂ H, there exists N such that
αn(x) ∈ H, for all n ≥ N . Hence for y = αN(x) ∈ H, αn(y) ∈ H for all
n ∈ N. It is enough to show that y ∈ C(α)K as x = α−N(y) and C(α)K
is α-invariant. Here y = cg where c ∈ C and g ∈ G0. Now αn(y) =
αn(c)αn(g) ∈ H. Therefore, αn(c) ∈ H as G0 is α-invariant. Now from
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above, αn(c) ∈ C, for all n. Hence αn(y)K = αn(c)Kαn(g)K → K in
G/K. Since H/K = C1 × (G0/K), we get that αn(c)K → K in C1 = C/K
and αn(g)K → K in G0/K. Now we have y = cg, c ∈ C ∩ CK(α) and
g ∈ G0 ∩ CK(α) = (C(α) ∩ G0)K by Proposition 4.5. Replacing y by yg−1,
we may assume that y ∈ C ∩ CK(α) such that αn(y) ∈ C for all n ∈ N and
K ⊂ C and C/K is totally disconnected and compact.

We first suppose that G is second countable. Since the {αm}m∈N-action
on K is distal, we choose Kn to be α-invariant compact normal subgroups of
K, Kn+1 ⊂ Kn and K/Kn is a Lie group for all n, ∩nKn = {e}. Moreover,
since the conjugacy action of G0 on K is by inner automorphisms of K,
each Kn is normal in G0. Let C ′′ be the smallest closed subgroup of C such
that K ⊂ C ′′, y ∈ C ′′ and αn(y) ∈ C ′′ for all n ∈ N. By Lemma 4.9,
Ln = ∩c∈C′′cKnc

−1 is normal in C ′′ and K/Ln is a Lie group. Moreover,
as above, since Ln are normal in K, they are normal in G0 and hence each
G0/Ln is a Lie group. Also, since α(C ′′) ⊂ C ′′, it is easy to see that

Ln ⊂ α(Ln) = ∩c∈C′′α(c)Knα(c−1).

Hence α−m(Ln) ⊂ Ln for all m ∈ N. Note that the distality of the {αm}m∈N-
action on K is equivalent to the statement that the closure of {αm}m∈N in KK

is a group (see [10], Theorem 1 which is for group actions and it can easily be
seen that the same proof works for semigroup actions). In particular, we have
that {α−m}m∈N-action on K is also distal and there exists {km} ⊂ N such
that α−km → α in KK . This implies that α(Ln) ⊂ Ln, i.e. Ln is α-invariant.
Thus Ln is also normalized by α−n(y), n ∈ N. Let N(Ln) be the normalizer
of Ln in G and N = ∩N(Ln). Then since Ln’s are normalized by G0 and y,
G0 ⊂ N and y ∈ N . Since Ln is α-invariant, N(Ln) is α-invariant, hence N
is α-invariant. Since G0 ⊂ N , the connected component, say N0 of N is G0.
Also, we have N0/Ln = G0/Ln are Lie groups for all n ≥ 1 and y ∈ N . Now
the result follows from the previous case and Lemma 4.6.

Now suppose that G is not second countable. Let x ∈ CL(α). We need to
show that x ∈ C(α)L. Let H be the closed subgroup generated by G0L and
{αn(x)}n∈Z in G. Then H is α-invariant σ-compact group. Replacing G by
H, we may assume that G itself is σ-compact. By Proposition 1.1, G contains
arbitrarily small compact normal α-invariant subgroups Kd such that G/Kd

is second countable. Now from above, we have that CC(α) ⊂ CKd
(α)C for any

compact α-invariant subgroup C. Hence from Lemma 4.6, CL(α) = C(α)L.
¤
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Combining our result Theorem 4.4 with Proposition 10 of [17], we obtain
the next result generalizing the main result in [18] but as following example
shows the converse part of the main result in [18] need not be true for locally
compact groups which could also be inferred from Theorem 4.4.

Example 4.10 Let T = {z ∈ C | |z| = 1}, K =
∏

i∈N T and let A be the
group of all finite permutations. Then there is a natural shift action of A on
K. Let G = AnK. Then G is a locally compact group with K as an open
subgroup. Take α to be any distal automorphism of G. Then C(α) = {e}
and for any α-invariant compact subgroup L of G, CL(α) = L (cf. [28]). This
implies that CL(α) = C(α)L for any α-invariant compact subgroup L of G.
Suppose there are small compact normal subgroups Ki of G such that G/Ki

are finite-dimensional. Then Li = Ki ∩K are normal A-invariant subgroups
of K and K/Ki are compact connected abelian subgroup of finite dimension.
Since A is torsion, each τ ∈ A acts distally on K/Ki. By Theorem 5.15 of
[26], A-action is distal on K/Ki. Since ∩Ki = {e}, A-action on K is distal
which is a contradiction. Thus, G has no small compact normal subgroups
Ki such that G/Ki are finite-dimensional. ¤

Corollary 4.11 Let G be a locally compact group and α ∈ Aut(G). Suppose
there are small compact normal α-invariant subgroups Ki of G contained
in G0 such that each G0/Ki is a real Lie group. Then for any α-invariant
compact subgroup L of G, CL(α) = C(α)L.

Proposition 4.12 Let K be a compact group and Γ be a σ-compact locally
compact group acting on K by automorphisms. If the Γ-action on K has
DCC, then K is metrizable. Further if Γ = {αn | n ∈ Z} and both C(α) and
C(α−1) are trivial, then K is a real Lie group and α is distal on K.

Proof We first claim that K is metrizable. By Proposition 1.1 we get that
there is a Γ-invariant compact normal subgroup K1 of K such that K/K1

is metrizable and hence a countable collection {Un} of neighborhoods of e
such that ∩nUn = K1. If K is not metrizable, then K1 6= {e}, hence by
Proposition 1.1, there is a Γ-invariant compact normal subgroup K2 of K
such that K/K2 is metrizable and K2 ⊂ ∩n(Un \ {x}) for some x ∈ K1 with
x 6= e. Proceeding this way we get a sequence {Km} of compact normal
Γ-invariant subgroups such that K/Km is metrizable and Km+1 ( Km for
all m. This is a contradiction to the hypothesis that the Γ-action on K has
DCC. Thus, K is metrizable.
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Further assume that Γ = {αn | n ∈ Z}. By Proposition 5.4 of [20], there
exist a compact Lie group G with the identity e and a full subgroup H of
G × G (i.e. both the projections of H on G are surjective), such that K is
isomorphic to a full shift invariant subgroup YH of GZ, where YH = {(xi) ∈
GZ | (xi, xi+1) ∈ H for all i ∈ Z} and the action of α on K corresponds to
the shift action (xi) 7→ (xi+1) for (xi) ∈ YH . We may assume that K = YH

and α is the shift-action defined above.
Let φ : YH → G be such that φ((xi)) = x0. Then φ is a continuous

homomorphism. We now prove that φ is injective. If φ((xi)) = e, that is
x0 = e for some (xi) ∈ YH . Then (x−1, e), (e, x1) ∈ H and (xi, xi+1) ∈ H.
Since H is a group, (e, e) ∈ H. Define ai = xi for i < 0 and ai = e for i ≥ 0,
hence (ai) ∈ YH but (ai) ∈ C(α) which is trivial. This implies that xi = e
for i < 0. Similarly we can show that xi = e for i > 0. Thus φ is injective.
Since YH is compact and G is a real Lie group, we get that K ' YH is also
a real Lie group and the rest of the proof follows from Proposition 4.1. ¤

Proof of Theorem 4.3 If α is distal, then for any α-invariant compact
subgroup L, CL(α±1) = L follows from Corollary 3.2 of [28]. Suppose for any
α-invariant compact subgroup L, we have CL(α±1) = L. Consider the factor
ᾱ of α on G/G0. By Proposition 4.8, we get that C(ᾱ±1) = G0 in G/G0.
This implies by [19] that ᾱ is distal. Thus, it is sufficient to show that the
restriction of α to G0 is distal (see [28]). We will denote the restriction
of α to G0 also by α. Since G0 is connected, there is a maximal compact
characteristic subgroup K of G0 such that G0/K is a connected Lie group.
Since K is characteristic, K is α-invariant. Since CK(α) = K = CK(α−1), the
contraction subgroups of factor automorphisms of α and α−1 on G0/K are
trivial. This implies that the factor of α on G0/K is distal (see Proposition
4.1). Thus, it is sufficient to show the distality of the restriction of α on K
which will also be denoted by α.

By Proposition 1.1 we get that each neighborhood U of e in K contains
a compact normal α-invariant subgroup KU such that K/KU is metrizable.
Also, α is distal on K if and only if α is distal on K/KU for each U . Since
the assumption that CL(α) = L for any compact α-invariant subgroup L
is valid on quotient groups K/KU , we may assume that K is metrizable.
By Theorem 3.16 of [20], there exists a sequence {Kn} of closed normal α-
invariant subgroups of K such that Kn+1 ⊂ Kn for all n, ∩nKn = {e} and
the {αn | n ∈ Z}-action on K/Kn has DCC. By Proposition 4.12, α is distal
on K/Kn. Since ∩nKn = {e}, α is distal on K. ¤
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It may be remarked that the subgroup L in Theorem 4.3 may be assumed
to be contained in the maximal compact normal subgroup of G0. In [19],
it is shown that α is distal on a totally disconnected group if and only if
C(α±1) = {e}. A recent result in [18] combined with our results yields the
following corollary which strengthens and generalizes the result in [19] and
extends the result in [18] on compact groups to all locally compact groups.

Corollary 4.13 Let G be a locally compact group and α ∈ Aut(G). Then
the {αn}n∈N-action on G is distal if and only if C(α) = {e}. In particular,
α is distal if and only if C(α±1) = {e}.

Proof If the {αn}n∈N-action on G is distal, then C(α) = {e}. We now
assume that C(α) = {e}. Let G0 be the connected component of the identity
in G and K be the maximal compact normal subgroup of G0 such that G0/K
is a Lie group. Since K is maximal, it is characteristic. In particular, K is an
α-invariant normal subgroup of G. Since K is compact, α is distal on K (cf.
[18]). By Theorem 4.4, CK(α) = C(α)K = K. Thus replacing G by G/K, we
may assume that G0 is a Lie group. Since G0 is a Lie group, Proposition 4.1
implies that the {αn}n∈N-action on G0 is distal. Now using Proposition 4.8
and replacing G by G/G0 we may assume that G is totally disconnected. Let
U be any compact open subgroup of G. Since C(α) is closed, by Theorem 3.32
of [3], C(α−1) is also closed. Then there is a n such that ∩n

i=0α
−i(U) is tidy

for α−1 (cf. Theorem 3.32 of [3]). Let V = ∩n
i=0α

−i(U). Then V is a compact
open subgroup of G such that V ⊂ U . Since C(α) is trivial, Proposition 3.24
of [3] implies that the scale of α−1 is one, hence α−1(V ) ⊂ V (see Definition
2.1 of [3]). If e is in the closure of {αn(x) | n ∈ N} for some x ∈ G, then
αn(x) ∈ V for some n ≥ 1. This implies that x ∈ α−n(V ) ⊂ V ⊂ U . Since
U is any compact open subgroup, we get that x = e. This proves that the
{αn}n∈N-action on G is distal. The second assertion easily follows from the
first.

¤

The following corollary follows easily from above and Theorem 1.1 of [31].

Corollary 4.14 Let G be a locally compact group and α ∈ Aut(G). Then
the closure of the α-orbit of x, {αn(x)}n∈Z is a minimal closed α-invariant
set for every x ∈ G if and only if C(α±1) = {e}.
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5 Unimodularity

In this section, we relate relative compactness of contraction groups and
groups whose closed subgroups are unimodular. We first recall the following
well-known result on Lie groups which is often used:

Lemma 5.1 Let G be a real Lie group and α ∈ Aut(G). Then α preserves
the Haar measure of G if and only if | det( dα)| = 1 where dα is the differ-
ential of α on the Lie algebra of G.

Proof Let G0 be the connected component of G. Since G is a real Lie
group, G0 is an open α-invariant subgroup of G. Then α preserves the Haar
measure on G if and only if α preserves the Haar measure on G0. So, we
may assume that G is connected. Now the result follows from Proposition
55, Section 3.16, Chapter III of [5].

For a locally compact group, we consider the following conditions:

(i) Closed subgroups of G are unimodular;

(ii) CL(α) is relatively compact for any inner automorphism α of G and for
any α-invariant compact subgroup L of G;

(iii) C(α) is relatively compact for any inner automorphism α of G;

(iv) G is pointwise distal.

We now obtain the following relations between (i)-(iv).

Theorem 5.2 Let G be a locally compact group. Then (i) and (ii) are equiv-
alent and (iv) ⇒ (ii) ⇒ (iii).

1. Further, if the connected component in G is a real Lie group, then (i)–
(iii) are equivalent.

2. Furthermore, if there is a continuous injection φ : G → GL(n,F) where
F is a local field or G is an almost connected group, then (i)–(iv) are
equivalent.

To prove Theorem 5.2 we need the following Lemmas.
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Lemma 5.3 Let G be a locally compact group, α ∈ Aut(G) and let H be a
α-invariant closed normal subgroup of G.

If Haar measures of G and H are α-invariant, then the Haar measure of
G/H is also α-invariant.

In particular, if the Haar measure of any α-invariant closed subgroup of
G is α-invariant, then the Haar measure of any α-invariant closed subgroup
of G/H is also α-invariant.

For a locally compact group L, let λL denote the left Haar measure on L
and ∆L denote the modular function of L.

Proof Let G, α and H be as above. Then the following formula for φ ∈
Cc(G),

λG(φ) =

∫
dλG/H(u)

∫
φ(uh)dλH(h)

defines the left Haar measure on G; for u ∈ G, u = uH in G/H. For
φ ∈ Cc(G), define φα by φα(g) = φ(α(g)) for any g ∈ G. Then φα ∈ Cc(G).
Since λG and λH are α-invariant, we have for any φ ∈ Cc(G),

λG(φ) = λG(φα)
=

∫
dλG/H(u)

∫
φα(uh)dλH(h)

=
∫

dλG/H(u)
∫

φ(α(u)h)dλH(h)
= ∆G/H(α)

∫
dλG/H(u)

∫
φ(uh)dλH(h)

= ∆G/H(α)λG(φ).

This implies that ∆G/H(α) = 1. Thus, the Haar measure of G/H is α-
invariant. ¤

The next result is proved for compact Lie groups, however it can be proved
for any compact metrizable group using [18] but here we include the simple
proof for the Lie case which also makes the paper more self-contained.

Lemma 5.4 Let K be a compact Lie group and α be an automorphism of
K. Then we have the following:

(1) C(α) = C(α−1).

(2) C(α) = {e} if and only if C(α−1) = {e};
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Proof It is enough to prove (1) as it implies (2). Since K is a compact
Lie group, both C(α) and C(α−1) are normal subgroups contained in K0.
Hence we may assume that K is connected. Let β denote the factor of α
on K ′ = K/C(α−1). By 3.2.13 of [14], C(β−1) = {e}. Let V be the Lie
algebra of K ′ and let dβ be the differential of β on V . Then the eigenvalues
of β are of absolute value less than or equal to one. Since K ′ is compact,
|det ( dβ)| = 1. This implies that eigenvalues of dβ are of absolute value
one. Thus, C(β) = {e} and hence C(α) ⊂ C(α−1). Replacing α by α−1 we
get that C(α−1) ⊂ C(α). ¤

Lemma 5.5 Let α be an automorphism of a real Lie group G. If H = C(α)
and the Haar measure of H is α-invariant, then H is compact.

Proof Since G is a real Lie group, H = C(α) is a connected nilpotent Lie
group. Then H contains a compact connected central subgroup K such that
H/K is a simply connected nilpotent Lie group. Since C(α)K/K is a simply
connected nilpotent Lie subgroup of H/K, C(α)K/K is a closed subgroup of
H/K and hence H = C(α)K. In particular, α contracts H/K. If the Haar
measure on H is α-invariant, then since K is compact, the Haar measure on
H/K is α-invariant (cf. Lemma 5.3). Thus, α contracts H/K and the Haar
measure on H/K is α-invariant. Hence H = K. ¤

Proposition 5.6 Let G be a real Lie group and let α be an automorphism
of G. Then the following are equivalent:

(1) The Haar measure of any α-invariant closed subgroup of G is α-invariant.

(2) C(α) and C(α−1) are relatively compact;

Proof Suppose C(α) as well as C(α−1) is relatively compact. Then they
normalize each other as groups. Since G is a real Lie group, this implies that
K = C(α)C(α−1) is a compact α-invariant Lie subgroup. Applying Lemma
5.4 to α restricted to K, we get that C(α) = C(α−1) = K. Let G be the Lie
algebra of G. Then dα, the differential of α defines a linear transformation
on G. Let V ⊂ G be the Lie algebra of K. Then eigenvalues of the factor of
dα on G/V have absolute value one and hence its determinant has absolute
value one. Since V is a Lie algebra of a compact connected Lie group, the
determinant of dα restricted to V also has absolute value one. Thus, the
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absolute value of determinant of dα on G is one. This proves that the Haar
measure on G is α-invariant. Thus, we get that (1) implies (2).

Now assume (2). Let H = C(α). Then the Haar measure of H is α-
invariant. Then by Lemma 5.5, H is compact. We can also replace α by α−1

and get that (2) implies (1). ¤

We now prove the following version of Theorem 5.2.

Theorem 5.7 Let G be a locally compact group and let α be any automor-
phism of G. Then the following are equivalent:

(i) The Haar measure of any α-invariant closed subgroup of G is α-invariant.

(ii) CL(α±1) is relatively compact for any α-invariant compact subgroup L
of G.

Proof Let G0 be the connected component of e in G. Then G0 is α-invariant
and G/G0 is totally disconnected. We denote the factor of α on G/G0 by β
which is an automorphism defined by β(gG0) = α(g)G0 for all g ∈ G. Let
π : G → G/G0 be the canonical projection. Then π(α(g)) = β(π(g)) for all
g ∈ G. Let sG/G0 : Aut(G/G0) → N be the scale function defined as in [3].

Assume that the Haar measure of any α-invariant closed subgroup of
G is α-invariant. We now prove that CL(α) is relatively compact for any
α-invariant compact subgroup L of G. By Lemma 5.3, the Haar measure
of any β-invariant closed subgroup of G/G0 is also β-invariant. Then by
Proposition 3.21 of [3], we get that sG/G0(β±1) = 1. Now Proposition 3.24
of [3] implies that C(β) is relatively compact. Let C = π(L). Then from
Theorem 3.8 of [3], we get that CC(β) = C(β)C is relatively compact. Let
G1 = π−1(CC(β)). Then G1 is a α-invariant closed subgroup containing
CL(α) and hence CL(α) ⊂ G1. Since G1/G

0 is compact, G1 is almost con-
nected. By [23], G1 contains a maximal compact normal subgroup K such
that G1/K is a real Lie group. Since K is maximal, it is a characteristic
subgroup of G1. In particular, K is α-invariant. It follows from Lemma 5.3
that (i) is valid for G1/K. Also, CL(α) ⊂ CKL(α). Replacing G1 by G1/K,
we may assume that G1 is a real Lie group. Since C(α) ⊂ G1, it follows from
Proposition 5.6 that C(α) is relatively compact. Since G1 is a real Lie group
and CL(α) ⊂ G1, Theorem 4.4 implies that CL(α) = C(α)L and hence CL(α)
is relatively compact. Using the fact that the Haar measure of any closed
α-invariant subgroup of G is α-invariant if and only if it is α−1-invariant,
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as above we can get that CL(α−1) is relatively compact for any α-invariant
compact subgroup L of G.

Suppose CL(α±1) is relatively compact for any α-invariant compact sub-
group L of G. Then by Proposition 4.8, C(β±1) is relatively compact in
G/G0, hence by Proposition 3.24 of [3] we get that sG/G0(α±1) = 1. This
implies that there is a α-invariant open subgroup H of G such that G0 ⊂ H
and H/G0 is compact. Therefore, H is almost connected. By [23], H has a
maximal compact normal subgroup K such that H/K is a real Lie group.
Since K is maximal, it is characteristic. In particular, K is α-invariant. Let
ν be the factor automorphism of α on H/K. Then CK(α)/K = C(ν) and
hence C(ν) as well as C(ν−1) is relatively compact. Since H/K is a real Lie
group, by Proposition 5.6, the Haar measure of H/K is ν-invariant. Since
K is compact, the Haar measure of H is α-invariant. Since H is an open
subgroup of G, the Haar measure of G is α-invariant. Since any α-invariant
closed subgroup of G also has (ii), the Haar measure of any α-invariant closed
subgroup of G is α-invariant. ¤

Proof of Theorem 5.2 Applying Theorem 5.7 to inner automorphisms,
we get that (i) and (ii) are equivalent. By Theorem 3.1 of [28], we get that
(iv) implies (ii) and by taking L = {e} we get that (ii) implies (iii).

If the connected component in G is a real Lie group. Then (iii) ⇒ (ii)
follows from Theorem 4.4.

Suppose there is a continuous injection φ : G → GL(n,F) where F is a
local field. In order to prove (i)–(iv) are equivalent it is sufficient to prove that
(iii) implies (iv). Let x ∈ G and define α : GL(n,F) → GL(n,F) by α(g) =
φ(x)gφ(x−1) for all g ∈ GL(n,F). Let C(α, GL(n,F)) = {g ∈ GL(n,F) |
αn(g) → e as n → ∞} and C(α, G) = {g ∈ G | xngx−n → e as n →
∞}. Then C(α, GL(n,F)) is a closed α-invariant subgroup of GL(n,F) and
φ(C(α, G)) ⊂ C(α,GL(n,F)). Now (iii) implies that C(α, G) is a α-invariant
compact subgroup of G. Since φ is continuous, φ(C(α, G)) ⊂ φ(C(α,G)) ⊂
C(α,GL(n,F)). Since C(α, GL(n,F)) has no α-invariant nontrivial compact
subgroup, φ(C(α, G)) is trivial, hence C(α, G) is trivial as φ is an injection.
Now (iv) follows from Corollary 4.13.

Suppose G is an almost connected group. Then G has arbitrarily small
compact normal subgroups Kd such that G/Kd is an almost connected real
Lie group. By Corollary 4.11, G/Kd satisfies (iii) if G satisfies (iii). Thus, it
is sufficient to prove (iii) implies (iv) for almost connected real Lie groups.
Let G be an almost connected real Lie group. Then the connected component
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of the identity in G has finite index in G, hence to prove (iii) implies (iv),
we may further assume that G is a connected Lie group. Let x ∈ G. Define
α : G → G by α(g) = xgx−1 for all g ∈ G. Suppose C(α) and C(α−1)
are relatively compact. We will now claim that α is distal. Let G be the
Lie algebra of G and Ad be the adjoint representation of G on G. Let
U = {τ ∈ GL(G) | ( dα)nτ( dα)−n → e as n → ∞}. Then U is a closed
subgroup of GL(G). Since Ad(α(g)) = dαAd(g) dα−1 for all g ∈ G, we get
that Ad(C(α)) ⊂ U . Since U has no nontrivial compact subgroup invariant
under conjugation by dα, C(α) is contained in the kernel of Ad. Since G is
a connected Lie group, kernel of Ad is the center of G. This shows that C(α)
is contained in the center of G. Since α is inner, C(α) is trivial. Similarly
we can show that C(α−1) is trivial. Now Proposition 4.1 implies that α is
distal. Thus, (iii) implies (iv).

¤
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