isibang/ms/2011/6 April 28th, 2011 http://www.isibang.ac.in/~statmath/eprints

On Diophantine equations of the form $(x - a_1)(x - a_2) \cdots (x - a_k) + r = y^n$

MANISHA KULKARNI AND B.SURY

Indian Statistical Institute, Bangalore Centre 8th Mile Mysore Road, Bangalore, 560059 India

On Diophantine equations of the form

$$(x - a_1)(x - a_2) \cdots (x - a_k) + r = y^n$$

Manisha Kulkarni Poornaprajna Institute of Scientific Research Davanhalli, Bangalore India. email : manisha@isibang.ac.in

> B.Sury Statistics & Mathematics Unit Indian Statistical Institute 8th Mile Mysore Road Bangalore - 560 059 India. email : sury@isibang.ac.in

Abstract

Erdős and Selfridge [2] proved that a product of consecutive integers can never be a perfect power. That is, the equation $x(x+1)(x+2)...(x+(m-1)) = y^n$ has no solutions in positive integers x, m, n where m, n > 1. and $y \in \mathbf{Q}$. We consider the equation

$$(x-a_1)(x-a_2)\cdots(x-a_k)+r=y^n$$

where $0 \leq a_1 < a_2 < \cdots < a_k$ are integers and, with $r \in \mathbf{Q}$, $n \geq 3$ and we prove a finiteness theorem for the number of solutions x in \mathbf{Z} , y in \mathbf{Q} . Following that, we show that, more interestingly, for every nonzero integer n > 2 and for any nonzero integer r which is not a perfect n^{th} power for which the equation admits solutions, k is bounded by an effective bound.

Introduction

Erdős and Selfridge [2] proved that a product of consecutive integers can never be a perfect power. That is, the equation $x(x+1)(x+2)...(x+(m-1)) = y^n$ has no solutions in positive integers x, y, m, n where m, n > 1. After this, a natural question is to study $x(x+1)(x+2)...(x+(m-1)) + r = y^n$ with a nonzero integral or rational parameter r. However, this equation is not symmetric like the Erdős-Selfridge equation and requires different methods. In [1], we have proved that in this case there are effective finiteness results for $x, m, n \in \mathbb{Z}$ and $y \in \mathbb{Q}$. We shall also prove finiteness results if we delete many terms from the product involving consecutive integers. We consider the equation

$$(x - a_1)(x - a_2) \cdots (x - a_k) + r = y^n$$

where $0 \leq a_1 < a_2 < \cdots < a_k$ are integers and, with $r \in \mathbf{Q}$, $n \geq 3$. Our first aim is to prove a finiteness theorem for the number of solutions x in \mathbf{Z} , y in \mathbf{Q} . Following that, we show that, more interestingly, for every nonzero integer n > 2 and for any nonzero integer r which is not a perfect n^{th} power for which the equation admits solutions, k is bounded by an effective bound. We recall that the height $H(\alpha)$ of an algebraic number α is the maximum of the absolute values of the integer coefficients in its minimal defining polynomial. In particular, if α is a rational integer, then $H(\alpha) = |\alpha|$ and if α is a rational number $\frac{p}{a} \neq 0$ then $H(\alpha) = \max(|p|, |q|)$.

Our first result is the following one.

Theorem 1.

Let $r \in \mathbf{Q}$, let $0 \leq a_1 < a_2 < \cdots < a_k$ be integers where k > 2. Further, let n > 2 and assume that we are not in the case when n = k = 4. Then, there are only finitely many solutions $x \in \mathbf{Z}$, $y \in \mathbf{Q}$ to the equation

$$(x-a_1)(x-a_2)\cdots(x-a_k)+r=y^n$$

and, all the solutions satisfy

$$max\{H(x), H(y)\} < C$$

where C is an effectively computable constant depending only on n, r and the a_i 's.

When r is an integer and not a perfect n^{th} power, we bound k in the following result.

Theorem 2.

Let n be a fixed positive integer > 2 and let r be a nonzero integer which is not a perfect n^{th} power. Let $\{t_m\}_m$ be a sequence of positive integers such that $m/t_m \to \infty$ as $m \to \infty$. There exists an effectively computable number C depending only on n and r such that if $(x-a_1)(x-a_2)\cdots(x-a_{m-t_m})+r=y^n$ with $0 \le a_1 < a_2 < \cdots < a_{m-t_m}$ has a solution, then $m/(t_m+1) < C$.

To prove theorem 1, we use a beautiful result of Brindza [3].

Let K be an algebraic number field, $R \subset K$ be a finitely generated subring and $g \in R[X]$. Write $g = a \prod_{i=1}^{s} (X - \beta_i)^{r_i}$ over an extension of K, where $a \neq 0$ and $\beta_i \neq \beta_j$ for $i \neq j$. Let R_1 be the ring generated by R along with the denominators of the β_i 's. For an integer n > 1, consider the equation $g(x) = y^n$ with $x, y \in R_1$. Then, Brindza's theorem asserts :

Theorem (Brindza) [3] :

With the above notations, put $t_i = \frac{n}{(n,r_i)}$, $i = 1, 2, \dots, s$. Suppose that (t_1, t_2, \dots, t_s) is not a permutation of any of the s-tuples : (i) $(t, 1, 1, 1, \dots, t_s)$ for some t, or (ii) $(2, 2, 1, 1, 1, \dots, t_s)$. Then, all the solutions of the equation $g(x) = y^n$ with $x, y \in R_1$ satisfy

$$max\{H(x), H(y)\} < C$$

where C is an effectively computable constant depending on K, n and g.

Let us prove theorem 1 using this now.

Proof of Theorem 1.

Let us write f for the polynomial $(X - a_1)(X - a_2) \cdots (X - a_k)$. Suppose $f + r = a \prod_{i=1}^{s} (X - \beta_i)^{r_i}$ with $a \neq 0$ and $\beta_i \neq \beta_j$ for $i \neq j$ algebraic integers. We take R to be the subring $\mathbf{Z}[r]$ of \mathbf{Q} and $K = Q(\beta_1, \beta_2, \cdots, \beta_s)$.

We consider solutions $x, y \in O_K[r]$. We show that $r_i = 1$ or 2 and then use Brindza's theorem to get the result.

Claim : The multiplicity of a root of f(x) + r is at most 2. **Proof.** Note that f + r is a polynomial of degree k and hence, its derivative f' is a polynomial of degree k - 1. Now, by Rolle's theorem, it has zeroes in the intervals $(a_1, a_2), (a_2, a_3), \dots, (a_{k-1}, a_k)$. Thus, the roots of f' are distinct. Therefore, if f + r has a multiple root then its multiplicity can be at most two which proves the claim.

Thus,

$$f + r = a \prod_{i=1}^{s} (X - \alpha_i)^{r_i}$$

where each $r_i = 1$ or 2. Also note that s > 1 since k > 2. Let $t_i = \frac{n}{(n,r_i)} = \frac{n}{(n,1)}$ or $\frac{n}{(n,2)}$. This implies $t_i = n$ or $\frac{n}{2}$. As n > 2, note that $t_i > 1$ for each *i*. So, the *s*-tuple $(t_1, t_2, \dots, \dots, t_s)$ can never look like $(t, 1, 1, \dots, 1)$ for any *t*. If this *s*-tuple looks like $(2, 2, 1, \dots, 1)$, then it must be (2, 2) which gives k = 4 = n which is excluded by assumption. So, by Brindza's theorem we get the result.

Proof of Theorem 2.

Since r is not a perfect n^{th} power we can write r as

 $r = p_1^{h_1 n + r_1} p_2^{h_2 n + r_2} \dots p_t^{h_t n + r_t}$ where p_i 's are primes in Z and r_i 's are such that not all of them are zeroes. Choose the smallest p_i for which r_i is not zero; so, the exact power of p_i dividing r is $h_i n + r_i$. Take $C = (h_i n + r_i + 1)p_i$ and suppose, if possible, $m/(t_m+1) \ge C$. Let us write $k := m - t_m$ for simplicity. Then we claim that $(x - a_1)(x - a_2) \cdots (x - a_k)$ is divisible by $p_i^{h_i n + r_i + 1}$. Indeed, look at the number of terms of the product $(x-1)(x-2)\cdots(x-m)$ which are missing in the product $(x - a_1)(x - a_2) \cdots (x - a_k)$; this number is $m-k=t_m$. We claim that there is a string of consecutive integers of length at least $(h_i n + r_i + 1)p_i$ in the product $(x - a_1)(x - a_2) \cdots (x - a_k)$. Indeed, if each consecutive string of integers occurring in the last product is of length at the most $(h_i n + r_i + 1)p_i - 1$, then we would have $k = m - t_m < (t_m + 1)((h_i n + 1))$ r_i+1) p_i-1) which means $m < (t_m+1)(h_in+r_i+1)p_i$. Thus, $m/(t_m+1) < C$. In other words, if m is so large that $m/(t_m+1) \ge C$, then there is a string of consecutive integers of length at least $(h_i n + r_i + 1)p_i$ in the product $(x-a_1)(x-a_2)\cdots(x-a_k)$. Hence the power of p_i in $(x-a_1)(x-a_2)\cdots(x-a_k)$ is at least $h_i n + r_i + 1$. Thus the power of p_i in $(x - a_1)(x - a_2) \cdots (x - a_k) + r_k$ is exactly $h_i n + r_i \not\equiv 0 \pmod{n}$ since $0 < r_i < n$. This is a contradiction to the equation under consideration.

Acknowledgments.

We thank Professor R. Tijdeman who asked the first author a question which

is addressed in theorem 2 here and also thank him and Professor T.N.Shorey for showing interest in this work.

References

- [1] Y.Bilu, M. Kulkarni and B.Sury. On the Diophantine equation $x(x + 1) \cdots (x + m 1) + r = y^n$. Acta Arithmetica, 113.4 (2004).
- [2] P. Erdős and J. L. Selfridge. Product of Consecutive integers is never a power. Illinous J. of Math. 19(1975) 292- 301.
- [3] B. Brindza. On the Equation $f(x) = y^m$ over finitely generated domains. Acta Math. Hung. 53(3-4) 1989, 377-383.