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Abstract

Erdős and Selfridge [2] proved that a product of consecutive integers can
never be a perfect power. That is, the equation x(x+1)(x+2)...(x+(m−1)) =
yn has no solutions in positive integers x,m, n where m,n > 1. and y ∈ Q.
We consider the equation

(x− a1)(x− a2) · · · (x− ak) + r = yn

where 0 ≤ a1 < a2 < · · · < ak are integers and, with r ∈ Q, n ≥ 3 and
we prove a finiteness theorem for the number of solutions x in Z, y in Q.
Following that, we show that, more interestingly, for every nonzero integer
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n > 2 and for any nonzero integer r which is not a perfect nth power for
which the equation admits solutions, k is bounded by an effective bound.

Introduction

Erdős and Selfridge [2] proved that a product of consecutive integers can
never be a perfect power. That is, the equation x(x+1)(x+2)...(x+(m−1)) =
yn has no solutions in positive integers x, y,m, n where m,n > 1. After this,
a natural question is to study x(x + 1)(x + 2)...(x + (m− 1)) + r = yn with
a nonzero integral or rational parameter r. However, this equation is not
symmetric like the Erdős-Selfridge equation and requires different methods.
In [1], we have proved that in this case there are effective finiteness results
for x, m, n ∈ Z and y ∈ Q. We shall also prove finiteness results if we delete
many terms from the product involving consecutive integers. We consider
the equation

(x− a1)(x− a2) · · · (x− ak) + r = yn

where 0 ≤ a1 < a2 < · · · < ak are integers and, with r ∈ Q, n ≥ 3. Our
first aim is to prove a finiteness theorem for the number of solutions x in Z,
y in Q. Following that, we show that, more interestingly, for every nonzero
integer n > 2 and for any nonzero integer r which is not a perfect nth power for
which the equation admits solutions, k is bounded by an effective bound. We
recall that the height H(α) of an algebraic number α is the maximum of the
absolute values of the integer coefficients in its minimal defining polynomial.
In particular, if α is a rational integer, then H(α) = |α| and if α is a rational
number p

q
6= 0 then H(α) = max(|p|, |q|).

Our first result is the following one.

Theorem 1.
Let r ∈ Q, let 0 ≤ a1 < a2 < · · · < ak be integers where k > 2. Further, let
n > 2 and assume that we are not in the case when n = k = 4. Then, there
are only finitely many solutions x ∈ Z, y ∈ Q to the equation

(x− a1)(x− a2) · · · (x− ak) + r = yn

and, all the solutions satisfy

max{H(x), H(y)} < C
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where C is an effectively computable constant depending only on n, r and the
ai’s.

When r is an integer and not a perfect nth power, we bound k in the following
result.

Theorem 2.
Let n be a fixed positive integer > 2 and let r be a nonzero integer which is
not a perfect nth power. Let {tm}m be a sequence of positive integers such that
m/tm → ∞ as m → ∞. There exists an effectively computable number C
depending only on n and r such that if (x−a1)(x−a2) · · · (x−am−tm)+r = yn

with 0 ≤ a1 < a2 < · · · < am−tm has a solution, then m/(tm + 1) < C.

To prove theorem 1, we use a beautiful result of Brindza [3].
Let K be an algebraic number field, R ⊂ K be a finitely generated subring
and g ∈ R[X]. Write g = a

∏s
i=1(X − βi)

ri over an extension of K, where
a 6= 0 and βi 6= βj for i 6= j. Let R1 be the ring generated by R along with
the denominators of the βi’s. For an integer n > 1, consider the equation
g(x) = yn with x, y ∈ R1. Then, Brindza’s theorem asserts :

Theorem (Brindza) [3] :
With the above notations, put ti = n

(n,ri)
, i = 1, 2... · · · , s. Suppose that

(t1, t2, ... · · · , ts) is not a permutation of any of the s-tuples :
(i) (t, 1, 1, 1, .... · · · , 1) for some t, or
(ii) (2, 2, 1, 1, 1, .... · · · , 1).
Then, all the solutions of the equation g(x) = yn with x, y ∈ R1 satisfy

max{H(x), H(y)} < C

where C is an effectively computable constant depending on K,n and g.

Let us prove theorem 1 using this now.

Proof of Theorem 1.
Let us write f for the polynomial (X − a1)(X − a2) · · · (X − ak). Suppose
f + r = a

∏s
i=1(X − βi)

ri with a 6= 0 and βi 6= βj for i 6= j algebraic integers.
We take R to be the subring Z[r] of Q and K = Q(β1, β2, · · · , βs).
We consider solutions x, y ∈ OK [r]. We show that ri = 1 or 2 and then use
Brindza’s theorem to get the result.

Claim : The multiplicity of a root of f(x) + r is at most 2.
Proof. Note that f + r is a polynomial of degree k and hence, its derivative
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f ′ is a polynomial of degree k − 1. Now, by Rolle’s theorem, it has zeroes
in the intervals (a1, a2), (a2, a3), · · · , (ak−1, ak). Thus, the roots of f ′ are dis-
tinct. Therefore, if f + r has a multiple root then its multiplicity can be at
most two which proves the claim.

Thus,

f + r = a
s∏

i=1

(X − αi)
ri

where each ri = 1 or 2. Also note that s > 1 since k > 2.
Let ti = n

(n,ri)
= n

(n,1)
or n

(n,2)
. This implies ti = n or n

2
. As n > 2, note

that ti > 1 for each i. So, the s-tuple (t1, t2, · · · , · · · , ts) can never look like
(t, 1, 1, · · · , 1) for any t. If this s-tuple looks like (2, 2, 1, · · · , 1), then it must
be (2, 2) which gives k = 4 = n which is excluded by assumption. So, by
Brindza’s theorem we get the result.

Proof of Theorem 2.
Since r is not a perfect nth power we can write r as
r = ph1n+r1

1 ph2n+r2
2 .....phtn+rt

t where pi’s are primes in Z and ri’s are such that
not all of them are zeroes. Choose the smallest pi for which ri is not zero;
so, the exact power of pi dividing r is hin+ ri. Take C = (hin+ ri +1)pi and
suppose, if possible, m/(tm +1) ≥ C. Let us write k := m− tm for simplicity.
Then we claim that (x − a1)(x − a2) · · · (x − ak) is divisible by phin+ri+1

i .
Indeed, look at the number of terms of the product (x− 1)(x− 2) · · · (x−m)
which are missing in the product (x− a1)(x− a2) · · · (x− ak); this number is
m− k = tm. We claim that there is a string of consecutive integers of length
at least (hin+ ri +1)pi in the product (x−a1)(x−a2) · · · (x−ak). Indeed, if
each consecutive string of integers occurring in the last product is of length at
the most (hin+ri+1)pi−1, then we would have k = m−tm < (tm+1)((hin+
ri+1)pi−1) which means m < (tm+1)(hin+ri+1)pi. Thus, m/(tm+1) < C.
In other words, if m is so large that m/(tm + 1) ≥ C, then there is a string
of consecutive integers of length at least (hin + ri + 1)pi in the product
(x−a1)(x−a2) · · · (x−ak). Hence the power of pi in (x−a1)(x−a2) · · · (x−ak)
is at least hin + ri + 1. Thus the power of pi in (x−a1)(x−a2) · · · (x−ak)+r
is exactly hin + ri 6≡ 0(modn) since 0 < ri < n. This is a contradiction to
the equation under consideration.
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