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Abstract

We consider strong relative property (T ) for pairs (Γ, G) where Γ acts on
G. If N is a connected nilpotent Lie group and Γ is a group of automorphisms
of N , we choose a finite index subgroup Γ0 of Γ and obtain that (Γ, [Γ0, N ])
has strong relative property (T ) provided Zariski-closure of Γ has no compact
factor of positive dimension. We apply this to obtain the following: G is a
connected Lie group with solvable radical R and a semisimple Levi subgroup
S. If Snc denotes the product of noncompact simple factors of S and ST denotes
the product of simple factors in Snc that have property (T ), then we show that
(Γ, R) has strong relative property (T ) for a Zariski-dense closed subgroup Γ
of Snc if and only if R = [Snc, R]. The case when N is a vector group is
discussed separately and some interesting results are proved. We also consider
actions on solenoids K and proved that if Γ acts on a solenoid K, then (Γ,K)
has strong relative property (T ) under certain conditions on Γ. For actions
on solenoids we provide some alternatives in terms of amenability and strong
relative property (T ). We also provide some applications to the spectral gap
of π(µ) =

∫
π(g)dµ(g) where π is a certain unitary representation and µ is a

probability measure.
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1 Introduction

Let G be a topological (Hausdorff) group and π be a strongly continuous unitary
representation of G. We first recall the following weak containment notion: we say
that π weakly contains the trivial representation or we write I ≺ π if for each compact
set K and for each ε > 0, there is a vector v such that supg∈K ||π(g)v− v|| < ε||v||. It
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is easy to see that existence of nontrivial invariant vector implies weak containment.
We would be looking at the existence of nontrivial invariant vectors for various forms
of weak containment. One such well known condition is property (T ): we say that
G has property T if I ≺ π implies π has nontrivial invariant vectors. We mainly
consider relative property (T ) for triples (G,H, N) and strong relative property (T )
for pairs (H, N).

A triple (G,H,N) consisting of a topological group G and its subgroups H and
N is said to have relative property (T ) if for any unitary representation π of G such
that restriction of π to H weakly contains the trivial representation of H, we have
π(N) has nontrivial invariant vectors.

A pair (H, N) consisting of topological groups H and N with H acting on N by
automorphisms is said to have strong relative property (T ) if (G,H, N) has relative
property (T ) for G = HnN : if Γ is a topological group acting on a topological group
N by automorphisms, then the semidirect product ΓnN is the product space Γ×N
with multiplication given by (α, x)(β, y) = (αβ, xα(y)) and N (resp. Γ) is identified
with the closed subgroup {(e, x) | x ∈ N} (resp. {(α, e) | α ∈ Γ}) of ΓnN under the
map x 7→ (e, x) (resp. α 7→ (α, e)).

Strong relative property (T ) was considered by [Sh-99] to obtain a characterization
of algebraic groups with property (T ) and related results. Relative property (T ) was
crucial in determining property (T ) for various type of groups (see [BHV-08]).

If G is a topological group and H, N are subgroups of G, then [H, N ] denotes the
closed subgroup generated by {aba−1b−1 | a ∈ H and b ∈ N}.

We will be looking at strong relative property (T ) for actions on connected Lie
groups and for actions on solenoids: compact connected abelian group of finite di-
mension will be called a solenoid.

We first recall that a group of automorphisms of a connected Lie group G may also
be viewed as a group of linear transformation on the Lie algebra G of G by identifying
each automorphism with its differential. Let Γ be a group of automorphisms of G.
Then for any Γ-invariant subgroup N of G, let [Γ, N ] be the closed subgroup generated
by {α(g)g−1 | g ∈ N,α ∈ Γ}. Then [Γ, G] is a closed connected normal subgroup
of G invariant under any automorphism α normalizing Γ. It can be proved that if
[Γ′, G] 6= G for a subgroup Γ′ of finite index in Γ, then (Γ, G) will not have strong
relative property (T ) (cf. Lemma 2.1). Thus, we would have to look at [Γ′, G] for
any finite index subgroup Γ′ of Γ. But there could possibly be plenty of finite index
subgroups of Γ. Considering Zariski-closure of Γ we now choose a ”smallest” finite
index subgroup of Γ with which we obtain our result.

Let ΓZ be the Zariski-closure of Γ in GL(G) and Γ0
Z be the Zariski-connected

component of identity in ΓZ . Then Γ0
Z is a closed normal subgroup of finite index in

ΓZ . Let Γ0 = Γ ∩ Γ0
Z . Then Γ0 is a closed normal subgroup of finite index in Γ. So,

[Γ0, G] is Γ-invariant. The action of Γ0 satisfies an interesting alternative that any
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Γ0-orbit is either singleton or infinite and it can be easily seen that this alternative
holds good for connected subgroups of GL(G), but Γ0 need not be connected.

Remark 1.1 In general, ΓZ and Γ0
Z need not be subgroups of automorphisms of

the Lie group G, however if G is a simply connected group, then ΓZ consists of
automorphisms of G. As we will be working with action of Γ on G, ΓZ as well as Γ0

Z

is more convenient.

We will now state our result for actions on connected nilpotent Lie groups: proof
of the following uses the well known criterion of relative property (T ) in terms of in-
variant measures on projective spaces and the results on invariant groups of measures
on projective spaces (cf. [Da-82] and [Ra-04]).

Theorem 1.1 Let N be a connected nilpotent Lie group and Γ be a group of automor-
phisms of N . Suppose ΓZ has no compact factor of positive dimension. Then [Γ0, N ]
is the maximal subgroup of N such that (Γ, [Γ0, N ]) has strong relative property (T ).

Let G be a connected Lie group with solvable radical R and a semisimple Levi
subgroup S. Let Snc denote the product of noncompact simple factors in S and
ST be the product of simple factors in S that have property (T ). Cornulier [Co-06]
introduced T -radical RT defined by RT = ST [Snc, R] and proved that (Snc, RT ) has
strong relative property (T ) (cf. Remark 3.3.7 of [Co-06]). We now obtain a Zariski-
dense subgroup version of this result in the following form. Let X be the Lie algebra
of [Snc, R] and ρ: Snc → GL(X) be defined by for g ∈ Snc, ρ(g) is the differential of
the restriction to [Snc, R] of the innerautomorphism given by g.

Theorem 1.2 Suppose Γ is a closed subgroup of Snc such that ρ(Γ) is Zariski-dense
in ρ(Snc). Then the following are equivalent

(1) (Γ, R) and (ΓST , ST R) have strong relative property (T );

(2) (G, Γ, R) and (G, ΓST , ST R) have relative property (T );

(3) R = [Snc, R].

In general, (Γ, [Snc, R]) and (ΓST , RT ) (resp. (G, Γ, [Snc, R]) and (G, ΓST , RT ))
have strong relative property (T ) (resp. have relative property (T )).

One of the important step in the proof of [Co-06] is strong relative property (T )
for certain semisimple Lie group actions on simply connected nilpotent Lie groups
(cf. Proposition 1.5 of [Co-06]) but our Theorem 1.1 is more general. As we shall
see condition (3) in 1.2 implies that solvable group has to be nilpotent (see Corollary
4.1). So, we pay more attention to actions on connected nilpotent Lie groups.
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To extend Theorem 1.1 to actions on general Lie groups, it is sufficient to consider
the remaining case of actions on semisimple Lie groups. This is considered in the
following (see Proposition 4.1) which shows that actions on connected nilpotent Lie
groups is the crucial case.

Our techniques used in the proof of Theorem 1.1 can also be used to prove strong
relative property (T ) for actions on solenoids: any finite-dimensional compact con-
nected abelian group will be called a solenoid. Let K be a solenoid and Γ be a group of
automorphisms of K. Denote by K̂, the dual group of characters on K. Then K̂ is a
torsion free abelian group of finite rank and hence for some n, Zn ⊂ K̂ ⊂ K̂⊗Q ' Qn:
n is the dimension of K. Any automorphism α of K, gives an automorphism α̂ of K̂.
Since Zn ⊂ K̂, α̂ extends to a linear map of Qn. Thus, any group of automorphisms
of K may be realized as a subgroup of GLn(Q).

For a prime number p, let Qp be the p-adic field and Q∞ = R. Let Γp be the
p-adic-closure of Γ in GLn(Qp) for finite p. Let Γ∞ be the group of R-points of the
Zariski-closure of Γ in GLn(C). We prove the following for actions on solenoids.

Theorem 1.3 Let K be a solenoid and Γ be a group of automorphisms of K such
that the dual action of Γ on K̂ has no nontrivial invariant characters. Suppose one
of the following condition is satisfied:

(cp) Γp is topologically generated by p-adic one-parameter subgroups for some finite
prime p;

(c∞) the real connected component of Γ∞ has no nontrivial compact factor and the
dual action of Γ has no finite orbit.

Then (Γ, K) has strong relative property (T )

Example 1.1 We now give examples of subgroups of GLn(Q) that satisfies (cp) for
some p.

For p = ∞, take Γ ⊂ GLn(Z) and Γ is Zariski-dense in (a finite extension of)
SLn(C) (or more generally in a noncompact simple Lie group). Then Γ satisfies (c∞)
but Γ does not satisfy (cp) for any prime p as Γp is contained in the compact group
GLn(Zp).

Fix a prime number p. For simplicity we will restrict our attention to n = 2.
Consider the group Γ generated by

{
(

1 k
pi

0 1

)
,

(
1 0
l

pj 1

)
| k, l, i, j ∈ Z}.
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Then Γp is the closed subgroup generated by the two p-adic one-parameter unipotent
groups

{
(

1 x
0 1

)
| x ∈ Qp}, {

(
1 0
y 1

)
| y ∈ Qp}.

Thus, Γ verifies Cp. It is easy to see that Γq is a compact subgroup of GL2(Zq) for
any prime q 6= p. Thus, Γ does not verify (cq) for any prime q 6= p.

We now look at application of strong relative property (T ) to ergodic theory of
random walks. Let µ be a regular Borel probability measure on G and π be any
unitary representation of G. Consider the µ-average π(µ) of π defined by

π(µ)(v) =

∫
π(g)vdµ(g)

for any vector v. Since µ is a probability measure, ||πµ|| ≤ 1. Let Spr(π(µ)) be the
spectral radius of π(µ). Spr(π(µ)) < 1 has many interesting consequences to the
ergodic properties of the contraction π(µ) and its iterates π(µn) (see [JRT-94] and
[LW-95]). It is easy to see that Spr(π(µ)) < 1 implies π does not weakly contains the
trivial representation. Results in [Sh-00] and Corollary 8 of [BG-06] prove that this
necessary condition is also sufficient for any adapted probability measure µ (that is,
the closed subgroup generated by the support of µ is the whole group) on connected
semisimple Lie groups with finite center that have no nontrivial compact factors. We
use relative property (T ) to extend these results to a large class of connected Lie
groups.

Corollary 1.1 Let S be a connected semisimple Lie group having no nontrivial com-
pact factors and R be a locally compact group such that R acts on S and (S,R) has
strong relative property (T ). Let G be a factor group of S nR. Then

1. for any unitary representation π of G with I 6≺ π and for any adapted probability
measure µ on G, Spr(π(µ)) < 1.

2. In particular, if G is a connected Lie group satisfying (3) of Theorem 1.2 and
S = Snc, then Spr(π(µ)) < 1 for any adapted probability measure µ on G and
for any unitary representation π of G with I 6≺ π.

Interesting and important kind of unitary representations are obtained by consid-
ering G-spaces. Suppose X is a G-space with G-invariant measure m. Then there is
a unitary representation corresponding to the G-space X given by

π(g)(f)(x) = f(g−1x)
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for g ∈ G, x ∈ X and f ∈ L2(X,m). We are mainly interested in the unitary
representation π0 of G obtained by restricting π(g) to the subspace L2

0(X,m) = {f ∈
L2(X,m) | ∫ fdm = 0}.

In this situation of representations arising from G-spaces, the point-wise conver-
gence of π(µn)(f) is also an interesting problem to consider not just for f ∈ L2 but
also for f ∈ Lp for all p ≥ 1. Using methods in [JRT-94], we derive the following
on point-wise convergence for adapted and strictly aperiodic µ (that is, the smallest
closed normal subgroup a coset of which contains the support of µ is G) and last part
uses the result of [BC-09].

Corollary 1.2 Let G be a connected Lie group satisfying (3) of Theorem 1.2 with
S = Snc and µ be an adapted and strictly aperiodic probability measure on G. Let X
be a G-space with G-invariant probability measure m and π0 be the associated unitary
representation of G on L2

0(X, m). Suppose I 6≺ π0. Then

π(µn)f(x) =

∫
f(g−1x)dµn(g)

converges m-a.e. for any f ∈ Lp(X, m) and 1 < p < ∞ and the norm convergence
holds for p = 1 also.

In particular, if ∆ is a lattice in G, then for f ∈ Lp(G/∆) and 1 < p < ∞,

π(µn)(f)(x) =

∫
f(g−1x)dµn(g)

converges a.e.

2 preliminaries

Let G be a topological (Hausdorff) group and H be a subgroup of G. For a unitary
representation π of G, Hπ denotes the Hilbert space on which π is defined and π|H
denotes the restriction of π to H.

We first recall the following well-known weak-containment properties.

Definition 1 We say that a unitary representation π of a topological group G weakly
contains the trivial representation and we write I ≺ π if for each compact set K and
for each ε > 0, there is a vector v ∈ Hπ such that supg∈K ||π(g)v − v|| < ε||v||.

Remark 2.1 Suppose G is a locally compact σ-compact group. Then using the
theory of positive definite functions, one can easily see that I ≺ π if and only if there
is a sequence (vn) of unit vectors such that ||π(g)vn − vn|| → 0 for all g in G.
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Definition 2 We say that a locally compact group G has property (T ) if any unitary
representation of G that weakly contains the trivial representation has nontrivial
invariant vectors.

Structure of Lie groups and algebraic groups having property (T ) is well under-
stood resulting in rich class of groups having property (T ) (cf. [Sh-99] and [Wa-82]).
We refer to [BHV-08] for details on groups having property (T ). We now look at
relativized versions of property (T ).

Definition 3 Let G be a topological group with subgroups H and N . We say that
(G, H, N) has relative property (T ) if for any unitary representation π of G, I ≺ π|H
implies π(N) has nontrivial invariant vectors.

Definition 4 Let H be a topological group acting on a topological group N by
automorphisms. We say that the pair (H,N) has strong relative property (T ) if
(H nN,H, N) has relative property (T ).

Relative versions of property (T ) are used in constructing new examples of groups
with property (T ) and in obtaining spectral radius of random walks (cf. [BG-06]).
We first prove the following useful elementary result on strong relative property (T ).

Lemma 2.1 Let H be a locally compact group acting on a locally compact group N
by automorphisms and M be a closed subgroup of finite index in H.

1. If (H,N) has strong relative property (T ), then (M,N) also has strong relative
property (T ).

2. If [M, N ] 6= N , then (H,N) does not have strong relative property (T ).

Proof Let π be a unitary representation of MnN such that I ≺ π|M . By considering
a subgroup of M we may assume that M is normal in H. Consider the induced
representation σ from π to H n N . Since H/M is finite, the space on which σ is
defined consists of functions f : H nN → Hπ satisfying

f(hx) = π(h)f(x), h ∈ M nN, x ∈ H nN

and σ is defined by
σ(g)f(x) = f(xg)

for all x, g ∈ H nN .
Take a system of coset representatives {Mxi} of M in H. Let E be a compact

subset of H and ε > 0. Then there is a compact subset F of M such that E ⊂ ∪iFxi.
Since I ≺ πM , there is a vector v such that suph∈K ||π(h)v − v|| < ε||v|| where
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K = ∪xiFx−1
i F1 and F1 is a finite subset of M such that {xixj} ⊂ ∪F1xk. Define

f : H n N → Hπ by f(hxi) = π(h)v for all h ∈ M n N and all i. Then it can easily
be seen that f ∈ Hσ.

Take g ∈ F and h ∈ M n N , if xixj = hijxk for some k with hij ∈ F1, then
σ(gxj)f(hxi) = π(hxigx−1

i hij)v. This shows that

||σ(gxj)f − f || ≤ sup
a∈K

||π(a)v − v||

and hence
sup
g∈E

||σ(g)f − f || < ε||v|| = ε||f ||

Thus, I ≺ σ|H . If (H, N) has strong relative property (T ), σ(N) has nontrivial
invariant vectors. Thus, there is a non-zero function f : H n N → Hπ such that
f(hx) = π(h)f(x) and f(xg) = f(x) for all h ∈ M n N , x ∈ H n N and g ∈ N .
Since f is non-zero, f(xi) is a non-zero vector in Hπ for some i. Thus, we get
f(xi) = f(xig) = π(xigx−1

i )f(xi) for all g ∈ N . This implies that f(xi) is a non-zero
vector invariant under π(N). This proves that (M,N) has strong relative property
(T ).

If [M, N ] 6= N , then in view of the first part, we may assume that [H,N ] 6= N .
Replacing N by N/[H, N ] we may assume that H is trivial on N . This shows that H
is a normal subgroup HnN , that is HnN = H×N . Let ρ be a nontrivial irreducible
unitary representation of N . Define π on H nN = H ×N by π(h, x) = ρ(x). Then
I ≺ π|H = I and π(N) has no nontrivial invariant vectors as π|N = ρ is nontrivial
and irreducible.

We recall the following nondegeneracy conditions on measures.

Definition 5 A probability measure µ on a locally compact group G is called adapted
(resp. strictly aperiodic) if the support of µ is not contained in a proper closed
subgroup (resp. if the support of µ is not contained in a coset of a proper closed
normal subgroup).

2.1 Groups without finite-dimensional representations

Let µ be an adapted and strictly aperiodic probability measure on a locally compact
group G and Ĝ be the equivalent classes of irreducible unitary representations of G.
Considering the unitary representation ⊕π∈Ĝ\{I}π, we see that supπ∈Ĝ\{I} ||πµ|| < 1 if
||ρ(µ)|| < 1 for unitary representations ρ without invariant vectors. It follows from
Theorem 1 of [BG-06] that for groups having property (T ) and without nontrivial
finite-dimensional unitary representations, ||π(µ)|| < 1 for any unitary representation
π without invariant vectors. Thus for such groups, supπ∈Ĝ\{I} ||πµ|| < 1 and hence
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point-wise convergence holds (see also [JRT-94]). Such groups are useful in building
new classes of groups on which the strong and point-wise convergences hold (see
[BG-06]). We now attempt to study this type of groups.

We say that a Hausdorff topological group G has (NCF ) (resp. (NFU)) if G has
no nontrivial compact factor (resp. G has no nontrivial finite-dimensional unitary
representation). We first observe the following:

Lemma 2.2 Let G be a locally compact group having (NFU). Then we have [G,G] =
G.

Proof Since nontrivial locally compact abelian groups have nontrivial finite-dimensional
unitary representations, we have [G,G] = G.

As our main results are concerned about connected Lie groups, we study Lie
groups having (NFU) or (NCF ).

As irreducible unitary representations of compact groups are finite-dimensional,
G has (NCF ) if G has (NFU) but the converse need not be true: the abelian group
Qp of p-adic numbers has (NCF ) but all its irreducible unitary representations are
one-dimensional. We now prove the converse for connected Lie groups.

Lemma 2.3 Let G be a connected Lie group and S be a semisimple Levi subgroup of
G. Then the following are equivalent:

1. G has (NCF );

2. G has (NFU);

3. [G,G] = G, S has (NCF ) and G is the smallest closed normal subgroup con-
taining the semisimple Levi subgroup S.

Moreover, if G has (NCF ), then G is either trivial or nonamenable.

Proof Suppose G has (NCF ). Let ρ be a finite-dimensional unitary representation
of G. Since [G,G] = G, we have [ρ(G), ρ(G)] = ρ(G). Let V be the real Lie subalgebra
of End(Hρ) such that V is the Lie algebra of the Lie subgroup ρ(G) of GL(Hρ). Then
V coincides with its commutator subalgebra and hence V is an algebraic subalgebra
(see Corollary 3, section 6.2, Chapter 1 of [GOV-94] or Theorem 15, Chapter III of
[Ch-51]). Since ρ(G) is a connected Lie subgroup of GL(Hρ), ρ(G) is a subgroup of
finite index in a real algebraic group. This implies that ρ(G) is a closed subgroup of
GL(Hρ). Since ρ is unitary, ρ(G) is compact. Since G has (NCF ), ρ is the trivial
representation.

Assume that G has (NFU). Since compact groups have nontrivial finite-dimensional
representations, and S is a factor of G, S has (NCF ). Let MG be the smallest closed
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normal subgroup of G containing S. Let R be the solvable radical of G. Then
G = SR and so G/MG ' R/R ∩MG. This implies that G/MG is a solvable group
but by Lemma 2.2 we get that [G,G] = G, hence G = MG.

Assume that [G,G] = G, S has (NCF ) and G is the smallest closed normal
subgroup containing S. Let H be a closed normal subgroup of G such that G/H is
compact and let φ: G → G/H be the canonical projection. Then φ(S) is a semisimple
Levi subgroup of G/H. Since G/H is compact, semisimple Levi subgroup φ(S) of
G/H is also compact. Since S has no compact factors, φ(S) is trivial. Thus, H is a
closed normal subgroup containing S, hence H = G. This proves that G has (NCF ).

We now prove the second part. Suppose G has (NCF ) and amenable. Then S
has (NCF ) and amenable, hence S is trivial. This shows that G is solvable. Since
[G, G] = G, G is trivial.

3 Actions on vector spaces

We first prove the following lemma characterizing strong relative property (T ) for lin-
ear actions, a part of the proof uses projection valued measure method of Furstenberg
as in [Bu-91], [HV-89] and [Sh-99].

Lemma 3.1 Let V be a finite-dimensional vector space over a local field of charac-
teristic zero and Γ be a locally compact σ-compact group of linear transformations on
V . Then the following are equivalent:

(1) (Γ, V ) has strong relative property (T );

(2) for any Γ-invariant subspace W of V such that the action of Γ on V/W is
contained in a compact extension of a diagonalizable group, we have W = V .

Before we proceed to the proof we fix the following notation: for a measure λ on
a locally compact group G and an automorphism α of G, define the measure α(λ) by
α(λ)(B) = λ(α−1(B)) for any Borel subset B of G.

Proof It is easy to see that (1) implies (2). We now prove the converse. Suppose
(Γ, V ) does not have strong relative property (T ). Then there is a unitary represen-
tation π of ΓnV on a Hilbert space H such that I ≺ π|Γ and π(V ) has no nontrivial
invariant vectors. Let (vn) be a sequence of unit vectors such that ||π(h)vn−vn|| → 0
for all h ∈ Γ. Let V̂ be the dual of V . Since dual of quotient subspaces of V cor-
respond to subspaces of V̂ , it is sufficient to find a nontrivial Γ-invariant subspace
U of V̂ such that dual action of Γ on U is contained in a compact extension of a
diagonalizable group.
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Let P be the projection valued measure associated to the direct sum decomposition
of π|V . For any vector v ∈ H, let µv(B) = ||P (B)v||2 for any Borel subset B of V̂ .
Then µv is a non-negative measure on V̂ . It is easy to verify that hµv = µπ(h)v

for h ∈ Γ and v ∈ H. Since π(V ) has no nontrivial invariant vectors, P ({0}) is
the trivial projection, hence all µv have full measure in V̂ \ {0}. Let P(V̂ ) be the
projective space associated to V̂ and ϕ: V̂ \ {0} → P(V̂ ) be the canonical quotient
map. Then any α ∈ GL(V̂ ) defines a transformation α on P(V̂ ) by α(ϕ(v)) = ϕ(α(v))
for all v ∈ V̂ \ {0}. For simplicity we denote α also by α. Then we have αϕ = ϕα.
Now, take λn = ϕ(µvn). Then (λn) is a sequence of probability measures on P(V̂ ).
Since P(V̂ ) is compact, by passing to a subsequence, we may assume that λn → λ
in the weak* topology for some probability measure λ on P(V̂ ). For h ∈ Γ, since
||π(h)vn − vn|| → 0, hλn − λn → 0 in the total variation norm. This implies since
λn → λ that hλ = λ for all h ∈ Γ.

Let L be the smallest quasi-linear variety (that is, a finite union of subspaces) of
V̂ such that ϕ(L \ {0}) contains the support of λ. Define

NL = {g ∈ GL(V̂ ) | g(L) = L}
and

IL = {g ∈ GL(V̂ ) | g(x) = x for all x ∈ π(L \ {0})}.
Then IL and NL are algebraic groups and IL is a normal subgroup of NL (see [Da-82]
and [Fu-76] for further details). Let Gλ = {g ∈ NL | gλ = λ}. Then since π(L \ {0})
contains the support of λ, IL ⊂ Gλ. By Corollary 2.5 of [Da-82] in the archimedean
case and Proposition 1 of [Ra-04] in the non-archimedean case, Gλ/IL is compact
(see also [Fu-76]): in the real case this implies that Gλ is a group of real points of
an algebraic group defined over reals. Let Γ′ be the image of Γ in GL(V̂ ) under the
dual action. Since hλ = λ for all h ∈ Γ, Γ′ ⊂ Gλ. Let U be the subspace spanned
by L. Since L is Γ-invariant, U is Γ-invariant. It follows from the definition of IL

that IL restricted to U is a group of diagonalizable transformations. Since Gλ/IL is
compact and Γ′ ⊂ Gλ, we get that the dual action of Γ on U is contained in a compact
extension of a diagonalizable group.

As a consequence of this criterion we have the following alternative for closed
irreducible subgroups of GL(V ).

Corollary 3.1 Let Γ be a closed subgroup of GL(V ).

1. If V is Γ-irreducible, then (Γ, V ) has strong relative property (T ) or Γ has
polynomial growth.

2. If dimension of V is two, then (Γ, V ) has strong relative property (T) or Γ is
amenable.
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Proof Assume V is Γ-irreducible. If (Γ, V ) does not have strong relative property
(T ), then by Lemma 3.1, there is a proper Γ-invariant subspace W of V such that Γ
action on V/W is contained in a compact extension of an abelian group. Since V is
Γ-irreducible, W = {0}. Thus, Γ is contained in a compact extension of an abelian
group. Since Γ is closed in GL(V ), Γ has polynomial growth.

Assume dimension of V is two. If V is Γ-irreducible, then the result follows from
the first part as groups of polynomial growth are amenable. If V is not Γ-irreducible,
then since dimension of V is two, Γ is solvable, hence amenable.

We will now put some sufficient conditions on linear actions to obtain the strong
relative property (T ) of the corresponding pair.

Proposition 3.1 Let V be a finite-dimensional vector space over R and Γ be a locally
compact σ-compact group of linear transformations on V such that the dual action of
Γ on V̂ has no nonzero finite orbit.

(1) Suppose ΓZ has no compact factor of positive dimension. Then (Γ, V ) has strong
relative property (T ).

(2) Suppose Γ has no finite dimensional unitary representation. Then (Γ, V ) has
strong relative property (T ).

Remark 3.1 It is easy to see that conditions on Γ as in (1) and (2) are not a necessity
for strong relative property (T ) but it can easily be seen that having no nonzero finite
orbit for the dual action is a necessity.

Remark 3.2 If Γ ⊂ GL(V ) is finitely generated, then Γ is residually finite, hence Γ
has nontrivial finite-dimensional unitary representations. Thus, (2) is not applicable
for finitely generated Γ but there are many finitely generated Γ having ΓZ with
no compact factor of positive dimension (for instance Γ = SL(n,Z)), hence (1) is
applicable (see the following Example 3.1).

Proof Let W be a Γ-invariant subspace of V such that the action of Γ on V/W is
contained in a compact extension of a diagonalizable group.

We now prove (1). Suppose ΓZ has no compact factor of positive dimension and
the dual action of Γ has no nonzero finite orbit. Let ΓZ be the group of R-points
of the Zariski-closure of Γ. Then W is invariant under ΓZ and ΓZ-action on V/W
is contained in a compact extension of a diagonalizable group. Since ΓZ has no
compact factor of positive dimension and nontrivial connected abelian Lie groups
have nontrivial compact factor, we get that ΓZ is finite on V/W . If W 6= V , then this
implies that the dual action of ΓZ has a nonzero finite orbit in V̂ . Since Γ ⊂ ΓZ , the
dual action of Γ has a nonzero finite orbit. This is a contradiction to the assumption
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that the dual action of Γ on V̂ has no nonzero finite orbit. Thus, W = V , hence (1)
follows from Lemma 3.1.

We now prove (2). Suppose Γ has no nontrivial finite-dimensional unitary rep-
resentation and the dual action of Γ has no nonzero finite orbit. Since nontrivial
subgroup of compact extension of abelian groups have nontrivial finite-dimensional
unitary representations, Γ is trivial on V/W . If W 6= V , then this implies that the
dual action of Γ has nontrivial invariant vectors in V̂ . This is a contradiction to the
assumption that the dual action of Γ on V̂ has no nonzero finite orbit. Thus, W = V
and hence Lemma 3.1 implies that (Γ, V ) has strong relative property (T ).

Example 3.1 (1) If Γ ⊂ GLn(R) is a Zariski-dense subgroup in a connected non-
compact simple Lie group, then ΓZ has no compact factor of positive dimension: for
instance, Γ is a lattice in a non-compact simple Lie group such as SU(n, 1), SO(p, q).

(2) If Γ ⊂ GLn(R) is such that no subgroup of finite index in the group of R-points
of the Zarkiski-closure of Γ has invariant vectors, then it may be shown that Γ has no
finite orbit: for instance if Γ is a lattice in SLn(R) or Sp2n(R), then Γ has no nonzero
finite orbit.

(3) In particular, if Γ is a lattice in a connected non-compact simple Lie subgroup
of GLn(R) that has no invariant vectors in Rn, then ΓZ has no compact factor of
positive dimension and Γ has no finite orbit.

4 Actions on connected Lie groups

We first consider actions on connected nilpotent Lie groups. Let N be a connected
nilpotent Lie group. Then denote Ni = [N, Ni−1] for i ≥ 1 and N0 = N . It can easily
be seen that each Ni is a closed connected characteristic subgroup of N and Ni−1/Ni

is abelian.
We first prove a Lemma on actions of Lie groups.

Lemma 4.1 Let G be a connected Lie group and Γ be a group of automorphisms of
G such that ΓZ has no compact factors of positive dimension. Suppose H and N are
a closed connected Γ-invariant subgroup of G such that Γ0 is trivial on G/H and on
H/N . Then Γ0 is trivial on G/N .

Proof Let G,H,N be Lie algebras of G,H, N respectively. Since Γ0 acts trivially
on G/H and on H/N , Γ0 on G/N is contained in a unipotent subgroup. Since Γ0

is a subgroup of finite index in Γ, Γ on G/N is contained in a finite extension of a
unipotent group. Since ΓZ has no compact factor of positive dimension, Γ0

Z is trivial
on G/N . This implies that Γ0 is trivial on G/N .
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Proof of Theorem 1.1 Let H = [Γ0, N ]. Since N is connected, H is a closed
connected normal subgroup of N , hence H is a Lie group. Let M = [Γ0, H]. Then
M is a closed connected normal subgroup of H. Then Γ0 is trivial on N/H and on
H/M . By Lemma 4.1, Γ0 is trivial on N/M . Since H = [Γ0, N ], H = M . Replacing
N by H we may assume that N = [Γ0, N ].

Let N be the Lie algebra of N and exp:N → N be the exponential map. Since
N is nilpotent, there is a k ≥ 0 such that Nk 6= {e} and Nk+1 = {e}. We prove
the result by induction on the dimension of N . Suppose N is abelian. Then exp is
a homomorphism. Let π be a unitary representation of Γ n N such that I ≺ π|Γ.
We now claim that π(N) has nontrivial invariant vectors. Let π1: ΓnN be given by
π1(α, v) = π(α, exp(v)). Then π1 is a unitary representation such that I ≺ π1|Γ. Let
V0 = [Γ0,N ]. Then V0 is a Γ-invariant subspace of N . If Γ1 is a normal subgroup
of finite index in Γ, let W = [Γ1, V0]. Then W is a Γ-invariant vector space and Γ
is finite on V0/W . This implies that Γ0

Z is trivial on V0/W , hence Γ0 is trivial on
V0/W . Since Γ0 is trivial on N /V0, by Lemma 4.1, Γ0 is trivial on N/W . Since
V0 = [Γ0,N ], W = V0. This implies that the no finite index subgroup of Γ acts
trivially on a nontrivial quotient of V0. By Proposition 3.1, we get that (Γ, V0) has
strong relative property (T ). Thus, π1(V0) = π(exp(V0)) has nontrivial invariant
vectors. It is easy to see that Γ0 acts trivially on N/exp(V0). This implies that
N = [Γ0, N ] = exp(V0). Since π(exp(V0)) has nontrivial invariant vectors, π(N) has
nontrivial invariant vectors. This proves that (Γ, N) has strong relative property (T ).

Suppose N is not abelian. Then Nk is a nontrivial closed connected Γ-invariant
central subgroup of N . Let Nk be the Lie algebra of Nk and expk is the exponential
map of Nk onto Nk. Let V2 be a nontrivial Γ-irreducible subspace of Nk and A =
expk(V2). Since expk is a local diffeomorphism, A is a nontrivial closed connected
Γ-invariant central subgroup of N . Applying induction hypothesis to Γ-action on
N/A, (Γ, N/A) has strong relative property (T ).

If a finite index normal subgroup Γ2 of Γ acts trivially on V2, then A is in the
center of Γ2 n N . Since (Γ, N/A) has strong relative property (T ), by Lemma 2.1,
(Γ2, N/A) has strong relative property (T ). Since A ⊂ [N,N ], Proposition 3.1.3 of
[Co-06] implies that (Γ2, N) has strong relative property (T ) (see also Remark 3.1.7
of [Co-06]). This implies that (Γ, N) has strong relative property (T ).

If no finite index subgroup of Γ acts trivially on V2. Since V2 is Γ-irreducible, the
dual action of Γ on the dual of V2 has no finite orbit. Hence by (1) of Proposition 3.1,
(Γ, V2) has strong relative property (T ). This implies that (Γ, A) has strong relative
property (T ). Since (Γ, N/A) has strong relative property (T ), we get that (Γ, N)
has strong relative property (T ).

Example 4.1 We now look at few examples of (Γ, N) that are relevant to Theorem
1.1.
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(i) Take N = Rn and Γ = SLn(R) where R is a subring of R (for instance, R =
Z,Q,R). Then it is easy to see that ΓZ = SLn(R) and Γ0 = Γ. Here [Γ,Rn] = Rn.
By Theorem 1.1, (Γ, N) has strong relative property (T ).

(ii) Take N = {(t, s, r | t, s ∈ Rn, r ∈ R} to be the (2n+1)-dimensional Heisenberg
group with multiplication given by

(t, s, r)(t, s′, r′) = (t + t′, s + s′, r + r′+ < t, s′ >)

for t, s, t′, s′,∈ Rn, r, r′ ∈ R and Γ be any Zariski-dense subgroup of SL2n(R). Then
[Γ, N ] = N and hence by Theorem 1.1, (Γ, N) has strong relative property (T ).

Using general theory of connected semisimple Lie groups, we have the following
which extends Proposition 1.5 of [Co-06].

Corollary 4.1 Let N be a connected solvable Lie group and S be a connected semisim-
ple Lie subgroup of automorphisms of N . If S has (NCF ) and [S, N ] = N , then N is
a nilpotent group with its maximal compact subgroup contained in [N, N ] and (Γ, N)
has strong relative property (T ) for any Zariski-dense closed subgroup Γ of S.

Proof We first claim that N is nilpotent. Let G = SnN . Then G is a connected Lie
group and N is its solvable radical. Let ρ: G → GL(G) be the adjoint representation
of G where G is the Lie algebra of G. Let G̃ be the algebraic closure of ρ(G) in GL(G).
Then Chevalley decomposition implies that G̃ = S̃TU where S̃ is a semisimple Levi
subgroup, T is an abelian group consisting of semisimple elements and U is the
unipotent radical. Also, solvable radical of G̃ is TU and [S̃, T ] = {e}. This implies
that [S̃, TU ] ⊂ U . Since ρ(S) is a semisimple subgroup of G̃, replacing S̃ by a
conjugate we may assume that ρ(S) ⊂ S̃. Since ρ(N) is a connected solvable normal
subgroup of ρ(G), ρ(N) ⊂ TU . Hence [ρ(S), ρ(N)] ⊂ U . Since [S,N ] = N , ρ(N) ⊂
U , hence ρ(N) is nilpotent. Since kernel of ρ is the center of G, N is a nilpotent
group.

Let Γ be a Zariski-dense subgroup of S. Then since S is connected semisimple
Lie group, the connected component of ΓZ is S, hence Γ0 = Γ. Since S has (NCF ),
ΓZ has no compact factor of positive dimension. Let H = [Γ, N ]. Then H is a closed
connected Γ-invariant normal subgroup of N . Since H is connected and Γ is Zariski-
dense in S, H is S-invariant. Since H = [Γ, N ], Γ is trivial on N/H and hence S is
trivial on N/H. Since [S, N ] = N , H = [Γ, N ] = N . By Theorem 1.1, (Γ, N) has
strong relative property (T ).

In order to prove maximal compact subgroup of N is contained in [N,N ]. We
assume that N is abelian and prove that N has no compact subgroup. Let L be a
maximal compact subgroup of N . Then L is S-invariant. Since L is a torus and S
is connected, S acts trivially on L. Let N and L be the Lie algebras of N and L
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respectively. Since S is semisimple and L is S-invariant, there is a S-invariant vector
space V such that V ⊕ L = N . Let exp be the exponential map of N onto N . If
{exp(tv) | t ∈ R} is relatively compact for some v ∈ V , then exp(tv) ∈ L for all t ∈ R.
This implies that v ∈ L. Since V ∩ L = {0}, v = 0. Thus, exp(V ) is closed. Since
V ⊕L = N , S is trivial on N/ exp(V ), hence [S, N ] ⊂ exp(V ). Since [S, N ] = N , we
get that N = exp(V ), hence L is trivial.

Example 4.2 We now give an example to show that N in Corollary 4.1 may have
nontrivial compact subgroup. Take N = {(t, s, r + Z) | t, s, r ∈ R} to be the 3-
dimensional reduced Heisenberg group with multiplication given by

(t, s, r + Z)(t, s′, r′ + Z) = (t + t′, s + s′, r + r′ + ts′ + Z)

for t, s, r, t′, s′, r′ ∈ R and S = SL2(R). Then [S, N ] = N and {(0, 0, r + Z) | r ∈ R}
is a compact central subgroup of N of dimension one.

We now prove Theorem 1.2.

Proof of Theorem 1.2 Using the surjective homomorphism S n R → G given
by (x, g) 7→ gx we get that (1) implies (2). If [Snc, R] 6= R, then let N = [Snc, R].
Then N is a closed normal subgroup of G and Snc acts trivially on R/N . This
implies that (Γ, R) does not have strong relative property (T ). Since G/SncR is
compact, (G, Γ, R) does not have relative property (T ). This proves that (2) implies
(3). Assume [Snc, R] = R. It follows from Corollary 4.1 that (Γ, R) has strong relative
property (T ). Since ST ⊂ Snc and ST has property (T ), (1) follows.

The second part may be proved from the first part by considering the Lie group
SnRT (instead of SnR) as Snc has no nontrivial compact factor implies [Snc, RT ] =
RT .

Remark 4.1 We would like to remark that Theorem 1.2 may be proved for any
locally compact σ-compact Zariski-dense (not necessarily closed) subgroup Γ of Snc.

We now discuss extension of Theorem 1.1 for actions on connected Lie groups. It
is quite clear that one needs to consider the two distinct cases of actions on connected
solvable Lie groups and actions on connected semisimple Lie groups. We now discuss
the case of actions on connected semisimple Lie groups.

Proposition 4.1 Let Γ be a group of automorphisms of a connected semisimple Lie
group G. If (Γ, G) has strong relative property (T ), then G has property (T ).

Proof Suppose (Γ, G) has strong relative property (T ). Let Z be the center of G.
Then Z is Γ-invariant. It can easily be seen that (Γ, G/Z) also has strong relative
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property (T ). Using Theorem 1.7.11 of [BHV-08] and replacing G by G/Z, we may
assume that G has no center and hence Aut(G) is an almost algebraic group (see
[Da-92]). This implies that the connected component of Aut(G) has finite index in
Aut(G). Since G is a connected semisimple Lie group, the group of inner automor-
phisms of G is the connected component of Aut(G) (see Chapter III, Section 10.2,
Corollary 2 of [Bo-98]). Thus, there is a subgroup Γ1 of finite index in Γ such that Γ1

is a group of inner-automorphisms on G, hence since G has no center, Γ1 is isomorphic
to a subgroup G1 of G. We may identify Γ1 with the subgroup G1 of G.

Let π be a unitary representation of G such that I ≺ π. Define a unitary repre-
sentation σ of Γ1nG by σ(x, g) = π(gx) for all (x, g) ∈ Γ1nG. Then I ≺ σ|Γ1 . Since
Γ1 is a subgroup of finite index in Γ, by Lemma 2.1 we get that (Γ1, G) has strong
relative property (T ) and hence σ|G = π has nontrivial invariant vector. Thus, G has
property (T ).

We now prove the spectral gap result.

Proof of Corollary 1.1 Let ϕ: SnR → G be the canonical projection and π be any
unitary representation of G. If µ is any adapted probability measure on G such that
Spr(π(µ)) = 1. It follows from [BG-06] that I ≺ π ⊗ π. Let ρ = π ◦ ϕ. Then ρ is a
unitary representation of SnR and I ≺ ρ⊗ρ. Since S is a connected semisimple Lie
group having no nontrivial compact factors, Lemma 4 of [Be-98] implies that I ≺ ρ|S.
Since (S, R) has strong relative property (T ), ρ(R) has nontrivial invariant vectors.
Since R is normal, the space of ρ(S)-invariant vectors is invariant and hence we may
assume that ρ(S) is trivial. This proves that I ≺ ρ and hence I ≺ π.

5 Solenoids

We now look at actions on solenoids: recall that a compact connected finite-dimensional
abelian group is called solenoid. Recall that if K is a solenoid (of dimension n), then
Qn

p may be realized as a dense subgroup of K and any group Γ of automorphisms can
be realized as a group of linear transformations on Qn

p .

Proposition 5.1 Let K be a solenoid and Γ be a group of automorphisms of K.
Suppose (Γ, K) does not have strong relative property (T ). Then we have the following:

(1) for each p, there is a proper Γ-invariant subspace Vp of Qn
p such that the action

of Γ on Qn
p/Vp is contained in a compact extension of a diagonalizable group

over Qp;
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(2) In addition if Γ is a finitely generated group and for each p either Γp is compact
or the action of Γ is irreducible on Qn

p , then there is an abelian subgroup Γ1 of
finite index in Γ.

Proof Let p be a prime number or p = ∞. Since K̂ ⊂ Qn ⊂ Qn
p and the dual of

Qn
p is itself, we get that there is a continuous homomorphisms fp:Qn

p → K such that
fp(Qn

p ) is dense in K and fp(α(x)) = α(fp(x)) for all α ∈ Γ and x ∈ K.
Suppose (Γ, K) does not have strong relative property (T ). Since fp(Qn

p ) is dense
in K, (Γ,Qn

p ) also does not have strong relative property (T ). By Lemma 3.1, there
is a proper Γ-invariant subspace W of Qn

p such that the action of Γ on Qn
p/W is

contained in a compact extension of a diagonalizable group. This proves (1).
We now prove (2). Let B be the dual of Qn. Then K is a quotient of B and the

Γ action on K lifts to an action of B. Suppose (Γ, K) does not have strong relative
property (T ). Then (Γ, B) also does not have strong relative property (T ). Let I
be the set of all p such that Γp is not compact. Since Γ action is irreducible on Qn

p

or Γp is compact, by Proposition 3.1 we get that Γ action on Qn
p is contained in a

compact extension of a diagonalizable group, say Lp for p ∈ I. Since Γ is a finitely
generated group of matrices over Q, I is finite. Since Lp is a compact extension of
a diagonalizable group, Lp contains a subgroup L′p of finite index such that L′p is a
central group, in particular derived group of L′p is compact. Let Γ1 = ∩p∈I(L

′
p ∩ Γ).

Since I is finite, Γ1 is a subgroup of finite index in Γ. Since L′p has compact derived
group for any p ∈ I and Γ1 is contained in L′p, we get that Γ1 has finite derived
group. Since Γ1 has finite index in Γ, Γ1 is also finitely generated, hence Γ1 contains
a subgroup Γ2 of finite index such that Γ2 is torsion free. Since [Γ1, Γ1] is finite, Γ2 is
abelian.

The next result shows the effectiveness of (2) of Proposition 5.1 second result of
which generalizes a result of Burger [Bu-91]: recall that action of a group Γ on a
vector space is called totally irreducible if the action of every subgroup of finite index
is irreducible.

Corollary 5.1 Let K be a solenoid and Γ be a finitely generated group of automor-
phisms of K.

1. If for each p either Γp is compact or the action of Γ is irreducible on Qn
p , then

(Γ, K) has strong relative property (T ) or Γ is amenable.

2. If dimension of K is 2, then Γ is amenable or (Γ, K) has strong relative property
(T ).

3. If Γ ⊂ GLn(Z) and Γ is totally irreducible on Rn, then (Γ, K) has strong relative
property (T ) or K has dimension at most two.
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Remark 5.1 If K is the n-dimensional torus (more generally Γ ⊂ GLn(Z)), then
Γp is compact for any finite prime. Thus, in this case, irreducibility conditions in
Corollary 5.1 needed only for the action of Γ on Rn.

Proof Assume that (Γ, K) does not have strong relative property (T ). Suppose Γ
is irreducible on Qn

p or Γp is compact, (2) of Proposition 5.1 implies that Γ contains
an abelian subgroup Γ1 of finite index. This proves the first part.

If dimension of K is 2 and (Γ, K) does not have relative property (T ). If Γ is not
irreducible on some Q2

p, then Γ is contained in the group of upper triangular matrices
which is solvable, hence Γ is amenable. So we may assume that Γ is irreducible on
all Q2

p. By the first part, Γ is amenable. This proves the second part.
If Γ ⊂ GLn(Z) is totally irreducible on Rn and (Γ, K) does not have relative

property (T ). Then Γ ⊂ GLn(Z) implies that Γp is compact for any finite prime
p. By the first part Γ is amenable. By [Ti-70], Γ has a solvable subgroup Γ1 of
finite index. Since Γ is totally irreducible on Rn, Γ1 is irreducible on Rn. Since Γ1 is
solvable, n ≤ 2.

Proof of Theorem 1.3 Suppose Γp is topologically generated by p-adic one-
parameter subgroups. If Γ is contained in a compact extension of a diagonalizable
group over Qp, then let H be a closed linear group over Qp and D be a diagonalizable
normal subgroup of H such that H/D is compact and Γ is contained in H. Since
there are no continuous homomorphism from a p-adic one-parameter group into a
compact p-adic Lie group, we get that any p-adic one-parameter subgroup of H is
contained in D. Since D is diagonalizable, H has no p-adic one-parameter subgroup.
Since Γp is generated by one-parameter subgroups and Γ ⊂ H, Γ is trivial. Since
dual action of Γ has no nontrivial invariant characters, (1) of Proposition 5.1 is not
satisfied. Thus, (Γ, K) has strong relative property (T ).

Suppose Γ satisfies (c∞). Let Γ0
∞ be the connected component of identity in

Γ∞. Then Γ0
∞ is a connected Lie group. Let S be the semisimple Levi subgroup

of Γ0
∞. Since S is a factor of Γ0

∞, S is noncompact. This implies by Lemma 2.3
that Γ0

∞ is either trivial or nonamenable. If Γ is a contained in a compact extension
of a diagonalizable group over R. Since a compact extension of full diagonalizable
group over R is a R-algebraic group, Γ∞ is contained in a compact extension of a
diagonalizable group. Since compact extension of diagonalizable groups are amenable,
we get that Γ∞ is amenable. Since Γ0

∞ is either trivial or nonamenable, we get that Γ0
∞

is trivial. Since dual action of Γ has no finite orbits, (c∞) violates (1) of Proposition
5.1. Thus, (Γ, K) has strong relative property (T ).

We now prove spectral gap for actions on solenoids.
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Corollary 5.2 Let K be a solenoid and Γ be a group of automorphisms of K. Let
π0 be the unitary representation of Γ on L2

0(K) = {f ∈ L2(K) | ∫
f = 0} given by

π0(α)f(x) = f(α−1(x)) for α ∈ Γ and x ∈ K. Suppose (Γ, K) has strong relative
property (T ). Then Spr(π0(µ)) < 1 for any adapted probability measure µ on Γ.

Proof Let ρ be the unitary representation of Γ n K given by ρ(α, a)(f)(x) =
f(α−1(x)a) for all (α, a) ∈ ΓnK, x ∈ K and f ∈ L2

0(K). Then ρ|Γ = π0. Also, any
f ∈ L2

0(K) is ρ(K)-invariant implies f = 0. Thus, ρ(K) has no nontrivial invariant
vectors in L2

0(K).
Suppose (Γ, K) has strong relative property (T ). Then I 6≺ ρ|Γ = π0 as ρ(K) has

no nontrivial invariant vectors. This implies since Γ is countable that Spr(π0(µ)) < 1
for any adapted probability measure µ on Γ (cf. [LW-95]).

6 G-spaces

Proof of Corollary 1.2 Let µ be any adapted and strictly aperiodic probability
measure. Then define µ̌ to be the probability measure defined by µ̌(B) = µ(B−1)
for any Borel subset B of G. Let λ =

∑∞
n=1

1
2n+1 (µ

n ∗ µ̌n + µ̌n ∗ µn). Then λ is a
symmetric adapted probability measure on G.

Let π be a unitary representation of G such that I 6≺ π. Then it follows from
Corollary 1.1 that Spr(π(λ)) < 1. Since π(λ) is a self-adjoint positive operator,
||π(λ)|| < 1. This implies that ||π(µ)|| < 1.

Let X be any G-space with G-invariant measure m. For any 1 ≤ p < ∞, let πp be
the representation of G defined on Lp

0(X, m) = {f ∈ Lp(X, m) | ∫
f(x)dm(x) = 0}

given by πp(g)f(x) = f(g−1x) for g ∈ G, f ∈ Lp
0(X, m) and x ∈ X. Let ||πp(µ)||p be

the norm of the operator πp(µ) on Lp
0(X, m).

Since I 6≺ π0 = π2, we get that ||π2(µ)||2 < 1. Since ||π1(µ)||1 ≤ 1 and
||π∞(µ)(f)||∞ ≤ 1 where π∞ is similarly defined on L∞, we have by interpola-
tion ||πp(µ)||p < 1 for 1 < p < ∞ (cf. [Ro-86]). This implies for f ∈ Lp

0(X, m)
(1 < p < ∞), that ||∑ πp(µ

n)f ||p ≤
∑ ||πp(µ

n)f ||p < ∞, hence lim π(µn)f(x) = 0
a.e. Now the second part of the result follows from Theorem 1 of [BC-09] and from
the first part.

Acknowledgement I would like to thank the referee for suggesting a version of
Theorem 1.2 and for suggesting [Co-06].
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