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Summary. We introduce a trans-dimensional extension of the rejection sampler of von Neumann. Our
interval analytic construction of the rejection sampler provides a universal method that is capable of
producing exact samples from a large class of trans-dimensional target densities with locally Lipschitz
arithmetical expressions. We illustrate the efficiency of the sampler by theory and by examples in up
to ten dimensions. Our sampler is immune to the ‘pathologies’ of some infamous densities including
the witch’s hat and can rigorously draw exact trans-dimensional posterior samples from small binomial
partition models and phylogenetic tree spaces.

1. Introduction

The first trans-dimensional extension of the rejection sampler (RS) of von Neumann (1963) is con-
structed. This machine-implementable set-valued construction employs auto-validating enclosure
methods via interval analysis. Enclosure methods that rely on machine interval arithmetic — val-
idated computer arithmetic that encloses or bounds all numerical errors — have become an im-
portant tool in computer-aided proofs in analysis. Some examples where these methods have been
applied include proofs of the Feigenbaum conjectures Lanford (1982), the double bubble conjec-
ture Hass and Schlafly (2000), the existence of the Lorenz attractor Tucker (2002) and the Kepler
conjecture Hales (2005).

Any sampler transforms independent and identically distributed (IID) samples from M , the
uniformly distributed random variable on the unit interval, to those from the desired random object.
Therefore, a sampler operates under two practical assumptions outlined by Devroye (1986, p. 1–2):

A1 exact real operations are possible on a conventional computer with finite memory and

A2 IID samples are available from M , the uniform random variable on [0, 1].
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Unlike many conventional samplers, each sample produced by the auto-validating trans-dimensional
von Neumann rejection sampler is equivalent to a computer-assisted proof that it is drawn from
the desired target, up to the pseudo-randomness of the underlying, deterministic, pseudo-random
number generator (A2) and the accuracy of conventional floating-point arithmetic approximating real
arithmetic subsequent to the rigorous envelope construction phase (part of A1). It is possible to fully
relax A1 by only using staggered precision interval arithmetic at the expense of computational speed.
Our sampler can produce exact samples from several densities that are thought to be unsamplable.

1.1. Fundamental samplers

The classical Monte Carlo methods for simulating IID samples from a random variable T with
density f .(t) and distribution function F .(t) :=

∫
{s:s≤t}

f .(s)ds, are the Inversion Sampler (InS),

the Rejection Sampler (RS) of von Neumann (1963) and their variants. These samplers transform
IID samples from M , the uniformly distributed random variable on the unit interval, to those from
the desired T .

InS is preferable to RS in most situations. However, InS is typically applicable only to products
of univariate targets whose inverse distribution function F .[−1](u) : [0, 1] → R can be efficiently
computed. For most targets, it is difficult or impossible to compute F . and often the target density
f .(t) is only known up to a normalising constant. Unlike InS, RS can produce IID samples from the
target density f .(t) := f(t)/(Nf ) by only evaluating the target shape f(t) — without knowing the
normalising constant Nf :=

∫
T
f(t)dt. However, the limiting step in RS is the construction of an

envelope function ĝ(t) that is not only greater than the target shape f(t) := Nff
.(t) at every t ∈ T,

but also easy to normalise and draw samples from. Moreover, a practical and efficient envelope
function has to be as close to the target shape as possible from above. InS and RS are said to be
exact because they share the capability of producing IID samples from the desired target. One can
employ statistical techniques, such as, importance sampling, residual sampling, squeeze principle and
alias method, as well as data structures, such as, priority queues and regular pavings to improve the
efficiency of our exact samplers. See Devroye (1986) for an introduction to such classical samplers.

For several targets of interest it is difficult to construct an exact sampler. Another class of
Monte Carlo methods can produce dependent samples from a Markov chain whose stationary dis-
tribution is the target density of interest. They include the Metropolis-Hastings Sampler (Hastings,
1970; Metropolis et al., 1953) and the Gibbs Sampler (Gelfand and Smith, 1990; Geman and Geman,
1984) among others, and are collectively termed as Monte Carlo Markov chain (MCMC) methods.
The reversible-jump MCMC sampler of Green (1995) is capable of producing dependent trans-
dimensional samples.

These dependent samplers are easier to construct and implement in multivariate settings when
compared to exact samplers. However they are only asymptotically valid and it is nontrivial to
guarantee that an MCMC algorithm has converged to its stationary distribution (Jones and Hobert,
2001). Such guarantees are necessary to produce valid confidence intervals for Ef.(h(T )) based on
samples from f .. For specific targets that form the stationary distribution of suitably well-structured
Markov chains, sophisticated coupling techniques (Propp and Wilson, 1996) can be used to efficiently
obtain exact samples. In general with MCMC one is at the mercy of heuristic convergence diagnos-
tics (Gelman and Rubin, 1992) to determine the burn-in and thin-out times and therefore cannot
guarantee exact samples from them. Thus, we return to the rejection sampler, also known as the
fundamental theorem of simulation, and develop universal methods that extend the class of densities
to which it can be applied.
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1.2. Universal samplers
Universal or automatic or black-box algorithms for generating exact samples from any density in a
restricted class by transformed density rejection was started by Devroye (1986, Ch. VII). Adaptive
rejection sampling is a universal algorithm to obtain exact samples from univariate logconcave (Gilks,
1992; Gilks and Wild, 1992) and T-concave densities (Hörmann, 1995). These methods can be used
to construct a universal algorithm that is applicable to a large class of unimodal distributions,
including the normal, beta, gamma, and t-distribution. A subsequent generalisation through a
Metropolis step (Gilks et al., 1995) produced dependent samples from univariate non-logconcave
targets.

Multivariate universal extensions of the rejection sampler was successful in restricted classes;
orthounimodal (Devroye, 1997), bivariate T-concave (Hörmann, 2000) and multivariate T-concave
(Leydold, 1998) densities. More recently, Martino and Mı́guez (2010) give a generalised adaptive
rejection sampling algorithm for a richer class of uni variate densities and use it to produce dependent
samples from multivariate targets by Gibbs sampling one dimension at a time.

These universal samplers have the following limitations. Multivariate extensions for less restric-
tive classes of densities are typically via dependent samplers and therefore rely on heuristic diagnos-
tics to assess convergence to the desired stationary distribution. Furthermore, proposals constructed
for non-log-concave conditional densities from finitely many points via punctual floating-point arith-
metic cannot guarantee that the density has not soared between the sampled points. Finally, no
universal sampler is available even for the simplest class of trans-dimensional densities. Thus, none
of the existing exact universal samplers is capable of producing independent and identical samples
from more general classes of possibly trans-dimensional multivariate target densities.

1.3. Our new approach
Our method employs interval arithmetic to produce rigorous enclosures of the range of the target
shape over each interval vector or box in an adaptive partition of the domain that is driven by a
priority queue. The interval extended target shape maps boxes in the partition to intervals in R. This
image interval provides an upper bound for the global maximum and a lower bound for the global
minimum of the target over each element of the partition. We use this information to construct
an envelope as a simple function over the partition. Using the Alias method (Walker, 1977) we
efficiently propose samples from this normalised step-function envelope for von Neumann rejection
sampling. By using the notion of model-labelled points and boxes we extend rejection sampling to
a trans-dimensional density over finitely many model-labelled domains of possibly distinct finitely
many dimensions.

Unlike existing exact samplers, the auto-validating construction of our rejection sampler through
interval methods gives an enclosure of the target shape over the entire real continuum in any box of
the domain with machine-representable bounds. These enclosures rigorously account for all sources
of numerical errors (Hammer et al., 1995; Kulisch, 2001) and thereby guarantee exact samples from
the desired target. Moreover, the target is allowed to be multivariate and/or non-log-concave and/or
trans-dimensional with possibly ‘pathological’ behaviour, as long as its arithmetical expression has
a well-defined interval extension.

We call our method auto-validating because we employ interval methods to rigorously construct
the envelope for a large class of target densities, including trans-dimensional densities. The method
was already described in a more rudimentary form in (Sainudiin, 2005; Sainudiin and York, 2005) and
applied to Bayesian phylogenetic estimation in Sainudiin and York (2009). This sampler is referred
to as the Moore rejection sampler (MRS) in honour of Ramon E. Moore who was one of the influential
founders of interval analysis (Moore, 1967). A GNU general public licensed (GPL) open source C++
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class library for MRS is available from www.math.canterbury.ac.nz/~r.sainudiin/codes/mrs.

1.4. Plan of paper
The rest of the paper is organised as follows. Trans-dimensional von Neumann Rejection Sampler
(TRS) is formulated in Section 2. After a brief introduction to interval analysis in Section 3 we
construct our sampler in Section 4. Examples demonstrating the robustness and efficiency of the
sampler are discussed in Section 5. We conclude in Section 6.

2. Trans-dimensional von Neumann Rejection Sampler (TRS)

The von Neumann rejection sampler (RS) in its original formulation (von Neumann, 1963) is capable
of drawing independent samples from a target random variable or random vector T with density
f .(t) := f(t)/Nf but with a fixed dimension n, i.e. T ∼ f . and t ∈ T ⊆ Rn. In some applications
such as Bayesian model selection, we are interested in trans-dimensional simulation. Suppose we
have a finite set of probability models labelled by the set K = {0, 1, . . . , i}. For each k ∈ K, let

kT ∼ kf
.
(kt) : kT→ R, kT ⊆ Rdk , dk ≥ 1 .

We say the labelled point kt belonging to the labelled sample space kT is a realisation of the labelled
random vector kT of dimension dk that is distributed according to the labelled density kf .. Our
notation is aligned with the C++ classes used in our object-oriented implementation of such model-
labelled sets and maps.

We are interested in the randomly labelled random vector KT with the possibly trans-dimensional
density Kf .(kt) : KT→ R:

KT ∼ Kf
.
(kt) :=

Kf(kt)

NKf

, (1)

Kf(kt) :=
i∑

ℓ=0

ℓf(kt) 11 ℓT(
kt) , (2)

NKf :=
i∑

k=0

∫

kT

kf(kt) λdk(kt) , (3)

KT :=
{
0T, 1T, . . . , iT

}
. (4)

Here, λdk is the product of dk many Lebesgue measures and kf(kt) ≪ λdk . Typically, kT ⊆ Rdk .
When |{dk : k ∈ K}| > 1 the randomly labelled random vector KT becomes a trans-dimensional
random vector. The challenge is to draw n possibly trans-dimensional samples k1t1,

k2t2, . . . ,
kntn

without any knowledge of the normalising constant NKf since the target density Kf . is typically only
known up to this normalising constant as the target shape Kf(kt). Let us consider a simple example
that is easy to directly simulate from to fix ideas.

Example 1 (A trans-dimensional uniform random vector). Let K = {0, 1} with labelled
domains 0T = {0t = (0t1,

0t2) ∈ [0, 1]2 : 0t1 = 0t2} and 1T = {1t = (1t1,
1t2) ∈ [0, 1]2}. Let the

model-labelled densities be 0f(kt) = 11 0T(
kt) ≪ λ1 and 1f(kt) = 11 1T(

kt) ≪ λ2 corresponding to the
uniform densities over 0T and 1T, respectively. Thus, NKf = 1 + 1 = 2. Our trans-dimensional
uniform random vector that is equally likely to be realised uniformly at random on 0T or 1T has
density:

Kf
.
(kt) =

1

2

(
11 0T(

kt) + 11 1T(
kt)
)

.

www.math.canterbury.ac.nz/~r.sainudiin/codes/mrs


Trans-dimensional Rejection Sampler 5

The algorithm to simulate samples from this randomly labelled random vector KT is simple: if m1

is less that 1/2 then return m2 else return (m2,m3) where m1,m2,m3 are IID samples from the
Uniform distribution on [0, 1].

In an inferential context, it is convenient to let kf(kt), the shape of the target density for each

model k, have three components: (i) pk, the prior probability, such that,
∑i

k=0 pk = 1, (ii) the
likelihood kL(kt) ∝ P(data|kt) : kT→ R and (iii) the prior density kq(kt) : kT→ R, i.e.

kf(kt) := pk
kL(kt) kq(kt) .

Example 2 (Same or different coins). Suppose I give you a coin. You observe the out-
comes of n1 independent and identical tosses with it. You return the coin back to me. Now I give
you a possibly different coin. Your task is to determine if the second coin is the same (or has the
same bias) as the first coin by tossing the second coin as before n2 times.

Let the labelled domains for the two models be 0T = {0t = (0t1,
0t2) ∈ [0, 1]2 : 0t1 = 0t2} and

1T = {1t = (1t1,
1t2) ∈ [0, 1]2}. Let the uniform prior densities be 0q(kt) = 11 0T(

kt) ≪ λ1 and
1q(kt) = 11 1T(

kt)≪ λ2. Let the model priors be p0 and p1. Let the number of Heads in the first and
second sequence of tosses be x1 and x2, respectively. Finally, the trans-dimensional posterior density
Kf .(kt) is proportional to:

Kf(kt) = p0

(
n1

x1

)
(0t1)

x1+x2

(
n2

x2

)
(1− 0t1)

n1+n2−x1−x2 11 0T(
kt)

+ p1

((
n1

x1

)
(1t1)

x1(1− 1t1)
n1−x1

(
n2

x2

)
(1t2)

x2(1− 1t2)
n2−x2 11 1T(

kt)

)
.

It is more difficult to produce exact samples from the target density in Example 2 when compared to
that from Example 1. The trans-dimensional extension of the von Neumann rejection sampler (TRS)
can produce samples from KT ∼ Kf . according to Algorithm 1 when provided with (i) a fundamental
sampler that can produce independent samples from the Uniform[0, 1] random variable M with
density given by the indicator function 11 [0,1](m) : R→ R, (ii) a target shape Kf(kt) : KT→ R, (iii)

an envelope function K̂g(kt) : KT→ R, such that, for each kt ∈ KT:

K̂g(kt) :=
∑

ℓ∈K

ℓ̂g(kt) 11 ℓT(
kt) ≥ Kf(kt) :=

∑

ℓ∈K

ℓf(kt) 11 ℓT(
kt) , (5)

(iv) a normalising constant N
K̂g

:=
∑

k∈K

∫
kT

K̂g(kt) λdk(kt), (v) a proposal density over KT:

Kg(kt) :=
∑

ℓ∈K

ℓg(kt) 11 ℓT(
kt) :=

K̂g(kt)

N
K̂g

=

∑
ℓ∈K

ℓ̂g(kt) 11 ℓT(
kt)

N
K̂g

, (6)

from which independent samples can be drawn and finally (vi) Kf(kt) and K̂g(kt) must be computable
for any kt ∈ KT.

Theorem 1 (Trans-dimensional von Neumann RS). If the randomly labelled, random vec-

tor KT is generated according to Algorithm 1 with the appropriate envelope function K̂g satisfying
(5) and the corresponding proposal density Kg of (6), then KT is distributed according to the possibly
trans-dimensional target density Kf ..
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Algorithm 1: Trans-dimensional von Neumann Rejection Sampler (TRS)

input : (i) Kf ; (ii) samplers for KV ∼ Kg and M ∼ 11 [0,1]; (iii) K̂g; (iv) integer MaxTrials;
output : (i) possibly one sample kt from KT ∼ Kf . and (ii) Trials

initialize: Trials ← 0; Success ← false; kt← ∅;
repeat // propose at most MaxTrials times until acceptance

kv ← sample(Kg) ; // draw a sample kv from RV KV with density Kg

u ← K̂g(kv) sample( 11 [0,1]); // sample u from RV U with density 11
[0,K̂g(kv)]

if u ≤ kf(kv) then // accept the proposed kv and flag Success
kt← kv; Success ← true

end
Trials ← Trials +1 ; // track the number of proposal trials so far

until Trials ≤ MaxTrials or Success = true;
return kt and Trials

Proof. Without loss of generality, let the labelled domain KT :=
{
0T, 1T, . . . , iT

}
of the target

density Kf . with components 0f ≪ λd0 , 1f ≪ λd1 , . . . , if ≪ λdi be contained in KR := {Rd0,Rd1 . . . ,Rdi},
the ordered multi-set of finite dimensional Euclidean spaces, i.e. kT ⊆ Rdk , for each k in K :=
{0, 1, . . . , i}.

For each such k, let us define the following two subsets of kT× R+ ⊆ Rdk+1,

B(k̂g) =
{
(kv, u) : kv ∈ kT, 0 ≤ u ≤ k̂g(kv)

}
,

B(kf) =
{
(kv, u) : kv ∈ kT, 0 ≤ u ≤ kf(kv)

}
,

and collectively over all k, let us define the following two subsets of KT× R+:

B(K̂g) =
{
B(0̂g),B(1̂g), . . . ,B(îg)

}
,

B(Kf) =
{
B(0f),B(1f), . . . ,B(if)

}
.

Algorithm 1 first produces a sample from the randomly labelled random vector (KV, U) that is

uniformly distributed in B(K̂g). We can see this by letting h(kv, u) denote the joint density of (KV, U)
and h(u|kv) denote the conditional density of U given KV = kv. Then,

h(kv, u) =

{
Kg(kv)h(u|kv) =

(∑
ℓ∈K

ℓg(kv) 11 ℓT(
kt)
)
h(u|kv) if (kv, u) ∈ B(K̂g)

0 otherwise .

Since we sample a height u for a given kv from the Uniform[0, K̂g(kv)] distribution,

h(u|kv) =





(
K̂g(kv)

)−1

=
(
N

K̂g

∑
ℓ∈K

ℓg(kv) 11 ℓT(
kt)
)−1

if u ∈ [0, K̂g(kv)]

0 otherwise.

Therefore,

h(kv, u) =





Kg(kv)h(u|kv) =
Kg(kv)

N
K̂g

Kg(kv) =
(
N

K̂g

)−1

if (kv, u) ∈ B(K̂g)
0 otherwise .
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Thus, we have shown that the joint density of the random vector (KV, U) initially produced by Algo-

rithm 1 is uniformly distributed on B(K̂g). The above relationship also makes geometric sense since

the volume of B(K̂g) is exactly N
K̂g
.

Now, let (KT, S) be the accepted randomly labelled random vector during the accept/reject step
of Algorithm 1, i.e.

(KT, S) = (KV, U) ∈ B(Kf) ⊆ B(K̂g) .

Then, the uniform distribution of (KV, U) on B(K̂g) implies the uniform distribution of (KT, S) on
B(Kf). Since the volume of B(Kf) is NKf , the density of (KT, S) is identically 1/NKf on B(Kf) and
0 elsewhere. Hence, the marginal density of KT on KT is

∑
ℓ∈K

ℓf(kt) 11 ℓT
(kt)∫

0

1/NKf dh = 1/NKf

∫ Kf(kt)

0 1 dh

= 1/NKf

∫ NKf
Kf
.
(kt)

0 1 dh,
= Kf .(kt) .

Thus, we have shown that the accepted randomly labelled random vector KT has the desired density
Kf ..

Let A(K̂g) be the probability that a labelled point proposed according to the distribution Kg gets

accepted as an independent sample from Kf . through the envelope function K̂g. Observe that the

envelope-specific acceptance probability A(K̂g) is the ratio of the integrals

A(K̂g) =
NKf

N
K̂g

:=

∑
k∈K

∫
kT

kf(kt) λdk(kt)
∑

k∈K

∫
kT

K̂g(kt) λdk(kt)
,

and the probability distribution over the number of samples from Kg to obtain one sample from Kf .

is geometrically distributed with mean 1/A(K̂g).

The maximum acceptance probability is attained when we can directly sample from Kf ., i.e. when
K̂g = Kg = Kf = Kf .. In practise, we often optimise over a class Ĝ of envelope functions that are easy
to sample from. For a class of rejection samplers induced by a given class of envelope functions Ĝ,
the optimal rejection sampler has the envelope function K̂g∗ ∈ Ĝ, such that:

K̂g∗ := argmax
K̂g∈Ĝ

A(K̂g) .

Note that when there is exactly one model labelled 0, i.e., K = {0}, we may ignore the left-super-
scripted model label and our trans-dimensional von Neumann rejection sampler or TRS reduces to
the classical von Neumann rejection sampler or RS.

In Section 4 we will see an auto-validating method to construct the proposal and envelope required
for TRS in order to produce exact IID samples from a large class of possibly trans-dimensional
target densities using the theory of interval analysis that is introduced in Section 3. Such a trans-
dimensional extension of the classical RS is novel, natural and straightforward to implement with
our object-oriented concepts of operatable labelled objects as briefed in Section 4.3.
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3. Interval Analysis

Let IR denote the set of closed real intervals. Let any element of IR be denoted by x := [x, x],
where, x ≤ x and x, x ∈ R. An interval x is called thin if x = x and thick if x < x. Let the width of
x ∈ IR be wid (x) := x − x and let its radius be rad (x) := wid (x)/2. We write inf x := x for the
lower bound, supx := x for the upper bound. Let |x| = abs(x) denote the absolute value of x ∈ R.
Let the mignitude of an interval x be the number x̌ := min{|x| : x ∈ x} = 11 x(0)min{|x|, |x|}
and its magnitude be the number x̂ := max{|x| : x ∈ x} = max{|x|, |x|}. If S is a non-empty
bounded subset of R then 2S := [inf(S), sup(S)] is the hull of S, i.e., the tightest interval containing
S. Intervals as sets inherit standard set relations. Let x, x ∈ Rd be real (column) vectors such that
xi ≤ xi, for all i = 1, 2, . . . , d, then x := [x, x] is an interval (column) vector or a box. The set of
all such boxes is IRd. The i-th component of the box x = (x1, . . . ,xd) is the interval xi = [xi, xi]
and the interval extension of a set D ⊆ Rd is ID := {x ∈ IRd : x, x ∈ D}. Let the volume of a box

x ∈ IRd be vol (x) :=
∏d

i=1 wid (xi). The diameter, radius, mignitude, magnitude, infimum and
supremum of a box x ∈ IRd are defined component-wise. Let the maximum norm of a vector x ∈ Rd

be ‖x‖∞ := maxk |xk|. Let the vector valued hyper-metric between boxes x and y be

dist(x,y) :=
(
sup{|x1 − y

1
|, |x1 − y1|}, · · · , sup{|xd − y

d
|, |xd − yd|}

)
.

We can turn IRd into a metric space with the Hausdorff distance dist∞(x,y) = ‖dist(x,y)‖∞.

Our main motivation for the extension to intervals is to enclose the range

range(f ; S) := {f(x) : x ∈ S}

of a real-valued function f : Rd → R over a set S ⊆ Rd. Except for trivial cases, few tools are
available to obtain the range. Interval analysis can help us with range evaluation. First we need to
avoid the conventional “black-box” paradigm of punctual function evaluations with a computer. The
“anti-black-box” paradigm to function evaluations starts with an understanding of how computers
encode or express real functions from elementary arithmetic operations and standard functions and
extend this expression to interval arguments in a manner that encloses all sources of numerical error.

Elementary binary operations ⋆ ∈ Υ := {+,−, ∗, /, ˆ} are defined on IR by putting

x ⋆ y := 2{x ⋆ y : x ∈ x, y ∈ y} = {x ⋆ y : x ∈ x, y ∈ y}

for all x,y ∈ IR such that x ⋆ y is defined for all x ∈ x and y ∈ y. This restricts the definition of
the division x/y to intervals y with 0 /∈ y and the definition of the exponentiation xˆy to one of
the cases (i) x > 0, (ii) x ≥ 0, y > 0, (iii) 0 /∈ x, y is an integer ≤ 0, or (iv) y is a positive integer.

Standard functions are members of a predefined set S of univariate real functions that are
continuous on every closed interval on which they are defined. We extend any ϕ ∈ S from ϕ : Sϕ →
R, Sϕ ⊆ R to take interval arguments by putting

ϕ(x) := 2range(ϕ;x) = range(ϕ;x)

for all x ∈ IS such that ϕ(x) is defined for all x ∈ x. We let

S0 := {abs (absolute value), sqr (square), sqrt (square root), exp (exponential),

log (natural logarithm), sin (sine), cos (cosine), arctan (arc tangent)}
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be a fundamental class of such standard functions as in Neumaier (1990). Due to the monotonicity
properties of operations and elementary functions we find that,

x ⋆ y = 2{x ⋆ y, x ⋆ y, x ⋆ y, x ⋆ y} for ⋆ ∈ {+,−, ∗, /} and 0 /∈ y if ⋆ = / ,
|x| = abs(x) = [x̌, x̂] ,

x2 = sqr(x) = [x̌2, x̂2] ,
ex = exp(x) = [exp(x), exp(x)] ,

arctan(x) = [arctan(x), arctan(x)] ,√
x = sqrt(x) = [sqrt(x), sqrt(x)] if 0 ≤ x ,

log(x) = [log(x), log(x)] if 0 < x .

The piecewise monotone sin function is extended to IR by determining whether x intersects the sets
S+ := {2kπ+ π/2 : k ∈ Z} and S− := {2kπ− π/2 : k ∈ Z} by an enclosure of π with enough leading
digits as follows:

sin(x) =





[−1, 1] if x ∩ S− 6= ∅ ,x ∩ S+ 6= ∅,
[−1,max{sin(x), sin(x)}] if x ∩ S− 6= ∅ ,x ∩ S+ = ∅,
[min{sin(x), sin(x)}, 1] if x ∩ S− = ∅ ,x ∩ S+ 6= ∅,
[min{sin(x), sin(x)},max{sin(x), sin(x)}] if x ∩ S− = ∅ ,x ∩ S+ = ∅.

From standard identities, we get cos(x) = sin(x + π/2) for any x ∈ IR and for any x,y ∈ IR, the
exponentiation xˆy = exp(y ∗ log(x)) provided x > 0. The operation x ⋆y for ⋆ ∈ {+,−, ∗, /} given
by 2{x ⋆ y, x ⋆ y, x ⋆ y, x ⋆ y} above can be further simplified as follows:

x+ y = [x+ y, x+ y] ,
x− y = [x− y, x− y] ,
x ∗ y = [min{x ∗ y, x ∗ y, x ∗ y, x ∗ y},max{x ∗ y, x ∗ y, x ∗ y, x ∗ y}] ,
x/y = x ∗ [1/y, 1/y], provided, 0 /∈ y .

Interval multiplication is branched into nine cases, on the basis of the signs of the boundaries of the
operands, such that only one case entails more than two real multiplications. Thus, every elementary
binary operation in Υ and every elementary standard function in S0 has been extended to IR.

Other commonly used real functions may be included in the set of standard functions,

S = S0 ∪ { logb(x), xn, xp/q, tan(x), sinh(x), . . . , arcsin(x), . . . } ,

and extended to IR, provided they are continuous on each closed interval on which they are defined
either directly or by using standard identities involving functions in S0 and operations in Υ. For
example, the interval extension of the integer power function for product likelihood is defined by:

xn =





[xn, xn] : if n ∈ {1, 2, . . .} is odd,
[x̌n, x̂n] : if n ∈ {1, 2, . . .} is even,
[1, 1] : if n = 0,

[1/x, 1/x]−n : if n ∈ {−1,−2, . . .}; 0 /∈ x.

To work with partially defined real functions f(x) : S → R with S ( R, such as
√
x and log(x),

we introduce the symbol NaN (‘not a number’) that may be thought of as ‘undefined image’ and
let R∗ := R ∪ {NaN} and IR∗ := IR ∪ {NaN}. We can extend the elementary interval operations
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and standard interval functions from IR to IR∗ by defining NaN as the value of the expressions
x ⋆ y or f(x) that is undefined for x,y ∈ IR, ⋆ ∈ Υ, f ∈ S. Thus, for any x ∈ IR∗, we get
NaN ⋆ x = x ⋆ NaN = f(NaN) = NaN. The inclusion relations are extended to IR∗ from IR by
defining x ∈ NaN for all x ∈ R, x ⊆ NaN for all x ∈ IR∗, NaN ⊆ x only for x = NaN. We take NaN

to be greater than any real number and define rad (NaN) := NaN and |NaN| := NaN.
An interval function f(x) : IRd → IR∗ is called inclusion isotone if, for x,y ∈ IRd,

x ⊆ y =⇒ f(x) ⊆ f(y) . (7)

An interval function f : IRd → IR∗ is an interval extension of the real function f : S ⊆ Rd → R if

f (x) = f(x) for x ∈ S , (8)

f(x) ∈ f (x) for all x ∈ x ∈ IS , (9)

f(x) = NaN for x /∈ IS . (10)

A large class of inclusion isotone interval extensions of real functions can be obtained from arith-
metical expressions. An arithmetical expression (Neumaier, 1990, p. 13–14) in the formal variables
ξ1, ξ2, . . . , ξd is a member of the set E = E(ξ1, ξ2, . . . , ξd) defined by

(a) R ⊆ E,
(b) ξi ∈ E for i = 1, . . . , d,
(c) g, h ∈ E =⇒ (g ⋆ h) ∈ E for all ⋆ ∈ Υ,
(d) g ∈ E =⇒ ϕ(g) ∈ E for all ϕ ∈ S,
(e) among the sets E satisfying (a)–(d) above, E(ξ1, ξ2, . . . , ξd) is minimal with respect to inclusion.

An expression k is a sub-expression of f if f = k, or f = g ⋆ h and k is a sub-expression of g or
h, or f = ϕ(g) and k is a sub-expression of g. When writing down arithmetical expressions we
take advantage of standard conventions regarding deletion of brackets, writing −ξ for (0 − ξ) or

(0− 1) ∗ ξ, ξ1ξ2 for (ξ1 ∗ ξ2), ξξ21 for (ξ1ˆξ2), ξ1 + ξ2ξ3 for (ξ1 + (ξ2 ∗ ξ3)), ξ1ξ2ξ3 for ((ξ1 ∗ ξ2) ∗ ξ3) or
(ξ1 ∗ (ξ2 ∗ξ3)), etc. Since there may be many different precise arithmetical expressions corresponding
to an expression written under standard conventions, we make the expression precise if necessary.

Example 3 (Stretched Oscillating Exponential Shape). The (a, b, c)-parametric fam-
ily of stretched oscillating exponential shape f(t) for t ∈ [0,∞) is

f(t) = exp(−atb)(1 + c sin(atb tan(bπ))), (11)

where parameter a > 0 determines the scale, parameter b ∈ (0, 1/2) determines the stretch and
frequency of the oscillations, and parameter c ∈ (−1, 1) determines the magnitude of the oscillations.
The density corresponding to this shape is given by Shiryaev (1989, p. 294) as a counter example to
the claim that knowing all the moments determines the density. The precise arithmetical expression
of f in the formal variable ξ1 is taken to be

f(ξ1) = exp((0 − 1) ∗ (a ∗ (ξ1ˆb))) ∗ (1 + (c ∗ sin(((a ∗ (ξ1ˆb)) ∗ tan(b ∗ π))))) , (12)

with 19 sub-expressions f1, f2, . . . , f19 = f as follows:

f1 = 0, f2 = 1, f3 = a, f4 = b, f5 = ξ1, f6 = f1 − f2, f7 = f5ˆf4,

f8 = f3 ∗ f7, f9 = f6 ∗ f8, f10 = exp(f9), f11 = c, f12 = π, f13 = f4 ∗ f12, f14 = tan(f13),

f15 = f8 ∗ f14, f16 = sin(f15), f17 = f11 ∗ f16, f18 = f2 + f17, f = f19 = f10 ∗ f18 (13)



Trans-dimensional Rejection Sampler 11

For an arithmetical expression f(ξ) = f(ξ1, ξ2, . . . , ξd) in d variables we can perform interval
evaluation to obtain the value f(x) of f at x ∈ IRd by substituting the intervals x1,x2, . . . ,xd for
the corresponding formal parameters ξ1, ξ2, . . . , ξd in f(ξ1, ξ2, . . . , ξd). Formally, f (x) is the element
of IR∗ that is defined recursively as follows:

f(x) = [c, c] if f = c is a real constant,
f(x) = xi if f = ξi is a variable,
f(x) = g(x) ⋆ h(x) if f = (g ⋆ h), ⋆ ∈ Υ,
f(x) = ϕ(g(x)) if f = ϕ(g), ϕ ∈ S.

For example, the arithmetical expression f(ξ1) = f10(ξ1) = exp(−aξb1) = exp((0 − 1) ∗ (a ∗ (ξ1ˆb)))
of (13) has the sub-expressions: f1 = 0, f2 = 1, f3 = a, f4 = b, f5 = ξ1, f6 = f1 − f2, f7 = f5ˆf4,
f8 = f3 ∗ f7, f9 = f6 ∗ f8, and f10 = exp(f9). Thus for x = [0.5, 1] and constants a = 0.125 and
b = 0.45 its interval evaluation f (x) is recursively computed as follows: f1(x) = [0, 0], f2(x) = [1, 1],
f3(x) = [0.125, 0.125], f4(x) = [0.45, 0.45], f5(x) = x = [0.5, 1], f6(x) = [0, 0]− [1, 1] = [−1,−1],
f7(x) = [0.5, 1]ˆ[0.45, 0.45] = [0.50.45, 1], f8(x) = [0.125, 0.125] ∗ [0.50.45, 1] = [0.125 ∗ 0.50.45, 0.125],
f9(x) = [−1,−1] ∗ [0.125 ∗ 0.50.45, 0.125] = [−0.125,−0.125 ∗ 0.50.45]. Finally, f (x) = f10(x) =

[e−0.125, e−0.125∗0.50.45 ].
On a computer with a finite set F of machine-representable floating-point numbers, IF is also

finite. Since F∗ := F ∪ {NaN} is not arithmetically closed, when performing arithmetic with inter-
vals in IF∗ we must round the resulting interval outwards to guarantee inclusion of the true result
Hammer et al. (1995); Kulisch (2001). For any x ∈ R∗ let ▽x := max{y ∈ F∗ : y ≤ x} be x rounded
down, △x := min{y ∈ F∗ : y ≥ x} be x rounded up and for any x ∈ IR∗ let ♦x := [▽x,△x] be x

rounded outward. For an arithmetical expression f(ξ) = f(ξ1, ξ2, . . . , ξd) in d variables we can per-
form outward-rounded interval evaluation to obtain the outward-rounded value f♦(x) of f at x ∈ IRd

by substituting the intervals x1,x2, . . . ,xd for the corresponding formal parameters ξ1, ξ2, . . . , ξd in
f(ξ1,x2, . . . , ξd). Formally, f♦(x) is the element of IF∗ that is defined recursively as follows:

f♦(x) = ♦c if f = c is a real constant,

f♦(x) = ♦xi if f = ξi is a variable,

f♦(x) = g♦(x) ⋆♦ h♦(x) if f = (g ⋆ h), ⋆ ∈ Υ,

f♦(x) = ϕ♦(g♦(x)) if f = ϕ(g), ϕ ∈ S,

where ⋆♦ and ϕ♦ are outward rounded evaluations in IF∗. For example, x+♦ y = [▽(x+y),△(x+y)],

exp♦(x) = [▽ex,△ex] and

f♦(x) = f♦
10(x) = [▽e▽(▽(−1)∗△(0.125)),△e△(△(−1)∗▽(▽(0.125)∗▽(▽(0.5)▽(0.45))))] .

Examples 1 and 2 are bivariate arithmetical expressions. Example 3 is a more complicated
univariate arithmetical expression.

Theorem 2 (Fundamental theorem of interval analysis, Moore). The interval func-
tions f and f♦ associated with an arithmetical expression f : S ⊂ Rd → R are inclusion isotone and
we have

x ∈ IS =⇒ range(f ;x) ⊆ f(x) ⊆ f♦(x) . (14)

Proof. First let us show that

x,y ∈ IS,x ⊆ y =⇒ f(x) ⊆ f (y) . (15)
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Obviously, this holds when f is a constant or variable. In light of the recursive definition of the
arithmetical expression f it only remains to show that if (15) holds for g and h in place of f then
it holds for f = g ⋆ h for ⋆ ∈ Υ and f = ϕ(g) for ϕ ∈ S. But if x ⊆ y, g(x) ⊆ g(y), h(x) ⊆ h(y),
then in the first case

f(x) = g(x) ⋆ h(x) = 2{g̃ ⋆ h̃ : g̃ ∈ g(x), h̃ ∈ h(x)}
⊆ 2{g̃ ⋆ h̃ : g̃ ∈ g(y), h̃ ∈ h(y)} = g(y) ⋆ h(y) = f(y) ,

and in the second case

f(x) = ϕ(g(x)) = 2{ϕ(g̃) : g̃ ∈ g(x)}
⊆ 2{ϕ(g̃) : g̃ ∈ g(y)} = ϕ(g(y)) = f(y) .

Therefore, we have shown that f is inclusion isotone. To show that f♦ is inclusion isotone we have
to prove that

x,y ∈ IS,x ⊆ y =⇒ f
♦(x) ⊆ f

♦(y) . (16)

Since, x ⊆ ♦x, this holds if f is a constant or variable. Due to the implication x ⊆ y =⇒ ♦x ⊆ y,
(16) follows inductively as before. Finally, a similar induction shows that f(x) ⊆ f♦(x), and (14)
follows since, by (15), range(f ;x) ⊆ f(x) for x ∈ IS.

We do not explicitly distinguish between the interval functions f♦ and f in the sequel with
the understanding that machine implementation and enclosure of f is done via f♦. The above
theorem allows us to enclose the range of any function that has an arithmetical expression, i.e.,
obtain an upper bound for the global maximum and a lower bound for the global minimum over
any compact subset of the domain upon which the function is well-defined. We will see in the sequel
that this is the work-horse for rigorously constructing an envelope for rejection sampling even from
highly multimodal target distributions. Unlike the interval functions in S that produce exact range
enclosures, the interval function f (x) of an arithmetical expression f often overestimates range(f ;x),
but can be shown under mild conditions to linearly approach the range as the maximal width of
the box x goes to zero. This implies that a partition of x into smaller boxes {x(1), . . . ,x(m)} gives
better enclosures of range(f ;x) through the union

⋃m
i=1 f(x

(i)) as illustrated in Figure 1. Next we
make the above statements precise after introducing some required definitions.

Let R1×d and IR1×d denote the set of d dimensional real and interval row vectors, respectively.
Let xy :=

∑d
i=1 xiyi denote the inner product of x ∈ IR1×d and y ∈ IRd. A real function

f : S ⊆ Rd → R is called Lipschitz continuous in Y ⊆ S ⊆ Rd if there is a row vector LY ∈ R1×d

such that:

|f(x)− f(x′)| ≤ LY |x− x′| for all x, x′ ∈ Y .

Analogously, an interval function f : IRd → IR∗ is called Lipschitz continuous in Y ∈ IRd if
f(Y) 6= NaN and there is a row vector LY ∈ R1×d such that:

dist (f(x)− f(x′)) ≤ LY dist (x− x′) for all x,x′ ∈ IY .

We call an arithmetical expression f in d variables Lipschitz at a box y ∈ IRd if f(y) 6= NaN and if
for all sub-expressions g, h of f , the relation g = hˆα, with 0 < α < 1, implies h(y) > 0, and the
relation g = ϕ(h), with ϕ ∈ S, implies that ϕ is defined and Lipschitz continuous in a neighbourhood
of h(y), i.e., in an interval containing h(y) in its interior. We call f locally Lipschitz in y ∈ IRd if
f is Lipschitz at every y ∈ y.
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Fig. 1. Range enclosure of the interval extension of f(t) = exp(−atb)(1 + c sin(atb tan(bπ))) with a = 1/8,
b = 9/20 and c = 1/2 (white line) linearly tightens with the mesh. The range enclosure over three adaptive
partitions of the domain [10−12, 1012] consisting of 1, 50 and 100 intervals are depicted over [10−1, 104] as
yellow, cyan and blue rectangles, respectively. See Sections 4.1 and 5.6 for more description.

Theorem 3 (Range enclosure tightens linearly with mesh). Let f be an arithmetical
expression in d variables. If f is Lipschitz at y ∈ IRd then the interval evaluation of f is Lipschitz
continuous in y and

rad (f(x)) ≤ Lxrad (x) . (17)

Furthermore, if f is locally Lipschitz in y ∈ IRd then there exists a positive real number ρ > 0 such
that f is defined and Lipschitz in x for all x ⊆ y with rad (xi) ≤ ρ, for i = 1, 2, . . . , d.

Proof. The proof is given by an induction similar to the proof of Theorem 2. See proofs of
Neumaier (1990, 2.1.1,2.1.2, 2.1.3) for details.

Theorem 3 gives a naive procedure (typically not suited for practical calculations) to obtain
an arbitrarily tight enclosure for the range of an expression f over a box y in which f is locally
Lipschitz. Suppose we choose positive integers m1,m2, . . . ,md to naively partition y into a set
B0(y) of b0 = m1m2 · · ·md boxes with sides of length 2rad (yi)/mi ≤ 2ρ and subdivide each such
box further to get a set Br(y) of r

db0 boxes with sides of length ≤ 2ρ/r, then we obtain the enclosure⋃
x∈Br(y) f(x) for range(f ;y),

0 ≤ rad


 ⋃

x∈Br(y)

f (x)


− rad (range(f ;y)) ≤ max

x∈Br(y)
rad (f (x)) ≤ γρ/r, γ := max

x∈Br(y)

d∑

i=1

Lxi ,

(18)
and in particular,

lim
r→∞

⋃

x∈Br(y)

f(x) = range(f ;y) . (19)
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4. Moore Rejection Sampler

Moore rejection sampler (MRS) is an auto-validating trans-dimensional von Neumann rejection
sampler (TRS). MRS is said to be auto-validating because it automatically obtains a proposal Kg

that is easy to simulate from, and a trans-dimensional envelope K̂g that is guaranteed to satisfy the
envelope condition (5). MRS in a universal algorithm that can produce exact samples from any
bounded target density whose shape Kf belongs to the class of arithmetical expressions that are
locally Lipschitz in KT.

Theorem 4 (MRS). If the shape of the bounded trans-dimensional density Kf .(kt) : KT → R

is given by an arithmetical expression Kf that is locally Lipschitz over KT, then the non-empty kt
returned by Algorithm 1 with

• envelope function K̂gT(
kt) : KT→ R

K̂gT(
kt) =

s∑

j=1

kjf (kj tj) 11 kj tj (
kt), T := {k1t1,

k2t2, . . . ,
ksts} partitions KT , (20)

• and proposal density KgT(
kt) : KT→ R as the normalised simple function

KgT(
kt) =

(
NKgT

)−1
K̂gT(

kt), NKgT
:=

s∑

j=1

(
vol

(
kj tj

)
∗ kjf (kj tj)

)
, (21)

is an exact sample from KT ∼ Kf . and the partition-specific acceptance probability A(K̂gT) → 1 as
mesh(T)→ 0.

Proof. Let T := {k1t1,
k2t2, . . . ,

ksts} be a partition of KT into s labelled boxes. Since Kf is
locally Lipschitz over KT, Kf (KT) 6= NaN and by Theorem 2 we can enclose range(Kf ; kj tj) with the
interval function:

range(Kf ; kj tj) = range(kjf ; kj tj) ⊆ kjf(kj tj) := [kjf(kj tj), kjf (kj tj)], ∀ j ∈ {1, 2, ..., s} . (22)

Thus, the partition-specific envelope function given by (20) will satisfy the necessary envelope con-
dition (5) and since the corresponding proposal density KgT given by (21) can be sampled from, the
theorem follows from Theorem 1. Since Kf is locally Lipschitz over KT, the acceptance probability:

A
(
K̂gT

)
=

NKf

N
K̂g

T

=
NKf

∑|T|
j=1

(
vol (kj tj) kjf (kj tj)

) ≥
∑|T|

j=1

(
vol

(
kj tj

)
kjf(kj tj)

)
∑|T|

j=1

(
vol (kj tj) kjf(kj tj)

) , (23)

approaches 1 as the mesh of the partition approaches 0 due to Theorem 3 and (19).

4.1. Geometric Insight
Let us gain geometric insight into the sampler when K = {0} and d0 = 1 from Example 3 and
Figure 1. We suppress the only model label appearing unnecessarily as a left super-script for such
cases. The range enclosure of the target shape, f(t) = exp(−atb)(1+c sin(atb tan(bπ))) with a = 1/8,
b = 9/20 and c = 1/2, over three adaptive partitions of the domain [10−12, 1012] consisting of 1,
50 and 100 intervals are depicted as yellow, cyan and blue rectangles, respectively, in Figure 1.
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The upper boundaries of rectangles of a given colour, depicting a simple function is a partition-
specific envelope function (20) from the outward rounded interval evaluation of f(t). Normalisation
of the envelope function for a given partition gives the corresponding proposal function (21). As
the refinement of the domain proceeds through adaptive bisections (described later), the partition
size increases. Note how the acceptance probability (ratio of the area below the target shape to
that below the envelope) increases with refinement. Twenty exact samples were drawn from this
target with a = 1/8, b = 9/20, c = 1/2 using the MRS from a partition of 50 intervals (cyan
rectangles). The first ten of these samples are plotted as ‘o’ and the next ten are plotted as ‘+’
along the horizontal axis of Figure 1. A similar procedure of adaptive bisections is conducted upon
the labelled domain boxes of distinct dimensions in order to envelope a trans-dimensional target
shape and propose samples for rejection in our MRS.

4.2. Computational Efficiency
We use several standard data-structures to improve the efficiency of our sampler. Priority queues
are used to adaptively bisect the labelled boxes that partition the domain. Simple stopping rules
are used to stop the adaptive bisections to reach a reasonable acceptance probability. Finally, alias
method is used in conjunction with the squeeze principle to construct the proposal.

4.2.1. Prioritised partitions
We studied the asymptotic behaviour of uniform partitions in (19) for mathematical tractability of
any locally Lipschitz arithmetical expression. In practise, we can significantly increase the acceptance
probability for a given partition size by adaptively partitioning the domain KT. In our context,
adaptive means the possible exploitation of any current information about the target. We can refine
the current partition Tα and obtain a finer partition Tα′ with an additional labelled box by bisecting
a particular labelled box in Tα along the midpoint of its first side with the maximal width into two
labelled boxes. There are several ways to choose a labelled box k∗t∗ ∈ Tα for bisection. For instance,
the optimal choice based on experiments with three priority functions of (26) in Section 5.1 is

k∗t∗ = argmax
kj tj∈Tα

(
vol (kj tj) ∗ wid

(
kjf(kj tj)

))
. (24)

We employ a priority queue to conduct sequential refinements of KT under this partitioning
scheme. Briefly, a priority queue (PQ) is a container in which the elements may have different user-
specified priorities. The priority is based on some sorting criterion that is applicable to the elements
in the container. The PQ can be thought of as a collection in which the “next” element is always the
one with the highest priority, i.e., the largest with respect to the specified sorting criterion. Since
this container sorts using a heap which can be thought of as a binary tree, one can add or remove
elements in logarithmic time. This is a desirable feature of the PQ.

This approach avoids the exhaustive argmax computations to obtain the k∗t∗ for bisection at
each refinement step. Thus, the current partition is represented by a queue of labelled boxes that
are prioritised in descending order by the the priority function in (24). Therefore, the labelled box
with the largest uncertainty in the enclosure of the integral over it gets bisected first.

4.2.2. Stopping Rules
There are several ways to decide when to stop refining the partition. A simple strategy is to stop
when the number of labelled boxes reaches a number that is well within the memory constraints of
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the computer, say 106, or when the lower bound of the acceptance probability given by (23) is above
a desired threshold, say 0.1.

4.2.3. Pre-processed proposals
Once we have a partition T of KT, we can sample kt from the proposal density KgT(

kt) given by (21)
in two steps:

(a) Sample a labelled box kj tj ∈ T according to the discrete distribution:

Kg̈T(
kj tj) =

vol
(
kj tj

)
kjf (kj tj)

∑|T|
j=1

(
vol (kj tj) kjf(kj tj)

) , kj tj ∈ T , (25)

(b) Sample a labelled point kt uniformly at random from the dkj
dimensional labelled box kj tj .

Sampling from large discrete distributions (with million states or more) can be made faster
by pre-processing the probabilities and saving the result in some convenient look-up table. This
basic idea of Marsaglia (1963) allows samples to be drawn rapidly. We employ an efficient pre-
processing strategy known as the Alias Method (Walker, 1977) that allows samples to be drawn
in constant time even for very large discrete distributions as implemented in the GNU Scientific
Library (Galassi et al., 2003). We also minimise the number of evaluations of the target shape
Kf during the accept/reject step by saving the labelled box-specific computations of kjf(kj tj) and
kjf(kj tj) and exploiting the so-called “squeeze principle”, i.e. immediately accepting those labelled
points proposed in the labelled box kj tj that fall below kjf(kj tj) when uniformly stretched toward
kjf(kj tj).

4.3. MRS Software
The concepts of labelled points and labelled boxes that underpin MRSampler, our exact trans-
dimensional sampler class in MRS 0.1.2, build upon the real and interval vector classes in C-XSC 2.0,
a C++ class library for extended scientific computing using interval methods (Hofschuster and Krämer,
2004). The priority queues and look-up tables that efficiently manage our adaptive partitioning
strategy for envelope construction and rapid sampling from the proposal distribution are handled
by standard routines in GSL, the GNU Scientific Library (Galassi et al., 2003). The documented
C++ class library for MRS is available from www.math.canterbury.ac.nz/~r.sainudiin/codes/mrs.
MRS, C-XSC and GSL are distributed from source under the terms of GPL, the GNU General Public
License.

5. Examples

Having given theoretical and practical considerations to our Moore rejection sampler, we are ready
to draw samples from various target densities whose shapes can be given in terms of locally Lipschitz
arithmetical expressions. In this Section, we empirically study sampler efficiency by sampling from
qualitatively diverse targets since analytical results on efficiency are sharp only for relatively simple
target parametrisation. Unless otherwise specified, all computations were done on a 2.8 GHz Pentium
IV machine with 1GB RAM. In Section 5.1 we first study the relative efficiencies of MRSs managed
by the three PQs (26) by sampling from univariate Gaussian mixture targets. Next, we study the
effects of target complexity (number of components, scales and domain size) on sampler efficiency.

www.math.canterbury.ac.nz/~r.sainudiin/codes/mrs
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Table 1. Moore rejection sampling from six different Gaussian mixture target
shapes gn truncated over T, where n is the number of mixture components.

Target T Parameters

g1(x) [−102, 102] µ1 = −5, σ1 = 1, and w1 = 1.00
g2(x) [−102, 102] µ1 = −5, σ1 = 1, w1 = 0.25, µ2 = 50,

σ2 = 0.25
g5(x) [−102, 102] µ1 = −15, µ2 = −5, µ3 = 3, µ4 = 6, µ5 = 50,

σ1 = σ2 = σ4 = 1, σ3 = 0.5, σ5 = 0.1,
w1 = 0.15, w2 = 0.2, w3 = 0.05, w4 = 0.1

g′5(x) [−102, 102] same as g5(x), except
σ1 = σ2 = σ4 = 0.1, σ3 = 0.05, σ5 = 0.01

g′′5 (x) [−102, 102] same as g5(x), except σ1 = σ2 = σ4 = 0.01,
σ3 = 0.005, σ5 = 0.001

ĝ5(x) [−10100 , 10100] same as g5(x)

In Section 5.2 we study the sampler behaviour for a highly multimodal two-dimensional target
that is sensitive to a temperature parameter. Using a trivariate mixture target in Section 5.3, we
compare MRS to Monte Carlo Markov chain (MCMC) methods that rely on heuristic convergence
diagnostics and exploit the connections between RS, importance sampler (IS) and independent
Metropolis-Hastings sampler (IMHS) to simultaneously produce samples from all of them. The effect
of dimensionality on sampler efficiency is studied in Section 5.4 and 5.5 where we draw samples from
multivariate targets, including the multivariate witch’s hat. In Section 5.6 we draw samples from
the posterior distribution of the rate parameter for the stretched oscillating exponential model of
Example 3. Exact trans-dimensional posterior samples are drawn for the first time from the binomial
partition model in Section 5.7 and from the space of phylogenetic triples in Section 5.8.

5.1. Univariate Gaussian Mixture
We apply MRS to targets whose shape gn is obtained from finite mixtures of n univariate Gaussian
densities truncated over an interval T under a uniform prior on T. The means (µi’s), standard
deviations (σi’s), weights (wi’s), and domains (T’s) for each of the six targets studied are shown in
Table 1.

We can refine the current partition Tα and obtain a finer partition Tα′ with an additional labelled
box by bisecting a labelled box k∗t∗ ∈ Tα along the first side with the maximal width. We explored
the following three ways to choose a k∗t∗ from the current partition Tα for bisection:

(a) Volume-based k∗t∗ = argmax
kj tj∈Tα

(
vol (kj tj)

)
,

(b) Range-based k∗t∗ = argmax
kj tj∈Tα

(
wid

(
kjf(kj tj)

))
, (26)

(c) Integral-based k∗t∗ = argmax
kj tj∈Tα

(
vol (kj tj) ∗ wid

(
kjf(kj tj)

))
,

and implemented each refinement scheme through PQ. The the volume-based PQ (a) manages the
family of partitions UW , the range-based PQ (b) manages the family Rα and the integral-based PQ
(c) manages the family Vα.

First, we study the efficiency of the three partitioning schemes (26) by Moore rejection sampling
from g5. Figure 2 shows the empirical acceptance probability of MRS, calculated from up to 104

draws from a maximum of 105 trials, at each partition size |Tα| for each of the three different families
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Fig. 2. Acceptance probability versus partition size for six target shapes g1, g2, g5, g′5, g′′5 and ĝ5 (Table 1)
under different families of partitions: (1) volume-based UW , (2) range-based Rα and (3) integral-based Vα

(see text for description).

of partitions (UW , Rα and Vα). Thus, for a given partition size |Tα|, the domain interval T gets
adaptively partitioned through |Tα| − 1 bisections by the appropriate PQ. The family of partitions
Vα managed by the integral-based PQ is the most efficient as it can direct the next refining bisection
towards the interval with the most uncertainty in its integral estimate. The efficiency of the integral-
based scheme is even more pronounced for multivariate exponential mixtures (results not shown).

Note that Theorem 4 guarantees that MRS produces independent draws from any arithmetical
expression that is locally Lipschitz on the domain interval T. This includes Gaussian mixture
targets with any finite number of components truncated over any compact interval. Furthermore,
the locations inside T are arbitrary and the scales can be highly spiked (i.e., provided σi > 0 and can
be enclosed by a machine interval via directed rounding). However, the efficiency of the sampler can
depend on (i) number of components, (ii) spikiness of peaks and (iii) domain size. We empirically
study these effects by sampling from the six targets (Table 1) using the family of MRSs induced
by the most efficient partitions Vα. The acceptance probability plots (Figure 2) for targets g1,
g2, and g5 illustrate decreasing efficiency as the number of components increases, and the plots for
targets g5, g

′
5 and g′′5 , with progressively smaller variances, illustrate a similar effect of spikiness on

efficiency at every partition size |Vα|. Note that in both cases sampler efficiency quickly recovers for
larger partition sizes (> 100). Next we study the effect of domain size. In a computer, we cannot
represent the real line and are forced to approximate it with the entire number screen, a compact
interval. Thus, the domain of any target is necessarily truncated in a machine and we can formally
accept it by assuming a uniform prior on the largest machine-representable interval of interest. One
can also come to terms with the compact domain due to the limits on empirical resolution of the
measurable phenomenon of interest. For instance, time between events or amount of rainfall or
magnitude of earth-quakes cannot be typically measured beyond an interval T ( [0,∞) and signed
measurements such as temperature cannot be measured beyond an interval T ( (−∞,∞). The
acceptance probability plot for the target shape ĝ5, that is obtained by extending the domain of
g5 to a large interval of radius 10100 centred at 0, shows the effect of domain size. The first 700
bisections or so are spent on homing in on the intervals with relatively higher probability mass.
However, by 1000 bisections our acceptance probability is almost 1.
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Fig. 3. Shape of the Levy density l40 with its 700 modes (27). 104 samples (points on top) from l40 using the
MRS induced by an adaptive partitioning of the domain into 150 rectangles (with grey boundaries).

5.2. Bivariate Levy
The bivariate Levy density l.r(t1, t2) over T = [−100, 100]2 (27) with temperature parameter r and
normalising constant Nlr has 700 modes.

l
.
r(t1, t2) =

1

Nlr

lr, where, lr = exp{−Λ(t1, t2)/r}, (27)

Λ(t1, t2) =

5∑

i=1

i cos ((i − 1)t1 + i)

5∑

j=1

j cos ((j + 1)t2 + j)

+ (t1 + 1.42513)2 + (t2 + 0.80032)2.

Figure 3 shows l40, i.e., the shape of the Levy density when r = 40, and 104 samples drawn
from l40 using the MRS induced by an integral-based adaptive partitioning of the domain into 150
rectangles. This MRS produced 104 exact samples in less than 10 CPU seconds at an acceptance
probability of about 0.01. Mixtures of bivariate Gaussian shapes yielded comparable results (not
shown here).

As the temperature parameter r in lr increases, the density approaches a uniform distribution on
T. The density is more peaked at low values of r. Various MCMC methods that use local proposals
tend to mix well at higher temperatures and get trapped at local peaks when r is small. To study
the effect of temperature on our sampler’s efficiency, we plot the empirical acceptance probability
as well as the CPU seconds taken to draw 104 samples from each of four Levy targets at different
temperatures (r = 1, 4, 40, 400) as a function of the partition size |Vα| (Figure 4). The efficiency
decreases as the temperature cools. However, across the range of r we explored, MRS can produce
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Fig. 4. Acceptance probability and CPU seconds versus partition size (|Vα|) for Levy targets lr, where r is the
temperature (27).

104 independent samples from lr in a guaranteed manner within 10 CPU seconds with an acceptance
probability greater than 1/100. Note that it is difficult to get a Monte Carlo Markov chain to mix
properly and even more difficult to rigorously establish convergence for such targets.

5.3. Triumvirate Needle in the Haystack
Let h.(t) be the trivariate Gaussian density corresponding to the shape:

h(t) =
1

σ3
1

exp{−1

2
((t− µ1)/σ1)

2}+ 1

σ3
2

exp{−1

2
((t− µ2)/σ2)

2} . (28)

Using this target shape h over T = [−10, 10]3, we compare MRS to a popular MCMC sampler that
relies on heuristics for convergence diagnosis and exploit the connection between three Monte Carlo
methods.

5.3.1. Metropolis-Hastings Sampler (MHS)
Given qY (t, ·), a possibly dependent proposal distribution for the base Markov chain Y , one can
produce a Monte Carlo Markov chain known as the Metropolis-Hastings (MH) chain on T merely
from the knowledge of ratios of the form h(t)/h(t′) for any (t, t′) ∈ T × T such that the stationary
distribution of the MH chain is h. (Hastings, 1970; Metropolis et al., 1953). We run a MH chain
with local proposal specified by a uniform cube of side 6σ1 centred at the current state. Using this
local Metropolis-Hastings sampler (LMHS) we try to draw samples from the following needle in the
haystack, i.e., h in (28) with the following parameters:

µ1 = (0, 0, 0)′, µ2 = (1, 1, 1)′, σ1 = 1, σ2 = 0.006 . (29)

We run multiple MH chains with randomly dispersed initial conditions and monitor the between-
chain variation (B) and within-chain variation (W) of the samples to diagnose convergence heuris-
tically. To diagnose convergence of the LMHS we calculate B/W for each component of t and
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assume that the chain’s burn-in time (the time when the samples may be affected by the initial
condition) has ended when B/W ≤ 0.05 for all three components. The post burn-in run length, i.e.,
the number of samples kept after the burn-in, is set to be 100 times the burn-in time (typical run
lengths ranged in [1, 5]× 104 for target h specified by (29)). The above convergence diagnostics are
more conservative than the standard recommendations (Gelman, 1996; Gelman and Rubin, 1992;
Kass et al., 1998).

Figure 5 shows the results (along the t1 axis) of the above LMHS that relies on the B/W statistic
from four randomly initialised chains. The running mean for each of the four chains has converged
to the haystack mean of (0, 0, 0) and completely missed the needle at (1, 1, 1). Thus, if we relied on
our convergence diagnostic B/W , which appears to be consistently vanishing and thus suggestive
of convergence to our target h, we would have entirely missed the needle. Tuning the diagnostic
parameters, including the number of chains, burn-in time, and run length, does not help diagnose
true convergence for much sharper needles (σ2 < 10−5) that are naturally amenable to our MRS.

Next we compare the samples obtained from the B/W diagnosed LMHS described above with
104 samples from MRS induced by an integral-based adaptive partitioning of T into 103 boxes. We
compare the two samplers on two targets: (1) a blunt needle with σ2 = 0.10 and (2) a sharp needle
with σ2 = 0.01. The other parameters of the two targets are the same as before (29). The results are
summarised in Figure 6. The diagnostic B/W works better in diagnosing convergence to the blunt
target. The bias is severe for the sharp needle in all 100 replicates. MRS clearly outperforms LMHS,
both in terms of producing the true samples and in terms of CPU time (Figure 6). Moreover, the
sharpness of the needle only has a minor effect on the efficiency of MRS. For example, for a much
sharper needle with σ2 = 10−10, the MRS induced by an integral-based adaptive partitioning of T
into just 120 cuboids, achieves an acceptance probability of 0.40.

5.3.2. Rejection, Importance and Independent MHS

Suppose we are interested in estimating an expectation Ef.(s(T )), say the mean Ef.(T ). Importance
sampler (IS) (Kahn and Marshall, 1953; Marshall, 1956) is an efficient Monte Carlo method to
estimate the desired expectation using importance-weighted sample mean of samples drawn from a
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density that is close to abs(s(t))f .(t)/
(∫

abs(s(t))f .(t)dt
)
. The same proposal density used in RS

may be used as the proposal in importance sampler (IS) or as the proposal of the independent base
chain in IMHS. The latter two samplers are typically more efficient than RS, although in some cases
the efficiency of IMHS can be as low as half that of RS (Liu, 1995). The disadvantage of IMHS and
IS (or RS) compared to MRS is in terms of diagnosing convergence and finding the right proposal(s),
respectively. However, if one shares the proposal obtained through interval methods in MRS with
IS and IMHS, then we get their Moore versions which circumvent the disadvantages that arise from
non-rigorously constructed proposals. Indeed all three samples may be generated simultaneously
from the same sequence of proposed values (Cai, 1999); each proposed value would be output with
its importance weight, with some subset of the proposed values marked as IMHS-accepted, and with
some further subset of those additionally marked as MRS-accepted and thereby constituting our
collection of independent samples.

Let us consider the problem of estimating Eh.(T ) for the target shape h (28) to illustrate si-
multaneous sampling from Rejection, Importance and Independent MH samplers. Figure 7 shows
the mean squared error MSE for the sampler trio as a function of the size of the partition that is
invoking their common proposal. The sample trio is constructed for our target shape h (28) with the
sharp needle (σ2 = 0.01). The objective is to estimate Eh.(T ). To obtain the mean squared error
(MSE) for each sampler with target h. and proposal g, we drew ti ∼ g, i = 1, . . . , N using MRS,
where N is the number of samples needed to obtain 100 Moore rejection samples. For IS, each of
the ti’s were assigned the importance sampling weight wi = h.(ti)/g(ti) and the estimated mean

µ̂ =
∑N

i=1 (witi)/
∑N

i=1 wi. The MRS estimated mean is µ̂ =
∑100

i=1 tri/100, where tri is the ith MRS

sample. For IMHS the mean is estimated by µ̂ =
∑N

i=r1
ti/(N − r1 + 1), where r1 is the index of the

first MRS sample; the early samples ti, i < r1 are excluded as burn-in. This mean estimation was
repeated 500 times to obtain µ̂j , j = 1, . . . , 500 for each sampler. Finally, the MSE was computed
with the known mean µ = (0.5, 0.5, 0.5) under the Euclidean norm ||µ̂j − µ|| as ∑j ||µ̂j − µ||2/500.

Figure 7 compares the three samplers and shows a typical pattern: at low acceptance probability,
IS has lowest MSE, and MRS the highest, while at high acceptance probability all three samplers
approach the same MSE. The lower MSE of IS is due to the large number of (MRS-discarded)
samples being appropriately weighted. Observe that such an auto-validating Moore importance
sampler can be efficient and rigorous in estimating some expectation of interest. As the acceptance
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probability of MRS increases with refinement of the domain and the number of samples from each
sampler approaches equality, the MSE of all three samplers converge as expected. For some target
shapes, e.g. the witches hat (31), we have observed the MSE of IMHS to be greater than that of
MRS, but by less than a factor of 2, in agreement with Liu (1995) (results not shown).

5.4. Multivariate Rosenbrock

Next we examine the effect of dimensionality on efficiency of MRS through the challenging Rosen-
brock function from the optimisation literature. We obtain r.d(t), the Rosenbrock density in d

dimensions over some box T ∈ IRd, by appropriately normalising the Rosenbrock shape given by:

rd(t) = exp

(
−

d∑

i=2

(100(ti − t2i−1)
2 + (1− ti−1)

2)

)
. (30)

Figure 8 summarises the efficiency for various Rosenbrock densities. For the more demanding
nine dimensional Rosenbrock target r9, we were able to draw 104 samples in about 650 CPU sec-
onds at an acceptance probability of 10−4. The acceptance probability can be improved and/or d
can be increased naively if we allowed the partition size to be greater than a million. Thus, the
extent of RAM (random access memory) at our disposal ultimately determines the complexity and
dimensionality of the target that can be rigorously sampled with MRS. However, the manner in
which the natural interval extension is constructed will greatly affect the sampler’s efficiency as
discussed later. The acceptance probability for the relatively less complicated multivariate expo-
nential mixture density truncated over T = [−100, 100]10 is higher at 1/1000 compared to that for
the Rosenbrock target r9 even when there were 10 modes inside a 10-dimensional T (results not
shown). Thus, the complexity of the arithmetical expression of the target shape determines sampler
efficiency by affecting the sharpness of the range enclosures.
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Fig. 8. Acceptance probability and CPU time to generate 104 samples, as a function of partition size (|Vα|),
for Rosenbrock targets rd over T = [−10, 10]d, where d is the dimension.

5.5. Multivariate Witch’s Hat
Using MRS we can even sample from the infamous witch’s hat density which is considered to be
a pathological target for most samplers (Kass et al., 1998). The density is often thought of in two
dimensions as an m : (1 −m) mixture of a cone with centre C and basal radius R and a uniform
distribution on a rectangle T ∈ IR2. It can be easily generalised to a d dimensional box T ∈ IRd as
follows:

wd
r (t) =m 11 {||t−C||≤R}

(
1− ||t− C||

R

)
H + (1−m)

1

vol (T)
, where

H =
Γ(d/2)d(d+ 1)

2πd/2Rd
, R = 10−r. (31)

Our formulation of the witch’s hat is even more challenging than the differentiable formulation
suggested in Kass et al. (1998), as the gradient is 0 over the entire brim. MRS is amenable to any
target with a well-defined interval extension over the domain including wd

r . Mixtures of several
sharply-peaked bivariate normals with a uniform distribution, a further generalisation of the other
formulation (Kass et al., 1998), pose no sampling problems to MRS. Figure 9 shows that one can
efficiently sample from witch’s hat targets by rigorously constructing envelopes through the interval
evaluation of (31), an arithmetical expression that is locally Lipschitz in T. We can even sample
from the hat of an eleven dimensional witch (w10

0 ). We can also make the brim of the hat as large
as [−10100,+10100]2 without much trouble (ŵ2

0). Note that decreasing the radius has a similar effect
as widening the brim, in terms of lowering the acceptance probability as a function of partition
size. Thus we are able to sample rigorously from a range of multivariate witch’s hat targets with
reasonable partition sizes and CPU seconds.

5.6. Posterior of the rate parameter in stretched oscillating exponential model
Recall the (a, b, c)-parametric family of stretched oscillating exponential shape f(t) (11) with arith-
metical expression (12) from Example 3. In this model, parameter a > 0 determines the scale,
parameter b ∈ (0, 1/2) determines the stretch and frequency of the oscillations, and parameter
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Fig. 9. Acceptance probability and CPU time to generate 104 samples, versus partition size for witch’s hat
targets wd

r , where d is the dimension of the domain and R = 10−r is the hat’s radius (31). The hats of all
targets were centred at the two vector (2, . . . , 2). The domain T for ŵ2

0 was [−10100 ,+10100]2, but all other
targets had T = [−10, 10]d.

c ∈ (−1, 1) determines the magnitude of the oscillations. We drew twenty samples from this model
with a = 1/8, b = 9/20, c = 1/2 and over the uniform prior-specified support T = [10−12, 1012] using
MRS. The first ten of these samples are plotted as ‘o’ and the next ten are plotted as ‘+’ along with
the associated MRS partition and envelope function in Figure 1.

We use MRS to produce samples from the posterior distribution of the parameter a. A uniform
prior was assumed for a over the interval [10−3, 100] and an adaptive partition of 100 intervals were
used. The posterior mean from the first ten samples was 0.1118 while that from the all twenty
samples was 0.1173. The CPU time per posterior sample was less than 0.002 seconds for a sampler
that produced 104 posterior samples. The more informative multimodal histograms from 104 IID
posterior samples based on 10 and 20 data points are shown in blue and cyan respectively (in bottom
panel of Figure 10).

5.7. Trans-dimensional posterior samples over binomial partitions
Let us generalise Example 2 of deciding if the two coins have the same bias. Suppose there are m
sets:

X1 := (X1,1, X1,2, X1,n1), X2 := (X2,1, X2,2, X2,n2), . . . , Xm := (Xm,1, Xm,2, Xm,nm
) ,

of Bernoulli trials that are assumed to be definitely identical and independent within each set
and possibly identical but definitely independent across the sets. Only the sum of the j-th set of
Bernoulli trials, namely, Yj :=

∑nj

ℓ=1 Xj,ℓ, is known to the experimenter for each j = 1, 2, . . . ,m.
So effectively, we have m independent binomial trials Y1, Y2, . . . , Ym of known sizes n1, n2, . . . , nm,
respectively, with possibly distinct success probabilities. Our task is to determine the nature and
extent of this distinctness.

We define a binomial partition model as follows. Let L := {1, 2, . . . ,m} be the set of binomial trial

labels. Let Cm be the set of set partitions of L and C
(κ)
m be the set of set partitions of L with κ many

blocks, where κ ∈ {1, 2, . . . ,m}. Thus, Cm =
⋃m

κ=1 C
(κ)
m , |Cm| = Bm and |C(κ)

m | = S
(κ)
m , where Bm is
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the m-th Bell number and S
(κ)
m is the Stirling number of the second kind. For each given canonically

ordered set partition k := (k1, k2, . . . , kκ) ∈ C
(κ)
m , let us define its partition-specific model such that

the success probability is identical between the canonically ordered trial labels within each of its κ
many blocks k1, k2, . . . , kκ of possibly distinct sizes |k1|, |k2|, . . . , |kκ| and independent both within
and between the blocks. For example, when m = 2 with L = {1, 2} there are only two partitions,
say k = (k1) = ((1, 2)) and k′ = (k′1, k

′
2) = ((1), (2)), then k1,1 = 1, k1,2 = 2 and k′1,1 = 1, k′2,1 = 2.

For each given partition k, the vector of parameters kt := (ktk1 ,
ktk2 , . . . ,

ktk|k|
) that specify the

block-specific success probabilities belongs to the |k|-dimensional vector of unit intervals or unit
hyper-cube. Thus, the parameter space of the trans-dimensional binomial probability model over
all Bm partitions is:

CmT :=
{
kT : k ∈ Cm

}
, kT :=

(
kTk1 ,

kTk2 , . . . ,
kTk|k|

)
= ([0, 1]× [0, 1]× · · · × [0, 1]) = [0, 1]|k| .

Suppose the realised number of successes in the m binomial trials of size n := (n1, n2, . . . , nm) is
y := (y1, y2, . . . , ym). Our goal is to sample exactly from the trans-dimensional posterior distribution
Cmf .(kt|y) over the parameter space CmT. Let the prior density over the success probability vector
kt ∈ kT = [0, 1]|k| be the product of Beta densities

kq(kt) = 11 kT(
kt)

|k|∏

b=1

Γ
(
kαb +

kβb

)

Γ (kαb) Γ (kβb)
(ktkb

)
kαb−1(1− ktkb

)
kβb−1

that are specified by the shape parameter vectors

(kα, kβ) :=
((

kα1,
kα2, . . . ,

kα|k|

)
,
(
kβ1,

kβ2, . . . ,
kβ|k|

))
∈ (0,∞)|k|×2 .

For ease of interpretation, we set all the values of each
(
kα, kβ

)
to be 1 and thus let the uniform

density that assigns Lebesgue measure over each unit hyper-cube kT be our prior density kq(kt) =
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Table 2. Posterior Results from Binomial Partition Model for Mortality of Pine Seedlings.
no. k 10−7

∑
kt

11 kT(
kt), kt ∼ Kf

.
posterior sample mean in kT

0 ((1, 2, 3, 4)) 0.0000000 none

1 ((1), (2, 3, 4)) 0.5548453 (0.5882, 0.9039)

2 ((2), (1, 3, 4)) 0.0000000 none

3 ((3), (1, 2, 4)) 0.0000000 none

4 ((4), (1, 2, 3)) 0.0000000 none

5 ((1, 2), (3, 4)) 0.0000030 (0.7444, 0.9053)

6 ((1, 3), (2, 4)) 0.0000106 (0.7256, 0.9187)

7 ((1, 4), (2, 3)) 0.0000000 none

8 ((1), (2), (3, 4)) 0.0647222 (0.5882, 0.8823, 0.9109)

9 ((1), (3), (2, 4)) 0.0946800 (0.5881, 0.8725, 0.9158)

10 ((1), (4), (2, 3)) 0.2562380 (0.5882, 0.9411, 0.8811)

11 ((2), (3), (1, 4)) 0.0000000 none

12 ((2), (4), (1, 3)) 0.0000035 (0.8839, 0.9439, 0.7250)

13 ((3), (4), (1, 2)) 0.0000011 (0.8586, 0.9452, 0.7445)

14 ((1), (2), (3), (4)) 0.0294963 (0.5884, 0.8823, 0.8724, 0.9411)

11 kT(
kt) ≪ λ|k| and let (pk : k ∈ Cm) be the model prior probabilities. We let pk = 1/|Cm| in this

study. Finally, the posterior density is proportional to

Cmf(kt) =
∑

k∈Cm

pk

m∏

j=1

(
nj

yj

) |k|∏

b=1

(ktkb
)
∑|kb|

ℓ=1 ykb,ℓ (1− ktkb
)
∑|kb|

ℓ=1 nkb,ℓ
−ykb,ℓ 11 kT(

kt) . (32)

Let us apply our sampler to produce exact samples from the pine seedling mortality data
59,89,88,95 of Consonni and Veronese (1995) based on 100 trials each. Let the partition of trial
labels L = {1, 2, 3, 4} corresponding to {LH, LD, SH, SD} for the variety of the pine seedling (L, lon-
gleaf; S, slash) and the planting depth (H, planting too high; D, planting too deep). We produce the
first exact trans-dimensional samples for such a data set over the fifteen trans-dimensional models
indexed by the partitions of the trial label set {1, 2, 3, 4} and summarise the results in Table 2.
The model label or partition k is given in the second column and the asymptotically normal point
estimate for the posterior model probability P (k|y) is given in the third column of Table 2. One can
easily obtain 95% confidence interval for P (k|y) from its point estimate (when its point estimate
is 0, we can obtain an enclosure of the 95% confidence interval) as well as the sample variance-
covariance matrix from the posterior samples (results not shown). What is interesting is that more
than half of the posterior mass is in the two-dimensional model with partition ((1), (2, 3, 4)), i.e.,
((LH), (LD, SH, SD)). The three-dimensional model with the next highest posterior mass of 0.256
corresponds to the partition ((1), (4), (2, 3)), i.e., ((LH), (SD), (LD, SH)). The four-dimensional model
with the finest partition ((1), (2), (3), (4)), i.e., ((LH), (LD), (SH), (SD)), only has 0.029 of the pos-
terior probability mass. Our results, despite the differences in model prior and formulation, are in
general agreement with those drawn from the dependent samples from the reversible jump MCMC
sampler of (Green, 1995, Table 1) and with those obtained from an approximation and quadrature
in (Consonni and Veronese, 1995, Table 3 and Table 4).

The computations to produce 107 exact samples from the posterior were done on a MacBook
Pro laptop with OS X 10.5.8, 2.4 GHz Intel processor and 2 GB RAM. The total number of interval
and real function calls were 1999985 and 19165849, respectively. The total number of seconds taken
for constructing the partition and producing all 107 samples were 35.4702 and 3564.56, respectively.
Thus the total amount of time was about an hour.Our approach is flexible and allows one to draw
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Fig. 11. Space of phylogenetic trees with three labelled leaves {1, 2, 3}. See text for description.

exact trans-dimensional posterior samples on any subset of partition models as specified by the
model priors. This is particularly helpful for cases with 5 ≤ m ≤ 10 and too many partitions.
We expect the sampler to return no samples when the dimension of the parameter space gets large
due to extremely large over-enclosures of the range. Currently MRS is the only available exact
trans-dimensional sampler for binomial partition models.

5.8. Trans-dimensional phylogenetic posterior samples

In this section we briefly review phylogenetic estimation. A more detailed account can be found
in Felsenstein (2003); Semple and Steel (2003); Yang (2006). Inferring the ancestral relationship
among a set of extant species based on their DNA sequences is a basic problem in phylogenetic
estimation. One can obtain the likelihood of a particular phylogenetic tree that relates the extant
species of interest at its leaves by superimposing a continuous time Markov chain model of DNA
substitution upon that tree. The length of an edge (branch length) connecting two nodes (species)
in the tree represents the amount of evolutionary time (divergence) between the two species. The
internal nodes represent ancestral species. During the likelihood computation, one needs to integrate
over all possible states at the unobserved ancestral nodes. In Sainudiin and York (2009) MRS was
used to draw IID posterior samples from small phylogenetic tree spaces of the same dimension
(number of branches) based on primate molecular sequence data. Here we generalise this to the
trans-dimensional setting.

A phylogenetic tree is said to be rooted if one of the internal nodes, say node r, is identified as the
root of the tree, otherwise it is said to be unrooted. The rooted tree is conventionally depicted with
the root node r at the top. The four topology-labelled, three-leaved, rooted trees, namely, 0t, 1t,
2t and 3t, with leaf label set {1, 2, 3}, are depicted in Figure 11(i)–(iv). The unrooted, three-leaved
tree with topology label 4 or the unrooted triplet 4t is shown in Figure 11(v). For each tree, the
terminal branch lengths, i.e. the branch lengths leading to the leaf nodes, have to be strictly positive
and the internal branch lengths have to be non-negative. Our rooted triplets (Figure 11(i)–(iv)) are
said to satisfy the molecular clock, since the branch lengths of each kt, where k ∈ {0, 1, 2, 3}, satisfy
the constraint that the distance from the root node r to each of the leaf nodes is equal to kt0 +

kt1
with kt1 > 0 and kt0 ≥ 0. The trifurcating star-tree 0t := (0t1) has topology label 0 and common
branch-length parameter 0t1 as shown in Figure 11(i) and the set of rooted trees corresponding to
(ii),(iii) and (iv) of Figure 11 are labelled by {1, 2, 3} ⊆ K.

The simplest model for the evolution of binary sequences under a symmetric transition matrix
over all branches of a tree is referred to as the Cavender-Farris-Neyman (CFN) model. Under
the CFN mutation model, only pyrimidines and purines, denoted respectively by Y := {C, T} and
R := {A, G}, are distinguished as evolutionary states among the four nucleotides {A, G, C, T}. Time
t is measured by the expected number of substitutions in this continuous time Markov chain with
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rate matrix Q and transition probability matrix P (t) = eQt :

Q =

(
−1 1
1 −1

)
, P (t) =

(
1− (1 − e−2t)/2 (1 − e−2t)/2
(1− e−2t)/2 1− (1− e−2t)/2

)
.

Thus, the probability that Y mutates to R, or vice versa, in time t is a(t) := (1 − e−2t)/2. The
stationary distribution is uniform on {Y, R}, i.e. π(R) = π(Y) = 1/2. For closely related species with
at most two distinct nucleotides per site one can apply the CFN model directly to site patterns of
nucleotides as opposed to pyrimidines and purines.

Consider the unrooted tree-space with a single topology labelled 4 and three non-negative termi-
nal branch-lengths 4t = (4t1,

4t2,
4t3) ∈ R3

+ as shown in Figure 11(v). The product-sum algorithm of
Felsenstein (1981) gives the likelihoods of four minimally sufficient site pattern classes, namely, xxx,
xxy, yxx and xyx, where x and y simply denote distinct characters in {R, Y}. The corresponding
likelihoods are:

lxxx(
4t) := l0(

4t) = l1(
4t) =

1

8

(
1 + e−2(4t1+

4t2) + e−2(4t2+
4t3) + e−2(4t1+

4t3)
)

lxxy(
4t) := l2(

4t) = l3(
4t) =

1

8

(
1 + e−2(4t1+

4t2) − e−2(4t2+
4t3) − e−2(4t1+

4t3)
)

lyxx(
4t) := l4(

4t) = l5(
4t) =

1

8

(
1− e−2(4t1+

4t2) + e−2(4t2+
4t3) − e−2(4t1+

4t3)
)

lxyx(
4t) := l6(

4t) = l7(
4t) =

1

8

(
1− e−2(4t1+

4t2) − e−2(4t2+
4t3) + e−2(4t1+

4t3)
)

. (33)

Therefore, given a multiple sequence alignment data d from three taxa at v homologous sites, i.e. d ∈
{Y, R}3×v, the product likelihood function across sites over the tree space kT can be obtained from
the minimal sufficient site pattern counts c := (cxxx, cxxy, cyxx, cxyx) as follows:

ld(
kt) =

v∏

q=1

ld�,q
(kt) =

∏

s=xxx,xxy,yxx,xyx

(
ls(

kt)
)cs

. (34)

We compute the rooted topology-specific likelihood functions, i.e. l(kt) for k ∈ {0, 1, 2, 3} (Figure 11)
by substituting the constraints imposed by the molecular clock upon branch-lengths in 4T = R3

+, the
space of unrooted triplets. Thus, the parameter space for the bifurcating trees with model or topology
label k ∈ {1, 2, 3} is kT = R2

+ and that for the star tree is 0T = R1
+. Finally, the posterior distribution

is obtained by normalising the likelihood with a uniform prior over the biologically meaningful
compact domain [10−10, 10] for each branch-length parameter. The prior model probabilities are
taken to be discrete uniform over K.

Table 3 summarises the results of a trans-dimensional Bayesian analysis based on anthropocentric
sets of three mitochondrial DNA sequences (Brown et al., 1982) from five apes: humans (H), chim-
panzee (C), gorilla (G), orangutan (O) and gibbon (B). Column 1 gives the species label set {1, 2, 3}
and c, the site pattern counts of pyrimidines and purines from the multiple sequence alignment data
d. Columns 2–6 give P̂ (kT|d), the point estimate (standard error) of the posterior probability of
model k ∈ {0, 1, 2, 3, 4}. When this point estimate is 0.0 the upper bound for the standard error

is reported from the 107 exact trans-dimensional posterior samples. The last column gives k̂ t̂, the
posterior mean branch-lengths for the model with the highest posterior probability. One can obtain
other statistics such credible sets from the exact posterior samples (not shown).

Figure 12 shows ten thousand exact trans-dimensional posterior samples from the phylogenetic
tree space of human, chimpanzee and gorilla with topology or model label set {0, 1, 2, 3, 4} (see
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Table 3. Posterior Results from Trans-dimensional Phylogenetic Tree Spaces of Three Apes.

{1, 2, 3}, c P̂ (0T|d) P̂ (1T|d) P̂ (2T|d) P̂ (3T|d) P̂ (4T|d) k̂ t̂

{H,C,G}, 0.999764 0.000191 0.0000179 0.0000271 0.0
(884, 6, 2, 3) (4.86e-6) (4.37e-6) (1.33e-6) (1.65e-6) (1.0e-7) 0t̂ = (0.004509)

{H,C,O}, 0.0000015 0.9999176 0.0 0.0 0.0000809 1 t̂ = (0.003378,
(858, 32, 3, 2) (3.87e-7) (2.87e-6) (1.0e-7) (1.0e-7) (2.84e-6) 0.035186)

{H,C,B}, 0.0 0.9999221 0.0 0.0 0.0000779 1 t̂ = (0.003377,
(848, 42, 3, 2) (1.0e-7) (2.79e-6) (1.0e-7) (1.0e-7) (2.79e-6) 0.047488)

{H,G,O}, 0.000531 0.9993588 0.0000001 0.0 0.0001101 1 t̂ = (0.005085,
(857, 30, 5, 3) (7.29e-6) (8.01e-6) (1.0e-7) (1.0e-7) (3.32e-6) 0.031166)

{H,G,B}, 0.0 0.9999075 0.0 0.0 0.0000925 1 t̂ = (0.005085,
(846, 41, 4, 4) (1.0e-7) (3.04e-6) (1.0e-7) (1.0e-7) (3.04e-6) 0.044700)

{H,O,B}, 0.9973552 0.0025385 0.0000295 0.000076 0.0000008
(829, 31, 14, 21) (1.62e-5) (1.60e-5) (1.72e-6) (2.76e-6) (2.83e-7) 0t̂ = (0.026290)

Fig. 12. Exact trans-dimensional posterior samples from the phylogenetic tree space of human, chimpanzee
and gorilla on the basis of (cxxx, cxxy, cyxx, cxyx) = (762, 54, 38, 41) with topology label set {0, 1, 2, 3, 4} (see
Figure 11(i),(ii),(iii),(iv),(v)) (black, blue, red, green and magenta dots, respectively).
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Figure 11(i),(ii),(iii),(iv),(v)) on the basis of mitochondrial data (Brown et al., 1982) summarised
by (cxxx, cxxy, cyxx, cxyx) = (762, 54, 38, 41) under the Cavender-Farris-Neyman model that distin-
guishes dimorphic nucleotides (black, blue, red, green, magenta dots, respectively) are depicted
in Figure 12. The posterior probability estimates (standard errors) on the basis of 107 exact
saples for the five models in K = {0, 1, 2, 3, 4, } are 0.8679336(0.0001071), 0.1136644(0.0001004),
0.0061397(0.0000247),0.0083094(0.0000287),0.0039529(0.0000198), respectively. The CPU time to
produce 107 exact samples for the seven sets of three ape sequences ranged between 15 and 50
seconds on a MacBook Pro laptop with OS X 10.5.8, 2.4 GHz Intel processor and 2 GB RAM.

It is noteworthy that MRS has produced the first exact trans-dimensional posterior samples over
three-taxa phylogenetic tree spaces. The significantly higher posterior probability for the star-tree
with topology 0 for {H,C,G} and {H,O,B} is biologically interesting and deserves a systematic
investigation across the sample space of (cxxx, cxxy, cyxx, cxyx).

6. Conclusion

In this paper, we make the first formal trans-dimensional extension of von Neumann’s rejection
sampler. We use interval methods to automatically and rigorously construct envelope functions for
universal trans-dimensional rejection sampling from target densities whose arithmetical expressions
are locally Lipschitz over their support. In particular the method allows the envelope to be drawn
from a large, flexible family of functions (simple functions over a family of adaptively refined par-
titions), and to be constructed in a manner that rigorously maintains the envelope property as the
envelope function is adaptively refined. Refining the partition decreases the rejection probability at
a rate that is no slower than linear with the mesh. The corresponding proposal density is easily
constructed in O(partition size) time into a data structure that allows samples from it to be drawn
in constant time. When one substitutes conventional floating-point arithmetic for real arithmetic in
a computer and uses discrete lattices to construct the envelope and/or proposal, it is generally not
possible to guarantee the envelope property and thereby ensure that samples are drawn from the
desired target density, except in special cases.

Unfortunately, the efficiency of MRS is not immune to the curse of dimensionality and the
complexity of the target arithmetical expression. When the arithmetical expression gets large, its
interval extension can have terrible over-enclosures of the true range, which in turn forces the adap-
tive refinement of the domain to be extremely fine for efficient envelope construction. Thus, a naive
application of interval methods to large targets can be terribly inefficient. In such cases, sampler
efficiency rather than rigour is the issue. Thus, one will not obtain samples in a reasonable time
rather than produce samples from some unknown and undesired target. There are several ways
in which efficiency can be improved for such cases. First, the particular structure of the target
expression should be exploited to avoid any redundant computations. For example, algebraic statis-
tical methods can be used to find sufficient statistics to dissolve symmetries (Sainudiin and Yoshida,
2005) or other enclosure techniques such as affine arithmetic can be used (Everitt, 2008). Second,
we can further improve efficiency by limiting ourselves to differentiable targets in Cn. Tighter enclo-
sures of the range can come from the enclosures of Taylor expansions around the midpoint through
interval-extended automatic differentiation (Hammer et al., 1995; Kulisch, 2001) that can then yield
tighter estimates of the integral enclosures. Third, we can employ pre-processing to improve effi-
ciency. For example, we can pre-enclose the range over a partition of the domain and then obtain
the enclosure through a combination of hash access and hull operations on the pre-enclosures. These
tighter range enclosures can be represented efficiently by a multi-dimensional metric data-structure
called a regular sub-paving (Jaulin et al., 2001). Such a pre-enclosing technique reduces not only
the overestimation of target shapes with large expressions but also the computational cost incurred
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while performing interval operations with processors that are optimised for floating-point arithmetic.
Fourth, interval constraint propagation is a powerful technique to obtain tighter range enclosures
(Schichl and Neumaier, 2005) and can dramatically increase sampler efficiency. Fifth, efficiency at
the possible cost of rigour can also be gained (up to 30% ) by foregoing directed rounding during
envelope construction. It would be interesting to study set-valued extensions of other Monte Carlo
methods.
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