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Abstract

We discuss recurrence and ergodicity properties of random walks
and associated skew products for large classes of locally compact
groups and homogeneous spaces. In particular we show that a closed
subgroup of a product of finitely many linear groups over local fields
supports a recurrent random walk if and only if it has at most quadratic
growth. We give also a detailed analysis of ergodicity properties for
special classes of random walks on homogeneous spaces. The structure
of closed subgroups of linear groups over local fields and the properties
of group actions with respect to stationary measures play an impor-
tant role in the proofs.
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1 Introduction

LetG be a locally compact second countable group and µ be a Borel probabil-
ity measure on G. We denote by P the product measure P = µN on Ω = GN.
Let Yi(ω) be the i-th coordinate of ω ∈ Ω in G (i ∈ N). Then the left random
walk on G of law µ, starting from g ∈ G is the sequence of G-valued random
variables Xg

n defined by Xg
n(ω) = Yn(ω) · · ·Y1(ω)g, Xg

0 (ω) = g. Given a G-
space E and x ∈ E, we write Xn(ω, x) = Xe

n(ω)x. The sequence Xn(ω, x) is
called the random walk of law µ on E, starting from x and its properties will
play an essential role in the study of Xg

n(ω) if E is chosen as a homogeneous
space of G. We say that Xg

n is recurrent if for every neighborhood W of the
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identity e of G P-a.e Xn(ω) = Xe
n(ω) ∈ W infinitely often. If Xg

n is not re-
current, then P-a.e Xg

n(ω) escapes to infinity and the random walk Xg
n is said

to be transient. We can also define the right random walk gXn = gY1 · · ·Yn.
Also recurrence of gXn is defined in a similar fashion. From the above we see
that recurrence of gXn is equivalent to recurrence of Xg

n. Hence, in this case
we say that µ is recurrent. We denote by µk the k-th convolution power of
µ. Then recurrence of µ is equivalent to the condition that

∑∞
0 µk(U) = ∞

for some neighborhood U of e in G. We denote by Gµ the smallest closed
subgroup of G containing the support of µ and we say that µ is adapted if
Gµ = G. Then the group G is said to be recurrent if there exists an adapted
probability µ on G such that µ is recurrent.

A stronger notion of recurrence where Haar measure enters explicitly in
the definition is H-recurrence. We will say that G is H-recurrent if there
exists a probability measure µ on G such that for every Borel set B with
positive Haar measure Xn(ω) ∈ B, P-a.e infinitely often.

It is a classical result that Rp × Zq is recurrent if and only if p + q ≤ 2
(cf. [43]). Also a countable abelian group is recurrent if and only if it has
rank at most two (see [12]). These groups are also H-recurrent. We denote
by λG a left Haar measure on G. We recall that G is said to have polynomial
growth of degree at most d ∈ N if for each compact neighborhood W of e ∈ G
there exists a constant c such that λG(W n) ≤ cnd for every n ∈ N; when
d = 2 we say that G has at most quadratic growth. We observe that if G has
polynomial growth, then G as well as its closed subgroups is unimodular.

We give now some reference from previous works. The idea of relating
growth and recurrence appeared in [30] for the case of countable groups: non-
exponential growth of finitely generated recurrent groups was conjectured.
The case of locally compact groups and especially real Lie groups, was con-
sidered in [22] where it was shown that recurrent groups are amenable and
unimodular. Probabilistic ideas and calculations were developed in order to
show transience or recurrence in various situations, particularly for connected
Lie groups and their countable subgroups. For example, it was shown there
that the group G2 of euclidean motion of R2 is recurrent while its universal
cover as well as the 3-dimensional Heisenberg groups (continuous or discrete)
is not. Also the affine group of the line was shown to be transient. In [21]
the following ”quadratic growth conjecture” was stated: G is recurrent if
and only if it has polynomial growth of degree at most two. This conjecture
has been settled for various classes of groups: compactly generated nilpo-
tent groups (cf. [21]), connected groups (cf. [2]), finitely generated groups
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(cf. [48]), quasi-transitive groups of automorphisms of graphs (cf. [50]), p-
adic Lie groups and totally disconnected groups of polynomial growth (cf.
[41]). Powerful analytical techniques from real analysis were developed in [48]
which allows to obtain precise asymptotics for µn if µ has nice density and G
is compactly generated unimodular. In particular, a direct relation between
polynomial growth and recurrence of such a µ was obtained. See also [15],
[26] and [50] for surveys on random walks and recurrence properties.

Here one of our main results proves the validity of the conjecture for
the class of closed subgroups of products of full linear groups over a finite
number of local fields. We show also the validity of the above conjecture in
the following situations:

(a) G is a real Lie group;

(b) G is H-recurrent.

In fact, we show that G is compactly generated and has quadratic growth
is equivalent to the following: G has a compact normal subgroup K and
a finite index subgroup G1 such that K ⊂ G1 and G1/K is isomorphic
to a closed subgroup of the motion group of the plane. In the situations
considered here, if G is compactly generated and totally disconnected we get
that up to finite index and to a compact normal subgroup, G is isomorphic
to a subgroup of Z2. Concerning the above conjecture, our main result is the
following.

Theorem 1 Assume G is a closed group of a product of finitely many linear
groups over local fields: G ⊂ ∏

i∈I GL(di,Fi). If G is recurrent, then G has
at most quadratic growth and in addition if G is compactly generated, then G
contains a compact normal subgroup K and a finite index subgroup H such
that K ⊂ H and H/K is isomorphic to a closed subgroup of the group G2 of
euclidean motions of the plane.

To our knowledge this result is new even in case of one field F, in particular
for the real field. For the proof we use in particular the following previously-
known results. The analysis developed in [2] and [22] for recurrence in locally
compact groups and real Lie groups. The structure of finitely generated re-
current groups given in [48] which is based on [19]. The existence of invariant
Radon measures for a class of random walks in homogeneous spaces as fol-
lows from Theorem 5.1 of [33]; this result leads to the unimodularity of closed
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subgroups of recurrent groups. The structural results for automorphisms of
totally disconnected groups in [4] and [29] allows us to use efficiently the facts
above in case of linear groups over non-archimedean fields.

In this paper we give also a detailed analysis of recurrence and ergodicity
properties for some special classes of homogeneous spaces and random walks
which occur naturally in other studies. Let E = G/H be such a G-space and
µ ∈ M1(G). As shown below and in contrast to the group case, recurrence
properties are valid forXn(ω)x in a much wider setting not related to polyno-
mial growth of G and the asymptotic properties of Xn(ω)x depend strongly
on x, in general. Then it is convenient to discuss recurrence properties in
terms of a fixed Radon measure λ such that the class of λ is µ-invariant. For
a positive Radon measure η on E, we define the convolution of µ and η by
µ ∗ η =

∫
gηdµ(g) where gη is the push-forward of η by g ∈ G. Let λ be

a fixed µ-invariant measure on E (µ ∗ λ = λ), Ω̂ = GZ = G−N × G × Ω be
the product space, θ be the shift on Ω̂and ω ∈ Ω the projection of ω̂ ∈ Ω̂
on Ω. We consider the skew product (Ω ×E, θ̃,P ⊗ λ) where θ̃ is defined by
θ̃(ω, x) = (θω, Y1(ω)x) for (ω, x) ∈ Ω × E. We consider also the map θ̂ of
Ω̂ × E into itself defined by θ̂(ω̂, x) = (θω̂, Y1(ω)x) for (ω̂, x) ∈ Ω̂ × E. The
second coordinate of θ̂n(ω̂, x) for n ∈ Z defines an extension of Xn(ω, x) to
negative time, i.e a bilateral random walk on E. We observe that λ̃ = P ⊗ λ
is θ̃-invariant and we will show that there exists a unique θ̂-invariant measure
λ̂ on Ω̂×E which has projection λ̃ on Ω×E. The system (Ω̂×E, θ̂, λ̂) can
be considered as the natural extension of the system (Ω×E, θ̃, λ̃). In section
2.3 we study recurrence and ergodicity properties of such systems from a
general point of view. As a result of this discussion in Section 5 we prove the
following

Theorem 2 In the situation of examples 2, 4, 5 of Section 5, the skew prod-
uct (Ω̂ × E, θ̂, λ̂) is ergodic with respect to the infinite θ̂-invariant measure
λ̂.

This result provides large classes of invertible transformations with stochas-
tic properties which are ergodic with respect to natural infinite invariant
measures. Examples 4 and 5 can be considered as fibered dynamical systems
with fiber R or Z, which have properties similar to those of the skew products
considered in [24].

As an illustration of recurrence and ergodicity properties on homoge-
neous spaces we show the singularity of stationary measure for the action of
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SL(2,Z) and its cofinite subgroups on the projective line.
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2 Recurrence of random walks on groups and

G-spaces

2.1 Some basic facts

A left-random walk Xg
n on G is said to be transient (resp. recurrent) if for

any compact neighborhood W of e ∈ G we have P-a.e, Xe
n(ω) 6∈ W for all

large n (resp. Xe
n(ω) ∈ W , infinitely often): see [15], [26] [43] and [50] for

further detailed information. A random walk is either transient or recurrent.
Transience of Xg

n is equivalent to the fact that
∑∞

0 µk is finite on compact
sets.

Given a Borel probability measure µ on G, a Markov operator P = Pµ
on G is defined by Pµψ(x) =

∫
ψ(gx)dµ(g), where ψ is a bounded Borel

function. This operator allows to express various quantities of probabilistic
significance for the left random walk Xg

n. For example, if B is a Borel subset
of G:

P{Xg
n ∈ B} = P n

µ 1B(g)

for any g ∈ G. In particular, if µ is adapted and recurrent then for any
positive continuous function φ on G and any g ∈ G:

∑∞
0 P k

µφ(g) = +∞. For
the sake of completeness we will give proofs for certain general properties
used below and some of which have been considered in the context of Markov
operators on measured spaces (see [14]). We will also use the framework of
skew products in the context of G-spaces (see [15], [16] and [24]).

A positive Borel function f on G is said to be left µ-harmonic (resp. left
µ-superharmonic) if Pµf = f (resp. Pµf ≤ f). If µ is adapted and recurrent
then continuous positive superharmonic functions are constant (see below).

A useful concept when dealing with recurrent random walks is that of
induced random walk. If µ is recurrent and U is an open subgroup the return
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time T to U is defined by T = inf{n ≥ 1 | Xe
n ∈ U} and we denote by µU the

law of Xe
T . Then µU is clearly a recurrent probability on U . In particular, if

G is recurrent, then any open subgroup of G is also recurrent. Also, if H is
a closed normal subgroup of G and µ is recurrent, then the projection of µ
on G/H is also recurrent. In particular, if G is recurrent, then G/H is also
recurrent. In dealing with the structure of recurrent groups one can reduce
the study to the case of compactly generated groups. This is because, if W is
a compact symmetric neighborhood of e ∈ G, then the subgroup generated
by W , that is, U = ∪n≥0W

n is open, hence one can consider the induced
random walk defined by µ which is also recurrent. Conversely, if G is a union
of compactly generated subgroups and on each of these compactly generated
subgroups, symmetric random walks with compactly supported density are
recurrent, then one can use the method in [41] to construct recurrent random
walks on G. In particular, it suffices to prove the quadratic growth conjecture
for compactly generated groups.

A basic fact proved here is that every closed subgroup of a recurrent
group is unimodular. This extends the known fact that a recurrent group
is unimodular, strongly used in [22] for the early classification of recurrent
locally compact groups. It extends also Theorem 3.26 of [50].

We now give a few typical examples of recurrent groups. The euclidean
motion group G2 = O(2) ⋉ R

2 of the euclidean plane was already mentioned
above. If C is a compact group, then the groups of the form C × H with
H a closed subgroup of R2 are recurrent. These two classes of groups arise
geometrically as similarity groups or products of similarity groups relative
to a euclidean or ultrametric norm. It follows from [41] that any p-adic
unipotent algebraic group is also recurrent.

If A is any hyperbolic automorphism of a compact abelian group C, then
one can form the semidirect product G = Z ⋉C where the action of Z on C
is given by An ( n ∈ Z). For example, one can take C = T

2 and A is given by

the matrix

(
2 1
1 1

)
. These groups are not isomorphic to closed subgroups

of linear groups but are recurrent.

2.2 A class of Markov operators

Let E be a locally compact second countable space. We denote by Cb(E)
the space of bounded continuous functions on E, by Cc(E) ⊂ Cb(E), the
subset of compactly supported functions and C+

b (E) (respectively, C+
c (E))
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the set of positive elements in Cb(E) (respectively, Cc(E)). Let M1(E) be
the set of Borel probability measures on E. Here, by a Markov operator
on E, we mean a positive operator P on Cb(E) such that P1 = 1. Then
P defines a transition probability P (x, ·). Clearly P acts on M1(E). We
will also consider its action on some positive Radon measures. If η is such a
measure and if for any φ ∈ C+

c (E), η(Pφ) is finite, then φ 7→ η(Pφ) defines
a Radon measure which we will denote by Pη. In particular η will be said
to be P -invariant if Pη is defined and Pη = η.

As a special case, we will consider a G-space E and P defined by

Pψ(x) =

∫
ψ(gx)dµ(g)

where µ ∈M1(G) and ψ ∈ Cb(E). In this case the trajectories, starting from
x ∈ E, for the associated Markov chain can be written as

Xn(ω)x = Yn(ω) · · ·Y1(ω)x (n > 0), X0(ω)x = x

with ω ∈ Ω. Then for u ∈ C+
b (E), we have

∞∑

0

P ku(x) =

∫ ∞∑

0

u(Xn(ω)x)dP(ω).

The first part of the following was proved in [33]. In view of the role
of this result here and in other contexts we provide a proof different from
[33], we give examples and complements; see also [40] for other examples of
probabilistic significance.

Proposition 1 Let E be a locally compact second countable space and P be a
Markov operator on E. Assume that there exists u ∈ C+

c (E) such that for any
x ∈ E, limn→∞

∑n
0 P

ku(x) = ∞. Then there exists a P -invariant positive
Radon measure ν on E with ν(u) > 0. If ν is unique up to normalization,
then we have the following convergence:

lim
n→∞

∑n
0 P

kφ(x)∑n
0 P

ku(x)
=
ν(φ)

ν(u)

for all x ∈ E and all φ ∈ Cc(E).
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Proof Let φ ∈ C+
c (E). Since the sequence

∑n
0 P

ku is increasing tending
to +∞ and the support of φ is compact, there exists r ∈ N such that φ ≤∑r

0 P
ku. It follows that for any n ∈ N,

∑n
0 P

kφ ≤ r
∑n

0 P
ku + r2||u||∞. In

particular, if x ∈ E is fixed, then

(
n∑

0

P kδx)(φ) ≤ r
n∑

0

(P kδx)(u) + r2||u||∞.

It follows that for any ρ ∈M1(E), if ρn =
∑n

0 P
kρ, then

ρn(φ) ≤ rρn(u) + r2||u||∞.

Since limn→∞ ρn(u) = +∞, for n large we have ρn(u) > 0, hence the sequence
ρn(φ)
ρn(u)

= ηn(φ), say, is bounded. This implies that the sequence of Radon
measures ηn is relatively compact in the weak topology. On the other hand
Pηn = ηn + Pnρ−ρ

ρn(u)
. Since for any φ ∈ C+

c (E), 0 ≤ P nρ(φ) ≤ ||φ||∞, the

sequence ǫn = Pnρ−ρ
ρn(u)

converges to zero weakly. By weak compactness we
can extract a convergent subsequence ηnk

of ηn such that limk→∞ ηnk
= ν

and ν(u) = 1. Then for φ ∈ C+
c (E), the relation Pηn(φ) = ηn(φ) + ǫn(φ)

gives limk→∞ ηnk
(Pφ) = ν(φ). Let φ, ψ ∈ C+

c (E) with ψ ≤ Pφ. Then the
relation ηn(Pφ) = ηn(φ) + ǫn(φ) implies ηn(ψ) ≤ ηn(φ) + ǫn(φ). Hence, in
the limit ν(ψ) ≤ ν(φ). Since Pφ is an increasing limit of elements of C+

c (E),
we get that Pφ is ν-integrable and ν(Pφ) ≤ ν(φ). Since φ is arbitrary,
Pν ≤ ν. In order to show Pν = ν, we consider the positive Radon measure
η = ν − Pν and we observe that

∑n
0 P

kη = ν − P n+1ν. If η 6= 0, then the
condition limn→∞

∑n
0 P

ku = +∞ implies that limn→∞(
∑n

0 P
kη)(u) = +∞.

This contradicts the fact that
∑n

0 P
kη(u) is bounded by ν(u). Hence Pν = ν.

If the Radon measure ν is uniquely defined by Pν = ν, ν(u) = 1, we can
improve the above considerations: every limit point η of ηn satisfies Pη = η
with η(u) = 1, hence η = ν and so by compactness, the convergence to ν of
ηn = ρn

ρn(u)
follows.

Remark 1 (a) The condition
∑∞

0 P ku = +∞ on E is satisfied for some
u ∈ C+

c (E) if there exists a relatively compact open set U ⊂ E such that
for any x ∈ E the trajectories of the Markov chain defined by P visit U
infinitely often with positive probability. In particular, if E = G and Pµ = P
is associated to an adapted recurrent µ ∈ M1(G), then the condition that∑∞

0 P ku = +∞ is satisfied. Also in this case ν is unique up to normalization
and equal to a Haar measure on G.
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(b) We will use the above result in the following situation. E is a G-
space, µ ∈ M1(G) is recurrent and adapted and P is defined by Pψ(x) =∫
ψ(gx)dµ(g) where ψ ∈ Cb(E). The condition that

∑∞
0 P ku = +∞ is

satisfied if there exists a compact subset C of E with GC = E. However
the proposition can be used in various situations not related to recurrence
of G, where E is a non-compact homogeneous space of G. Some classes of
examples are discussed in section 5.

The next result is well-known if E is a countable discrete space.

Proposition 2 Let E be a locally compact second countable space and P be
a Markov operator on E which satisfies

∞∑

0

P ku = +∞ on E

for all u ∈ C+
c (E). If f is a positive continuous function on E with satisfies

Pf ≤ f , then f is constant. Any non-zero P -invariant measure ν satisfies
ν(φ) > 0 for any φ ∈ C+

c (E).

Proof The function ψ = f − Pf is a positive continuous function such
that

∑n
0 P

kψ = f − P n+1f ≤ f . If ψ is not zero, then the assumptions
on P implies

∑∞
0 P kψ = +∞ on E which contradicts the boundedness of∑n

0 P
kψ. Hence we have Pf = f .

Let r ≥ 0. Then function fr = inf(r, f) satisfies also Pfr ≤ fr. The
above result applied to fr gives Pfr = fr. But for any r < supx∈E f(x),
the functions fr has maximum r. We consider the closed set Er = {x ∈ E |
fr(x) = r}. Then if x ∈ Er, the equation Pfr = fr implies that P (x,Er) = 1.
In other words, Er is P -invariant. If f takes two distinct values r 6= s, we
can find u ∈ C+

c (E) with u = 0 on Es. Then for any n ∈ N, P nu(x) = 0 if
x ∈ Es and hence

∑∞
0 P ku(x) = 0 on Es. This contradicts the assumption

that
∑∞

0 P ku = +∞ on E. Hence f is constant on E.
Let φ ∈ C+

c (E). Then since
∑∞

0 P kφ = +∞ on E, given any u ∈ C+
c (E),

there exists m ∈ N such that u ≤ ∑m
0 P

kφ. Then ν(u) ≤ ∑m
0 ν(P

kφ) =
(m + 1)ν(φ). Now choose u ∈ C+

c (E) so that ν(u) = 1, hence we have
ν(φ) ≥ 1

m+1
> 0.
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2.3 Recurrence and ergodicity for stationary mea-

sures

Here E is a locally compact second countable G-space, and P is defined by

Pψ(x) =

∫
ψ(gx)dµ(g)

where µ ∈M1(G). We consider also a positive Radon measure λ on E which
is P -invariant. In general λ will be of infinite mass but we will deal here
with conservativity conditions which will allow to reduce the situations to
the finite mass case. For (ω, x) ∈ Ω×E we write Xn(ω)x = Yn(ω) · · ·Y1(ω)x
and we endow Ω × E with the measure P ⊗ λ.

Definition 1 Let (E, P, λ) be as above. We say that (E, P, λ) has property
R if for every open relatively compact set U ⊂ E, P⊗λ-a.e., (ω, x) ∈ Ω×U ,
there exists n = n(ω, x) ∈ N such that Xn(ω)x ∈ U .

For example if µ is a left random walk on a locally compact group G and
λ = λG, then the triple (G,P, λ) has property R if and only if µ is recurrent.

Remark 2 In the definition of Property R we could have restricted U to
belong to a family of relatively compact open sets Uk (k ∈ N) covering the
support of λ, which may be seen as follows. Replacing Uk by ∪i≤kUk, we
may assume that (Uk) is increasing. Let U be any relatively compact open
set. Then there exists a k ∈ N such that λ(U \ Uk) = 0, hence for P ⊗ λ-a.e.
(ω, x) ∈ Ω × U , there exists n ∈ N such that Xn(ω)x ∈ U .

We consider the skew product (Ω×E, θ̃, λ̃) where λ̃ = P⊗λ and the map
θ̃ is defined by θ̃(ω, x) = (θω, Y1(ω)x). We observe that λ̃ is θ̃-invariant since
for any φ ∈ Cc(E) and a Borel function ψ on Ω, we have

θ̃λ̃(ψ ⊗ φ) =
∫
ψ(θω)φ(Y1(ω)x)dP(ω)dλ(x)

=
∫
ψ(ω′)φ(gx)dP(ω′)dµ(g)dλ(x)

=
∫
ψ(ω′)φ(y)dP(ω′)dλ(y)

= λ̃(ψ ⊗ φ).

Property R allows us to define a return time τ and an induced transformation
θ̃Ω×U on Ω×U where U is an open relatively compact set with λ(U) > 0 by

θ̃Ω×U (ω, x) = (θτ(ω,x)(ω), Xτ(ω,x)x) = θ̃τ(ω,x)(ω, x)
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where τ(ω, x) = Inf{n ≥ 1 | Xn(ω)x ∈ U}.
We recall that, for a dynamical system (X,S, η) a measurable subset D

of X is said to be wandering if S−kD ∩ D = ∅ for any k ≥ 1. Then using
the Poincaré recurrence theorem for θ̃Ω×U with λ(U) < +∞ and standard
arguments we obtain the following:

Proposition 3 Let (E, P, λ) and (Ω×E, θ̃, λ̃) be as above. Then the follow-
ing are equivalent:

(a) Property R is valid for (E, P, λ);

(b) For any measurable A ⊂ E with 0 < λ(A) < +∞,
∑∞

0 1Ω×A(θ̃k(ω, x)) =

+∞ λ̃-a.e on Ω × A;

(c) (Ω × E, θ̃, λ̃) has no wandering set of positive measure.

Using Proposition 3, we see that property R for (E, P, λ) is equivalent to
conservativity of the system (Ω ×E, θ̃, λ̃) (see [14]).

Also, property R is valid in the setting of Proposition 1 as shown below.

Corollary 1 Assume that for some u ∈ C+
c (E),

∑∞
0 P ku = +∞ on E, and

let λ be any P -invariant Radon measure. Then (E, P, λ) has property R.

Proof We observe that P acts on L∞(λ) and has an adjoint operator P ∗

on L1(λ) defined by

< ψ, P ∗φ >= λ(ψP ∗φ) = λ(φPψ) =< φ, Pψ > .

Since λ is P -invariant, P ∗1 = 1. By definition, since u ∈ L1
+(λ), P ∗ is

conservative. Then it follows from Hopf’s maximal ergodic Lemma (see [14]
pp. 11) that for any φ ∈ L1

+(λ), φ > 0 λ-a.e,
∑∞

0 P kφ = +∞, λ-a.e. As a

consequence
∑∞

0 (P ∗)kφ = +∞ λ-a.e. We show that (Ω×E, θ̃,P⊗λ) has no
wandering set of positive measure. Assume D ⊂ Ω × E is such a set. Then∑∞

0 1D ◦ θk ≤ 1. For two non-negative measurable functions f and f ′ on
Ω × E, we write

< f, f ′ >= (P ⊗ λ)(ff ′).

Also, if v is a non-negative measurable function onE, we write ṽ(ω, x) = v(x).
Then we observe for k ∈ N ∪ {0}, that

< ṽ, 1D ◦ θk >=< 1D, (P
∗)kv > .
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Assume v > 0 λ-a.e, hence from above
∑∞

0 (P ∗)kv = +∞ λ-a.e. In particular,
since (P⊗λ)(D) > 0, < ṽ,

∑∞
0 1D ◦ θk >= +∞. On the other hand, since D

is wandering

< ṽ,
∞∑

0

1D ◦ θk >≤ (P ⊗ λ)(ṽ) = λ(v) < +∞

if v ∈ L
1(λ). This gives the required contradiction.

Remark 3 In case E = G, it follows that the condition
∑∞

0 µk(U) = +∞
for some (hence any) neighborhood U of identity is necessary and sufficient
for recurrence of µ.

One also considers the product space Ω̂ = GZ and the corresponding shift
θ. We denote Ω− = G−N ×G and for ω̂ ∈ Ω̂ = Ω− ×Ω, we write ω̂ = (ω−, ω)
with ω− ∈ Ω−, ω ∈ Ω. For k ∈ Z we denote Yk(ω̂) the k-th component of ω̂.
We consider the transformation θ̂ on Ω̂×E defined by θ̂(ω̂, x) = (θω̂, Y1(ω)x)
and we observe that the system (Ω×E, θ̃) is a factor of the invertible system
(Ω̂ × E, θ̂) relative to the map (ω̂, x) 7→ (ω, x).

The following result will play a basic role in the study of random walks
on G-spaces.

Proposition 4 Let E be a locally compact second countable G-space, µ ∈
M1(G) and λ be a µ-stationary measure on E. Then with the above notations,
there exists a unique θ̂-invariant measure on Ω̂ × E which has projection
λ̃ = P ⊗ λ on Ω × E.

Proof For the existence result we will use weak convergence of Radon mea-
sures. Let G = G ∪ {∞} be the Alexandrov compactification of G and let

Ω̂∞ be the compact metric space G
Z

. Then Ω̂∞ × E is locally compact and

we have a well defined continuous projection of Ω̂∞ × E on G
N−n × E for

every n ∈ N.
Let Ωe = {ω̂ ∈ Ω̂ | ωk = e if k ≤ 0}, hence θn(Ωe) = {ω̂ ∈ Ω̂ | ωk =

e if k ≤ −n}. For each ω ∈ Ω, we define ωe ∈ Ωe by ωek = e if k ≤ 0 and
ωek = ωk if k > 0. This allows to identify Ω×E with Ωe×E ⊂ Ω̂×E using the
map (ω, x) 7→ (ωe, x). The corresponding push-forward of λ̃ is denoted by λ̃e

and we consider the sequence θ̂n(λ̃e). Then θ̂n(Ωe × E) is a Borel subset of
the locally compact space Ω̂∞ ×E and θ̂n(λ̃e) can be considered as a Radon
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measure on Ω̂∞ × E which gives full measure to θn(Ωe) × E. By definition:

θ̂n(λ̃e) =

∫
δθ̂nωe ⊗Xn(ω)λdP(ω),

hence the projection θ̂n(λ̃e) on Ωe × E is
∫
δωe ⊗ Xn(ω)λdP(ω) = P

e ⊗ λ.

Then for any function of the form ψ ⊗ φ with ψ ∈ C+(Ω̂∞), φ ∈ C+
c (E),

θ̂n(λ̃e)(ψ⊗φ) is bounded by (supω̂∈Ω̂∞ ψ(ω̂))λ(φ). It follows that the sequence

of Radon measures θ̂n(λ̃e) on Ω̂∞ ×E is weakly relatively compact. If λ̂ is a

limit of a subsequence, then the projection of λ̂ in
∏

i>−nG × E ⊂ G
Z × E

is equal to θ̂n(λ̃e) for every n ∈ N ∪ {0}. Hence λ̂ gives full measure to
Ω̂×E. It follows that λ̂ is θ̂-invariant and θ̂n(λ̃e) converges weakly to λ̂. The
uniqueness of λ̂ as in the proposition follows.

Remark 4 In some cases we can get a more explicit form of λ̂. We denote
by ω̂e, the projection of ω̂ ∈ Ω̂ on Ω̂e, hence:

λ̃e =

∫
δω̂e ⊗ λdP̂(ω̂)

θ̂n(λ̃e) =

∫
δθnω̂e ⊗Xn(ω̂)λdP̂(ω̂) =

∫
δθn(θ−nω̂e)⊗Y0(ω̂) · · ·Y−n+1(ω̂)λdP̂(ω̂).

Since limn→∞ θn(θ−nω̂e) = ω̂ in Ω̂∞, it follows that for any ψ ∈ C+(Ω̂∞),
the sequence of measures

∫
Y0(ω̂) · · ·Y−n(ω̂)λψ(ω̂)dP̂(ω̂) converges weakly

to the Radon measure λψ defined by λψ(φ) = λ̂(ψ ⊗ φ). This fact is well
known in the situations of µ-boundaries (see [16]) where E is compact and
λ ∈ M1(E). Then Y0(ω̂) · · ·Y−n(ω̂)λ converges P̂-a.e. to λω̂ ∈ M1(E) and
λ̂ =

∫
δω̂ ⊗ λω̂dP̂(ω̂). Also if λ is G-invariant Y0(ω̂) · · ·Y−n(ω̂)λ = λ, hence

λ̂ = P̂⊗λ. If E is a µ-boundary λω̂ is a Dirac measure and hence λ̂ 6= P̂⊗λ.
Another situation where λ̂ can be calculated will be considered in Section 5,
example 3.

Proposition 5 With the above notations, assume that (E, P, λ) satisfies the
conditions:

(a) property R is valid;

(b) the condition Pf = f , f ∈ L∞(λ) implies f is constant.

13



Then the system (Ω̂ × E, θ̂, λ̂) is ergodic. The converse is valid, except if
E = Z and µ = δg acts by translations on Z.

The proof depends on the following lemma:

Lemma 1 Let H be a Hilbert space and L be a closed subspace and S be a
contraction of H such that

S(L) ⊂ L, ∪n≥0S−n(L) = H.

Assume that the restriction of S to L has a unique fixed point φ ∈ L. Then
φ is the unique fixed point of S in H.

Proof Assume f ∈ H satisfies Sf = f . Let fn be the orthogonal projection
of f onto Hn = S−n(L). Since Sfn ∈ Hn and Sf = f , we get that ||f−fn|| ≤
||f−Sfn|| = ||S(f−fn)|| ≤ ||f−fn|| as S is a contraction. Thus, ||f−fn|| =
||f−Sfn||. This implies from the definition of the orthogonal projection that
fn = Sfn. Now, fn = Snfn ∈ L. It follows from the uniqueness of φ that
fn = φ. Since ∪n≥0S−n(L) = H, we have φ = limn→∞ fn = f .

For any Polish space X we denote by B(X) the σ-algebra of its Borel
subsets.

Proof of Proposition 5 To begin with we show that condition (b) implies
ergodicity of the non-invertible system (Ω×E, θ̃, λ̃). Let A ⊂ B(Ω×E) be the
σ-algebra of sets of form Ω×B with B ∈ B(E) and An ⊂ B(Ω×E) be the σ-
algebra defined by the coordinates Yk (1 ≤ k ≤ n). Assume F ∈ L∞(P⊗λ) is
θ̃-invariant and denote f = E(F |A). Then f(x) =

∫
F (ω, x)dP(ω) ∈ L

∞(λ)
and Pf = f . Also, E(f |A ∨ An)(ω, x) = f(Xn(ω)x) and the martingale
convergence theorem implies that F (ω, x) = limn→∞ f(Xn(ω)x), λ̃-a.e. Con-
dition (b) implies that f is constant, hence F is also constant.

Let U ⊂ E be open relatively compact set, A = Ω×U and Â = Ω−×A ⊂
Ω̂ × E. Condition (a) implies that for (Ω × E, θ̃, λ̃), the return time τ(ω, x)
from A to A is defined a.e on A. Let θ̃A be the induced transformation
on A. Then the induced transformation on Â is well defined by θ̂Â(ω̂, x) =

θ̂τ(ω,x)(ω̂, x). The restriction mA (resp. mÂ) of λ̃ (resp. λ̂) to A (resp. Â) is

θ̃A-invariant (resp. θ̂Â-invariant) and (A, θA, mA) is a factor of (Â, θ̂Â, mÂ).
We show ergodicity of the corresponding systems as follows. Let C ∈ B(A)
with θ̃−1

A (C) = C, P ⊗ λ(C) > 0, and C ′ = ∪k≥0θ̃
−k(C). Since θ̃−1(C ′) ⊂ C ′

and (Ω×E, θ̃, λ̃) has no wandering set of positive measure, one has θ̃−1(C ′) =
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C ′ mod λ̃, hence C ′ = Ω × E by ergodicity of (Ω × E, θ̃, λ̃). Then C =
C ′ ∩ A = A mod λ̃. Now Lemma 1 gives the ergodicity of θ̂Â which may

be seen as follows. Since mA is the projection of mÂ on Â one can take

H = L2(mÂ), L = L2(mA), S = θ̂Â. Since ∨+∞
−∞θ̂

k(A) = B(Ω̂ × E), one

has ∪+∞
0 θ̂−k

Â
(A ∩ Â) = B(Â), hence ∪∞

0 S
−k(L) = H. Also the restriction

of S to L2(mA) is θ̃A. Since θ̃A is mA-ergodic, Lemma 1 implies S = θ̂Â
is also mÂ-ergodic. Finally the ergodicity of θ̂ is obtained as follows. Let

Ĉ ∈ B(Ω̂ × E) with θ̂−1(Ĉ) = Ĉ, (λ̂)(Ĉ) > 0. Then Ĉ ∩ Â is θ̂Â-invariant,

hence by ergodicity Ĉ ∩ Â = Â, Ĉ ⊃ Â. Since E is a union of relatively
compact open sets Un with 0 < λ(Un), one gets Ĉ = Ω̂ ×E mod P̂ ⊗ λ.

For the converse, we observe that if µ is not a Dirac measure, then (Ω̂, λ̂)
is non-atomic. Furthermore, if µ = δg, ergodicity of θ̂ on Ω̂×E is equivalent
to ergodicity of the action of g on E. Also, in this case (E, λ) atomic is equiv-
alent to (Ω̂×E, λ̂) atomic. Furthermore, (E, λ) atomic and g ergodic implies
that (E, g, λ) reduces to the translation on Z. In the opposite case, ergodicity
of θ̂ implies that (Ω̂ ×E, θ̂, λ̂) has no wandering set. Then by Proposition 3
property R is valid for (E, P, λ). If f ∈ L∞(λ) satisfies Pf = f , one takes
a Borel version of f again denoted by f , which satisfies Pf = f . Then for
every x ∈ E, the sequence (f(Xn(w)x)) is a bounded martingale with respect
to P and the natural filtration on Ω. By the martingale convergence theorem
we have

F (ω, x) = lim
n→∞

f(Xn(ω)x)

P-a.e and f(x) =
∫
F (ω, x)dP(ω). Also F (ω, x) is θ̃-invariant mod P ⊗ λ.

Then the ergodicity of (Ω̂ × E, θ̂, λ̂) implies that F is constant P ⊗ λ-a.e,
hence f is constant λ-a.e.

Using the above remark 4 and Proposition 2 we get the following well-
known result.

Corollary 2 Assume that if µ ∈M1(G) is adapted and recurrent. Then the
skew-product (Ω̂ ×G, θ̂, P̂ ⊗ λG) is ergodic.

We now relate ergodicity of (Ω̂ × E, θ̂, λ̂) to extremality of λ.

Corollary 3 Assume λ is a P -invariant Radon measure on E and (E, P, λ)
satisfies property R. Then (Ω̂×E, θ̂, λ̂) is ergodic if and only if λ is extremal.
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Proof Assume λ is extremal and let U be a relatively compact open subset
of E with λ(U) > 0. In order to prove ergodicity of θ̂, we consider the return
time of U defined by

H(ω, x) = inf{n ∈ N | Xn(ω)x ∈ U}, (ω, x) ∈ Ω × U.

Also, we can define the induced Markov operator PH of P on U . Let f be a
bounded Borel function such that Pf = f . Since H(ω, x) is a stopping time
we have f(x) = E(f(XH(x,ω)(ω)x)) = PHf(x). Let λU = 1Uλ be the restric-
tion of λ to U , hence PHλU = λU . Since λU is finite and f1U is PH-invariant,
we have PH(fλU) = fλU . Then by the classical regeneration method we can
construct a P -invariant measure ρf on E such that the restriction of ρf to U
is fλU . We recall the construction: let ρ(ω, x) be the random measure given

by ρ(ω, x) =
∑H(ω,x)−1

0 δXk(ω)x and observe that if

Y1(ω)ρ(ω, x) = ρ(ω, x) + δXH(ω,x)x − δx

and ρf is defined by ρf = E(
∫
ρ(ω, x)f(x)dλU(x)), its P -invariance follows

from the PH-invariance of fλU . If f = 1, one may verify that this procedure
gives ρf = 1U ′λ with U ′ = TµU where Tµ is the closed semigroup generated
by the support of µ. Since |f | is bounded by c > 0, it follows that ρf is a
Radon measure with ρf ≤ cλ and Pρf = ρf . The extremality property of λ
gives that ρf is proportional to λ, in particular fλU is proportional to λU ,
that is, f1U is constant λU -a.e. Since U was arbitrary with λ(U) > 0, we
can conclude f is constant λ-a.e. Now applying Proposition 5 to (E, P, λ),
we get the ergodicity of (Ω̂ × E, θ̂, λ̂).

Conversely, let λ′ be another positive Radon measure with Pλ′ = λ′,
λ′ = fλ where f ∈ L∞(λ). We will now claim that f is constant. As above
we write λU = 1Uλ, λ′U = 1Uλ

′. We observe that since property R is valid
H(ω, x) is well defined for P ⊗ λ-a.e (ω, x) ∈ Ω × U . Then PHλ′U = λ′U ,
PHλU = λU and λ′U = (f1U)λU . It follows that P ⊗ λU is θ̃H-invariant. By
ergodicity of (Ω×U, θ̃H ,P⊗λU): f1U is constant λU -a.e. Since U is arbitrary
with λ(U) > 0, we get f is constant λ-a.e and λ′ is proportional to λ.

2.4 Recurrent groups and contraction subgroups

Let G be a locally compact group. For g ∈ G, we define the contraction
subgroup Cg of g by

Cg = {x ∈ G | lim
n→∞

gnxg−n = e}.
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Then Cg is a subgroup of G normalized by g. In general, Cg is not closed.
However, if G = GL(n,F) for some local field F, then Cg is an algebraic
F-subgroup of G, hence Cg is closed. If G is a closed subgroup of GL(n,F),
then Cg is closed in G. As a simple consequence we obtain that if G is a
closed subgroup of

∏
i∈I GL(di,Fi) (finite I), Cg is closed. We now prove the

following basic lemma on Cg.

Lemma 2 Let G be a locally compact group. Assume that g ∈ G is such
that Cg is closed and Cg 6= (e). Then the closed subgroup L generated by g
and Cg is not unimodular.

Proof Let H = Cg. Then H is a normal subgroup of L and hence L/H
is abelian. For a locally compact group M , we recall that λM is a left Haar
measure on M . Let φ ∈ Cc(L). We observe that the formula

λL(φ) =

∫
dλL/H(u)

∫
φ(uh)dλH(h)

defines a left Haar measure on L. For any x ∈ L, the map h 7→ xhx−1 is
an automorphism of H and we denote by ∆(x) its module. Furthermore, for
φ ∈ Cc(L), we define φx ∈ Cc(L) by φx(u) = φ(ux) for all x, u ∈ L. Since
L/H is unimodular, we see that λL(φ

x) = ∆(x−1)λL(φ) for all x ∈ L and
φ ∈ Cc(L). Since Cg is closed, for any compact neighborhood W of e in G,
gnWg−n → e (cf. [49]). This implies that limn→∞ λH(gnWg−n) = 0, hence
∆(g) < 1. It follows that λL(φ

g) > λL(φ) for any φ ∈ Cc(L), hence L is not
unimodular.

Proposition 6 Let G be a locally compact group and E be a locally compact
second countable G-space. Suppose there exists a compact subset C of E
such that E = GC and G is recurrent. Then there exists a G-invariant
Radon measure on E.

Proof Let µ ∈ M1(G) be recurrent. Let P be the Markov operator on G
defined by Pφ(x) =

∫
φ(gx)dµ(g) for all x ∈ E. Let u ∈ C+

c (E) be such
that u > 0 on C. Now for any x ∈ E, there exists h ∈ G such that hx ∈ C,
hence there exists δ > 0 and an open neighborhood Vx of h in G such that
u(gx) > δ > 0 for all g ∈ Vx. Then P ku(x) =

∫
u(gx)dµk(g) ≥ δµk(Vx) for all

k ≥ 1. Since µ is recurrent,
∑∞

0 P ku(x) = +∞. Using Proposition 1, we get
the existence of a P -invariant Radon measure ν on E. For any φ ∈ C+

c (E),
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we define hφ on G by hφ(g) = gν(φ) =
∫
φ(gx)dν(x). Since ν is P -invariant,

hφ is right µ-harmonic, that is,
∫
hφ(gg

′)dµ(g′) =
∫
φ(gg′x)dµ(x)dµ(g′) =∫

φ(gy)dν(y) = hφ(g). Since hφ is continuous, positive right µ-harmonic and
µ is recurrent, using Proposition 2 for E = G, we get that hφ is constant. It
follows that gν(φ) = ν(φ) for any g ∈ G and any φ ∈ C+

c (G). Hence ν is
G-invariant.

Corollary 4 Suppose G is a locally compact recurrent group. Then any
closed subgroup of G is unimodular. In particular, if g ∈ G and Cg is closed,
then Cg = {e}.

Proof We first recall that for a closed subgroup H of G, the quotient space
G/H carries a G-invariant measure if and only if the restriction to H of the
modular function of G is equal to the modular function of H . We now claim
that G is unimodular. For any closed subgroup H , let ∆H be the modular
function of H . Let g ∈ G and H(g) be the closed subgroup generated by
g in G. Then by Proposition 6, G/H(g) carries a G-invariant measure.
This implies that ∆G(g) = ∆H(g)(g) = 1 as H(g) is abelian. Thus, G is
unimodular. Now, let H be any closed subgroup of G. Then by Proposition
6, G/H carries a G-invariant measure and hence ∆H(h) = ∆G(h) = 1 for
any h ∈ H , as G is unimodular.

Suppose g ∈ G is such that Cg is closed. Let L be the closed subgroup
generated by Cg and g. Then from above L is unimodular and hence by
Lemma 2, Cg = {e}.

In our effort to understand the structure of totally disconnected recurrent
groups, we obtain the following.

Corollary 5 If G is a locally compact totally disconnected recurrent group.
Then G is uniscalar, that is, for each g ∈ G, there is a compact open subgroup
Kg of G such that gKgg

−1 = Kg.

Proof It follows from Corollary 4, that closed subgroups of G are unimod-
ular and hence the result follows from Proposition 3.21 of [4].
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3 Proof of the theorem 1

3.1 Recurrent real Lie groups

Theorem 3 Let G be a locally compact group such that G has a continuous
injection into a real Lie group. Suppose G is compactly generated and recur-
rent. Then G has a compact normal subgroup K and a finite index subgroup
H such that K ⊂ H and H/K is isomorphic to a closed subgroup of the
group G2 of euclidean motions of the plane.

Proof We first claim that G is a real Lie group. Let G′ be a real Lie group
and φ:G → G′ be a continuous injection. Since G′ is a real Lie group, by
[36], there is a neighborhood U of identity in G′ such that {e} is the only
subgroup contained in U . Let V = φ−1(U). Then V is a neighborhood of
identity in G. If N is a subgroup contained in V , then φ(N) is a subgroup
contained in U , hence φ(N) is trivial. Since φ is injective, N is trivial. Now
it follows from [36] that G is a real Lie group.

Now, G is a real Lie group implies that its connected component G0 is
open, hence G/G0 is a finitely generated recurrent group. Thus, by [48],
G/G0 has a normal subgroup of finite index isomorphic to Zk for k ≤ 2.
Thus, we may assume that G/G0 ≃ Zk Since G0 is open, G0 is a connected
recurrent Lie group. By Theorem 0.1 of [2], G0 contains a compact subgroup
K and a normal vector subgroup Rl for l ≤ 2 such that G0 ≃ K ⋉ Rl.

If l = 0, we get that G0 is compact and up to finite index G/G0 is a
subgroup of Z

2. We consider the case when l = 1. Since K is connected
and the only compact connected group of automorphisms of R is trivial,
G0 ≃ K×R. Since G0 is normal in G, K is also normal in G. Replacing G by
G/K, if necessary, we may assume that G0 ≃ R. Let φ:G→ Aut (G0) ≃ R∗

be
φ(g)(v) = gvg−1

for g ∈ G and v ∈ G0. By Corollary 4, G is unimodular and since G0 is
open, Haar measure on G0 is φ(g)-invariant for any g ∈ G. This implies
that |φ(g)| = 1. Thus, G contains a normal subgroup G1 of finite index such
that G0 is contained in the center of G1 and G1/G0 ≃ Zk. Thus, G1 is a
compactly generated nilpotent recurrent group. By Corollary 13 of Chapter
III of [22], G1 ≃ R × Z.

We next consider the case l = 2. The only connected compact groups of
automorphisms of R

2 are the trivial group and SO2(R). Hence, since K is
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connected, its conjugation action on R2 factors through one of these groups.
Therefore, modulo a compact normal subgroup, G0 may be assumed to be
either R2 or G2, the motion group of the plane. If G0 = R2, then for any
g ∈ G, g acts linearly on R2 by g̃ with eigenvalues of modulus one which
may be seen as follows. If g 6∈ G0, < g > is isomorphic to Z and < g > ⋉R2

is closed, hence unimodular by Corollary 4. It follows that | det g̃| = 1. If g̃
has an invariant line in R2, the same argument gives that the corresponding
eigenvalue has modulus one. Since | det g̃| = 1, the same is true of the second
eigenvalue. If g̃ has no real eigenvalue, the condition | det g̃| = 1 implies that
g̃ has conjugate pair of eigenvalues of absolute value one. Now there are two
situations depending on the fact that G/G0 acts on R2 irreducibly or not.
In the first case the fact that elements g̃ have eigenvalues of modulus one,
implies that G/G0 acts as a subgroup of O(2). Since G/G0 ≃ Z

k, G is a two-
step solvable group with relatively compact action on [G,G] ⊂ G0 hence by
Theorem 11, Chapter IV of [22], we get that G = R2. In the second situation,
G has a finite index and hence recurrent nilpotent subgroup G1 ⊃ R2. Hence
as above, G = G1 = R2. If G0 = SO(2) ⋉ R2, since the square of every
automorphism of G0 is interior, we can assume by passing to a finite index
subgroup that for any g ∈ G, the inner automorphism of g restricted to G0 is
uniquely defined by g′ ∈ G0. Then the homomorphism g 7→ g′ is a projection
of G onto G0 with kernel N ≃ G/G0. Hence G = G0 × N with N ≃ Z

i,
0 ≤ i ≤ 2. Then since G is two-step solvable and recurrent and G acts on R2

as a compact subgroup, Theorem 11, Chapter IV of [22], gives N is trivial.

Corollary 6 Assume G is a compactly generated group of polynomial growth
and is recurrent. Then G has at most quadratic growth and has a compact
normal subgroup K and a finite index subgroup H such that K ⊂ H and
H/K is isomorphic to a closed subgroup of the motion group of the plane.

The corollary is a simple consequence of Theorem 3 and of the fact that
a compactly generated group G of polynomial growth contains a compact
normal subgroup K such that G/K is a real Lie group (cf. [34]).

3.2 Recurrent linear groups

We now consider closed subgroups of linear groups over local fields and prove
the quadratic growth conjecture for such groups. We also prove Theorem 1.
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Lemma 3 Let V be a vector space over a non-archimedean local field F and
G be a subgroup of GL(V ). Suppose for any g ∈ G and v ∈ V , (gn(v))n∈Z is
relatively compact. Then G is contained in a compact extension of a unipo-
tent subgroup of GL(V ). In addition if G is compactly generated, then G is
relatively compact.

Remark 5 This result is also proved in [39], we provide a proof as our proof
is simpler.

Proof Let V1 be an G-irreducible subspace of V . Then using Burnside
density Theorem as in [10], we conclude that the restriction of G to V1 is
relatively compact in GL(V1). Using a Jordan-Hölder sequence we get that
there is a compact subgroup K and an unipotent subgroup U normalized
by K such that G ⊂ K ⋉ U ⊂ GL(V ). Let A be a compact generating set
in G. Then there is a compact set C ⊂ U with kCk−1 = C for all k ∈ K
(this is possible as K is a compact group normalizing U) such that A ⊂ KC.
Since a compactly generated subgroup of any unipotent group is relatively
compact (as the base field is non-archimedean) and C is K-invariant, the
closed subgroup L ⊂ U generated by C is compact and is normalized by K.
Thus, G ⊂ K ⋉ L which is compact and hence G is relatively compact.

Proposition 7 Let G be a closed compactly generated subgroup of a linear
group GL(n,F) over a non-archimedean local field F. Suppose Cg = {e} for
any g ∈ G. Then G has a basis of compact open normal subgroups.

Proof Let Φ:G → Mn(F) be given by Φ(x) = x − I for all x ∈ G. Then
Φ is a homeomorphism onto Φ(G) endowed with the topology induced from
Mn(F) and Φ(gxg−1) = gΦ(x)g−1 for all x, g ∈ G. Let V be the smallest
subspace of Mn(F) such that V ∩ Φ(G) is a neighborhood of 0 in Φ(G).
We now claim that for any g ∈ G, V is g-invariant and (gnvg−n)n∈Z is
relatively compact for all v ∈ V . Since F is non-archimedean, G is a totally
disconnected locally compact group. Then by Proposition 2.1 of [29], there
is a basis of compact open subgroups (Ki) at e in G such that gKig

−1 = Ki

for all i ≥ 1. Since V ∩ Φ(G) is a neighborhood of 0 in Φ(G), there exists a
Ki such that Φ(Ki) ⊂ V . Let W be the subspace of V spanned by Φ(Ki).
Then Φ(Ki) ⊂ W ∩ Φ(G) is a neighborhood of 0 in Φ(G). Since V is the
smallest such subspace V = W . For any v ∈ Φ(Ki), g

nvg−n ∈ Φ(Ki) for any
n ∈ Z and hence (gnvg−n)n∈Z is relatively compact as Φ(Ki) is compact in
V . Since V = W is spanned by Φ(Ki), we get that (gnvg−n)n∈Z is relatively
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compact for all v ∈ V . Since gΦ(Ki)g
−1 = Φ(gKig

−1) = Φ(Ki) and W = V
is spanned by Φ(Ki), gV g

−1 = V . Thus, V is G-invariant and (gnvg−n)n∈Z

is relatively compact for any g ∈ G and v ∈ V .
Now, by Lemma 3, V contains a basis of open neighborhoods at 0 invari-

ant under conjugation by elements ofG and so V ∩Φ(G) has small G-invariant
neighborhoods of 0 in V ∩ Φ(G). Since V ∩ Φ(G) is a neighborhood of 0 in
Φ(G), we get that G contains a basis of open invariant neighborhoods at e.
Since G is totally disconnected, G contains a basis of compact open normal
subgroups.

Corollary 7 Let G be a compactly generated closed subgroup of a linear
group GL(n,F) over a non-archimedean local field F. Suppose every closed
subgroup of G is unimodular. Then G has a basis (Kn) of compact open nor-
mal subgroups. In particular, if G has polynomial growth, then furthermore,
G/Kn has a finite index subgroup which is finitely generated and nilpotent.

Proof Since G is a closed subgroup of GL(n,F), for any g ∈ G, Cg is a
closed subgroup of a unipotent algebraic group, hence Cg is closed. Then by
Lemma 2, Cg = {e} and first part of the corollary follows from Proposition
7. If G has polynomial growth, then it closed subgroups are unimodular
(see [20]). So, as above we obtain using Lemma 2 that there is a basis (Kn)
of compact open normal subgroups. Since Kn is open, G/Kn is a finitely
generated group of polynomial growth and hence the result follows from [19].

We now prove the quadratic growth conjecture for closed subgroups of
linear groups over local fields.

Theorem 4 Let G be a closed subgroup of a linear group GL(n,F) over a
local field F. Then G is a recurrent group if and only if G has at most
quadratic growth. More precisely, if G is compactly generated and recurrent,
then we have the following two cases

a) when F is archimedean, up to finite index and a modulo a compact
normal subgroup G is isomorphic to a closed subgroup of the euclidean
motion group of the plane.

b) when F is non-archimedean, up to finite index and modulo a compact
open normal subgroup G is isomorphic to a subgroup of Z2.
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Proof The implication that G has at most quadratic growth implies G is
a recurrent group can be proved as in Proposition 3.1 of [41] as explained
in section 2.1. Here we prove the implication that G is a recurrent group
implies G has at most quadratic growth.

Suppose G is recurrent. In order to prove G has at most quadratic growth
we may assume that G is a compactly generated group. Now we prove the
stronger statement in the second part of the Theorem. Since G is a linear
group, Cg is closed in G for any g ∈ G. Then by Corollary 4, Cg is trivial.
Non-archimedean case: Assume that G is a linear group over a non-
archimedean field. Then by Proposition 7, G contains a compact open normal
subgroup, say K. Now G/K is a finitely generated recurrent group and hence
up to finite index G/K is isomorphic to a subgroup of Z2 (cf. [48]). Since K
is compact, G itself has at most quadratic growth.
Archimedean Case: Suppose F is archimedean. Then F is R or C. So, we
may assume that G is a closed subgroup of a linear group over R. Then it
follows from Cartan’s Theorem that G is a real Lie group. Now the result is
a direct consequence of Theorem 3.

Proof of Theorem 1 Suppose G is a compactly generated recurrent group.
For i ∈ I, let Gi be the closure of the projection of G into GL(ni,Fi). Then
each Gi is a closed subgroup of GL(ni,Fi) that is compactly generated and
recurrent.

Let J be the set of indices i such that Fi is non-archimedean. Then
for i ∈ J , it follows from Theorem 4 that Gi has a compact open normal
subgroup, say Ki. Now

∏
i∈I Gi is a closed subgroup of

∏
i∈I GL(ni,Fi) and

hence G is a closed subgroup of
∏

i∈I Gi. Let K =
∏

i∈I Ki with Ki = (e) for
i 6∈ J . Then K is a compact normal subgroup of

∏
i∈I Gi and (

∏
i∈I Gi)/K is

a real Lie group. Since K is compact and G is closed in
∏

i∈I Gi, G/G∩K is
a closed subgroup of (

∏
i∈I Gi)/K. By Cartan’s Theorem G/G ∩K is a real

Lie group. Since G/G∩K is also recurrent, the result follows from Theorem
3.

Remark 6 More generally we can ask if G is a compactly generated locally
compact group with a continuous embedding in

∏
i∈I GL(di,Fi) and is re-

current, then G has at most quadratic growth. This property is valid if all
Fi (i ∈ I) are archimedean. Answer to this hinges on the following: if the
image of G is contained in a compact linear group over a non-archimedean
local field, is it true that G is a projective limit of real Lie groups.
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4 Harris-recurrence

We now consider the notion of recurrence known as Harris recurrence (abbr.
as H-recurrence) widely use in the context of Markov operators on measured
spaces (see [43]). We will say that µ is H-recurrent if for any Borel subset
B of G of positive Haar measure, P-a.e Xn(ω) ∈ B infinitely often. If G
supports a H-recurrent µ, we say that G is H-recurrent. It is known that µ
is H-recurrent if and only if some power of µ is non-singular and recurrent
(Theorem 4.11, Chapter 3 of [43]). The methods of [48] allows to get very
strong results on the asymptotics of iterates µ if µ is symmetric and has a
bounded density with compact support. By combining our methods with
the results of [2], [22] and [48], we can show that H-recurrent groups have
quadratic growth. More precisely we have

Proposition 8 If G is a compactly generated, locally compact second count-
able H-recurrent group, then there exists closed normal subgroups H and K
of G such that K is compact, G/H is finite and H/K is isomorphic to a
closed subgroup of G2. In particular, any locally compact H-recurrent group
has quadratic growth.

We need the following

Lemma 4 Assume that G is as in Proposition 8. Then there exists a com-
pactly supported recurrent ν ∈ M1(G) such that ν is symmetric with a
bounded density that is bounded from below on an open neighborhood of e
generating G.

Proof Using Lemma 2.2 of [2] and replacing µ by 1
2
(µ+ µ̌), we may assume

that µ is symmetric. Since µ is H-recurrent, we can write for some k > 0 and
ρ, σ ∈ M1(G), µk = rρ + (1 − r)σ for some r ∈ (0, 1] and ρ has symmetric
density. Then, if µ′ =

∑∞
0

µn

2n+1 we have for some ǫ > 0 µ′ ≥ ǫ
3
(ρ+ρσ+σρ) =

ǫν ′ where ν ′ = 1
3
(ρ+ρσ+σρ). Also using Lemma 2.3 of [2] we know that µ′ and

µ′′ =
∑∞

0
(µ′)n

2n+1 are H-recurrent. From, above we get µ′′ ≥ ∑∞
0

ǫn(ν′)n

2n+1 = ν ′′

say. Clearly ν ′′ has a symmetric density and since the support of ν ′ generates
G, we get that the support of ν ′′ is G. We can in the above inequality replace
ν ′′ by ν ′′′ with a bounded symmetric density and the support of ν ′′′ is G.
Then (µ′′)2 ≥ (ν ′′′)2 and (ν ′′′)2 has positive continuous density. Then we
can restrict (ν ′′′)2 to a compact neighborhood of identity which generates
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G. Using Lemma 2.3 of [2], the normalization of (ν ′′′)2 is recurrent, hence
H-recurrent.

In order to make explicit the property of quadratic growth we prove the
following.

Proposition 9 Let G be a compactly generated group of at most quadratic
growth. Then there exists closed normal subgroups H and K of G such that
K is compact, G/H is finite and H/K is isomorphic to a closed subgroup of
G2, the motion group of the plane.

Proof By [34], we can assume that G is a real Lie group. Let G0 be
the component of the identity. Then G0 is open and G/G0 also has at
most quadratic growth. Since G/G0 is finitely generated, G/G0 contains
a subgroup of finite index isomorphic to Zi for i ≤ 2. So, we may assume
that G/G0 ≃ Zi for i ≤ 2.

Now, G0 has at most quadratic growth implies that G0 ≃ K ⋉ R
j for

j ≤ 2 and K is a compact group. Then there exists a characteristic compact
subgroup L of G0 contained in K such that K/L is a subgroup of SO(2,R).
Replacing G by G/L, we may assume that K is a subgroup of SO(2,R).

If j = 1, G0 = K × R and K is characteristic in G0, hence normal in
G. Replacing G by G/K we may assume that G0 = R. Then since G is
unimodular G0 is central in a subgroup of finite index in G. Thus, we may
assume that G0 is central in G, hence G is nilpotent. Since G has at most
quadratic growth, G is abelian, hence is a closed subgroup of R

2.
Let j = 2 and a ∈ G but a 6∈ G0. Then the closed subgroup A generated

by a is isomorphic to Z and A ∩ G0 = {e} as G/G0 ≃ Zi. Let Ha be the
closed subgroup generated by G0 and a. Then Ha = A⋉G0 where the action
of A on G0 is given by the conjugacy. Since A ≃ Z, an easy computation
shows that Ha has growth at least three. This is a contradiction to G having
quadratic growth. Thus, G = G0 which is isomorphic to a closed subgroup
of G2.

Proof of Proposition 8 Let G be H-recurrent and L be any compactly
generated open subgroup of G. Let µ ∈ M1(G) be H-recurrent. Let µL ∈
M1(L) be the induced measure on L. Then as observed in section 2 µL is
also H-recurrent. Hence we can assume µL ∈ M1(L) is as in the conclusion
of Lemma 4. Then since L is unimodular, we are in the situation of Theorem
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VII 1.1 of [48]. It follows that L and hence G has polynomial growth of
degree at most two and the rest follows from Proposition 9.

5 Examples of recurrent or transient behav-

iors for random walks on G-spaces

Here E = G/H will be a homogeneous space and µ ∈ M1(G) defines a
random walk on E with trajectories Xn(ω)x (x ∈ E). We recall that the
associated Markov operator P satisfies:

∞∑

0

P kψ(x) =

∫ ∞∑

0

ψ(Xn(ω)x)dP(ω)

for all ψ ∈ C+
b (E). If E = G, there is a natural P -invariant measure, that

is left Haar measure. Here in various cases the discussion involves a natural
P -invariant measure. For a given x ∈ E, we define the following properties
that may or may not be satisfied.

Rx: There exists a compact set Kx ⊂ E such that P-a.e, Xn(ω)x ∈ Kx

infinitely often.
Tx: For any compact set K ⊂ E, P-a.e, there exists n(ω) ∈ N with

Xn(ω)x 6∈ K for n ≥ n(ω).
We observe that if property R (defined in 2.3) is valid, then since E is

a countable union of compact sets, property Rx is valid a.e. We will also
consider the following property Ra for (E, P ):

Ra: There exists a compact set K ⊂ E such that for each x ∈ E, P-a.e,
Xn(ω)x ∈ K infinitely often.

It is easy to see that property Ra implies Rx for all x ∈ E with Kx = K
independent of x ∈ E. Clearly if Rx is valid, then

∑∞
0 P n1Kx

(x) = +∞.
Also, if

∑∞
0 P n1K(x) < +∞ for any compact K, then Tx is valid. If Gµ is

”large” one can expect for ”most” x ∈ E, the trajectories Xn(ω)x to have
similar asymptotic behaviors. More precisely one can expect the existence of
a large set of points x ∈ E such that Tx (or its complement) is valid; see [28]
for a discussion of analogous properties when µ has density. In the examples
studied below, there exists a natural P -stationary measure η on E and we
also discuss recurrence and ergodicity properties with respect to η: see [17]
for a discussion on this problem and [40] for other examples of probabilistic
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significance. Property R is valid with respect to η in examples 1-5, Rx is
valid for any x in examples 1,2,4, while in example 6, Tx is valid η-a.e.

(1) Homogeneous spaces with finite stationary measure: If E =
G/H is compact, Markov-Kakutani theorem implies the existence of a µ-
stationary probability η, that is, µ ∗ η = η. If η is extremal, then ergodicity
of (Ω×E, θ̃,P ⊗ η), hence of its natural extension (Ω̂×E, θ̂, η̂) is valid. This
situation takes place also for some noncompact spaces. For example, if F is
a local field we can take G = GL(d,F) ⋉ F

d, the affine group of F
d, and we

denote g ∈ G as g = (a(g), b(g)) with a(g) ∈ GL(d,F) and b(g) ∈ Fd. Then
if µ ∈M1(G) and

∫
(| log(||a(g)||)|+ | log(||b(g)||)|)dµ(g) < +∞

lim
n→∞

1

n

∫
log ||a(g)||dµn(g) < 0

there exists a unique µ-stationary probability η on Fd = E = G/GL(d,F)
(cf. [9], [31]). If the support of µ has no fixed point on Fd, then η is not a
Dirac measure. In this case (E, η) is a µ-boundary of (G, µ) (see [16]) and
remarkable homogeneity properties of η at infinity have been described in
[31]. Using proximality of the Gµ-action, it is easy to show that property Ra

is valid for (E, P ) in this case for any compact subset K having non-empty
interior with η(K) > 0.

Another kind of example takes place when G is a semisimple noncompact
real Lie group and E is a non-compact homogeneous space of finite volume
E = G/Γ where Γ is a lattice in G. Then if µ ∈ M1(G) is such that the
support of µ is compact and generates a Zariski-dense subgroup, then by [13]
there exists a compact K ⊂ E and CK > 0 such that for any x ∈ E,

lim inf
n→∞

µn ∗ δx(K) ≥ CK .

It follows that if u ∈ C+
C (E) satisfies u ≥ 1 on K, then

∑∞
0 P ku = +∞ on

E, hence property R is valid with respect to any µ-stationary measure. If
G is almost simple and for any g in G the group gGµg

−1 has no finite index
subgroup contained in Γ, then it follows from [5] that Haar measure on E is
the unique µ-stationary measure. Then, by Breiman’s law of large numbers
for Markov chains, property Ra is valid for any compact set K with positive
measure. Finally, Haar measure is µ-stationary but, in general, there exists
finitely supported µ-stationary measures.
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(2) Affine space and affine groups: If F is a local field with absolute
value | · | and E is the corresponding affine line, that is, G is the affine group
′ax+ b′ of F, then the conditions

∫
(| log |a(g)||+ | log |b(g)||)2+δdµ(g) < +∞ (δ > 0)

∫
log |a(g)|dµ(g) = 0

and the support of µ has no fixed point on E imply the existence of u ∈
C+
c (F) such that

∑∞
0 P ku = +∞ on F (see Babillot and others [3]), hence

by Proposition 1, the existence of λ with Pλ = λ. As shown in [3], the
Radon measure λ has infinite mass and is unique up to a coefficient. Hence
the equidistribution property of Proposition 1 is valid in this case. Here we
complete the example with the following.

Proposition 10 With the above notations and hypothesis, there exists a
unique µ-stationary Radon measure λ on E, the mass of λ is infinite, hence
the system (Ω̂ × E, θ̂, λ̂) is ergodic. Furthermore, property Ra is valid.

Proof The proof is based on the method of [3]. Let τ be the first descending
ladder index of the random walk log |a(Xn)| ∈ R, that is , τ(ω) = inf{n ∈
N | |a(Xn(ω))| < 1}. Let µτ be the law of Xτ (ω) ∈ G and observe that
mτ =

∫
log |a(g)|dµτ(g) < 0. Also, using the fact that for t > 0,

P{τ > t} ≤ ct−
1
2

with c > 0 which follows from fluctuation theory of random walks on R (cf.
[9]), we get that

E(| log(|a(Xτ )|)| + | log(|b(Xτ )|)|) < +∞.

Then we know from the above examples that there exists a unique µτ -
stationary probability ντ on E. We denote by Xτ,n(ω) the random walk
on G defined by µτ , by P τ the corresponding Markov operator on E. Then
τ is a stopping time and Xτ,n(ω) is a subprocess of Xn(ω). Since property
Ra is valid for (E, P τ), it is also valid for (E, P ).

Let U be a relatively compact open subset of E with ντ (U) > 0. Then,
from the examples considered above, we know that, for any x ∈ U , P-a.e
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Xτ,n(ω)x ∈ U for some n = n(ω, x) ∈ N. Hence, also Xn(ω)x ∈ U for
some n ∈ N. Using the remark following definition of property R, we get
that property R is valid for (E, P, λ). The uniqueness property of P -invariant
Radon measures implies the extremality of λ. Hence ergodicity of (Ω̂×E, θ̂, λ̂)
follows from Corollary 3.

(3) Fibered random walks: We consider below two different situations
with E = G/∆′ and ∆′ is a normal subgroup of a closed subgroup ∆ of G
such that G/∆ = E is compact and ∆/∆′ is isomorphic to Z = R or Z.
Here we give a general condition of recurrence for these choices which will be
applied below in two different situations. Since ∆′ is normal in ∆, Z = ∆/∆′

acts on the right on E = G/∆′, this action commutes with the G-action and
the corresponding factor space of E is E. The action of z ∈ Z on y ∈ G/∆′

will be denote by y · z. Also we denote by P the convolution operator on E
defined by µ, and we consider ρ ∈ M1(E) with Pρ = ρ and ρ is extremal
with respect to this property. Then we consider the space Ω×E and the map
θ with θ(ω, x) = (θω, Y1(ω)x) if (ω, x) ∈ Ω × E and θ is the shift on Ω. We
endow Ω×E with the measure P⊗ρ and we observe that P⊗ρ is θ-invariant
and ergodic. We fix a Borel fundamental domain D of Z-action on E which
is relatively compact and E is Borel isomorphic to D × Z. We denote by l
the measure on Z which is Lebesgue if Z = R or counting if Z = Z. Then
we can identify ρ⊗ l with a Radon measure λ on E which satisfies Pλ = λ.
We define a Borel function z(y) on E by y = y · z(y) where y ∈ D, z(y) ∈ Z.
Also we write z(g, x) = z(gx) if g ∈ G and x ∈ D corresponds to x ∈ E.
Then we have the cocycle relation

z(gh, x) = z(g, hx) + z(h, x)

for g, h ∈ G and x ∈ E. It follows that for gi ∈ G (1 ≤ i ≤ n) and x ∈ E,

z(gn · · · g1, x) =
n∑

1

z(gk, gk−1 · · · g1x).

If we write f(ω, x) = z(Y1(ω), x), Sn(ω, x) = z(Yn · · ·Y1, x) with ω ∈ Ω and
x ∈ E, we get Sn(ω, x) =

∑n−1
0 f(θk(ω, x)). With the above identification,

we write x = (x, t) ∈ E × Z and Xn(ω)x = (Xn(ω)x, t + Sn(ω, x)) where
Xn(ω)x is the random walk on E defined by µ. We will also consider the
map θ̃ on Ω×E defined by θ̃(ω, y) = (θω, Y1(ω)y) and Ω×E will be endowed
with the θ̃-invariant measure P⊗λ. This is a skew-product as in [24] and [44]
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with the base Ω × E, the fiber Z and the function f(ω, x). We refer to [24]
for a discussion of ergodic properties of such systems in case ρ is G-invariant.
Since D is relatively compact for g ∈ G, c(g) = supx∈D |z(gx)| < +∞. Also
c(gh) ≤ c(g)+c(h). In particular, if G is a closed subgroup of a linear group,
it follows that for some c > 0, c(g) ≤ c(log ||g|| + 1). Also it is easy to
show that if (D, c) is replaced by (D′, c′) for another fundamental domain
D′, then there exist constants d, d′ ≥ 0 such that c′(g) ≤ dc(g) + d′. Thus, it
follows for µ ∈ M1(G) that the condition

∫
c(g)dµ(g) < +∞ is independent

of (D, c). It is also evident that if
∫
c(g)dµ(g) < +∞, then we get the P⊗ ρ-

integrability of f(ω, x), hence we can apply ergodic theorems to the Birkhoff
sum Sn(ω, x). Also in this case we can describe the measure λ̂ on Ω̂ × E in
terms of limn→∞ Y−n(ω̂) · · ·Y0(ω̂)ρ = ρω̂ which is the limit of the bounded
martingale Y−n(ω̂) · · ·Y0(ω̂)ρ.

Proposition 11 With the above notations, assume that µ ∈M1(G) is such
that

∫
c(g)dµ(g) < +∞. Then, if

∫
z(gx)dµ(g)dρ(x) = 0, the random walk

on G/∆′ defined by µ satisfies property R with respect to λ = ρ⊗ l. We have
λ̂ =

∫
δω̂ ⊗ lω̂dP̂(ω̂), where ρω̂ = limn→∞ Y−n(ω̂) · · ·Y0(ω̂)ρ and lω̂ = ρω̂ ⊗ l.

If ρ is Gµ-invariant and µ is symmetric, then the condition
∫
z(gx)dµ(g)dρ(x) = 0

is satisfied.

Proof Let I ⊂ Z be an open symmetric interval. We write x = (x, t) with
x ∈ D, t ∈ I, Xn(ω)x = (Xn(ω)x, t+Sn(ω, x)). Since

∫
f(ω, x)dP(ω)dρ(x) =

0, the Birkhoff sum Sn(ω, x) belongs to I infinitely often P⊗ρ-a.e (see [44]). It
follows that for any t ∈ I and P⊗ρ-a.e Xn(ω)x ∈ D×I infinitely often. Since
the actions of G and ∆/∆′ commute, the same property is true for s ∈ Z
with x replaced by x · s and I by I + s. Then using Poincaré recurrence
theorem, for D× 1I and ρ⊗ (1Il), property R with respect to λ follows. We
observe that the structure of skew product implies g(ρ⊗l) = (gρ)⊗l if g ∈ G,
hence for any ψ ∈ Cc(E), Y−n(ω̂) · · ·Y0(ω̂)λ(ψ) = (Y−n(ω̂) · · ·Y0(ω̂)ρ) ⊗ l(ψ)
is a bounded martingale which converges to ρω̂ ⊗ l(ψ). Hence from remark 4
we get that λ̂ =

∫
δω̂ ⊗ lω̂dP̂(ω̂).

The cocycle property of z(g, x) gives z(g, x) = −z(g−1, gx) on G × E.
Then

∫
z(g, x)dµ(g)dρ(x) = −

∫
z(g−1, gx)dµ(g)dρ(x). The Gµ-invariance of

ρ and the symmetry of µ gives
∫
z(g, x)dµ(g)dρ(x) = −

∫
z(g, x)dµ(g)dρ(x).

Thus proving the last assertion.
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(4) Pointed vector spaces: Let G = GL(d,R) with d ≥ 2. We assume
that µ ∈M1(G) satisfies the following conditions (H-1)-(H-3).

(H-1) no finite union of proper subspaces of Rd is invariant under the support
of µ, that is, Gµ is strongly irreducible on Rd.

(H-2) Gµ contains an element g that has unique dominant eigenvalue λg with

|λg| = limn→∞ ||gn|| 1
n .

(H-3) the support of µ is compact.

Here the space E will be the factor space V = (Rd)∗/{±Id} considered as
a G-homogeneous space where (Rd)∗ = {v ∈ Rd | v 6= 0}. We denote by e the
point of V corresponding to the first basis vector, by ∆′ the stabilizer of e and
∆ the stabilizer of the line R

∗
+ ⊂ V containing e. Then ∆′ is normal in ∆ with

∆/∆′ ≃ R∗
+ and E = V = G/∆′, E = G/∆ ≃ Pd−1, the projective space.

Also v ∈ V can be written as v = (x, r) with r ∈ R∗
+ and x ∈ Pd−1 so that

V = Pd−1 × R∗
+ and Pd−1 can be considered as a fundamental domain of the

action of R∗
+ ≃ ∆/∆′ on V by dilations. We identify Pd−1 ⊂ V with the unit

sphere modulo symmetry. In particular, if g ∈ G and x ∈ V , the quantity
||gx|| is well defined and gives a cocycle on G × Pd−1. Also, if x, x′ ∈ Pd−1,
then δ(x, x′) = | sin(x, x′)| defines a distance on Pd−1. We denote by Hǫ the
space of ǫ-Holder functions on P

d−1 endowed with the norm

||φ||ǫ = sup
x∈Pd−1

|φ(x)| + sup
x,x′∈Pd−1

|φ(x) − φ(x′)|
δ
ǫ
(x, x′)

.

Then under condition (H) for ǫ sufficiently small, the operator P on Pd−1

associated with µ has nice spectral properties on Hǫ (cf. [27]). In particular,
P has a unique stationary measure ρ = ν on P

d−1, and P has a spectral
gap on Hǫ, i.e P is the sum of a one-dimensional projection π and another
operator Q with spectral radius less than one which satisfies Qπ = πQ = 0.
We need to consider also the family of operators Pt (t ∈ R) defined by
Ptφ(x) =

∫
||gx||itφ(gx)dµ(g); we refer to [27] for a recent exposition of the

spectral properties of the operators Pt. In particular, if t 6= 0, Pt has a
spectral radius less than 1, and for t small one has Pt = k(t)πt + Rt where
k(t) ∈ C, πt is a projection of rank one, Rt has a spectral radius less than
|k(t)| and commutes with πt. All quantities depend analytically of t, and if∫

log ||gx||dµ(g)dν(x) = 0, then k′(0) = 0 and σ2 = −k′′(0) > 0 (see [7]).
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We denote by l the Lebesgue measure dr
r

on R∗
+, we observe that the Radon

measure λ = ν ⊗ l on E = V is P -invariant and we have the following.

Proposition 12 Assume µ ∈ M1(G) satisfies conditions (H-1)-(H-3) and∫
log ||gx||dµ(g)dν(x) = 0. Then there exists a σ > 0 such that for any

ψ ∈ Cc(V ) and any v ∈ V = (Rd)∗/{±Id},

lim
n→∞

σ
√

2πnP nψ(v) = (ν ⊗ l)(ψ).

In particular, for any u ∈ C+
c (V ) with (ν ⊗ l)(u) > 0,

∑∞
0 P ku = +∞ on

V . Furthermore property Ra is valid , ν ⊗ l is P -invariant extremal, hence
(Ω̂ × V, θ̂, λ̂) is ergodic.

Proof A general formula as in the proposition was proved in [32], under the
assumption that P has spectral gap and the spectral radius of Pt (t 6= 0) is less
than one, which is valid in our situation (cf. [27]). Hence, here we only sketch
the proof. For fixed v ∈ V , we consider the sequence of Radon measures µn
defined by µn(ψ) = σ

√
2πnP nψ(v). It suffices to prove the convergence of

µn to ν⊗ l(ψ) for functions of the form ψ(x, r) = φ(x)f(r) where φ ∈ Hǫ and
f ∈ L1(R∗

+) is such that its Fourier transform f̂ has compact support. Then

we can write, using Fourier inversion formula f(r) = 1
2π

∫
f̂(t)r−itdt where

f̂(t) =
∫
R∗

+
ritf(r)dr

r
. Then P nψ(x, r) = 1

2π

∫
P n
t φ(x)r−itf̂(t)dt. Replacing t

by t√
n

we get that

µn(ψ) =
σ√
2π

∫
P n

t√
n

φ(x)r
−i t√

n f̂(
t√
n

)dt.

Using the spectral properties of Pt we can replace P t√
n
φ(x) by kn( t√

n
)π t√

n
φ

which converges to e
−σ2t2

2 ν(φ). Then (see [32]) we get that

limµn(ψ) = ν(φ)f̂(0)
σ√
2π

∫
e

−σ2t2

2 dt = (ν ⊗ l)(ψ).

In order to show property Ra, we use a result of [8]. Under conditions
(H), for any v ∈ V we have P-a.e

lim sup
n→∞

||Xn(ω)v|| = ∞, lim inf
n→∞

||Xn(ω)v|| = 0.
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Since the support of µ is compact, there exists c > 0 such that for any
(ω, v) ∈ Ω × V , n ∈ N,

1

c
≤ ||Xn+1(ω)v||

||Xn(ω)v|| < c.

Then, for any v, the relatively compact open set

Uc = {u ∈ V | 1

c
< ||u|| < c}

is visited infinitely often P-a.e. Hence property Ra is valid. The validity of
property R follows from Proposition 11.

The extremality of λ = ν ⊗ l is proved in Proposition 3.5 of [27], hence
the ergodicity of (Ω̂ × V, θ̂, λ̂) follows from Corollary 3.

Remark 7 In general, the support of ν in Pd−1 is of Cantor type, hence the
support of ν ⊗ l is a proper subset of V . If u ∈ C+

c (V ) with (ν ⊗ l)(u) = 0,
we can show that P-a.e, for any v,

∑∞
0 u(Xn(ω)v) < +∞, in particular, if K

is a compact set that does not intersect the support of ν ⊗ l, then P-a.e the
random walk Xn(ω)v escapes from K, if v is not in the support of ν ⊗ l.

(5) Covering spaces: Let G be a real simple linear group of rank one,
∆ be a cocompact lattice and ∆′ be a normal subgroup in ∆ such that
∆/∆′ ≃ Z. It may be noted that if G has rank more than one, then G
has Kazdhan property T which implies that such a ∆′ does not exist. Let
E = G/∆′, E = G/∆ and D be a fundamental domain of the Z-action on E
as in (3). Let m (resp. m) denote the Haar measure on E (resp. E), hence
with the notations of (3) ρ = m and m = ρ ⊗ l. Such a situation arises if
G = SL(2,R) and ∆ is the fundamental group of a compact Riemann surface
S and in this case G/∆ (resp. G/∆′) can be identified with the tangent unit
bundle of S (resp. of an abelian cover of S).

Proposition 13 Assume µ ∈ M1(G) is symmetric with
∫

log ||g||dµ(g) <

+∞ and Gµ is non-amenable. Then (Ω̂ ×E, θ̂, P̂ ⊗m) is ergodic.

The proof depends on the next two lemmas.

Lemma 5 Suppose µ ∈M1(G) is such that Gµ is non-amenable. Let α be a
non-trivial character of ∆ and Tα be the unitary representation of G induced
by α. Then the spectral radius of Tα(µ) is less than one.
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Proof In view of Theorem C of [45], it suffices to verify that Tα does not
weakly contain the trivial one-dimensional representation of G. It is clear
that the one-dimensional representation of ∆ defined by α does not weakly
contain the trivial one-dimensional representation of ∆. Since ∆ is a cocom-
pact lattice in G, it follows from 1.10 and 1.11, Chapter III of [37] that the in-
duced representation Tα does not weakly contain the trivial one-dimensional
representation of G.

If u ∈ L2(E,m), f ∈ l2(Z), we can identify u ⊗ f with an element of
L2(E,m), again denoted by u ⊗ f . If f ∈ l1(Z) with

∑
f(k) = 0, we write

f ∈ l10(Z). In Proposition 3.6 of [27], ifX is a compact metric space, a Markov
operator Q acting on Y = X ×Rd which commutes with the Rd translations
was considered and it was proved that limn→∞ ||Qn(u⊗ f)||1 = 0 for Holder
functions u ∈ Hǫ(X) and f ∈ L1(Rd) with

∫
f(x)dx = 0. Essential points of

the proof are polynomial growth of Rd and a spectral gap property for the
Q-action on functions of the form u ⊗ α where u ∈ Hǫ(X) and α is a given
character of Rd (see above).

Here we observe that the adjoint P ∗ of P in L2(E,m) is associated with
µ̌, the symmetric of µ which has the same properties as µ. Also, in view of
Lemma 5, the condition of spectral gap of P ∗ is valid for the P ∗-action on
functions of the form u⊗α where u ∈ L2(E,m) and α is a fixed character of
Z. The polynomial growth condition is also satisfied here. Hence the proof
in [27] gives the following.

Lemma 6 Assume µ satisfies the condition in Lemma 5. Then for any
u ∈ L2(E,m) and f ∈ l10(Z), we have limn→∞ ||P ∗n(u⊗ f)||1 = 0.

Proof of Proposition 13 We begin by showing that if h ∈ L∞(E,m)
satisfies Ph = h, then h is constant m-a.e. If u ∈ L2(E,m) and f ∈ l10(Z),
then < (P ∗)n(u⊗f), h >=< u⊗f, h >. By Lemma 6, < u⊗f, h >= 0. Since
f is arbitrary in l10(Z) this implies the Z-invariance of h. Hence h defines an
element h ∈ L∞(E,m) such that P (h) = h. This equation can be written as

P (h)(x) =

∫
h(gx)dµ(g) = h(x).

Sincem is G-invariant and h ∈ L2(E,m), strict convexity in L2(E,m) implies
that h(x) = h(gx) µ ⊗ m-a.e. Since Gµ is non-amenable, it is unbounded,
hence the Moore ergodicity theorem implies the ergodicity ofGµ on E = G/∆
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with respect to m (cf. Theorem 4 of [38]), hence h is constant m-a.e. This
proves that h is constant m-a.e.

The above argument shows also the extremality of ρ = m as a P -stationary
measure. The condition

∫
log ||g||dµ(g) < +∞ implies that the condition∫

c(g)dµ(g) < +∞ of Proposition 11 is satisfied. Then Proposition 11 gives
that property R is valid with respect to m = m⊗ l. Then as above, we can
use Proposition 5 to obtain the required ergodicity.

Remark 8 In the situation of Proposition 13, a counter example to property
Ra is the following. Assume Gµ = ∆′. Since ∆ is non-amenable, the same is
true of ∆′ and all the conditions on µ can be seen to be satisfied. Since ∆′

is normal in ∆, we observe that if e ∈ E corresponds to ∆′ and z ∈ ∆, then
e · z is ∆′-invariant. It follows that P (e · z, ·) = δe·z and if u(e · z) = 0, that
is x = e · z is not in the support of u, then Xn(ω)x is not in the support of u
for any n and a.e ω. We conjecture that property Rx is valid for any x and
if µ is adapted, then property Ra is valid.

(6) Transient behavior on pseudo-Riemannian symmetric spaces:

Let G be a semisimple real algebraic group with no compact factors and H
be a closed subgroup of G that is not Zariski dense in G. Assume that
E = G/H has a G-invariant measure m and µ ∈ M1(G) is such that Gµ is
non-amenable. Then P acts on L2(E,m) as a contraction. As an extension
of the Borel density theorem it is proved in [23] that, since H is not Zariski-
dense, G/H do not carry an invariant mean, that is, G/H is not amenable
in the sense of Eymard (see also [46]). In particular, the spectral radius
of P on L2(E,m) is strictly less than one. Hence for φ ∈ Cc(E), one has∑∞

0 P kφ ∈ L2(E,m). In particular
∑∞

0 P kφ is finite m-a.e. This implies
property Tx is valid m-a.e.

We consider the case where the homogeneous space G/H is a symmetric
pseudo-Riemann space, that is H is the set of fixed points of an involution.
Then H is reductive, hence H is unimodular. Thus, G/H has a G-invariant
measure m. Also, H is algebraic, hence not Zariski dense. Then the above
discussion gives the following.

Proposition 14 Assume E = G/H is a pseudo-Riemannian symmetric
space, µ ∈ M1(G) is such that Gµ is non-amenable. Then for φ ∈ Cc(E),∑∞

0 P kφ is finite m-a.e. In particular, Tx is valid m-a.e.

Among the pseudo-Riemannian symmetric spaces we have the spaces E =
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SL(n,R)/SO(p, q) (p + q < n) and E = SO(k, l)/SO(p, q) (p + q < k + l).
The space SL(2,C)/SL(2,R) locally isomorphic to SO(3, 1)/SO(2, 1) was
considered in [23].

(7) On homogeneous spaces with property R : Considering the
above examples, we formulate the following questions for a G-homogeneous
space with G a connected Lie group.

a) Characterize the systems (E, P, λ) with property R.
More precisely, if R is valid is it true that λ has at most quadratic growth

in the following sense: if V ⊂ G is a compact neighborhood of e, and x in the
support of λ does there exist c > 0 such that, for any n ∈ N, λ(V nx) ≤ cn2.
This property is valid in examples 2,4,5 with linear growth of λ(V nx). It
may be noted that when P is given by spread-out probability on G, question
(a) has definitive answer if G is a compact extension of simply connected
nilpotent real Lie group [18] or if G is a p-adic algebraic group [42].

In view of Corollary 3, if λ is extremal, property R is equivalent to er-
godicity of (Ω̂ ×E, θ̂, λ̂).

b) Characterize systems (E, P, λ) with λ of finite mass.
Examples of this situation are given in (1). Except for trivial situations,

is the general case a combination of these kind of examples.

6 Singularity of stationary measures on the

projective line

As is well known the groupG = SL(2,R) acts by fractional linear transforma-
tions on the Poincaré upper half plane H = {z ∈ C | y = Imz > 0}, preserv-

ing the Poincaré metric |dz|2
y2

. If a =

(
1 2
0 1

)
and b =

(
1 0
2 1

)
, the group

Γ =< a, b > is a free subgroup of index 6 in SL(2,Z) ⊂ G. Furthermore the
Γ-action on H is free and totally discontinuous. We denote by Γ′ the commu-
tator subgroup of Γ, by γ the projection of γ ∈ Γ in Γ = Γ/Γ′ =< a, b >= Z2,
and |γ| the word length of γ in a, b. We observe that as a Riemann surface,
Γ\H can be identified with the complement of {0, 1} in C; also Γ′\H is an
abelian cover for Γ\H with covering group Z2 =< a, b >. Then Γ\G (resp.
Γ′\G) can be identified with the unit tangent bundle of Γ\H (resp. Γ′\H).

Let MAN be the triangular subgroup of matrices of the form

(
a b
0 1

a

)
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(a ∈ R∗ and b ∈ R). Here M = {±Id}, A = {
(
a 0
0 1

a

)
| a > 0} and

N = {
(

1 b
0 1

)
| b ∈ R}. Then G/MAN ≃ P1 can be identified with the

boundary of H in C. If µ ∈ M1(Γ) is adapted, there exists a unique µ-
stationary measure ν on P1 = G/MAN : µ ∗ ν =

∑
γ∈Γ µ(γ)γν = ν. It is

known (see for instance [16] Proposition 4.1, p.207) that Lebesgue measure
m on P1 is such a measure for a certain µ as above. From a geometrical point
of view, such measures appear in the study of foliated Brownian motion on
Γ\G along AN -orbits and corresponding harmonic measures. Here, as an
application of recurrence-transience properties of random walk on Γ\G we
give a proof of the following (mentioned in [25]; see [6] and [11] for recent
different proofs).

Proposition 15 Assume that µ ∈ M1(Γ) is symmetric adapted and satis-
fies

∑
γ∈Γ µ(γ)|γ|2 < +∞. Then the unique µ-stationary measure on P

1 is
singular with respect to Lebesgue measure.

The proof depends on the next two results which are of independent
interest.

Lemma 7 The action of Γ′ on (P1 × P1, m⊗m) is not ergodic.

Proof The Lemma is a direct consequence of the results of [47] and [35].
From [35] we know that Brownian motion on Γ′\H is transient. Then it
follows from Theorem 4 of [47] that the geodesic flow on the manifold Γ′\H

is not ergodic. In other words the action of A on Γ′\G endowed with the
Haar measure is not ergodic. By duality this means that the action of Γ′ on
G/A endowed with Haar measure is not ergodic. Now the result follows since
G/AM and (P1 × P1, m⊗m) are isomorphic as measured G-spaces.

Lemma 8 The action of Γ′ on (P1 × P1, ν ⊗ ν) is ergodic.

Proof As in 2.3, we denote Ω̂ = Ω−×Ω, P̂ = P−⊗P, we write Ω̂ = (ω−, ω) if
ω̂ ∈ Ω̂. Then θω̂ = (ω−Y1(ω), θω). We consider the transformation θ̂ of Ω̂×Γ
defined by θ̂(ω̂, γ) = (θω̂, γY1(ω)). We denote also by θ̂ the transformation
of Ω̂ × Γ defined by θ̂(ω̂, γ) = (θω̂, γY1(ω)). Since the random walk on Z

2

associated with µ is recurrent and adapted the skew product (Ω̂×Γ, θ̂, P̂⊗λΓ)
is ergodic (see Corollary 2). If we denote by z(ω) the random variable on
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P1 uniquely defined P-a.e by Y1(ω)z(θω) = z(ω) we have, P-a.e: δz(ω) =
limn Y1 · · ·Ynν and ν is the law of z(ω). Since µ is symmetric, ν is also the law
under P− of z′(ω−) where δz′(ω−) = limn Y

−1
0 (ω) · · ·Y −1

n (ω)ν and µ⊗ P−-a.e:
z′(ω−Y1(ω)) = Y −1

1 (ω)z′(ω−). Let φ be a Borel function on P1×P1 and denote
f(ω̂, γ) = φ(γz(ω), γz′(ω−)). Then the functional equations above implies
that f(θω̂, γY1(ω)) = f(ω̂, γ). Also, if φ is Γ′-invariant f(ω̂, ηγ) = f(ω, γ)
for all η ∈ Γ′. Then we can write f(ω̂, γ) = f(ω̂, γ) where f is a θ̂-invariant
function on Ω̂×Γ. From above we know that f is constant P

−⊗P-a.e. Since
the law of (z′(ω−), z(ω)) under P−⊗P is ν⊗ν, this means that φ is constant
ν ⊗ ν-a.e. In other words (P1 × P1, ν ⊗ ν) is Γ′-ergodic.

Proof of Proposition 15 Since Γ\G has finite volume, the geodesic flow on
Γ\G is ergodic with respect to the Haar measure and the action ofA on Γ\G is
ergodic. By duality this gives the ergodicity of Γ on (P1, m) = (G/MAN,m)
. In particular, any Γ-quasiinvariant and absolutely continuous measure on
P1 is equivalent to m. If ν is not singular with respect to m, we can write
ν = νa + νs where νa 6= 0 is absolutely continuous and νs is singular (with
respect to m). The equation ν = µ ∗ ν implies µ ∗ νa = νa and µ ∗ νs = νs,
hence by uniqueness of the µ-stationary measure, we have νa = ν and νs = 0.
From above, the Γ-quasiinvariance of ν = νa implies that ν is equivalent to
m. Then the two lemmas give the required contradiction.

7 Appendix: Groups whose closed subgroups

are unimodular

Groups whose closed subgroups are unimodular plays a crucial role in our
proof of quadratic growth conjecture. This motivates us to prove the fol-
lowing characterization of such groups among algebraic groups and almost
connected locally compact groups in terms of polynomial growth.

Proposition 16 Let G be either the group of F-rational points of an alge-
braic group defined over a non-archimedean local field F of characteristic zero
or an almost connected locally compact group. Then closed subgroups of G are
unimodular if and only if G has polynomial growth. Furthermore, in the first
case, any compactly generated closed subgroup H of G has a basis of compact
open normal subgroups (Kn) such that H/Kn has a finitely generated abelian
subgroup of finite index.
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Proof If G is a Lie group over a local field, then Ad (g) denotes the adjoint
automorphism of the Lie algebra G of G defined by g.

We first consider the case of group of F-rational points of an algebraic
group defined over a non-archimedean local field F of characteristic zero.
Since the Zariski-connected component is a subgroup of finite index, we may
assume that G is Zariski-connected. Assume that closed subgroups of G are
unimodular. Let H be a open compactly generated subgroup of G. Then by
Corollary 7, H contains a basis (Kn) of compact open normal subgroups. On
the other hand, since Ad(G) is also an algebraic group, Ad(G) is closed in
GL(G) and is isomorphic to G/Z where Z is the center of G; as characteristic
of F is zero, center of G is the kernel of the adjoint homomorphism of G (ref.
0.15 and 0.24 of [37]). Since H is open in G, Ad(H) is open in Ad(G)
and hence closed in GL(G). Since the orbits of Ad(H) in G are relatively
compact, Ad(H) is also relatively compact, hence Ad(H) is compact. Since
Ad(G) ≃ G/Z, Z ∩ H is co-compact in H . Thus, the center of H is co-
compact in H . The same property is valid in the finitely generated subgroup
H/Kn. In particular, H as well as G has polynomial growth. Now if H is
any compactly generated closed subgroup, let C be a compact generating
set of H . Let V be a compact neighborhood of C and N be the subgroup
generated by V . Then N has a basis (Kn) of compact open normal subgroup
such that N/Kn has a finitely generated abelian subgroup of finite index.
Let Ln = Kn ∩H . Since H is a closed subgroup of N , Ln is a compact open
normal subgroup of H and H/Ln is continuously embedded in N/Kn. Thus,
H/Ln also has a finitely generated abelian subgroup of finite index.

We now consider a connected real Lie group. Then for any g in Ad (G)
(with the quotient topology from G), Cg is a simply connected nilpotent Lie
subgroup ofGL(G) andCg ⊂ {v ∈ GL(G) | limn→∞ gnvg−n = Id in GL(G)} =
C̃g, say. But C̃g is a unipotent algebraic group. Since Cg is a connected Lie
subgroup of C̃g which is unipotent, we get that Cg is closed in Ad (G). By
Lemma 2, Cg is trivial. Now, for any h ∈ G, Ad (Ch) ⊂ CAd (h) = {e}. This
implies that Ch is contained in the kernel of the homomorphism Ad which is
the center of G. Thus, Ch is trivial, hence G is a type R Lie group. It follows
from [20] that G has polynomial growth.

We now consider any almost connected group. Let G be an almost con-
nected locally compact group. Then there exists a compact normal subgroup
K such that G/K is a real Lie group. Let M be the closed subgroup of G
containing K such that M/K is the component of identity in G/K. Since G
is almost connected, M is a subgroup of finite index. Now any closed sub-
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group M is also unimodular and since K is compact, any closed subgroup
of M/K is unimodular. Since M/K is a connected Lie group, M/K has
polynomial growth. Since K is compact, M has polynomial growth. Since
M has finite index in G, G also has polynomial growth.

Converse follows from the facts that closed subgroups of polynomial
growth also have polynomial growth and groups of polynomial growth are
unimodular (cf. [20]).
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C. R. Acad. Sci. Paris Sér. A 278 (1974), 1083–1086.

[11] B. Deroin, V. Kleptsyn and A. Navas, On the question of ergodicity for minimal
group action on the circle, Preprint Univ. Rennes 2008.

40



[12] R. M. Dudley, Random walks on abelian groups, Proc. Amer. Math. Soc. 13 (1962),
447-450.

[13] A. Eskin and G. Margulis, Recurrence properties of random walks on finite vol-
ume homogeneous manifolds, Random walks and geometry, 431–444, Walter de
Gruyter, Berlin, 2004.

[14] S. R. Foguel, The ergodic theory of Markov processes. Van Nostrand Mathematical
Studies, No. 21. Van Nostrand Reinhold Co., New York-Toronto, Ont.-London
1969.

[15] A. Furman, Random walks on groups and random transformations. Handbook of
dynamical systems, Vol. 1A, 931–1014, North-Holland, Amsterdam, 2002.

[16] H. Furstenberg, Boundary theory and stochastic processes on homogeneous spaces.
Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., Vol. XXVI,
Williams Coll., Williamstown, Mass., 1972), 193–229. Amer. Math. Soc., Provi-
dence, R.I., 1973.

[17] H. Furstenberg, Noncommuting random products. Trans. Amer. Math. Soc. 108
(1963), 377–428.
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