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Abstract

A locally compact group G is said to have shifted convolution
property (abbr. as SCP) if for every regular Borel probability measure
µ on G, either supx∈G µn(Cx) → 0 for all compact subsets C of G,
or there exist x ∈ G and a compact subgroup K normalised by x

such that µnx−n → ωK , the Haar measure on K. We first consider
distality of factor actions of distal actions. It is shown that this holds
in particular for factors under compact groups invariant under the
action and for factors under the connected component of identity. We
then characterize groups having SCP in terms of a readily verifiable
condition on the conjugation action (point-wise distality). This has
some interesting corollaries to distality of certain actions and Choquet
Deny measures which actually motivated SCP and point-wise distal
groups. We also relate distality of actions on groups to that of the
extensions on the space of probability measures.

1 Introduction

Let X be a Hausdorff space and Γ be a (topological) semigroup acting contin-
uously onX by continuous self-maps. We say that the action of Γ onX is dis-
tal if for any two distinct points x, y ∈ X, the closure of {(α(x), α(y)) | α ∈ Γ}
does not intersect the diagonal {(a, a) | a ∈ X} and we say that the action of
Γ on X is point-wise distal if for each γ ∈ Γ, {γn}n∈N-action on X is distal.
The notion of distality was introduced by Hilbert (cf. [15]) and studied by
many in different contexts: see [15], [17] and [24] and the references cited
therein.
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LetG be a locally compact (Hausdorff) group and let e denote the identity
of G. Let Γ be a semigroup acting continuously on G by endomorphisms.
Then Γ-action on G is distal if and only if e 6∈ Γx for all x ∈ G \ {e}. The
group G itself is said to be distal (resp. point-wise distal) if conjugacy action
of G on G is distal (resp. point-wise distal).

It can easily be seen that the class of distal groups is closed under com-
pact extensions. Abelian groups, discrete groups and compact groups are
obviously distal. Nilpotent groups, connected Lie groups of type R and con-
nected groups of polynomial growth are distal (cf. [35]) and p-adic Lie groups
of type R and p-adic Lie groups of polynomial growth are point-wise distal
(cf. [30] and [33]): point-wise distal groups are called non-contracting in [30]
and [35].

Clearly, distal groups are point-wise distal but there are point-wise distal
groups which are not distal (see [24] and [35] for instance).

For a locally compact group G, let P (G) denote the space of all regular
Borel probability measures on G with weak* topology. For µ, λ ∈ P (G),
let µλ denote the convolution of µ and λ and for x ∈ G, let δx denote the
Dirac measure at x and xµ (resp. µx) denote the measure δxµ (resp. µδx).
For n ≥ 1 and µ ∈ P (G), let µn denote the n-th convolution power of
µ. For any compact subgroup K of G, let ωK denote the normalized Haar
measure on K. For µ ∈ P (G), let µ̌ ∈ P (G) be the measure defined by
µ̌(E) = µ({x−1 | x ∈ E}) for any Borel set E of G.

Let G be a locally compact group and Aut(G) denote the group of all
bi-continuous automorphisms of G. If Γ is a group acting continuously on G
(by automorphisms), then this action extends to an action on P (G) which
is given by α(µ)(E) = µ(α−1(E)) for any α ∈ Γ, any µ ∈ P (G) and for any
measurable subset E of G.

We say that a locally compact group G has shifted convolution property
which would be called SCP if for any µ ∈ P (G), one of the following holds:

(i) the concentration functions of µ, supg∈G µ
n(Kg) converges to zero (as

n → ∞) for any compact subset K of G (in which case we say that µ
is dissipating);

(ii) there exists a x ∈ G such that µnx−n → ωK for some compact subgroup
K of G with xKx−1 = K.

If a measure µ ∈ P (G) satisfies one of the above two conditions, we say
that µ has shifted convolution property (SCP).
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Tortrat [39] proved SCP for groups satisfying certain conditions. Mo-
tived by [39], Eisele [13] introduced a class of groups called Tortrat groups
and showed that Tortrat groups have shifted convolution property: a lo-
cally compact group G is called Tortrat if for any sequence {xn} in G and
µ ∈ P (G), the sequence {xnµx

−1
n } has idempotent limit point only if µ is an

idempotent. Corollary 5.1 and Theorem 5.2 of [13] showed that the class of
Tortrat groups strictly contains the class of groups satisfying conditions of
[39]. Dani and Raja [9] proved that almost connected groups of polynomial
growth, equivalently, almost connected (point-wise) distal groups are Tortrat
and Raja [31] showed that distal linear groups are Tortrat. Thus, proving
SCP for almost connected distal groups and distal linear groups. It may be
noted that Tortrat groups are distal, but the converse is not true in general
as we shall see in Example 7.2. Here we show that a locally compact group
is point-wise distal if and only if it has SCP. Our proof/techniques rely on
dynamics on compact groups, on zero-dimensional groups and on Lie groups
over local fields. It may be noted that [2]-[4], [14], [22] and [23] have results
on SCP for some classes of groups and measures.

In Section 2, we state and prove some preliminary results which will
be used often. In Section 3, we prove some results about factor-actions of
distal actions, where the factors are either modulo compact subgroups or
the connected component of the identity. In Section 4, we prove the main
result for totally disconnected (metrizable) groups. In Section 5, we discuss
Z-actions on compact metric groups and prove the main result for discrete
extension of compact groups. In Section 6, we prove the main result for
all locally compact groups and a few interesting Corollaries. In Section 7,
we compare actions on groups and its extension on the space of probability
measures.

2 Preliminaries

The following result is proved in [2] for locally compact σ-compact groups
and is valid without the σ-compactness assumption as we can restrict our
attention to the closed subgroup generated by the support of µ which is
σ-compact (see also [12]).

Lemma 2.1 Let G be a locally compact group and µ ∈ P (G). Suppose µ is
non-dissipating. Then µnµ̌n → ρ ∈ P (G) and µρµ̌ = ρ.
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We next prove some basic properties of SCP.

Proposition 2.2 Let G be a locally compact group and K be a compact
normal subgroup of G. Let π:G → G/K be the canonical projection. If
µ ∈ P (G) has SCP, then π(µ) ∈ P (G/K) has SCP and hence, if G has
SCP, so does G/K.

Proof Let µ ∈ P (G). SinceK is compact, µ is dissipating if and only if π(µ)
is dissipating. Suppose µ is non-dissipating and has SCP. Then there exists a
compact subgroup L of G and z ∈ G such that µnz−n → ωL and zLz−1 = L.
This implies that π(µnz−n) → ωπ(L) and π(z)π(L)π(z)−1 = π(L).

Proposition 2.3 Let G be a locally compact group and µ ∈ P (G). Let us
assume that each neighbourhood U of identity contains a compact normal
subgroup KU and πU :G → G/KU be the canonical quotient map. If πU(µ)
has SCP for all U , then µ ∈ P (G) also has SCP. If G/KU has SCP for all
U , then G also has SCP.

Proof It is easy to see that for any neighbourhood U of e in G, µ ∈ P (G)
is dissipating if and only if µ ∈ P (G/KU) is dissipating. Suppose µ ∈ P (G)
is non-dissipating. Then µnµ̌n → ρ ∈ P (G) and µ ∈ P (G/KU) is also
non-dissipating for all U . If πU(µ) has SCP, then {πU(µnµ̌n)} converges
to an idempotent normalized by the support of πU(µ). Thus, πU(ρ) is an
idempotent normalized by the support of πU(µ). This implies that ρωKU

=
ρωKU

ρωKU
and xρx−1ωKU

= ρωKU
for all x in the support of µ. Since

ωKU
→ δe as U → e, we get ρ = ρ2 and xρx−1 = ρ for all x in the support of

µ (cf. [18], Theorem 1.2.2). Let x be in the support of µ. Then the equation
µnρµ̌n = ρ implies that {µnx−n} is relatively compact. Suppose ν is a limit
point of {µnx−n}. Then νν̌ = ρ and ν is supported on the support of ρ. By
Lemma 2.1 of [12], ν = ρz for some z in the support of ν and hence ν = ρ.
Thus, µnx−n → ρ for all x in the support of µ.

Proposition 2.4 Let G and H be locally compact groups and let φ:H → G
be a continuous injection. If µ ∈ P (H) is non-dissipating and φ(µ) ∈ P (G)
has SCP, then µ also has SCP. In particular, G has SCP implies H has SCP.

Proof Let µ ∈ P (H) be non-dissipating. Then φ(µ) ∈ P (G) is non-
dissipating. Suppose φ(µ) has SCP. Then there exists a x ∈ G such that
φ(µn)x−n → ωK for some compact group K with xKx−1 = K. Since

4



µ ∈ P (H) is non-dissipating, by Lemma 2.1, µnµ̌n → ρ ∈ P (H), but
φ(µ)nφ(µ̌)n → ωK ∈ P (G). Thus, φ(ρ) = ωK . Since φ:H → G is injec-
tive, its extension φ:P (H) → P (G) is also injective. Thus, ρ is an idem-
potent. We now prove that yρy−1 = ρ for any y in the support of µ. Let
y be in the support of µ. Then φ(y) is in the support of φ(µ) and hence
φ(y)ωKφ(y)−1 = ωK . Since φ is injective, yρy−1 = ρ. We can now show as
in Proposition 2.2 that µny−n → ρ.

For a locally compact group G and α ∈ Aut(G), we define CK(α), the
K-contraction group of α, for any compact group K such that α(K) = K,
as follows:

CK(α) = {x ∈ G | αn(x)K → K in G/K as n→ ∞}.

We denote C{e}(α) by C(α) and it is called the contraction group of α. For
any g ∈ G, we denote by C(g), the contraction group of Inn(g), where Inn(g)
is the inner automorphism of G defined by g. An automorphism α of a locally
compact group G is said to contract G if C(α) = G.

The following lemma about contraction groups will be quite useful.

Lemma 2.5 Let G be a locally compact group and α ∈ Aut(G). Let C(α) be
a non-trivial group. Suppose there is a topology on C(α) which turns C(α)
into a locally compact group C̃(α) such that α is a bi-continuous automor-
phism of C̃(α) with αn(x) → e as n→ ∞ for all x ∈ C̃(α) and the canonical
inclusion is a continuous map of C̃(α) into G. Then for every probability
measure λ 6= δe on C(α) such that λ is supported on a compact set of C̃(α),
{
∏n

i=0 α
i(λ)}n∈N is convergent in P (G) and its limit is not an idempotent

invariant under α. (Here, α0 = I, the identity map).

When G is a real or a p-adic Lie group, locally compact topology on C(α)
are possible (cf. [37]) in which case the Lemma can be proved using Theorem
5 of [10] – this case is sufficient for our purpose. Siebert [38] has results on
topologies of C(α) that turn C(α) into a locally compact group and cases
where such topologies are not possible.

Proof of Lemma 2.5 The convergence of the product {
∏n

i=0 α
i(λ)}n∈N to,

say, ν in C̃(α) and hence in G follows from “(3) ⇒ (2)” of Proposition 4.3
of [22]. This implies that ν = λα(ν). Since λ 6= δe, ν 6= δe. Moreover, C̃(α)
does not have any nontrivial compact subgroup invariant under α. Hence ν
is not an idempotent invariant under α.
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Remark 2.6 Given α and C̃(α) as in Lemma 2.5 above, there exist measures
λ on C(α) such that {λn =

∏n
i=0 α

n(λ)} is convergent, but its limit is not
an idempotent. For any compactly supported nontrivial measure λ on C̃(α),
{λn} is convergent and for its limit point ν, we have ν = λα(ν) and if it
were an idempotent, say ωK for some compact group K, then α(K) ⊂ K
and λ is supported on K. Here, K 6= {e} since λ 6= δe. In this case, α(K)
is strictly contained in K and we take λ′ to be any measure on K such that
λ′ = λ′ωα(K) 6= ωα(K) and λ′ 6= ωK . Then

∏n

i=0 α
n(λ′) = λ′, for all n ∈ N.

The following type of groups occurs in our study often. Let α be an
automorphism of a locally compact group G. Then Z ⋉α G denotes the
semidirect product of Z with G where the Z-action is given by α and is a
locally compact group with G as an open subgroup.

Proposition 2.7 Let G be a real Lie group. If G has SCP, then G is point-
wise distal. In particular, if α ∈ Aut(G) is such that Z ⋉α G has SCP, then
{αn}n∈Z-action is distal on G.

Proof The second assertion trivially follows from the first. Suppose G is
a real Lie group with SCP. Let g ∈ G. It is easy to see that C(g) ⊂ G0,
the connected component of e in G as G/G0 is discrete. Thus, C(g) has a
topology that turns C(g) into a locally compact group C̃(g) and the identity
map from C̃(g) → C(g) is continuous. Also, conjugacy action of g contracts
C̃(g). It is obvious that {gn | n ∈ Z} ∩ C(g) = {e}. Let α denote the inner
automorphism defined by g restricted to C(g). This implies that there is
a continuous injection from Z ⋉α C̃(g) into G given by (n, h) 7→ hgn. By,
Proposition 2.4, Z ⋉α C̃(g) has SCP.

If C(g) = C̃(g) 6= {e}, then by Lemma 2.5, there exists a λ ∈ P (C̃(g))
such that e is in the support of λ and {λn =

∏n
i=0 α

i(λ)} converges but its
limit is not an idempotent invariant under α. Now for µ = λδ1 ∈ P (Z⋉C̃(g)),
µnδ−n = λn−1 converges but its limit is not an idempotent invariant under
α. This is a contradiction to the above assertion that Z ⋉α C̃(g) has SCP
(cf. [12], Theorem 4.3). Thus, C(g) = {e}. In a similar way one can show
that C(g−1) = {e}. This implies that the inner automorphism of g is distal
on the Lie algebra of G (cf. [6]). Now, Theorem 1.1 of [1] implies that the
conjugacy action of G on G0 is point-wise distal. Since G/G0 is discrete, we
get the result.
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3 Factor actions of distal actions

The following simple result about the factor actions of distal actions modulo
compact groups will be very useful.

Theorem 3.1 Let G be a Hausdorff group and let Γ be a semigroup of bi-
continuous automorphisms of G. Suppose K is a compact subgroup of G such
that γ(K) = K, for all γ ∈ Γ. Then the following are equivalent:

(1) Γ-action on G is distal;

(2) Γ-actions on both K and G/K are distal.

Note that if G is compact and metrizable then the above follows from
Theorem 3.3 of Furstenberg [17].

Proof It is sufficient to prove the only non-trivial implication that (1) ⇒
(2). Suppose Γ-action on G is distal. Then Γ-action on K is distal. Let E
be the closure of Γ in KK , the set of all functions from K into K. Then E
is a group (cf. [15], Theorem 1) and it is a compact subset of KK .

Let {Ud} be a neighbourhood basis at e in G such that each Ud is K-
invariant, i.e. kUdk

−1 = Ud, for all k ∈ K; this is possible sinceK is a compact
group. Suppose (aK, aK) is in the closure of {(γ(x)K, γ(y)K) | γ ∈ Γ} for
some x, y ∈ G. Then for any neighbourhood Ud of e, γd(x)K, γd(y)K ∈
aUdK = aKUd. This implies that γd(x) = audkd and γd(y) = au′dk

′
d for

ud, u
′
d ∈ Ud and kd, k

′
d ∈ K. Now γd(x)k

−1
d = aud, since K is compact, {kd}

(resp. {k′d}) is relatively compact and there exists a subnet (we denote it by
the same) such that kd → k (resp. k′d → k′); subnet is possible as G is a
topological group. Here, ud → e. Let γ be a limit point of γd in KK . Let
k1 = γ−1(k−1) and k′1 = γ−1((k′)−1). Then passing to a subnet, we get that
γd(k1) converges to γ(k1) = k−1 and γd(xk1) = audkdγd(k1), which converges
to akk−1 = a. Similarly, γd(yk

′
1) converges to a, therefore xk1 = yk′1 and

hence xK = yK.

The next result follows easily from the above.

Corollary 3.2 Let G be a locally compact group and let α ∈ Aut(G) be such
that {αn}n∈N-action is distal on G. Then for any compact subgroup K such
that α(K) = K, we have

Cw
K(α) = {x ∈ G | along a subsequence αn(xK) converges to K} = K.
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Theorem 3.3 Let G be a locally compact group and let Γ be a semigroup
in Aut(G). Let G0 denote the connected component of the identity e in G.
Then Γ-action on G is distal if and only if Γ-action on both G0 and G/G0 is
distal.

Proof The proof of the “if” statement is obvious. Now we prove the ”only
if” statement. Assume that Γ-action on G is distal. It is obvious that the
Γ-action on G0 is distal. We need to prove that the Γ-action on G/G0 is
distal.

Step 1: Since G0 is a connected group it contains a maximal compact normal
subgroup C such that G0/C is a real Lie group (cf. [29]) and since C is
characteristic, γ(C) = C for all γ ∈ Γ and Γ-action on G/C is distal (cf.
Theorem 3.1). Also G/G0 is isomorphic to (G/C)/(G0/C). Hence, without
loss of any generality, we may assume that G0 is a real Lie group and it
has no nontrivial compact normal subgroup. Let H be an open subgroup
of G containing G0 such that H/G0 is a compact open subgroup of G/G0.
Then H contains a compact normal subgroup K such that H/K is a real Lie
group. This implies that KG0 is an open subgroup of H . Moreover, K ∩G0

being a compact normal subgroup of G0, is trivial. Thus, KG0 ≃ K×G0. In
particular, K ⊂ Z(G0), the centraliser of G0 in G, which is a closed normal
subgroup.

Step 2: If Γ-action on G/G0 is not distal, then we show that the Γ-action
on G is not distal. This would lead to a contradiction. Suppose the identity
of G/G0 belongs to the closure of Γ(x)G0 for some x 6∈ G0. Let {γd(x)G

0}
in G/G0 is a net converging to the identity in G/G0.

We show that there exists an element k in a compact totally disconnected
subgroup L centralising G0 such that L∩G0 = {e}, kG0 = xG0 and {γd(k)}
converges to e.

There exists a neighbourhood basis {Ud = Kd × U ′
d}, where {Kd} is

a basis consisting of compact open subgroups contained in K and U ′
d is a

neighbourhood of identity in G0. We may assume that γd(x) ∈ UdG
0 =

Kd ×G0. Let γd(x) = kdgd = gdkd for some kd ∈ Kd and gd ∈ G0.
Choose γ to be some fixed γd, then γ(x) ∈ KG0. Let γ(x) = k′g′,

k′ ∈ K g′ ∈ G0. Then x = kg, where k = γ−1(k′) ∈ γ−1(K) ⊂ Z(G0) and
g = γ−1(g′) ∈ G0 as G0 and Z(G0) are characteristic. Let L = γ−1(K) which
is a compact totally disconnected subgroup in Z(G0) and L ∩G0 = {e} and
k ∈ L.
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It is enough to show that γd(k) → e. In fact we show that γd(k) = kd ∈ Kd

for each d.

γd(x) = γd(k)γd(g) = γd(g)γd(k) = kdgd = gdkd.

Let ad = γd(k)k
−1
d = γd(g

−1)gd. Then ad ∈ Z(G0) ∩ G0, the centre of G0.
In particular, this implies kd and ad, and hence, kd and γd(k) commute.
Therefore, ad generates a compact group, which is contained in the center
of G0, and hence, is trivial, i.e. ad = e and hence, γd(k) = kd → e. This
completes the proof.

The following corollary follows easily from the above theorem.

Corollary 3.4 Let G be a locally compact group. Then G is (point-wise)
distal if and only if G/G0 is (point-wise) distal and the G-action on G0 is
(point-wise) distal.

4 Totally disconnected groups

In this section we apply Poisson boundary and Choquet-Deny Theorem to
show that SCP implies point-wise distal for totally disconnected groups. A
probability measure µ on a locally compact group G is said to be a Choquet-
Deny measure if the bounded continuous functions satisfying the equation

f(g) =

∫
f(gh) dµ(h), g ∈ G (1)

are constants on the cosets of the smallest closed subgroup generated by the
support of µ. Let Hµ denote the space of bounded functions satisfying the
equation

f(g) =

∫
f(gh) dµ(h), g ∈ G (2)

with L∞-norm. If G is a locally compact second countable group, then there
exists a (compact metric) G-space X with a σ-finite quasi-invariant measure
ν and an equivariant isometry Φ of L∞(X, ν) onto Hµ given by the Poisson
formula

Φ(f)(g) =

∫
f(gx) dρ(x)

where ρ is a µ-stationary probability measure on X, that is, µ ∗ ρ = ρ (cf.
[21]). The G-space X is called the µ-boundary: see [21] and [24] for further
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details on µ-boundary and Choquet-Deny Theorem. It may be noted that µ
is Choquet-Deny if and only if the µ-boundary is trivial.

Jaworski et al [25] proved that any Choquet-Deny measure has SCP. Here
we prove the converse which will be useful in characterizing groups with SCP.

Proposition 4.1 Let G be a locally compact group. If µ ∈ P (G) is non-
dissipating and has shifted convolution property, then µ is a Choquet-Deny
measure.

Proof Let µ ∈ P (G) is non-dissipating and has SCP. Let Gµ be the closed
subgroup generated by the support of µ. We may assume that Gµ is not
compact (cf. [24], Lemma 4.1). Then µ ∈ P (Gµ) is also non-dissipating. By
Proposition 2.4, µ ∈ P (Gµ) also has shifted convolution property. Hence,
using Lemma 4.1 of [24] and replacing G by Gµ, we may assume that G is
the closed subgroup generated by the support of µ.

Let us first consider the case when G is second countable. Since µ has
SCP, there is a compact subgroup K and a z ∈ G such that µnz−n → ωK

with K = zKz−1. Then µ is supported on zK = Kz. This implies that
G/K ≃ Z as G is not compact. Thus, G is the semidirect product of Z and
K where Z-action is given by the inner automorphism of z restricted to K.
Also, there is a probability measure λ on K such that µ = λδz

By Theorem 4.2 of [JR], the boundary of µ is a homogeneous space of G
and K acts transitively on the boundary of µ. Thus, there exists a closed
subgroup H of G such that G/H is the boundary of µ and G = KH = HK
as K is normal in G. Under the natural isomorphism between G/H and
K/(K ∩ H), the canonical action of G on G/H defines an action of G on
K/(K ∩ H) by g ⊙ x(K ∩ H) = ahxh−1(K ∩ H) where g = ah for a ∈ K
and h ∈ H . Let T :K → K be defined by T (x) = zxz−1 for all x ∈ K.
Let η be the Poisson kernel in K/(K ∩ H) and π:K → K/(K ∩ H) be
the canonical projection. Let ρ ∈ P (K) be such that π(ρ) = η and for
n ≥ 1, let zn = anhn for some an ∈ K and hn ∈ H . Then η = µn ⊙ η =
µnz−nanhn ⊙ η = π(µnz−nT n(ρ)an) for all n ≥ 1. Since µnz−n → ωK , it is
easy to see that µnz−nT n(ρ)an → ωK and hence η = π(ωK). This implies
that η is G-invariant and hence the boundary is trivial. This shows that µ
is a Choquet-Deny measure.

Suppose G is any locally compact group. Since G is the closed subgroup
generated by the support of µ, G is σ-compact. Thus, by Theorem 8.7 of [19],
every neighbourhood U of e contains a compact normal subgroup KU such
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that G/KU is second countable. By Proposition 2.2, µ is non-dissipating and
has shifted convolution property in G/KU and hence µ is a Choquet-Deny
measure in G/KU . Now, Lemma 3.1 of [24] implies that µ is a Choquet-Deny
measure in G.

Theorem 4.2 Let G be a locally compact metrizable group and G0 be the
connected component of identity in G. Suppose G has SCP. Then G/G0 is
point-wise distal. In particular, a totally disconnected locally compact metriz-
able group with SCP is point-wise distal.

Proof Since G0 is a connected group it contains a maximal compact nor-
mal characteristic subgroup C such that G0/C is a real Lie group (cf. [29])
and G/C also has SCP (cf. Proposition 2.2). Also, G/G0 is isomorphic to
(G/C)/(G0/C). Hence, we may assume that G0 is a real Lie group and G0

has no nontrivial compact normal subgroup. Suppose G/G0 is not point-wise
distal. Then there exists g ∈ G such that {gn}n∈N-action on G/G0 is not dis-
tal. Let α = Inn(g). Then by Proposition 2.1 of [24], there exists x ∈ G,
such that αn(x)G0 → G0. Now by Step 2 of Theorem 3.3, for γn = αn,
there exists k ∈ L, a compact totally disconnected group in Z(G0) such that
L ∩G0 = ∅ and αn(k) → e. In particular, C(α) = C(g) 6= {e}.

Now we show that C(g)∩G0 = {e}. Since {gn}n∈N-action on G/G0 is not
distal, {gn}n∈Z generates a discrete infinite cyclic group modulo G0, hence,
Z⋉αG

0 is a closed subgroup of G and it has SCP (cf. Proposition 2.4). Also,
since G0 is a Lie group, by Proposition 2.7, C(g) ∩ G0 = {e}. Let K be a
subgroup of G as in the proof of Theorem 3.3, such that KG0 = K×G0 and
KG0 is an open subgroup of G.

First we show that (K×G0)∩C(g) = K∩C(g). Let b ∈ C(g) be such that
b = k′x, for some k′ ∈ K and x ∈ G0. Then gnbg−n → e. Arguing as in Step 2
of the proof of Theorem 3.3, we get that gnk′g−n → e and hence gnxg−n → e.
The above implies that x = e and b = k′ ∈ K. Let bn ∈ C(g) be such that
bn → b ∈ G0. Since K ×G0 is an open neighbourhood of b, bn ∈ K ×G0 for
all large n. Since bn ∈ C(g), bn ∈ K and hence b ∈ K ∩ G0 = {e}. Thus,
C(g) ∩G0 = {e}.

Now we have that C(g) is totally disconnected subgroup normalised by
g. Also, the subgroup Z ⋉α C(g) is a (Borel) subgroup of G. Clearly, the
group Z ⋉α C(g) is totally disconnected. By Lemma 3.5 of [24], the measure
µ = δgν is not a Choquet-Deny measure where ν = pδx + (1 − p)δe for any
0 < p < 1 and p 6= 1

2
for some x ∈ C(g) \ {e}. By Lemma 3.3 of [24],
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µ is non-dissipating and hence by Proposition 4.1, µ does not have SCP in
Z ⋉α C(g). By Lemma 3.4 of [24], the map (n, x) 7→ xgn is (continuous)
injective from Z ⋉α C(g) into G and hence µ does not have SCP in G also
(cf. Proposition 2.4).

5 Z-actions on compact groups

In this section we apply dynamics of Z-actions on compact groups to prove
the main theorem for Z ⋉K. We first recall some dynamical notions.

Let K be a compact group and α ∈ Aut(K). Then α is said to be ergodic
(on K) if for any α-invariant Borel set E of K, ωK(E) = 0 or 1. We say
that the {αn}n∈Z-action on K has descending chain condition which would be
called DCC if any decreasing sequence {Kn} of closed α-invariant subgroups
is finite, that is, there exists a k ≥ 1 such that Kn = Km for all n,m ≥ k;
see [27] and [36] for details on DCC.

Lemma 5.1 Let L be any non-trivial compact group and τ :LZ → LZ be the
shift automorphism given by τ((gi)) = (gi+1) for any (gi) ∈ LZ. Then the
group Z ⋉τ L

Z does not have SCP.

The above Lemma follows from Theorem 4.2 if L is not connected. Here,
we give a simple proof in the general case.

Proof of Lemma 5.1 Let M = {(xi) ∈ LZ | xi = e for i > 0}. Then
τ(M) ⊂ M . Let µ = ωMδ1. Then µnδ−n =

∏n−1
i=0 τ

i(ωM) = ωM for any
n ≥ 1. Thus, µ is non-dissipating and µnµ̌n → ωM . Suppose µ has shifted
convolution property. Then there exists a compact subgroup N of Z ⋉τ L

Z

and g ∈ Z⋉τ L
Z such that µng−n → ωN with gNg−1 = N . Then µnµ̌n → ωN

and hence M = N . Since g normalizes N , the closed subgroup generated
by g and M contains the support of µ and hence M is normalized by the
support of µ. Since 1 is in the support of µ, M is τ -invariant. This is a
contradiction unless L is trivial.

Lemma 5.2 Let K be a compact metrizable group and α be an ergodic au-
tomorphism of K. Suppose Z ⋉α K has SCP and the {αn}n∈Z-action on K
has DCC. Then K is a compact connected abelian group of finite-dimension.

Proof By Lemma 5.1, K contains no α-invariant subgroup of the form
LZ, where α-action is given by a shift. Now using this fact, the assertion
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essentially follows from the proof of Theorem 10.6 of [36], but for the sake of
clarity, we give a sketch of proof along the same lines.

Since {αn}n∈Z-action on K has DCC, there exists a compact Lie group G
such that K ⊂ GZ and the action of α is given by shift on GZ (cf. [27]). For
k ∈ Z, let FH(k) = {gk : (gn)n∈Z ∈ K, g0 = e} be closed subgroups of G. Let
ηk : G → Gk = G/FH(k) be the natural projection and let ηk : K → (Gk)

Z

be the map induced by ηk as follows: ηk((gn)n∈Z) = (ηk(gn))n∈Z. Then
by the proof of Theorem 10.6 of [36] (see also [28] and [40]), there exists
N ≥ 1 such that ηk(G) = G/FH(k) is isomorphic to Tn, the n-dimensional
torus, for all k ≥ N , for some fixed n and ηN(K) is isomorphic to XA,
for some A ∈ GLn(Q), where XA = {(π(yn)) : yn+1 = A(yn), n ∈ Z} and
π : Rn → Rn/Zn ≃ Tn is the canonical quotient map. Hence ηN(K) is a
connected abelian finite dimensional group.

It remains to show that ηN is an isomorphism, i.e. ker ηN is trivial. Let
Yk = ker ηk, k ∈ N. Then Y1 = ΛZ

1 is a subgroup of K (cf. Proposition
10.2 of [36]), which has SCP. By Lemma 5.1 Λ1 is trivial and hence, Y1 is
trivial. This shows that η1 is injective, and hence, an isomorphism. Now
η1(Y2) = ΛZ

2 (cf. [27], Proposition 5.7 (2)) which is a closed subgroup of
η1(K). Thus, η1(Y2) = ΛZ

2 has SCP and hence by Lemma 5.1, η1(Y2) is
trivial. This implies that η2 is also injective. Arguing inductively, we get
that all ηk, k ∈ N, are injective. This completes the proof.

Lemma 5.3 Let K be a non-trivial compact metrizable connected finite-
dimensional abelian group and α be an ergodic automorphism of K. Then
Z ⋉α K does not have SCP.

Proof Let m > 0 be such that Zm ⊂ K̂ ⊂ Qm. Let Bm be the dual of Qm.
Then K is a quotient of Bm. It can easily be shown that any automorphism
of K lifts to an automorphism of Bm (see [34]). We denote the lift of α also
by α.

For any prime number p, let Qp be the field of p-adic numbers. Then α
is in GLm(Qp) for all p and α ∈ GLm(R). We now show that there exists a
prime p for which α has an eigenvalue of p-adic absolute value different from
one or α ∈ GLm(R) has an eigenvalue of absolute value different from one.
Suppose for every prime p, eigenvalues of α ∈ GLm(Qp) are of p-adic absolute
value one. Let f be the characteristic polynomial of α. Then the leading
coefficient of f is one and all coefficients are rational. Since the coefficients
of f are elementary symmetric functions of eigenvalues of α, for any prime
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p, p-adic absolute value of the coefficients are less than or equal one. This
implies that all coefficients of f are integers and the leading coefficient is
one. Thus, eigenvalues of α ∈ GLm(R) are algebraic integers. Since α is
ergodic, no eigenvalue of α is a root of unity. Thus, by a classical result of
Kronecker (see [16]), we get that α ∈ GLm(R) has an eigenvalue of absolute
value different from one. Since Z⋉αK and Z⋉α−1 K are isomorphic, we can
assume that an eigenvalue of α ∈ GLm(Qp) or α ∈ GLm(R) is of absolute
value less than one.

Let F be Qp or R such that α ∈ GLm(F ) has an eigenvalue of abso-
lute value less than one. Since Qm ⊂ Fm and Qm is dense, there exists a
continuous injection ψ:Fm → Bm. It can easily be verified that ψα = αψ.
Now, let V = {v ∈ Fm | αn(v) → 0 as n → ∞}. Then V is a non-trivial
closed subspace. By Lemma 2.5 we get a measure λ ∈ P (Fm) that is sup-
ported on V such that the support of λ contains 0 and {λα(λ) · · ·αn(λ)}n∈N

converges but the limit point is not an idempotent invariant under α. Let
π:Bm → K be the canonical projection. Let ρ ∈ P (Fm) be the limit point
of {λα(λ) · · ·αn(λ)}n∈N.

Let (1, πψ(λ)) denote the probability measure on Z ⋉α K defined by

(1, πψ(λ))(A× B) = δ1(A)πψ(λ)(B)

for any Borel sets A in Z and B in K. We show that this measure does
not have SCP. If possible, suppose (1, πψ(λ)) has SCP. Then πψ(ρ) is an
idempotent invariant under α (cf. [12], Theorem 4.3). Let L be the compact
subgroup of K such that πψ(ρ) = ωL. Since λ is supported on V and V is α-
invariant, ρ(V ) = 1. Since πψ(V ) is a Borel subgroup of K, πψρ(πψ(V )) = 1
and hence ωL(πψ(V )) = 1. Since ωL is L-invariant, ωL(xπψ(V )) = 1 for any
x ∈ L. This implies that xπψ(V ) ∩ πψ(V ) 6= ∅ and hence x ∈ πψ(V ) for all
x ∈ L, that is, L ⊂ πψ(V ). Since α contracts V , α contracts L as well. Since
L is a compact group, L is trivial. Thus, ψ(λ) is supported on the kernel of
π, say, M .

Let H = ψ−1(M)∩V . Then H is a α-invariant closed subgroup of V . Let
M̂ be the dual of M . Then M̂ ≃ Qm/K̂ has only elements of finite order. Let
V ′ be the maximal vector subspace contained in H . Then V ′ is α-invariant.
Now ψ restricted to V ′ defines a continuous homomorphism ψ̂: M̂ → V ′.
Since V ′ has no element of finite order, ψ̂ and hence ψ is trivial. This implies
that H contains no vector subspace. Thus, H is compact or discrete. Since
α contracts H , H is trivial. Since λ is supported on H , λ = δe. Then for all
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n ∈ N, λα(λ) · · ·αn(λ) = δe an idempotent which is α-invariant, this leads
to a contradiction. Therefore, (1, πψ(λ)), and hence, Z ⋉α K does not have
SCP.

Theorem 5.4 Let K be a compact group and α be an automorphism of K.
Suppose the group Z ⋉α K has SCP. Then {αn}n∈Z-action is distal on K.

Proof Let us first consider the case when K is second countable. Assume
that the group Z ⋉α K has SCP. By Proposition 2.1 of [34], it is enough
to show that α is not ergodic on H for any non-trivial Γ-invariant closed
subgroup H of K. But since Z ⋉α H also has SCP, it is enough to show this
for H = K.

Suppose α is ergodic on K. By Theorem 3.16 of [27], there exists a
decreasing sequence {Ki} of closed normal α-invariant subgroups such that
∩Ki = {e} and the action of α on K/Ki has DCC. It is easy to see that the
action of α on K/Ki is ergodic. By Proposition 2.2, Z ⋉α K/Ki has SCP.
Thus, Lemma 5.2 implies that K/Ki is a compact connected abelian group
of finite-dimension. Now by Lemma 5.3, K = Ki. Since ∩Ki = {e}, K is
trivial.

Now consider the case when K is not necessarily second countable. Sup-
pose Z ⋉α K has SCP. Since Z ⋉α K is σ-compact, each neighbourhood U
of e in K contains a compact normal subgroup KU of Z ⋉α K such that
(Z ⋉α K)/KU is second countable (cf. [19], Theorem 8.7). This implies
that KU is a normal subgroup of K and is α-invariant. By Proposition
2.2, Z ⋉α (K/KU) has SCP and hence {αn}n∈Z-action is distal on K/KU .
Since U is an arbitrary neighbourhood of e in K, {αn}n∈Z-acition is distal
on K.

6 Locally compact groups

Theorem 6.1 A locally compact group G is point-wise distal if and only if
the group G has SCP.

Proof We first assume that G is second countable and hence metrizable.
Suppose G is point-wise distal. Let µ ∈ P (G) be non-dissipating. It is
enough to show that µ has SCP. Without loss of any generality, we may
assume that G = Gµ, the closed subgroup generated by the support of µ.
Let Nµ be the smallest closed normal subgroup of G such that a coset of it
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contains the support of µ. Then there exists z ∈ G, a compact subgroup H
of Nµ and an increasing sequence {kn} such that z normalises H and there
exists a Borel subgroup N1 ⊂ {g ∈ G | z−kngzknH → H} with Nµ = N1 (cf.
[23] or [25]). Let α:G→ G be α(g) = z−1gz for all g ∈ G. By Theorem 3.1,
{αn}n∈Z-action on G/H is distal and hence N1 ⊂ H ⊂ Nµ. Thus, H = Nµ.
Now by Lemma 3.8 of [23], µnz−n → ωH , i.e. µ has SCP.

Conversely, suppose G has SCP. It is enough to show that G/G0 is point-
wise distal and G-action on G0 is point-wise distal. It follows from Theorem
4.2 that G/G0 is point-wise distal. Now we show that G-action on G0 is
point-wise distal, which in turn would imply that G is point-wise distal. Let
K be the maximal compact normal subgroup of G0 such that G0/K is a
real Lie group. Then K is characteristic in G0 and hence K is a normal
subgroup of G. By Theorem 5.4 G-action on K is point-wise distal. Hence
it is enough to show that the G-action on G0/K, or equivalently, the G/K-
action on G0/K is point-wise distal. Also since G has SCP so does G/K
(cf. Proposition 2.2). Now replacing G by G/K, we may assume that G0 is a
Lie group without any nontrivial compact normal subgroup. Let x ∈ G and
αx:G

0 → G0 be defined by αx(g) = xgx−1 for all g ∈ G0. Here, the closed
subgroup generated by xG0 is either a discrete or a compact subgroup in
G/G0. First suppose that it is discrete. Then the map (n, g) 7→ gxn defines
a continuous injection of Z ⋉αx

G0 into G. By Proposition 2.4, the group
Z ⋉αx

G0 has SCP. It follows from Proposition 2.7 that G-action on G0 is
point-wise distal.

Now suppose xG0 generates a relatively compact subgroup in G/G0. Let
Gx be the closed subgroup generated by G0 and x. Then it is an almost
connected locally compact group having SCP. Then G0

x = G0 is a Lie group
with SCP and by Proposition 2.7, it is point-wise distal. Therefore, G0 is
distal. Now Gx, being a compact extension of G0, is also distal. This implies
that {αn

x}n∈Z-action is distal on G0. Thus, the G-action on G0 is point-wise
distal.

Now assume that G is any locally compact group. Suppose G is point-
wise distal. Let µ ∈ P (G) be non-dissipating. Let Gµ be the closed subgroup
generated by the support of µ in G. Then Gµ is σ-compact and it is point-
wise distal. This implies that every neighbourhood U of the identity e in Gµ

has a compact normal subgroup KU such that Gµ/KU is second countable
(cf. [19], Theorem 8.7). By Theorem 3.1, Gµ/KU is also point-wise distal
and hence it has SCP. This implies that the image of µ on Gµ/KU has SCP.
By Proposition 2.3, µ itself has SCP .
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Conversely, assume that G has SCP. Let x ∈ G and g ∈ G be such
that e is a limit point of {xngx−n | n ∈ Z}. Let H be the closed subgroup
generated by x and g. Then H is σ-compact and H also has SCP. Then every
neighbourhood U of e in H contains a compact normal subgroup KU of H
such that H/KU is second countable (cf. [19], Theorem 8.7). By Proposition
2.2, H/KU has SCP and hence point-wise distal. This implies g ∈ KU ⊂ U .
Since U is an arbitrary neighbourhood of e, g = e. Thus, G is point-wise
distal.

Remark 6.2 It is clear from Theorem 3.1 and the above proof that point-
wise distal implies SCP is valid even if G is any metrizable group.

We now prove a few interesting consequences of Theorem 6.1.

Corollary 6.3 Let G be a locally compact point-wise distal group. If x ∈ G
and K is a compact group such that xKx−1 ⊂ K, then xKx−1 = K.

This result is known in case G is a real Lie group or G is a Tortrat group
(see Lemma 2.2 of [13]).

Proof Let λ = ωK . Then λxλx−1 = λ. Thus,
∏n

k=0 x
kλx−k = λ. Let

µ = λx. Then µnx−n =
∏n−1

k=0 x
kλx−k = λ for all n ≥ 1. Thus, µ is

non-dissipating. Since G is point-wise distal, by Theorem 6.1 we get that
{µn ∗ µ̌n} converges to an idempotent whose support (group) is normalized
by the support of µ. But µn ∗ µ̌n = λλ̌ = ωK and since, x is in the support
of µ, we have xKx−1 = K.

We next obtain the Krengel-Lin decomposition for measures on point-wise
distal groups. Let G be a locally compact group with right Haar measure m.
Let L2(G) be the Hilbert space of all square integrable functions on G with
respect to m with norm || · ||. For µ ∈ P (G), define Pµ:L

2(G) → L2(G) by

Pµ(f)(x) =

∫
f(xy−1) dµ(y)

for all x ∈ G. Then Pµ is a contraction on L2(G).
We recall that a µ ∈ P (G) is called adapted if the closed subgroup gener-

ated by the support of µ is all of G.
It is shown in [11] that adapted µ ∈ P (G) is dissipating if and only if

L2(G) = {f ∈ L2(G) | ||P n
µ (f)|| → 0} = E0, (say).
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When µ is adapted and is non-dissipating, E0 6= L2(G) and in this situ-
ation Krengel-Lin decomposition is about determining the orthogonal com-
plement of E0 in L2(G) and showing that the orthogonal complement of E0

in L2(G) is equal to L2(G,Σd) where Σd is the deterministic σ-algebra of
Pµ consisting of Borel sets A in G such that for each n ≥ 1 there exists a
Borel set Bn with Pµ(1A) = 1Bn

: see [32] and references cited therein. We
now prove the Krengel-Lin decomposition for measures on point-wise distal
groups which is a continuation of [2], [26] and [32].

Corollary 6.4 Let G be a non-compact locally compact point-wise distal
group and µ be an adapted probability measure on G. Suppose µ is non-
dissipating. Then there exists a compact normal subgroup K such that:

1. L2(G) = E0⊕L
2(G,Σd) and the deterministic σ-algebra Σd is generated

by {xnK | n ∈ Z} for any x in the support of µ;

2. (L2(G,Σd), Pµ) is isomorphic to the bilateral shift on l2(Z).

Proof The result follows from Theorem 6.1 and Proposition 3.1 of [32].

The following is a generalization of implication (a) ⇒ (c) of Theorem 3.6
of [24].

Corollary 6.5 Let G be a locally compact group. If every µ ∈ P (G) is
Choquet-Deny, then G is point-wise distal.

Proof Suppose µ ∈ P (G) is Choquet-Deny. Then by Theorem 2.25 of [25]
µ has SCP. Now Theorem 6.1 implies that G is point-wise distal.

7 Actions on spaces of measures

In this section we consider actions on connected Lie groups and show that
distality of group actions carries over to the actions on spaces of measures
under a certain condition. For a connected Lie group G with Lie algebra G,
Aut(G) can be realised as a subgroup of GL(G), by identifying each automor-
phism with its derivative on G. By an almost algebraic subgroup of Aut(G)
we shall mean a subgroup of Aut(G) which is a subgroup of finite index or
equivalently open subgroup in an algebraic subgroup of GL(G), under the
identification. Since subgroups of GL(G) have algebraic closure, subgroup of
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an almost algebraic group in Aut(G) has almost algebraic closure, that is,
the smallest almost algebraic group contining the subgroup.

Theorem 7.1 Let G be a connected Lie group having no compact central
subgroup of positive dimension. Let Γ ⊂ Aut(G) be a subgroup. Then the
following are equivalent.

(1) Γ-action on G is point-wise distal;

(2) Γ-action on G is distal;

(3) Γ-action on P (G) is distal;

(4) Γ-action on P (G) is point-wise distal.

Proof The implication that (1) ⇒ (2) follows from Theorem 1.1 of [1] and
[6] and that (3) ⇒ (4) ⇒ (1) are easy to verify. We now prove that (2) ⇒
(3).

Assume that Γ-action on G is distal. Let G be the Lie algebra of G. Since
Γ-action on G is distal, by Theorem 1.1 of [1] we get that Γ-action on G is
also distal. By Theorem 1 of [6], almost algebraic closure of Γ is a compact
extension of a unipotent subgroup of GL(G). Since G has no compact central
subgroup of positive dimension, Theorem 1 of [7] implies that Aut(G) is an
almost algebraic subgroup of GL(G). It follows that almost algebraic closure
of Γ is contained in Aut(G). Thus, we may assume that Γ is a unipotent
subgroup of Aut(G).

Since Γ is a unipotent subgroup of Aut(G) ⊂ GL(G), if Φ defines the
conjugacy action of the group G̃ = Aut(G)⋉G, then Φ(Γ) is also a unipotent
subgroup of Aut(G̃) and hence its action on G̃ is distal. Thus, replacing G
by G̃ and considering the conjugacy action, we may assume that α(x) = x
for all x in the center of G and all α ∈ Γ.

Suppose {αn} is in Γ such that limαn(µ) = limαn(λ) for some µ and
λ in P (G). Let Ad:G → GL(G) be the adjoint representation and θ: Γ →
GL(End(G)) be defined by

θ(α)(v) = (dα)v(dα)−1

for any α ∈ Γ and any v ∈ End(G). Then θ(α)Ad(g) = Ad(α(g)) for any
α ∈ Γ and any g ∈ G. Thus, lim θ(αn)Ad(λ) = lim θ(αn)Ad(µ).
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Now, by passing to subsequence we may assume by Lemma 2.1 of [8] that
θ(αn)(w) converges for all w in the support of Ad(µ) and in the support
of Ad(λ). Let W = {w ∈ End(G) | {θ(αn)(w))} converges}. Then W is
a subalgebra of End(G) containing the supports of Ad(λ) and Ad(µ). By
Lemma 2.2 of [8], there exist sequences {βn} and {β ′

n} such that {θ(β ′
n)}

converges and θ(βn)(v) = v for all v ∈ W and θ(αn) = θ(β ′
nβn) for all

n ≥ 1. Again by passing to a subsequence and replacing βn and βn by an
element from βnKer(θ) and βnKer(θ) respectively, we may assume that {β ′

n}
converges and αn = β ′

nβn with θ(βn)(w) = w for all w ∈ W and all n ≥ 1.
This implies that lim βn(µ) = lim βn(λ) and βn ∈ Γ′ = {α ∈ Γ | θ(α(v)) =
v for all v ∈W}. Then Γ′ is a unipotent subgroup of Aut(G).

Let H̃ be the smallest almost algebraic subgroup containing the supports
of Ad(µ) and Ad(λ). Now for α ∈ Γ′ and x ∈ Ad−1(H̃) = H , say, x−1α(x) is
in the center of G and H contains the center of G. Thus, using Lemma 3.1 of
[8] we see that the conditions of Proposition 3.2 of [8] are verified and hence
by Proposition 3.2 of [8], there exist sequences {Tn} and {Sn} in Γ′ such that
{Tn} is relatively compact, Sn(x) = x for all x in the supports of µ and λ
and βn = TnSn for all n ≥ 1. If T is a limit point of {Tn}, then T (µ) = T (λ).
Thus, λ = µ. This proves that the action of Γ on P (G) is distal.

Example 7.2 We will now show that the assumption on the center of G in
Theorem 7.1 can not relaxed. Let T = {z ∈ C | |z| = 1} be the circle group
and K = T2 and α:K → K be given by

α(w, z) = (wz, z)

for all (w, z) ∈ K. Then α is a continuous automorphism of K and let Γ be
the group generated by α. Since the eigenvalues of α are one, the action of
Γ on K is distal. Let L = {(1, z) ∈ K | z ∈ T} and µ ∈ P (K) be invariant
under L. We will now show that there exists a subsequence {kn} such that
αkn(µ) → ωK .

Since K is monothetic, there exists x, y in T such that the closed subgroup
generated by (x, y) is K. This implies that the closed subgroup generated
by y is the circle group T. Let {kn} be such that ykn → x. By passing to
a subsequence of {kn}, we may assume that limαkn(µ) = λ ∈ P (K) exists.
Now, (x, y)λ = lim(ykn, y)αkn(µ) = limαkn((1, y)µ) = limαkn(µ) = λ as
µ is invariant under L. Thus, λ is (x, y)-invariant. Since K is the closed
subgroup generated by (x, y), we get that λ is K-invariant and hence λ is
the normalized Haar measure on K. This shows that if µ is invariant under
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L, then the closure of the orbit Γ(µ) contains ωK . Thus, the action of Γ on
P (K) is not distal. This also shows that the group Z ⋉α K is distal but not
Tortrat.
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