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THE CURVATURE INVARIANT FOR A CLASS OF

HOMOGENEOUS OPERATORS

GADADHAR MISRA AND SUBRATA SHYAM ROY

Abstract. For an operator T in the class Bn(Ω), introduced by Cowen and Douglas, the simulta-
neous unitary equivalence class of the curvature and the covariant derivatives up to a certain order
of the corresponding bundle ET determine the unitary equivalence class of the operator T . In a
subsequent paper, the authors ask if the simultaneous unitary equivalence class of the curvature and
these covariant derivatives are necessary to determine the unitary equivalence class of the operator
T ∈ Bn(Ω). Here we show that some of the covariant derivatives are necessary. Our examples consist
of homogeneous operators in Bn(D). For homogeneous operators, the simultaneous unitary equiv-
alence class of the curvature and all its covariant derivatives at any point w in the unit disc D are
determined from the simultaneous unitary equivalence class at 0. This shows that it is enough to
calculate all the invariants and compare them at just one point, say 0. These calculations are then
carried out in number of examples. One of our main results is that the curvature along with its covari-
ant derivative of order (0, 1) at 0 determines the equivalence class of generic homogeneous Hermitian
holomorphic vector bundles over the unit disc.

1. Introduction

Let H be a Hilbert space of holomorphic functions on a bounded open connected set Ω ⊆ C.
Assume that for w ∈ Ω, the point evaluations evw : f 7→ f(w) on H are bounded and locally
bounded. Then the Hilbert space H possesses a reproducing kernel K, that is,

f(w) =
〈
f,Kw

〉
, f ∈ H, Kw ∈ H for all w ∈ Ω.

The map w 7→ Kw̄ is holomorphic and defines a holomorphic vector bundle on Ω∗ := {w : w̄ ∈ Ω}. It
turns out that if the adjoint of the multiplication by the coordinate function on H is bounded then
Kw is an eigenvector for it with eigenvalue w̄, w ∈ Ω.

Suppose T is a bounded linear operator on a Hilbert space H possessing an open set of eigenvalues,
say Ω, with constant multiplicity 1. For w ∈ Ω, let γw be the eigenvector for T with eigenvalue w. In
a significant paper [7], Cowen and Douglas showed that for these operators T , under some additional
mild hypothesis, one may choose the eigenvector γw to ensure the map w 7→ γw is holomorphic. Thus
the operator T gives rise to a holomorphic Hermitian vector bundle ET on Ω. They proved that

(i) the equivalence class of the holomorphic Hermitian bundle ET determines the unitary equiv-
alence class of the operator T ;

(ii) The operator T is unitarily equivalent to the adjoint of the multiplication by the coordinate
function on a Hilbert space H of holomorphic functions on Ω∗. The point evaluation on H
are shown to be bounded and locally bounded assuring the existence of a reproducing kernel
function for H.

From (i), as shown in [7], it follows that the curvature

K(w) :=
∂

∂w

∂

∂w̄
log ‖γw‖2, w ∈ Ω
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of the line bundle ET is a complete invariant for the operator T . On the other hand, following (ii),
Curto and Salinas [10] showed that the normalized kernel

K̃(z, w) = K(w0, w0)
1/2K(z, w0)

−1K(z, w)K(w0, w)−1K(w0, w0)
1/2, w ∈ Ω

at w0 ∈ Ω is a complete invariant for the operator T as well.
If the dimension of the eigenspace of the operator T at w is no longer assumed to be 1 then a

complete set of unitary invariants for the operator T involves not only the curvature but a certain
number of its covariant derivatives. The reproducing kernel, in this case, takes values in the n× n
matrices Mn, where n is the (constant) dimension of the eigenspace of the operator T at w. The
normalized kernel, modulo conjugation by a fixed unitary matrix from Mn, continues to provide a
complete invariant for the operator T .

Unfortunately, very often, the computation of these invariants tend to be hard. However, there is
one situation, where these computations become somewhat tractable, namely, if T is assumed to be
homogeneous. Recall that an operator T is said to be homogeneous if ϕ(T ) is unitarily equivalent to
T for all ϕ in the bi-holomorphic automorphism group Möb of the unit disc D. For a homogeneous
operator T , if the unitary operator Uϕ implementing the unitary equivalence between T and ϕ(T ) can
be chosen such that the map ϕ 7→ Uϕ is a projective unitary representation of the group Möb, then
Uϕ is said to be the representation associated to T . If the operator T is assumed to be irreducible
then the existence of an associated representation is easily established using the Schur Lemma (cf.
[5, Theorem 2.2]).

One may expect that in the case of homogeneous operators, the form of the invariants, discussed
above, at any one point will determine it completely. We illustrate this phenomenon throughout
the paper. Homogeneous operators have been studied extensively over the last few years ([2, 4, 3,
6, 5, 13, 14, 16, 18]). Some of these homogeneous operators correspond to a holomorphic Hermitian
homogeneous bundle – as discussed above. Recall that a Hermitian holomorphic bundle E on the
open unit disc D is homogeneous if every ϕ in Möb lifts to an isometric bundle map of E.

Although, the homogeneous bundles E on the open unit disc D have been classified in [6], it is
not easy to determine which of these homogeneous bundles E comes from a homogeneous operators.
In [18], Wilkins used his classification to describe all the irreducible homogeneous operators of rank
2. In the paper [14], the first author along with Koranyi, gives an explicit description of a class of
homogeneous bundles and the corresponding homogeneous operator. Thus making it possible for
us to compute the curvature invariants for these homogeneous operators. Although, our main focus
will be the computation of the curvature invariants, we will also compute the normalized kernel and
explain the relationship between these two types of invariants. Along the way, we give a partial
answer to some questions raised in [7, 9].

For a bounded open connected set Ω ⊆ C and n ∈ N, let us recall that the class Bn(Ω), introduced
in [7], consists of bounded operators T with the following properties:

a) Ω ⊂ σ(T )
b) ran(T − w) = H for w ∈ Ω
c)
∨

w∈Ω ker(T − w) = H for w ∈ Ω
d) dim ker(T − w) = n for w ∈ Ω.

It was shown in [7, proposition 1.11] that the eigenspaces for each T in Bn(Ω) form a Hermitian
holomorphic vector bundle ET over Ω, that is,

ET := {(w, x) ∈ Ω ×H : x ∈ ker(T − w)}, π(w, x) = w

and there exists a holomorphic frame w 7→ γ(w) := (γ1(w), . . . , γn(w)) with γi(w) ∈ ker(T −w), 1 ≤
i ≤ n. The Hermitian structure at w is the one that ker(T −w) inherits as a subspace of the Hilbert
space H. In other words, the metric at w is simply the grammian h(w) =

((
〈γj(w), γi(w)〉

))n
i,j=1

. The

curvature KT (w) of the bundle ET is then defined to be ∂
∂w̄

(
h−1 ∂

∂wh
)
(w) for w ∈ Ω (cf. [17, pp. 78

– 79]).
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Theorem 1.1 ([8], Page. 326). Two operators T, T̃ in B1(Ω) are unitarily equivalent if and only if
KT (w) = K eT (w) for w in Ω.

Thus the curvature of the line bundle ET is a complete set of unitary invariant for an operator
in B1(Ω). Although, more complicated, a complete set of unitary invariants for the operators in the
class Bn(Ω) is given in [7].

It is not hard to see (cf. [17, pp. 72]) that the curvature of a bundle E transforms according
to the rule K(fg)(w) = (g−1K(f)g)(w), w ∈ ∆, where f = (e1, ..., en) is a frame for E over an
open subset ∆ ⊆ Ω and g : ∆ → GL(n,C) is a holomorphic change of frame. For a line bundle E,
locally, the change of frame g is a scalar valued holomorphic function. In this case, it follows from
the transformation rule for the curvature that it is independent of the choice of a frame. In general,
the curvature of a bundle E of rank n > 1 depends on the choice of a frame. Thus the curvature K
itself cannot be an invariant for the bundle E. However, the eigenvalues of K are invariants for the
bundle E. More interesting is the description of a complete set of invariants given in [7, Definition
2.17 and Theorem 3.17] involving the curvature and the covariant derivatives

Kziz̄j , 0 ≤ i ≤ j ≤ i+ j ≤ n, (i, j) 6= (0, n),

where rank of E = n. In a subsequent paper (cf. [9, page. 78]), by means of examples, they showed
that fewer covariant derivatives of the curvature will not suffice to determine the class of the bundle
E. These examples do not necessarily correspond to an operator in the class Bn(Ω). Recall that if a
Hermitian holomorphic vector bundle E is the pullback of the tautological bundle defined over the
Grassmannian Gr(n,H) under the holomorphic map

t : Ω −→ Gr(n,H), t(w) = ker(T − w), w ∈ Ω

for some operator T : H → H, T ∈ Bn(Ω), then E = ET and we say that it corresponds to
the operator T . On the other hand, for certain class of operators like the generalized Wilkins

operators Wk := {M (α,β)
k : α, β > 0} ⊆ Bk+1(D) describe below (cf. [3, page 428]), the unitary

equivalence class of the curvature K (just at one point) determines the unitary equivalence class of
these operators in Wk. This is easily proved using the form of the curvature at 0 of the generalized

Wilkins operatorsM
(α,β)
k , namely, diag(α, · · · , α, α + (k + 1)β + k(k + 1)) (cf. [15, Theorem 4.12]).

In this paper we construct examples of operators T in B2(D) and B3(D) to show that the eigenvalues
of the curvature for the corresponding bundle ET does not necessarily determine the class of the
bundle ET . Our examples consisting of homogeneous bundles ET show that the covariant derivatives
of the curvature up to order (1, 1) cannot be dropped, in general, from the set of invariants described
above. These verifications are somewhat nontrivial and use the homogeneity of the bundle in an
essential way. It is not clear if for a homogeneous bundle the curvature along with its derivatives up
to order (1, 1) suffices to determine its equivalence class. Secondly the original question of sharpness
of [7, Page. 214] and [9, page. 39], remains open, although our examples provide a partial answer.

One of the main theorems we prove here involves the class of operators constructed in [14]. This
construction provides a complete list (up to mutual unitary in-equivalence) of irreducible homoge-
neous operators in Bk+1(D), k ≥ 1 whose associated representation is multiplicity free. It turns out
that for k = 1, this is exactly the same list as that of Wilkins [18], namely, W1. However, for k ≥ 2,
the class of operators Wk ⊆ Bk+1(D) is much smaller than the corresponding list from [14]. Now
consider those homogeneous and irreducible operators from [14] for which the eigenvalues of the
curvature are distinct and have multiplicity 1. The Hermitian holomorphic bundles corresponding
to such operators are called generic (cf. [7, page. 226]). We show that for these operators, the
simultaneous unitary equivalence class of the curvature and the covariant derivative of order (0, 1)
at 0 determine the unitary equivalence class of the operator T . This is considerably more involved
than the corresponding result for the class Wk.

To summarize, it is surprising that there are no known examples of operators T ∈ Bn(Ω), n > 1,
for which the set of eigenvalues of the curvature KT is not a complete invariant. We construct some
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examples in this paper to show that one needs the covariant derivatives of the curvature as well to
determine the unitary equivalence class of an operator T ∈ Bn(Ω), n > 1. The inherent difficulty
in finding such examples suggests the possibility that the complete set of invariants for an operator
T ∈ Bn(Ω) described in [7, 9] may not be the most economical. Although, in these papers, it is shown
that for generic bundles, the set of complete invariants is much smaller and consists of the curvature
and its covariant derivatives of order (0, 1) and (1, 1). However, even for generic bundles, it is not
clear if this is the best possible. Indeed, we show that for a certain class of homogeneous operators
corresponding to generic holomorphic Hermitian homogeneous bundles, the curvature along with its
covariant derivative of order (0, 1) at 0 provides a complete set of invariants.

2. Examples from the Jet Construction

Let B(z, w) = (1 − zw̄)−2 be the Bergman kernel on the unit disc, the Hilbert space corre-

sponding to the non-negative definite kernel Bλ/2(z, w) = (1 − zw̄)−λ be A(λ)(D) for λ > 0.
We let M (λ) : A(λ)(D) −→ A(λ)(D) be the multiplication operator, that is, (M (λ)f)(z) = zf(z),

f ∈ A(λ)(D), z ∈ D. Following the jet construction of [11] (see also [16]), we construct a Hilbert

space A
(α,β)
k (D) (α, β > 0, k ∈ N) starting from the kernel Hilbert space A(α)(D) ⊗ A(β)(D) with

reproducing kernel B(α,β)(z,w) = Bα/2(z1, w1)B
β/2(z2, w2), z = (z1, z2),w = (w1, w2) ∈ D2. The

Hilbert space A
(α,β)
k (D) consists of Ck+1 - valued holomorphic functions defined on the open unit

disc D. It turns that the reproducing kernel B
(α,β)
k for A

(α,β)
k (D) is

B
(α,β)
k (z, w) =

((
Bα/2(z1, w1)∂

i
z2
∂j

w̄2
Bβ/2(z2, w2)

))
0≤i,j≤k|res D×D

,(2.1)

that is, z1 = z = z2 and w1 = w = w2. The multiplication operator on A
(α,β)
k (D) is denoted by

M
(α,β)
k .

Example 2.1. Consider the operators M := M (λ) ⊕M (µ) and M ′ := M
(α,β)
1 for λ, µ, α, β > 0.

Wilkins [18] has shown that the operator M ′∗ is in B2(D) and that it is irreducible. This operator is
also homogeneous, that is, ϕ(M ′) is unitarily equivalent to M ′ for all bi-holomorphic automorphisms
ϕ of the open unit disc D (cf. [3]). It is easy to see that the operators M (λ) and M (µ) are both
homogeneous and the adjoint of these operators are in the class B1(D). Consequently, the direct
sum, namely, M ∗ is homogeneous and lies in the class B2(D). Let

(1) h(z) =

(
Bλ/2(z, z) 0

0 Bµ/2(z, z)

)
, λ, µ > 0,

(2) h′(z) = B
(α,β)
1 (z, z)tr =

(
(1 − |z|2)2 βz̄(1 − |z|2)
βz(1 − |z|2) β(1 + β|z|2)

)
(1− |z|2)−α−β−2, α, β > 0, for z ∈ D,

where Xtr denotes the transpose of the matrix X.
The bundles (E, h) and (E ′, h′) correspond to the the operators M ∗ and M ′∗ respectively. We

denote the curvature and the covariant derivative of the curvature of order (0, 1) for the bundles
(E, h) and (E ′, h′) by K, Kz̄ and K′, K′

z̄ respectively. By direct computation we have

K(z) =

(
λ

(1−|z|2)2
0

0 µ
(1−|z|2)2

)
, Kz̄(z) = 2

(
λz

(1−|z|2)3
0

0 µz
(1−|z|2)3

)
;

K′(z) =

(
α

(1−|z|2)2
−2β(β+1)z̄
(1−|z|2)3

0 α+2β+2
(1−|z|2)2

)
, K′

z̄(z) = 2

(
αz

(1−|z|2)3
−β(β+1)(1+2|z|2)

(1−|z|2)4

0 (α+2β+2)z
(1−|z|2)3

)
.

Choose λ, µ > 0 with µ− λ > 2 and set α = λ and β = 1
2(µ− λ− 2). Since curvature is self-adjoint

the set of eigenvalues is a complete set of unitary invariants for the curvature. The eigenvalues for
K(z) and K′(z), z ∈ D, are clearly the same by the choice of λ, µ, α and β. So, these matrices are
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pointwise unitarily equivalent. Now, we observe that Kz̄(0) = 0 and K′
z̄(0) 6= 0. Hence they cannot

be unitarily equivalent. It follows that the eigenvalues of the curvature alone cannot determine the
unitary equivalence class of the bundle. However, in this example, the covariant derivative of order
(0, 1) suffices to distinguish the equivalence class of the operators M and M ′∗.

Before we construct the next example, let us recall that for any reproducing kernel K on D, the
normalized kernel K̃(z, w) at 0 (in the sense of Curto-Salinas [10, Remark 4.7 (b) ]) is defined to

be the kernel K(0, 0)1/2K(z, 0)−1K(z, w)K(0, w)−1K(0, 0)1/2. This kernel is characterized by the

property K̃(z, 0) = I for z ∈ D and is therefore uniquely determined up to a conjugation by a

constant unitary matrix. Let K(z, w) =
∑

k,`≥0 ak`z
kw̄` and K̃(z, w) =

∑
k,`≥0 ãk`z

kw̄`, where ak`

and ãk` are determined by the real analytic functionsK and K̃ respectively, ak` and ãk` are in Mn, for
k, ` ≥ 0. Since K̃(z, w) is a normalized kernel, it follows that ã00 = I and ãk0 = ã0` = 0 for k, ` ≥ 1.
Let K(z, w)−1 =

∑
k,`≥0 bk`z

kw̄`, where bk` is in Mn for k, ` ≥ 0. Clearly, K(z, w)∗ = K(w, z) for

any reproducing kernel K and z, w ∈ D. Therefore, a∗k` = a`k, ã
∗
k` = ã`k and bk`

∗ = b`k for k, ` ≥ 0,
where X∗ denotes the conjugate transpose of the matrix X.

Let H be a Hilbert space of holomorphic functions on D possessing the reproducing kernel K.
To emphasize the role of the reproducing kernel, we sometimes write (H,K) for this Hilbert space.
If we assume that the adjoint M ∗ of the multiplication operator M on the Hilbert space (H,K)

is in Bk(D), then it follows from [10, Lemma 4.8, page. 474] that the operator M̃∗ on the Hilbert

space H̃ determined by the normalized kernel K̃ is unitarily equivalent to M ∗ on the Hilbert space
(H,K). Hence the adjoint of the multiplication operator M̃ on (H̃, K̃) lies in Bk(D) as well. Let

(Ẽ, h̃) be the corresponding bundle, where h̃(z) = K̃(z, z)tr, z ∈ D. The curvature of this bundle is

K̃(z) = ∂
∂z̄ (h̃−1 ∂

∂z h̃)(z) for z ∈ D.

Lemma 2.2. Let h̃(z)tr = K̃(z, z) =
∑

k,`≥0 ak`z
kz̄`. In this notation, we have

(a) ∂mh̃(0) = ∂̄nh̃(0) = 0 = ∂mh̃−1(0) = ∂̄nh̃−1(0) for m, n ≥ 1 and

(b) ∂̄∂h̃(0) = ãtr
11, ∂̄∂h̃

−1(0) = −ãtr
11, ∂̄

2∂2h̃(0) = 4ãtr
22.

Proof. Since K̃(z, z) is a real analytic function with K̃(z, 0) = I for z ∈ D and h̃(z) = K̃(z, z)tr,

it follows that ∂mh̃(0) = m!atr
m0 = 0 and ∂̄nh̃(0) = n!atr

0n = 0. By the same token, for h̃−1(z) =

K̃−1(z, z), we have ∂mh̃−1(0) = 0 and ∂̄nh̃−1(0) = 0 since K̃−1(z, 0) = I as well for all z ∈ D.

This completes the proof of part (a). To prove part (b), we note that h̃(z)h̃−1(z) = I implies

∂̄∂h̃−1(0) = −ãtr
11. Clearly ∂̄∂h̃(0) = ãtr

11 and ∂̄2∂2h̃(0) = 4ãtr
22. �

Lemma 2.3. The curvature K̃ and the covariant derivative of the curvature K̃z̄n at 0 are given by
the formulae:

K̃(0) = ãtr
11 and K̃z̄n(0) = (n+ 1)!ãtr

1,n+1.

Proof. Since K̃(z) = ∂
∂z̄ (h̃−1 ∂

∂z h̃)(z), it follows that K̃(0) = ∂̄h̃−1(0)∂h̃(0) + h̃−1(0)∂̄∂h̃(0) = ãtr
11,

by the previous Lemma. Also, K̃z̄n(0) = ∂̄nK̃(0) = ∂̄n+1(h̃−1∂h̃)(0) (see [7, Proposition 2.17, page

211]). From Lemma 2.2, we have ∂̄`h̃−1(0) = 0 for ` ≥ 1. Therefore, using the Leibnitz rule,

K̃z̄n(0) =

n+1∑

k=0

(n+1
k

)
∂̄n+1−kh̃−1(0)∂̄k∂h̃(0) = ∂̄n+1∂h̃(0) = (n+ 1)!ãtr

1,n+1.

This proves the second assertion. �

Lemma 2.4. If K̃ is the curvature of the bundle (Ẽ, h̃), then K̃zz̄(0) = 2(2ã22 − ã2
11)

tr.

Proof. We know from [7, Proposition 2.17, page 211] that for a bundle map Θ of a Hermitian

holomorphic vector bundle (Ẽ, h̃), the covariant derivatives Θz and Θz̄ with respect to a holomorphic
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frame f are given by Θz(f) = ∂Θ(f) + [h̃−1∂h̃,Θ(f)] and Θz̄(f) = ∂̄Θ(f). Since the curvature K̃ is
a bundle map, it follows that

K̃zz̄(z) = ∂̄
(
∂K̃(z) + [h̃−1∂h̃, K̃](z)

)

= ∂̄∂K̃(z) + [∂̄(h̃−1∂h̃), K̃](z) + [h̃−1∂h̃, ∂̄K̃](z)

= ∂̄∂K̃(z) + [h̃−1∂h̃, ∂̄K̃](z).

Since ∂h̃(0) = 0 by Lemma 2.2, we have K̃zz̄(0) = ∂̄∂K̃(0). Consequently, K̃zz̄(z)|z=0 =

∂̄∂(∂̄h̃−1∂h̃)(z)|z=0. This simplifies considerably since ∂h̃(0) = ∂2h̃(0) = ∂h̃−1(0) = 0, again by
Lemma 2.2. Thus we obtain

K̃zz̄(0) = 2∂̄∂h̃−1(0)∂̄∂h̃(0) + ∂̄2∂2h̃(0) = −2ãtr
11ã

tr
11 + 4atr

22 = 2(2ã22 − ã2
11)

tr.

�

Lemma 2.5. The coefficient of zk+1w̄`+1 in the power series expansion of K̃(z, w) is

ãk+1,`+1 = a
1/2
00

( k∑

s=1

∑̀

t=1

bs0ak+1−s,`+1−tb0t+

k∑

s=1

bs0ak+1−s,`+1b00 +
∑̀

t=1

b00ak+1,`+1−tb0t + b00ak+1,`+1b00 − bk+1,0a00b0,`+1

)
a

1/2
00

for k, ` ≥ 0.

Proof. From the definition of K̃(z, w) we see that for k, ` ≥ 0

ãk+1,`+1 = a
1/2
00

( k+1∑

s=0

`+1∑

t=0

bs0ak+1−s,`+1−tb0t

)
a

1/2
00

= a
1/2
00

( k+1∑

s=1

`+1∑

t=1

bs0ak+1−s,`+1−tb0t +
k+1∑

s=1

bs0ak+1−s,`b00

+

`+1∑

t=1

b00ak+1,`+1−tb0t + b00ak+1,`+1b00
)
a

1/2
00

= a
1/2
00

( k∑

s=1

∑̀

t=1

bs0ak+1−s,`+1−tb0t +

k+1∑

s=1

bs0ak+1−s,0b0,`+1 +
∑̀

t=1

bk+1,0a0,`+1−tb0t

+

k+1∑

s=1

bs0ak+1−s,`b00 +

`+1∑

t=1

b00ak+1,`+1−tb0t + b00ak+1,`+1b00
)
a

1/2
00

= a
1/2
00

( k∑

s=1

∑̀

t=1

bs0ak+1−s,`+1−tb0t + (
k+1∑

s=0

bs0ak+1−s,0)b0,`+1 + bk+1,0(
`+1∑

t=0

a0,`+1−tb0t)

+
k∑

s=1

bs0ak+1−s,`b00 +
∑̀

t=1

b00ak+1,`+1−tb0t + b00ak+1,`+1b00 − bk+1,0a00b0,`+1

)
a

1/2
00

= a
1/2
00

( k∑

s=1

∑̀

t=1

bs0ak+1−s,`+1−tb0t +

k∑

s=1

bs0ak+1−s,`b00 +
∑̀

t=1

b00ak+1,`+1−tb0t

+b00ak+1,`+1b00 − bk+1,0a00b0,`+1

)
a

1/2
00
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as the coefficient of zk+1 in K(z, w)−1K(z, w) =
∑k+1

s=0 bs0ak+1−s,0 = 0 and the coefficient of w̄`+1 in

K(z, w)K(z, w)−1 =
∑`+1

t=0 a0,`+1−tb0t = 0 for k, ` ≥ 0. �

The following Theorem will be useful in the sequel. For T in Bn(Ω), recall that KT denotes the
curvature of the bundle ET corresponding to T .

Theorem 2.6. Suppose that T1 and T2 are homogeneous operators in Bn(D). Then KT1(0) and
(KT1)z̄(0) are simultaneously unitarily equivalent to KT2(0) and (KT2)z̄(0) respectively if and only if
KT1(z) and (KT1)z̄(z) are simultaneously unitarily equivalent to KT2(z) and (KT2)z̄(z) respectively
for all z in D.

Notation 2.7. Before going into the proof of Theorem 2.6, let us fix some notation. Let

Möb = {ϕt,a : t ∈ T, a ∈ D}, where ϕt,a(z) = t
z − a

1 − āz
.

Möb is the group of biholomorphic automorphisms of the unit disc D. Let c :Möb×D → C be the
function which is given by the formula

c(ϕ−1, z) := (ϕ−1)′(z),

where the prime stands for differentiation with respect to z. The function c satisfies the following
cocycle property:

c(ϕ−1ψ−1, z) = c(ϕ−1, ψ−1(z))c(ψ−1, z), for ϕ ∈ Möb and z ∈ D.

The cocycle property can be easily verified by the chain rule.

Lemma 2.8. Suppose that T in Bn(D) is homogeneous. Then
(a) KT (ϕ−1(0)) = |c(ϕ−1, 0)|−2U−1

ϕ KT (0)Uϕ

(b) (KT )z̄(ϕ
−1(0)) = |c(ϕ−1, 0)|−2c(ϕ−1, 0)−1U−1

ϕ

(
(KT )z̄(0) − c(ϕ−1, 0)−1(ϕ−1)(2)(0)KT (0)

)
Uϕ

for some unitary operator Uϕ, ϕ ∈ Möb.

Proof. Following [7], using the homogeneity of the operator T , we find that there is a unitary operator
Uϕ,z such that

(2.2) Kϕ(T )(z) = U−1
ϕ,zKT (z)Uϕ,z, ϕ ∈ Möb and z ∈ D.

On the other hand, an application of the chain rule gives the formula

(2.3) Kϕ(T )(z) = |(ϕ−1)′(z)|2KT ((ϕ−1)(z)), for ϕ ∈ Möb and z ∈ D.

Putting both of these together, we clearly have

U−1
ϕ,zKT (z)Uϕ,z = |c(ϕ−1, z)|2KT ((ϕ−1)(z)).

In particular, if z = 0, then

U−1
ϕ,0KT (ϕ−1(0))Uϕ,0 = |c(ϕ−1, 0)|2KT ((ϕ−1)(0)).

Set Uϕ,0 := Uϕ. Then

KT (ϕ−1(0)) = |c(ϕ−1, 0)|−2U−1
ϕ KT (0)Uϕ

for ϕ ∈ Möb, z ∈ D. This proves part (a).
To prove part (b), we differentiate Kϕ(T ) respect to z̄ using (2.3 ) to see that

∂̄Kϕ(T )(z) = (ϕ−1)′(z)(ϕ−1)(2)(z)KT (ϕ−1(z)) + |(ϕ−1)′(z)|2(ϕ−1)′(z)∂̄KT (ϕ−1(z))

= c(ϕ−1, z)(ϕ−1)(2)(z)KT (ϕ−1(z)) + |c(ϕ−1, z)|2c(ϕ−1, z)∂̄KT (ϕ−1(z)).(2.4)
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Using ( 2.4 ) and (a), putting z = 0 and Uϕ,0 = Uϕ, we see that

U−1
ϕ ∂̄KT (0)Uϕ = c(ϕ−1, 0)(ϕ−1)(2)(0)KT (ϕ−1(0)) + |c(ϕ−1, 0)|2c(ϕ−1, 0)∂̄KT (ϕ−1(0))

= c(ϕ−1, 0)(ϕ−1)(2)(0)|c(ϕ−1, 0)|−2U−1
ϕ KT (0)Uϕ + |c(ϕ−1, 0)|2c(ϕ−1, 0)∂̄KT (ϕ−1(0))

= c(ϕ−1, 0)−1(ϕ−1)(2)(0)U−1
ϕ KT (0)Uϕ + |c(ϕ−1, 0)|2c(ϕ−1, 0)∂̄KT (ϕ−1(0)).(2.5)

So,

∂̄KT (ϕ−1(0)) = |c(ϕ−1, 0)|−2c(ϕ−1, 0)−1U−1
ϕ

(
∂̄KT (0) − c(ϕ−1, 0)−1(ϕ−1)(2)(0)KT (0)

)
Uϕ.

The proof of part (b) is complete since (KT )z̄ = ∂̄KT (cf. [7]). �

Corollary 2.9. Suppose that T1, T2 are homogeneous operators in Bn(D). Then

(1) U−1KT2(0)U = KT1(0), (2) U−1(KT2)z̄(0)U = (KT1)z̄(0)

for some unitary operator U if and only if

(i) V −1
ϕ KT2(z)Vϕ = KT1(z), (ii) V −1

ϕ (KT2)z̄(z)Vϕ = (KT1)z̄(z)

for some unitary operator Vϕ, ϕ in Möb and z ∈ D.

Proof. The “if” part is obvious. To prove the “only if” part, take ϕ = ϕt,z, where ϕt,a(w) = t w−a
1−āw ,

for a,w ∈ D and t ∈ T. Pick a unitary operator such that (a) and (b) of Lemma 2.8 are satisfied.
We get from (1) and Lemma 2.8(a) that

KT1(z) = |c(ϕ−1, 0)|−2U−1
ϕ KT1(0)Uϕ

= |c(ϕ−1, 0)|−2U−1
ϕ U−1KT2(0)UUϕ

= |c(ϕ−1, 0)|−2U−1
ϕ U−1|c(ϕ−1, 0)|2UϕKT2(z)U

−1
ϕ UUϕ

= U−1
ϕ U−1UϕKT2(z)U

−1
ϕ UUϕ.

Since Vϕ := U−1
ϕ UUϕ is unitary, the proof of (i) is complete.

From (1), (2) and Lemma 2.8(b)

(KT1)z̄(z) = |c(ϕ−1, 0)|−2c(ϕ−1, 0)−1U−1
ϕ

(
(KT1)z̄(0) − c(ϕ−1, 0)−1(ϕ−1)(2)(0)KT1(0)

)
Uϕ

= |c(ϕ−1, 0)|−2c(ϕ−1, 0)−1U−1
ϕ U−1

(
(KT2)z̄(0) − c(ϕ−1, 0)−1(ϕ−1)(2)(0)KT2(0)

)
UUϕ

= |c(ϕ−1, 0)|−2c(ϕ−1, 0)−1U−1
ϕ U−1

(
(ϕ−1)(2)(0)c(ϕ−1, 0)−1KT2(0)

+|c(ϕ−1, 0)|2c(ϕ−1, 0)Uϕ(KT2)z̄(z)U
−1
ϕ − (ϕ−1)(2)(0)c(ϕ−1, 0)−1KT2(0)

)
UUϕ

= U−1
ϕ U−1Uϕ(KT2)z̄(z)U

−1
ϕ UUϕ.(2.6)

Taking Vϕ = U−1
ϕ UUϕ as before, we have (ii). �

Proof of Theorem 2.6. Combining Lemma 2.8 and Corollary 2.9, we have a proof of the Theorem
2.6. �

Notation 2.10. For a positive integer m, let S(c1, . . . , cm) denote the forward shift on Cm+1 with
weight sequence (c1, . . . , cm), ci ∈ C, that is,

S(c1, . . . , cm)(`, p) = c`δp+1,` for 0 ≤ p, ` ≤ m.

We set Sm := S(1, . . . ,m). For A in Mp,q, we let A(i, j) denote the (i, j)-th entry of the matrix A

for 1 ≤ i ≤ p, 1 ≤ j ≤ q. For a vector v in Ck, let v(i) denote the i-th component of the vector v,
1 ≤ i ≤ k.
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Example 2.11. From (2.1 ), we get

B
(α,β′)
1 (z, w) =

(
(1 − zw̄)2 β′z(1 − zw̄)
β′w̄(1 − zw̄) β ′(1 + β′zw̄)

)
(1 − zw̄)−α−β′−2

and

B
(α,β)
2 (z, w) =

(
(1−zw̄)4 β(1−zw̄)3z β(β+1)(1−zw̄)2z2

β(1−zw̄)3w̄ β(1+βzw̄)(1−zw̄)2 β(β+1)(2+βzw̄)(1−zw̄)z

β(β+1)(1−zw̄)2w̄2 β(β+1)(2+βzw̄)(1−zw̄)w̄ β(β+1)(2+(β+1)(4+βzw̄)zw̄)

)
(1−zw̄)−α−β−4

for α, β, β ′ > 0 and (z, w) ∈ D × D. Let K1(z, w) := (1 − zw̄)−α ⊕ B
(α,β′)
1 (z, w) and K2(z, w) :=

B
(α,β′)
2 (z, w) for (z, w) ∈ D × D. Let M1 and M2 be the multiplication operators on the Hilbert

spaces H1 and H2 with reproducing kernels K1 and K2 respectively. Clearly, M1 is the direct sum

M (α)⊕M (α,β′)
1 acting on the Hilbert space A(α)⊕A(α,β′)

1 and M2 is the multiplication operator on the

Hilbert space A
(α,β)
2 . Wilkins [18] has shown that the adjoint of the operator M

(α,β′)
1 on A

(α,β′)
1 is in

B2(D). This operator is also homogeneous. It is easy to see that the operator M (α) is homogeneous
and its adjoint is in the class B1(D). Consequently, the direct sum, namely, M ∗

1 is homogeneous and
lies in the class B3(D). The operator M ∗

2 is in B3(D) by [11, Proposition 3.6] and is homogeneous by
[3, Page. 428] and [15, Theorem 5.1]. Let

(2.7) h1(z) = K1(z, z)
tr and h2(z) = K2(z, z)

tr.

Thus h1 and h2 are the metrics for the bundles E1 and E2 corresponding to the operators M ∗
1 and

M∗
2 respectively.

Lemma 2.12. The curvature at zero and the covariant derivatives of curvature at zero of order
(0, 1) and (1, 1) for the bundles E1 and E2 are

(a) K̃1(0) = diag(α, α, α + 2β ′ + 2), (K̃1)z̄(0) = S(0,−2
√
β′
(
β′ + 1)

)tr
and (K̃1)zz̄(0) =

2diag(α, α+ β ′(β′ + 1), α + β′(−β′ + 1) + 2);

(b) K̃2(0) = diag (α, α, α + 3β + 6), (K̃2)z̄(0) = S
(
0,−3

√
2(β + 1)(β + 2)

)tr
and (K̃2)zz̄(0) =

diag
(
α, α+ 3(β + 1)(β + 2), α − 3β(β + 2)

)
,

respectively. Here K̃i, (K̃i)z̄ and (K̃i)zz̄ are computed with respect to the metrics h̃i for i = 1, 2
obtained from the corresponding reproducing kernels normalized at 0.

(If h̃ is a metric corresponding to a normalized reproducing kernel at 0, then h̃(0) = I, that is,

the basis for the fibre at 0 with respect to which h̃(0) is computed is orthonormal.)

Proof. For any reproducing kernel K with

K(z, w) =
∑

m,n≥0

amnz
mw̄n and K(z, w)−1 =

∑

m,n≥0

bmnz
mw̄n,

the identity K(z, w)−1K(z, w) = I implies that

b00 = a−1
00 and

k∑

`=0

b0,k−`a0` = 0, k ≥ 1.

For k = 1, we have b10 = −a−1
00 a10a

−1
00 , b01 = (b10)

∗. Also, by Lemma 2.5, we have

(2.8) a11 = a
1/2
00

(
b00a11b00 − b10a00b01

)
a

1/2
00 = a

−1/2
00

(
a11 − a10a

−1
00 a01

)
a
−1/2
00 .

For k = 2, we have b02 = −
(
b01a01 + b00a02

)
a−1

00 = a−1
00

(
a01a

−1
00 a01 − a02

)
a−1

00 . Now, Lemma 2.5 gives

ã12 = a
1/2
00

(
b00a11b01 + b00a12b00 − b10a00b02

)
a

1/2
00

= a
−1/2
00

(
a12 − (a11 − a10a

−1
00 a01)a

−1
00 a01 − a10a

−1
00 a02

)
a
−1/2
00 .(2.9)
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Observing that b20 = b02
∗ = a−1

00

(
a10a

−1
00 a10 − a20

)
a−1

00 , from Lemma 2.5, we have

ã22 = a
1/2
00

(
b10a11b01 + b10a12b00 + b00a21b01 + b00a22b00 − b20a00b02

)
a

1/2
00

= a
−1/2
00

(
a10a

−1
00 a11a

−1
00 a01 − a10a

−1
00 a12 − a21a

−1
00 a01 + a22

−(a10a
−1
00 a10 − a20)a

−1
00 (a01a

−1
00 a01 − a02)

)
a
−1/2
00

= a
−1/2
00

(
a22 + (a20a

−1
00 a01 − a21)a

−1
00 a01 − a20a

−1
00 a02

−a10a
−1
00 (a12 − (a11 − a10a

−1
00 a01)a

−1
00 a01 − a10a

−1
00 a02)

)
a
−1/2
00 .(2.10)

In particular, choosing K = K1, we have

a00 = diag(1, 1, β ′), a01 = S
(
0, β′

)
;

a11 = diag(α, α + β ′, β′(α+ 2β′ + 2)), a12 = S
(
0, β′(α+ β′ + 1)

)
;

a22 = diag
(α(α+ 1)

2
,
(α + β′)(α+ β′ + 1)

2
,
β′(α+ β′ + 2)(α + 3β ′ + 3)

2

)
, and a20 = 0.

Thus, a11−a10a
−1
00 a01 = diag(α, α, β ′(α+ 2β′ + 2)). Hence from Lemma 2.3 and Equation (2.8 ), we

have K̃1(0) = ãtr
11 = diag(α, α, α + 2β ′ + 2).

From Equation (2.9 ), we get ã12 = S
(
0,−

√
β′(β′ +1)

)
. So, from Lemma 2.3, we have (K̃1)z̄(0) =

2ãtr
12 = S

(
0,−2

√
β′(β′ + 1)

)tr
.

Similarly, from Equation (2.10 ), ã22 = diag
(α(α+1)

2 , α(α+1)+β′(β′+1)
2 , (α+β′+2)(α+3β′+3)

2

)
. Hence

(K̃1)zz̄(0) = 2(2ã22 − ã2
11)

tr = 2 diag(α, α + β ′(β′ + 1), α + β′(−β′ + 1) + 2)

from Lemma 2.4. This completes the proof of (a).
To prove (b), choose K = K2 and observe that

a00 = diag(1, β, 2β(β + 1)), a10 = S
(
β, 2β(β + 1)

)tr
,

a12 = S
(
β(α+ β + 1), β(β + 1)(2α + 3β + 6)

)
,

(
a02

)
(i, j) =

{
β(β + 1) for i = 3, j = 1;
0 otherwise,

a11 = diag
(
α+ β, β(α + 2β + 2), 2β(β + 1)(α + 3β + 6)

)

and

a22 = diag
((α + β)(α + β + 1)

2
,
β(α + β + 2)(α + 3β + 3)

2
,

β(β + 1)((α + β + 4)(α + β + 5) + 4(β + 1)(α+ β + 4) + β(β + 1))
)
.

Therefore, a11 − a10a
−1
00 a01 = diag

(
α, αβ, 2β(β + 1)(α + 3β + 6)

)
. Hence from Lemma 2.3 and

Equation (2.8 ), we have

K̃2(0) = ãtr
11 = diag(α, α, α + 3β + 6).

Also, from Equation (2.9 ), we have

ã12 = S
(
0,− 3√

2

√
β + 1(β + 2)

)

and from Lemma 2.3, we have

(K̃2)z̄(0) = 2ãtr
12 = S

(
0,−3

√
2(β + 1)(β + 2)

)tr
.

Since

ã22 = diag
(α(α+ 1)

2
,
α(α + 1) + 3(β + 1)(β + 2)

2
,
α(α + 1)

2
+ 3(β + 2)(α + β + 3)

)
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from Equation (2.10 ), using Lemma 2.4, we get

(K̃2)zz̄(0) = 2(2ã22 − ã2
11)

tr = 2 diag
(
α, α + 3(β + 1)(β + 2), α − 3β(β + 2)

)
.

�

By means of a sequence of lemmas proved below, we construct a unitary operator between the
vector spaces

(
(E1)0, h1(0)

)
and

(
(E2)0, h2(0)

)
which intertwines K̃1(0), K̃2(0) and (K̃1)z̄(0), (K̃2)z̄(0).

Here (E1)0 and (E2)0 are the fibres over 0 of the corresponding bundles E1 and E2 respectively.

Lemma 2.13. A linear transformation U0 : (C3, h2(0)) −→ (C3, h1(0)) is diagonal and unitary with

U0 = diag(u1, u2, u3), ui ∈ C for i = 1, 2, 3, if and only if |u1|2 = 1, |u2|2 = β, |u3|2 = 2β(β+1)
β′ .

Proof. “only if” part: Since U0 is a unitary operator we have U ∗
0 = U−1

0 , where ∗ denotes the adjoint
of U0. Now, from [11, p. 395]

U∗
0 = h2(0)

−1U
tr
0 h1(0)

= diag
(
1, β−1, (2β(β + 1))−1

)
diag(ū1, ū2, ū3)diag(1, 1, β ′)

= diag
(
ū1,

ū2

β
,

ū3β
′

2β(β + 1)

)

= diag(u−1
1 , u−1

2 , u−1
3 )

This implies the desired equalities.

“if” part: Taking u1 = 1, u2 =
√
β, u3 =

√
2β(β+1)

β′ , we see that U0 = diag(u1, u2, u3) is a unitary

operator between the two given vector spaces. �

The proof of the next lemma is just a routine verification.

Lemma 2.14. Suppose that T and T̃ are in M3 such that

T (i, j) =

{
η for i = 2, j = 3;
0 otherwise.

and T̃ (i, j) =

{
η̃ for i = 2, j = 3;
0 otherwise.

Then AT = T̃A for some invertible diagonal matrix A = diag(a1, a2, a3) if and only if η̃
η = a2

a3
.

Lemma 2.15. If β ′ = 3
2β + 2, then U−1

0 K̃1(0)U0 = K̃2(0) and U−1
0 (K̃1)z̄(0)U0 = (K̃2)z̄(0), where

U0 :
(
C3, h2(0)

)
−→

(
C3, h1(0)

)
, is a diagonal unitary with U0 = diag(u1, u2, u3), ui ∈ C for

i = 1, 2, 3.

Proof. Our the choice of β ′ together with Lemma 2.12 ensures that K̃1(0) = K̃2(0). The first equality
is therefore evident.

Clearly, (K̃2)z̄(0) and (K̃1)z̄(0) are of the form T and T̃ of the previous Lemma. Choose

u1 = 1, u2 =
√
β, u3 =

√
2β(β + 1)

β′
, with β′ =

3

2
β + 2.

To complete the proof of the second equality, by Lemma 2.14, we only have to verify η̃
η = u2

u3
, where

η = −3
√

2(β + 1)(β + 2), η̃ = −2
√
β′(β′ + 1). Now,

u2

u3
=

√
ββ′

2β(β + 1)
=

√
3
2β + 2

2(β + 1)
=

1

2

√
3β + 4

β + 1

and

η̃

η
=

−2
√
β′(β′ + 1)

−3
√

2(β + 1)(β + 2)
=

2
√

3
2β + 2(3

2β + 2 + 1)

3
√

2(β + 1)(β + 2)
=

3
√

3β + 4(β + 2)

2(3
√
β + 1)(β + 2)

=
1

2

√
3β + 4

β + 1
.
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�

Since the operators M1 and M2 are homogeneous, combining Lemma 2.15 with Theorem 2.6, we
have the following Corollary.

Corollary 2.16. For ϕ in Möb, there is a unitary operator Uϕ such that Uϕ
−1K̃1(z)Uϕ = K̃2(z)

and Uϕ
−1(K̃1)z̄(z)Uϕ = (K̃2)z̄(z).

Lemma 2.17. If β ′ = 3
2β + 2 then (K̃1)zz̄(0) and (K̃2)zz̄(0) are not unitarily equivalent.

Proof. By Lemma 2.12, (K̃i)zz̄(0) = diag(pi, qi, ri) for i = 1, 2, where p1 = α, q1 = α + β′(β′ + 1),
r1 = α+ β′(−β′ + 1) and p2 = α, q2 = α+ 3(β + 1)(β + 2), r2 = α− 3β(β + 2). Clearly,

p1 = p2, q1 > r1 and q2 > r2.(2.11)

If the diagonal matrices (K̃1)zz̄(0) and (K̃2)zz̄(0) are unitarily equivalent then {p1, q1, r1} =
{p2, q2, r2}, as sets. From (2.11 ), we see that this can happen only if p1 = p2, q1 = q2 and r1 = r2.

Since β′ = 3
2β + 2, q1 = α + 3

4 (β + 2)(3β + 4). We see that q1 6= q2 as β 6= 0. Hence (K̃1)zz̄(0) and

(K̃2)zz̄(0) are not unitarily equivalent. �

The following Theorem is now obvious.

Theorem 2.18. The simultaneous unitary equivalence class of the curvatures and the covariant
derivatives of the curvatures of order (0, 1) for the operators M1 and M2 are the same for β ′ = 3

2β+2.
However, the covariant derivatives of the curvatures of order (1, 1) are not unitarily equivalent.

3. Irreducible Examples and Permutation of Curvature Eigenvalues

In the Example 2.1, one of the two homogeneous operators M ∗ is reducible while the other M ′∗

is irreducible. Similarly in the Example 2.11, one of the two operators M ∗
1 is reducible whereas

the other M ∗
2 is irreducible. Irreducibility of M ′∗ and M∗

2 follows from [15]. We are interested in
constructing such examples within the class of irreducible operators in Bn(D). The class of irreducible
homogeneous operators in B2(D) cannot possibly possess such examples, since the eigenvalues of the
curvature at 0 is a complete invariant for these operators (cf. [18]). Therefore, we consider a
class of homogeneous operators in B3(D) discussed in [14]. However, we first show that for generic

bundles E(λ,µ) the simultaneous equivalence class of the curvature and the covariant derivative of the
curvature of order (0, 1) determine the equivalence class of the homogeneous Hermitian holomorphic

vector bundle E(λ,µ).

Notation 3.1. Let λ be a real number and m be a positive integer such that 2λ−m > 0. For brevity,
we will write 2λj = 2λ−m+ 2j, 0 ≤ j ≤ m. Let

(3.12) L(λ)(`, j) =

{ (`
j

)2 (`−j)!
(2λj )`−j

for 0 ≤ j ≤ ` ≤ m;

0 otherwise.

and B = diag (d0, d1, . . . , dm). Now, for µ = (µ0, . . . , µm)tr with µ0 = 1 and µ` > 0 for ` = 1, . . . ,m,
let

B(λ,µ)(z, w) = (1 − zw̄)−2λ−mD(zw̄) exp(w̄Sm)B exp(zS∗
m)D(zw̄),

where B is a positive diagonal matrix with B`,` = d` =
∑̀

j=0

(
`

j

)2 (`− j)!

(2λj)`−j
µ2

j for 0 ≤ ` ≤ m, D(zw̄) =

(1 − zw̄)m−`δp` is diagonal and Sm is the forward shift with weight sequence (1, . . . ,m). Here,
Xtr denotes the transpose of the matrix X. Thus L(λ)µ2 = d for µ2 := (µ2

0, µ
2
1, . . . , µ

2
m)tr and

d = (d0, d1, . . . , dm)tr.



CURVATURE INVARIANT FOR HOMOGENEOUS OPERATORS 13

The kernel B(λ,µ) is positive definite. Indeed, it is the reproducing kernel for the Hilbert space
A(λ,µ)(D) of Cm+1 - valued holomorphic functions described in [14]. LetM (λ,µ) denote the multiplica-

tion operator on the Hilbert space A(λ,µ)(D). The Hermitian holomorphic vector bundle associated

with B(λ,µ) is denoted by E(λ,µ). In [14], it is shown that M (λ,µ) is an irreducible homogeneous
operator, which is in Bm+1(D).

Lemma 3.2. For the reproducing kernel B(λ,µ), we have

(a) ã11 = [B−1SmB,S∗
m] + (2λ+m)Im+1 − 2Dm,

(b) ã12 = B1/2
(

1
2(B−1S2

mBS∗
mB−1 + S∗

mB−1Sm
2) + B−1[Dm,Sm] − B−1SmBS∗

mB−1Sm

)
B1/2,

where Ik denotes the identity matrix of order k and Dm = diag (m, . . . , 1, 0).

Proof. From Equation (2.8 ) in Lemma 2.12, we get ã11 = a
−1/2
00

(
a11 − a10a

−1
00 a01

)
a
−1/2
00 . Form

the expansion of the reproducing kernel B(λ,µ) we see that a00 = B, a10 = BS∗
m, a01 = SmB,

a11 = SmBS∗
m+(2λ+m)B−2DmB. So, a11−a10a

−1
00 a01 = SmBS∗

m+(2λ+m)B−2DmB−BS∗
mB−1SmB.

The proof of (a) is now complete since the matrices SmBS∗
m, SmB−1S∗

m, B, B1/2, B−1/2 are diagonal.

From Lemma 2.5, we have ã12 = a
1/2
00

(
b00a11b01 + b00a12b00 − b10a00b02

)
a

1/2
00 . Again, from the

expansion of the reproducing kernel B(λ,µ) it is easy to see that

a12 =
1

2
S2

mBS∗
m + (2λ+m)SmB −DmSmB − SmBDm, b00 = B−1, b10 = −S∗

mB−1, b02 =
1

2
B−1Sm

2.

The proof of (b) is now complete since the two diagonal matrices B and Dm commute. �

Let K̃(λ,µ) denote the curvature of the bundle E(λ,µ), that is, K̃(z) = ∂
∂z̄

(
h̃−1 ∂

∂z h̃
)
(z), where

h̃(z) = B̃(λ,µ)(z, z)tr for z in D. Recall that B̃(λ,µ) is the normalized reproducing kernel obtained

from the reproducing kernel B(λ,µ).

Lemma 3.3. The curvature at zero K̃(λ,µ)(0) and the covariant derivative of curvature of order

(0, 1) at zero (K̃(λ,µ))z̄(0) are given by the formulae:

(a) K̃(λ,µ)(0) = diag
(
(2λr + αr − αr+1

)m
r=0

),

(b) (K̃(λ,µ))z̄(0) = 2S
(
(−√

αr(1+αr − 1
2(αr−1 +αr+1))

m
r=1

)tr
, where αr = r2dr−1d

−1
r for 0 ≤ r ≤

m with α0 = αm+1 = 0.

Proof. We only write the nonzero entries of the matrices involved. Notice that SmBS∗
m(r, r) = r2dr−1

for 1 ≤ r ≤ m, B−1SmBS∗
m(r, r) = r2dr−1d

−1
r for 1 ≤ r ≤ m, S∗

mB−1Sm(r, r) = (r + 1)2d−1
r+1 for

0 ≤ r ≤ m − 1 and S∗
mB−1SmB(r, r) = (r + 1)2drd

−1
r+1 for 0 ≤ r ≤ m − 1. Therefore, by Lemma

3.2(a), we see that K̃(λ,µ)(0) = ãtr
11 = diag ({2λr + αr − αr+1}m

r=0). This proves part (a).
To prove part (b), we observe that

BSm(r + 1, r) = (r + 1)d−1
r+1 for 0 ≤ r ≤ m− 1,

SmBS∗
m(r, r) = r2dr−1 for 1 ≤ r ≤ m,

B−1S2
mBS∗

mB−1(r + 1, r) = r2(r + 1)dr−1d
−1
r d−1

r+1 for 1 ≤ r ≤ m− 1.

Equivalently,

B−1S2
mBS∗

mtrB−1(r, r − 1) = r(r − 1)2dr−2d
−1
r−1d

−1
r for 2 ≤ r ≤ m.

Since

S∗
mB−1S2

m(r, r − 1) = r(r + 1)2d−1
r+1 for 1 ≤ r ≤ m− 1,

DmSm(r, r − 1) = (m− r)r for 1 ≤ r ≤ m,

SmDm(r, r − 1) = r(m− r + 1) for 1 ≤ r ≤ m,

it follows that
[Dm,Sm](r, r − 1) = −r, that is, [Dm,Sm] = −Sm.
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Hence (B−1[Dm,Sm])(r, r − 1) = −rd−1
r for 1 ≤ r ≤ m. Now,

(B−1[Dm,Sm] − B−1SmBS∗
mB−1Sm)(r, r − 1) = −rd−1

r − r3dr−1d
−2
r

= −rd−1
r (1 + r2dr−1d

−1
r )

= −rd−1
r (1 + αr) for 1 ≤ r ≤ m.

Also,

1

2
(B−1S2

mBS∗
mB−1 + S∗

mB−1S2
m)(r, r − 1) =

r

2
((r − 1)2di−2d

−1
r−1d

−1
r + (r + 1)2d−1

r+1)

=
r

2
(αr−1d

−1
r + (r + 1)2d−1

r+1)

for 1 ≤ r ≤ m with α0 = 0 = d−1
m+1. From Lemma 3.2 (b), using d−1 = 0 = d−1

m+1 we get

ã12(r, r − 1) =
r

2
(dr−1dr)

1/2(αr−1d
−1
r + (r + 1)2d−1

r+1) − r(dr−1dr)
1/2d−1

r (1 + αr)

=
r

2
(dr−1d

−1
r )1/2(αr−1 + (r + 1)2drd

−1
r+1) − r(dr−1d

−1
r )1/2(1 + αr)

= −√
αr(1 + αr −

1

2
(αr−1 + αr+1))

for 1 ≤ r ≤ m. This proves part (b). �

Notation 3.4. Let δr+1 = 2λr +αr −αr+1 for 0 ≤ r ≤ m and θ` = −√
α`(1 +α` − 1

2(α`−1 +α`+1))

for 1 ≤ ` ≤ m. In this notation, K̃(λ,µ)(0) = diag ((δr+1)
m
r=0) and (K̃(λ,µ))z̄(0) = 2S((θ`)

m
`=1)

tr. As
in the previous Lemma, we will let αr = r2dr−1d

−1
r for 0 ≤ r ≤ m with α0 = αm+1 = 0.

Remark 3.5. We emphasize that the reproducing kernel B(λ,µ) is computed from a ordered basis,

that is, B(λ,µ)(w,w) =
((
〈γi(w), γj(w)〉

))m+1

i,j=1
, where {γi(w)}m+1

i=1 is an ordered basis. Consequently,

the eigenvalues of K̃(λ,µ)(0), which is diagonal, appear in a fixed order. If one considers {γσ(i)(w)}m+1
i=1 ,

it will give rise to a different reproducing kernel PσB
(λ,µ)P ∗

σ , say B
(λ,µ)
σ , where σ ∈ Sm+1, Sm+1 de-

notes the symmetric group of degree (m+1) and Pσ(i, j) = δσ(i),j . Hence K̃σ(0) = diag
(
(δσ(r+1))

m
r=0

)
,

where K̃σ is the curvature with respect to the metric h̃σ(z) = B̃
(λ,µ)
σ (z, z)tr. It follows that the cur-

vature of the corresponding bundle as a matrix depends on the choice of the particular ordered basis.
The set of eigenvalues of curvature at 0, which is diagonal in our case, will be thought of as an
ordered tuple, namely, the ordered set of diagonal elements of K̃(λ,µ)(0).

Definition 3.6 ([7] Def. 3.18, pp. 226). A C∞ vector bundle E over an open subset Ω of C with
metric-preserving connection D is said to be generic if K has distinct eigenvalues of multiplicity one
at each point of Ω.

From Lemma 2.8 (a) and Lemma 3.3 (a), we note that E (λ,µ) is generic if and only if δr+1 are all
distinct for 0 ≤ r ≤ m. Thus the proof of the following Corollary is complete.

Corollary 3.7. δr = δr+1 if and only if θr = 0 for 1 ≤ r ≤ m with α0 = αm+1 = 0. In particular, if
E(λ,µ) is generic then θr 6= 0 for 1 ≤ r ≤ m.

Lemma 3.8. If (δr+1)
m
r=0 is an ordered tuple of positive numbers such that K̃(λ,µ)(0) = diag

((δr+1)
m
r=0), then

(i)

m∑

k=0

δk+1 > m(m+ 1)

(ii) r
m+1

m∑

k=0

δk+1 −
r−1∑

k=0

δk+1 > r(m+ 1 − r) for 1 ≤ r ≤ m.
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Proof. By Lemma 3.3, Remark 3.5 and the hypothesis of the Lemma, we have

2λr + αr − αr+1 = δr+1

for 0 ≤ r ≤ m. This is same as Ax = b, where

A(i, j) =





−1, j = i+ 1,
1, j = 0 or i = j,
0, otherwise;

for 0 ≤ i, j ≤ m; x(0) = 2λ0, x(r) = αr and b(r) = δr+1 − 2r for 0 ≤ r ≤ m.
We observe that detA =

(
m+1 0

B A′

)
= m + 1, where B(i) = 1 for 1 ≤ i ≤ m and A′ is an upper-

triangular matrix of size m with 1 as its diagonal entries. So, the system Ax = b of linear equations
admits a unique solution. One verifies that

2λ0 =
1

m+ 1

m∑

k=0

δk+1 −m and αr =
r

m+ 1

m∑

k=0

δk+1 −
r−1∑

k=0

δk+1 − r(m+ 1 − r) for 1 ≤ r ≤ m.

Recall that 2λ0 and αr = r2dr−1d
−1
r (for 1 ≤ r ≤ m) are all positive. Therefore, a set of necessary

conditions for existence of the positive numbers {δr+1}m
r=0 such that K̃(λ,µ)(0) = diag((δr+1)

m
r=0) are

the inequalities in the statement of the Lemma. �

As described in Notation 3.1, let µ = (1, µ1, . . . , µm)tr and µ′ = (1, µ′1, . . . , µ
′
m)tr with µ`, µ

′
` > 0

for 0 ≤ ` ≤ m; α = (α1, . . . , αm) and α′ = (α′
1, . . . , α

′
m). For 0 ≤ j ≤ m, set 2γj = 2γ −m + 2j,

where γ = λ or γ = λ′. Set d = L(λ)µ2, d′ = L(λ′)µ′2, where µ2 and µ′2 denote the componentwise

square of µ and µ′. Let 2λ0 = 2λ − m, αi = i2di−1di
−1; 2λ′0 = 2λ′ − m, α′

i = i2d′i−1di
′−1

for
0 ≤ i ≤ m. In this notation, we have:

Lemma 3.9.
(

λ

µ

)
=
(

λ′

µ′

)
if and only if (2λ0,α) = (2λ′0,α

′).

Proof. We prove the “only if” part. Assuming (2λ0,α) = (2λ′0,α
′) we have λ = λ′ and αi = α′

i for

1 ≤ i ≤ m. Thus d = d′. Now invertibility of L(λ) implies that µ2 = µ′2, that is, µ = µ′. �

Corollary 3.10. Suppose B(λ,µ) and B(λ′,µ′) are such that K̃(λ,µ)(0) = K̃(λ′,µ′)(0). Then
(

λ

µ

)
=

(
λ′

µ′

)
.

Proof. Let K̃(λ,µ)(0) = K̃(λ′ ,µ′)(0) = diag
(
(δr+1)

m
r=0

)
. Consider the system of linear equations Ax = b

and Ax′ = b, where A, x, b are as in Lemma 3.9 and x′(0) = 2λ′0, x′(r) = α′
r for 1 ≤ r ≤ m. Since

detA = m+1, A is invertible. Hence x = x′ that is, (2λ0,α) = (2λ′0,α
′), where α, α′ as in Lemma

3.9. Now by Lemma 3.9, we have
(

λ

µ

)
=
(

λ′

µ′

)
. �

Recall that M (λ, µ) and E(λ, µ) denote the multiplication operator and Hermitian holomorphic
vector bundle associated with the reproducing kernel B(λ, µ) respectively. We recall a theorem from
[14].

Theorem 3.11 ([14], Theorem 6.2). The reproducing kernels B(λ,µ) and B(λ′,µ′) are equivalent, that

is, the multiplication operators M (λ,µ) and M (λ′,µ′) are unitarily equivalent if and only if
(

λ

µ

)
=

(
λ′

µ′

)
.

The following Corollary is an easy consequence of Corollary 3.10 and Theorem 3.11.

Corollary 3.12. Suppose B(λ,µ) and B(λ′ ,µ′) are such that K̃(λ,µ)(0) = K̃(λ′,µ′)(0). Then the multi-

plication operators M (λ,µ) and M (λ′,µ′) are unitarily equivalent.

Now we state the main theorem of this section.
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Theorem 3.13. Suppose that the Hermitian holomorphic vector bundles E (λ,µ) and E(λ′,η) are
generic. Then the multiplication operators M (λ,µ) and M (λ′,η) are unitarily equivalent if K̃(λ, µ)(0)

and (K̃(λ, µ))z̄(0) are simultaneously unitarily equivalent to K̃(λ′ , η)(0) and (K̃(λ′ , η))z̄(0) respectively.

The proof of this Theorem will be completed after proving a sequence of Lemmas. We omit the
easy proof of the first of these lemmas.

Lemma 3.14. Suppose that ∆ =
((
kiδij

))n
i,j=1

, ∆σ =
((
kσ(i)δij

))n
i,j=1

, ki 6= kj if i 6= j and C in Mn

is such that C∆ = ∆σC. Then C =
((
Cijδσ(i),j

))n
i,j=1

for Cij ∈ C and i, j = 1, . . . , n, where σ is in

Sn, Sn denotes the permutation group of degree n.

Lemma 3.15. Suppose that B in Mn+1 is such that BS
(
(βk)nk=1

)tr
= S

(
(βk)

n
k=1

)tr
B for βk 6= 0,

1 ≤ k ≤ n. Then B is upper-triangular.

Proof. Let B =
((
B(i, j)

))n+1

i,j=1
. The (i, 1)-th entries of BS

(
(βk)

n
k=1

)tr
and S

(
(βk)nk=1

)tr
B are 0 and

βiB(i + 1, 1) for 1 ≤ i ≤ n, respectively. By hypothesis, B(i + 1, 1) = 0 for 1 ≤ i ≤ n. We want to
show that B(i + 1, j) = 0 for j ≤ i ≤ n, 1 ≤ j ≤ n. We prove this by induction. We know that
the assertion is true for j = 1. Assume that B(i + 1, j − 1) = 0 for j − 1 ≤ i ≤ n, 2 ≤ j ≤ n+ 1,
equivalently, B(i, j − 1) = 0 for j ≤ i ≤ n + 1, 2 ≤ j ≤ n + 1. Equating (i, j)-th entries from

BS
(
(βk)nk=1

)tr
and S

(
(βk)

n
k=1

)tr
B we have

B(i, j − 1)βj−1 = βiB(i+ 1, j) for 1 ≤ i ≤ n, 2 ≤ j ≤ n+ 1.

We note that the left hand side of the above equality is zero for j ≤ i ≤ n + 1, 2 ≤ j ≤ n + 1,
by induction hypothesis. Hence B(i + 1, j) = 0 for j ≤ i ≤ n + 1, 2 ≤ j ≤ n + 1 as βi 6= 0 for
j ≤ i ≤ n+ 1. �

Lemma 3.16. Suppose that C =
((
Cijδσ(i),j

))n
i,j=1

for Cij ∈ C, i, j = 1, . . . , n and σ is in Sn, where

Sn denotes the permutation group of degree n. Then |det C| =
∏n

i=1 |Ci, σ(i)|.
Proof. We observe that the only possible nonzero entries of C are the (i, σ(i))-th entries for 1 ≤ i ≤
n+1 and C(i, σ(i)) = Ci, σ(i). Let C̃ = diag

(
(Ci, σ(i))

n+1
i=1

)
. It is easy to see that |det C̃| = |det C|,

as C̃ can be converted to C by interchanging its rows and columns. This proves the Lemma. �

The next corollary is immediate.

Corollary 3.17. If C =
((
Cijδσ(i),j

))n
i,j=1

then C is invertible if and only if Ci, σ(i) 6= 0 for σ ∈ Sn,

1 ≤ i ≤ n+ 1, where Sn denotes the permutation group of degree n.

Lemma 3.18. If C is invertible and satisfies the hypothesis of Lemma 3.14 for id 6= σ ∈ Sn then C
cannot be a triangular matrix.

Proof. From Lemma 3.14 and Corollary 3.17, it follows that the only nonzero entries of C are the
(i, σ(i))-th entries for 1 ≤ i ≤ n + 1 and C(i, σ(i)) = Ci, σ(i). Therefore, it suffices to show that
there is 1 ≤ i, j ≤ n with i 6= j such that i > σ(i) and j < σ(j) for id 6= σ ∈ Sn. Since σ 6= id,
there is i, 1 ≤ i ≤ n such that σ(i) 6= i. Without loss of generality assume that i > σ(i). Now, if
possible, let r ≥ σ(r) for 1 ≤ r ≤ n with strict inequalities for some r. Since σ is a one-to-one map
of the finite set {1, . . . , n} onto itself, this is not possible by the pigeon hole principle. Hence there
is j, 1 ≤ j ≤ n such that j < σ(j). �

Proof of Theorem 3.13: By hypothesis there is L ∈ GL(m+ 1,C) such that

(i) L−1K̃(λ, µ)(0)L = K̃(λ′ , η)(0)

(ii) L−1(K̃(λ, µ))z̄(0)L = (K̃(λ′, η))z̄(0).

Clearly, (i) implies that the sets of eigenvalues of K̃(λ, µ)(0) and K̃(λ′, η)(0) are the same. Since

K̃(λ, µ)(0) and K̃(λ′ , η)(0) are diagonal matrices it follows that either
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(a) K̃(λ, µ)(0) = K̃(λ′ ,η)(0), or

(b) the set of diagonal entries of K̃(λ,µ)(0) equals the set of diagonal entries of K̃(λ′ , η)(0) but

K̃(λ, µ)(0) 6= K̃(λ′ , η)(0).

Now, (b) is equivalent to the statement that K̃(λ′ , η)(0) = diag
(
(δσ(r+1))

m
r=0

)
for id 6= σ ∈ Sm+1,

where K̃(λ, µ)(0) = diag
(
(δr+1)

m
r=0)

)
. This implies by Lemma 3.18 that L cannot be a triangular

matrix. Whereas (ii) implies by Corollary 3.7 and Lemma 3.15 that L is a upper-triangular matrix.
Hence (b) and (ii) cannot occur simultaneously. Having ruled out the possibility of (b), we conclude

that (a) must occur. Therefore, by Corollary 3.12, we have
(

λ

µ

)
=
(

λ′

η

)
. �

4. Homogeneous bundles of rank 3

Now we specialize to the case m = 2. In this case, conclusions similar to those of Theorem 3.13
are true even if E(λ,,µ) is not assumed to be generic. Recall that the rank of the bundle E (λ,,µ) is 3
when m = 2.

Theorem 4.1. For m = 2, the multiplication operators M (λ, µ) and M (λ′, η) are unitarily equiv-
alent if K̃(λ, µ)(0) and (K̃(λ, µ))z̄(0) are simultaneously unitarily equivalent to K̃(λ′, η)(0) and

(K̃(λ′ , η))z̄(0) respectively.

Proof. By Theorem 3.13, we only need to consider the case when one of E (λ, µ) and E(λ′, η) is not
generic.

Let K̃(λ, µ) = diag(δ1, δ2, δ3) and K̃(λ′, η) = diag(δ′1, δ
′
2, δ

′
3), where δi+1 = 2λi + αi − αi+1, δ

′
i+1 =

2λ′i + α′
i − α′

i+1 with 2λi = 2λ − 2 + 2i, 2λ′i = 2λ′ − 2 + 2i, αi = i2di−1d
−1
i , α′

i = i2d′i−1d
′
i
−1 for

i = 0, 1, 2; α0 = α3 = α′
0 = α′

3 = 0 and B(λ,µ)(0, 0) = diag(d0, d1, d2), d0 = 1; B(λ′,η)(0, 0) =
diag(d′0, d

′
1, d

′
2), d

′
0 = 1. We observe that δ3 − δ1 = α1 + α2 + 4 > 0 and δ′3 − δ′1 = α′

1 + α′
2 + 4 > 0.

Now assume that

(i) L−1K̃(λ, µ)(0)L = K̃(λ′ , η)(0) for some L ∈ GL(3,C).

It follows easily from (i) that if one of the two bundles is not generic then the other cannot be generic.

Noting that K̃(λ, µ)(0) and K̃(λ′, η)(0) are diagonal matrices we have the following possibilities.

(a) δ1 = δ2 and δ′1 = δ′2 (b) δ2 = δ3 and δ′2 = δ′3
(c) δ1 = δ2 and δ′2 = δ′3 (d) δ2 = δ3 and δ′1 = δ′2.

From (a) we have δ1 = δ2 < δ3 and δ′1 = δ′2 < δ′3. As (i) implies that {δ1, δ2, δ3} = {δ′1, δ′2, δ′3}, as

sets. Comparing order of magnitude we get δ1 = δ′1, δ2 = δ′2 and δ3 = δ′3. Hence K̃(λ, µ) = K̃(λ′ , η).

Therefore by Corollary 3.12, we have
(

λ

µ

)
=
(

λ′

η

)
. So, M (λ, µ) and M (λ′, η) are unitarily equivalent.

A similar argument shows that the assumptions in (b) lead to the same conclusion.
From (c), we have δ1 = δ2 < δ3 and δ′1 < δ′2 = δ′3. From (i) we have {δ1, δ2, δ3} = {δ′1, δ′2, δ′3}, as

sets. Comparing order of magnitude we get δ1 = δ2 = δ′1 and δ3 = δ′2 = δ′3. Comparing multiplicities
of δ1 and δ′2 we have δ1 = δ′2 and δ3 = δ′1. All the equalities together imply that δ1 = δ3 and δ′1 = δ′3,
which are impossible. Similarly we see that (d) is also impossible as δ3 > δ1 and δ′3 > δ′1. This
completes the proof. �

If δ1, δ2, δ3 are the eigenvalues K̃(λ,µ)(0) then we know from [7, Proposition 2.20] that δi > 0 for
i = 1, 2, 3. Now, suppose (δ1, δ2, δ3) is a fixed ordered triple of positive numbers. Then there exists

B(λ,µ) with λ > 1 and µ` > 0 (` = 1, 2) such that K̃(λ,µ)(0) = diag(δ1, δ2, δ3) only if δi’s satisfy the
inequalities of Lemma 3.8.

Suppose (δ1, δ2, δ3), δi > 0 for i = 1, 2, 3 is given satisfying the inequalities of Lemma 3.8. Then

let us find λ > 1, µ1, µ2 > 0 such that K̃(λ,µ)(0) = diag(δ1, δ2, δ3) with µ = (1, µ1, µ2)
tr. We have
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L(λ)µ2 = d, which is the same as

µ2 = L(λ)−1d =

(
1 0 0

− 1
2(λ−1)

1 0

1
λ(2λ−1)

− 2
λ

1

)(
1

d1

d2

)
=

(
1

d1−
1

2(λ−1)

d2−
2d1
λ

+ 1
λ(2λ−1)

)
.

Thus

µ2
1 = d1 −

1

2(λ− 1)
=

1

α1
− 1

2(λ− 1)
=

2(λ− 1) − α1

2α1(λ− 1)
.

Recall from Lemma 3.8 that

2λ0 = 2λ− 2 =
δ1 + δ2 + δ3

3
− 2 and α1 =

δ2 + δ3 − 2δ1 − 6

3
.

So, we have

2(λ− 1) − α1 =
δ1 + δ2 + δ3

3
− 2 − δ2 + δ3 − 2δ1 − 6

3
= δ1 > 0.

Similarly,

µ2
2 = d2 −

2d1

λ
+

1

λ(2λ− 1)
=

4

α1α2
− 2

α1λ
+

1

λ(2λ − 1)
=

2(2λ − α2)(2λ − 1) + α1α2

α1α2λ(2λ− 1)
,

where α1, α2 are as in Lemma 3.3. Consequently, we have the following Theorem.

Theorem 4.2. There exists B(λ,µ) such that K̃(λ,µ)(0) = diag(δ1, δ2, δ3) for some δ1, δ2, δ3 > 0 if

δ1 + δ2 + δ3 > 6,
δ2 + δ3 − 2δ1 > 6,
2δ3 − δ1 − δ2 > 6;

2(2λ− α2)(2λ− 1) + α1α2 > 0,

where α1, α2 are as in Notation 3.4.

Notation 4.3. From now on, we will adhere to the following notational convention (here, (λ,µ) is
fixed but arbitrary).

(λ, µ) : K(λ,µ)(0) = diag(δ1, δ2, δ3),

(λ′,µ′) : K(λ′,µ′)(0) = diag(δ2, δ1, δ3);

(λ̂, µ̂) : K(bλ,bµ)(0) = diag(δ1, δ3, δ2).

Proposition 4.4. Suppose δi > 0 for i = 1, 2, 3 are such that δ1 6= δ2 and 2(δ1 + δ2) > δ3 −
6 > max{2δ1 − δ2, 2δ2 − δ1}. Then there exists reproducing kernels B(λ,µ) and B(λ′,µ′) such that

K̃(λ,µ)(0) = diag(δ1, δ2, δ3) and K̃(λ′ ,µ′)(0) = diag(δ2, δ1, δ3), where λ, λ′ > 1, µ = (1, µ1, µ2)
tr,

µ′ = (1, µ′1, µ
′
2)

tr, µ`, µ
′
` > 0 for ` = 1, 2.

Proof. Consider (δ1, δ2, δ3), δi > 0 for i = 1, 2, 3 such that there exists B(λ,µ) and K̃(λ,µ)(0) =
diag(δ1, δ2, δ3) for some λ > 1, µ = (1, µ1, µ2)

tr with µ1, µ2 > 0. So, δ1, δ2, δ3 satisfy the inequalities

of Lemma 3.8. We now produce λ′ > 1, µ′ = (1, µ′1, µ
′
2)

tr with µ′1, µ
′
2 > 0 such that K̃(λ′,µ′)(0) =

diag(δ2, δ1, δ3). We recall that K̃(λ′ ,µ′) is the curvature of the metric B̃(λ′ ,µ′)(z, z)tr and B̃(λ′,µ′)

denotes the normalization of the reproducing kernel B(λ′,µ′). By Lemma 3.3 and Remark 3.5, we
need to consider the equations

2λ′ − α′
1 − 2 = δ2,

2λ′ + α′
1 − α′

2 = δ1,
2λ′ + α′

2 + 2 = δ3,

where α′
1 = d′1

−1, α′
2 = 4d′1d

′
2
−1. This is same as Ax′ = b′, where A =

(
1 −1 0
1 1 −1
1 0 1

)
, x′ =

(
2λ′

α′

1

α′

2

)
,

b′ =

(
δ2+2

δ1
δ3−2

)
. This system of linear equations has only one solution, namely, x = 1

3

(
δ1+δ2+δ3

δ1+δ3−2δ2−6
2δ3−δ1−δ2−6

)
.
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We observe from Lemma 3.8 that λ = λ′ and α2 = α′
2 but α1 6= α′

1 if δ1 6= δ2. From Lemma 3.8 and

Theorem 4.2, we know that there exists B(λ′,µ′) such that K̃(λ′ ,µ′)(0) = diag(δ2, δ1, δ3) if

δ1 + δ2 + δ3 > 6,
δ1 + δ3 − 2δ2 > 6,
2δ3 − δ1 − δ2 > 6;

2(2λ′ − α′
2)(2λ

′ − 1) + α′
1α

′
2 > 0.

Hence there exists B(λ,µ) and B(λ′,µ′) such that K̃(λ,µ)(0) = diag(δ1, δ2, δ3) and K̃(λ′,µ′)(0) =
diag(δ2, δ1, δ3) if

δ1 + δ2 + δ3 > 6,
δ2 + δ3 − 2δ1 > 6,
δ1 + δ3 − 2δ2 > 6,
2δ3 − δ1 − δ2 > 6;

2(2λ− α2)(2λ− 1) + α1α2 > 0,
2(2λ′ − α′

2)(2λ
′ − 1) + α′

1α
′
2 > 0.

Suppose δi > 0 for i = 1, 2, 3 are chosen such that δ1 6= δ2 and

(i) 2(δ1 + δ2) > δ3 − 6 > max{2δ1 − δ2, 2δ2 − δ1}.
Then the last part of the inequality (i) is clearly seen to force the two inequalities δ2 + δ3 − 2δ1 > 6
and δ1 + δ3 − 2δ2 > 6. Adding these two inequalities, we have 2δ3 − δ1 − δ2 > 12. This choice of δi,
i = 1, 2, 3, also implies δ3 > 6. Consequently, the first four of the six inequalities listed above are
valid. Since λ = λ′ and α2 = α′

2, 2λ′ − 1 = 2λ − 1 > 0, it follows from the first part of inequality
(i) that 2λ′ − α′

2 = 2λ − α2 = 1
3(2(δ1 + δ2) − δ3) + 2 > 0. Thus the last two inequalities of the six

inequalities listed above are valid with our choice of the δi, i = 1, 2, 3. Hence all the inequalities we
need for the simultaneous existence of B(λ,µ) and B(λ′,µ′) are verified by this choice of δi > 0 for
i = 1, 2, 3. �

Proposition 4.5. Suppose δi > 0 for i = 1, 2, 3 are such that δ3 > δ2 > 3 + δ3
2 and δ1 < min{2δ3 −

δ2, 2δ2 − δ3} − 6. Then there exists reproducing kernels B(λ,µ) and B(bλ,bµ) such that K̃(λ,µ)(0) =

diag(δ1, δ2, δ3) and K̃(bλ,bµ)(0) = diag(δ1, δ3, δ2), where λ, λ̂ > 1, µ = (1, µ1, µ2)
tr, µ̂ = (1, µ̂1, µ̂2)

tr,
µ`, µ̂` > 0 for ` = 1, 2.

Proof. We construct a reproducing kernel B(bλ,bµ) such that K̃(bλ,bµ)(0) = diag(δ1, δ3, δ2) for some λ̂ > 1,

µ̂ = (1, µ̂1, µ̂2)
tr, µ̂` > 0 for ` = 1, 2. By Lemma 3.3 and Remark 3.5, we obtain (2λ̂, α̂1, α̂2) from the

following set of equations

2λ̂− α̂1 − 2 = δ1,

2λ̂+ α̂1 − α̂2 = δ3,

2λ̂+ α̂2 + 2 = δ2,

where α̂1 = d̂−1
1 , α̂2 = 4d̂1d̂

−1
2 . This is same as Ax̂ = b̂, where A =

(
1 −1 0
1 1 −1
1 0 1

)
, x̂ =

(
2bλ
bα1
bα2

)
,

b̂ =

(
δ2+2

δ1
δ3−2

)
. The vector x = 1

3

(
δ1+δ2+δ3,

δ2+δ3−2δ1−6,
2δ2−δ1−δ3−6

)
is the only solution of this system of equations. From

Lemma 3.8 and Theorem 4.2, we know that there exists B(bλ,bµ) such that K̃(bλ,bµ)(0) = diag(δ1, δ3, δ2)
if

δ1 + δ2 + δ3 > 6,
δ2 + δ3 − 2δ1 > 6,
2δ2 − δ1 − δ3 > 6;

2(2λ̂− α̂2)(2λ̂− 1) + α̂1α̂2 > 0.
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If (δ1, δ2, δ3), δi > 0 for i = 1, 2, 3 are such that there exists B(λ,µ) and K̃(λ,µ)(0) = diag(δ1, δ2, δ3).

Then δi’s for i = 1, 2, 3 satisfies the inequalities of Lemma 3.8. Hence there exists B(λ,µ) and B(bλ,bµ)

simultaneously such that K̃(λ,µ)(0) = diag(δ1, δ2, δ3) and K̃(bλ,bµ)(0) = diag(δ1, δ3, δ2) if

δ1 + δ2 + δ3 > 6,
δ2 + δ3 − 2δ1 > 6,
2δ2 − δ1 − δ3 > 6,
2δ3 − δ1 − δ2 > 6;

2(2λ− α2)(2λ− 1) + α1α2 > 0,

2(2λ̂− α̂2)(2λ̂− 1) + α̂1α̂2 > 0.

We observe that λ = λ̂ and α1 = α̂1 but α2 6= α̂2 if δ2 6= δ3. Suppose δi > 0 for i = 1, 2, 3 are chosen
satisfying

(a) δ3 > δ2 > 3 +
δ3
2

and (b) δ1 < min{2δ3 − δ2, 2δ2 − δ3} − 6.

Then the inequality (a) implies that δ3 > 6, hence the first of the set of six inequalities above holds.
The inequality (b) implies that 2δ3 − δ1 − δ2 > 6 and 2δ2 − δ1 − δ3 > 6, adding these two inequalities
we have δ2 + δ3 − 2δ1 > 12. Hence the first four inequalities, from the list of six inequalities given
above, are verified. The second, third and the second, fourth from the set of the six inequalities
respectively imply that δ2 − δ1 > 4 and δ3 − δ1 > 4. An easy computation involving the expressions

for λ, α1, α2 and λ̂, α̂1, α̂2 in terms of δi for i = 1, 2, 3 shows that 2(2λ−α2)(2λ− 1) +α1α2 > 0 and

2(2λ̂ − α̂2)(2λ̂ − 1) + α̂1α̂2 > 0 together is equivalent to (δ1 + δ2)(2δ1 + δ2) + δ3(δ2 − δ1) + 6δ1 > 0
and (δ1 + δ3)(2δ1 + δ3) + δ2(δ3 − δ1) + 6δ1 > 0. These are satisfied as δ2 − δ1 > 4 and δ3 − δ1 > 4.

Hence all the required inequalities for the simultaneous existence of B(λ,µ) and B(bλ,bµ) are met by
this choice of δi > 0 for i = 1, 2, 3. �

Remark 4.6. The set {δi > 0 : i = 1, 2, 3} satisfying the inequalities of Proposition 4.4 is non-empty.
For instance, take δ1 = 1, δ2 = 2 and any δ3 in the open interval (9, 12). Then {δ1, δ2, δ3} meets
the requirement. Similarly, taking any δ1 in the open interval (0, 1), δ2 = 7.5 and δ3 = 8, we find
that {δ1, δ2, δ3} satisfies the inequalities prescribed in Proposition 4.5. Thus the two sets which are
obtained from Propositions 4.4 and 4.5. are not identical.

Corollary 4.7. In Proposition 4.4 and Proposition 4.5,
(

λ

µ

)
6=
(

λ′

µ′

)
and

(
λ

µ

)
6=
(

bλ
bµ

)
.

Proof. By Lemma 3.9, it suffices to show that (2λ, α1, α2) 6= (2λ′, α′
1, α

′
2) and (2λ, α1, α2) 6=

(2λ̂, α̂1, α̂2). However, in Proposition 4.4, α1 6= α′
1 since δ1 6= δ2. Similarly, in Proposition 4.5,

α2 6= α̂2 since δ2 6= δ3. �

Recall that M (λ,µ) denotes the multiplication operator on the reproducing kernel Hilbert spaces
with reproducing kernel B(λ,µ).

Corollary 4.8. Suppose that B(λ,µ), B(λ′,µ′) and B(λ,µ), B(bλ,bµ) are as in Proposition 4.4 and Propo-
sition 4.5 respectively. Then

(a) the multiplication operators M (λ,µ) and M (λ′,µ′) are not unitarily equivalent.

(b) the multiplication operators M (λ,µ) and M (bλ,bµ) are not unitarily equivalent.

Proof. The proof is immediate from Theorem 3.11 and Corollary 4.7. �

Remark 4.9. In Proposition 4.4 and Proposition 4.5, we have shown the following: Given a repro-
ducing kernel B(λ,µ) such that K̃(λ,µ)(0) = diag(δ1, δ2, δ3) there exists a reproducing kernel B(λ′,µ′)

with
(

λ

µ

)
6=
(

λ′

µ′

)
such that K̃(λ′ ,µ′)(0) = diag(δρ(1), δρ(2), δρ(3)) and given a reproducing kernel B(λ,µ)
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such that K̃(λ,µ)(0) = diag(δ1, δ2, δ3) there exists a reproducing kernel B(bλ,bµ) with
(

λ

µ

)
6=
(

bλ

bµ

)

such that K̃(bλ,bµ)(0) = diag(δτ(1), δτ(2), δτ(3)), where ρ, τ ∈ S3 with ρ(1) = 2, ρ(2) = 1, ρ(3) = 3,
τ(1) = 1, τ(2) = 3, τ(3) = 2. In the next Proposition we prove that if there exists a reproducing

kernel B(λ,µ) such that K̃(λ,µ)(0) = diag(δ1, δ2, δ3) there does not exist B(ϑ,ξ) with
(

λ

µ

)
6=
(

ϑ

ξ

)
such

that K̃(ϑ,ξ)(0) = diag(δσ(1), δσ(2), δσ(3)) unless σ = ρ or τ , for σ, ρ, τ ∈ S3 . Obviously, there exists

B
(λ,µ)
σ := PσB

(λ,µ)P ∗
σ such that K̃σ(0) =diag (δσ(1), δσ(2), δσ(3)) for all σ ∈ S3, where Pσ is in M3

such that Pσ(i, j) = δσ(i),j and K̃σ is the curvature with respect to the metric h̃σ(z) = B̃
(λ,µ)
σ (z, z)tr.

The reproducing kernels B(λ,µ) and B
(λ,µ)
σ are equivalent, that is, the multiplication operators on the

reproducing kernel Hilbert spaces with reproducing kernels B(λ,µ) and B
(λ,µ)
σ are unitarily equivalent.

Therefore, we do not distinguish between the two reproducing kernels B(λ,µ) and B
(λ,µ)
σ .

Proposition 4.10. Given a reproducing kernel B(λ,µ) such that K̃(λ,µ)(0) = diag(δ1, δ2, δ3) there does

not exist a reproducing kernel B(ϑ,ξ) such that K̃(ϑ,ξ)(0) = diag(δσ(1), δσ(2), δσ(3)) with
(

λ

µ

)
6=
(

ϑ

ξ

)

unless σ = ρ or σ = τ .

Proof. Case 1. Pick σ ∈ S3 such that σ(1) = 3, σ(2) = 2, σ(3) = 1.

The existence of two reproducing kernels B(λ,µ) and B(ϑ,ξ) such that K̃(λ,µ)(0) = diag(δ1, δ2, δ3)

and K̃(ϑ,ξ)(0) = diag(δσ(1), δσ(2), δσ(3)) would imply, by an application of Lemma 3.8 to the ordered
triples (δ1, δ2, δ3) and (δσ(1), δσ(2), δσ(3)) = (δ3, δ2, δ1) that

δ1 + δ2 + δ3 > 6,
δ2 + δ3 − 2δ1 > 6,
2δ3 − δ1 − δ2 > 6;

δσ(1) + δσ(2) + δσ(3) > 6,
δσ(2) + δσ(3) − 2δσ(1) > 6,
2δσ(3) − δσ(1) − δσ(2) > 6.

This set of inequalities are equivalent to

δ1 + δ2 + δ3 > 6,
δ2 + δ3 − 2δ1 > 6,
2δ3 − δ1 − δ2 > 6,
δ1 + δ2 − 2δ3 > 6,
2δ1 − δ2 − δ3 > 6.

Adding the third and the fourth from these inequalities gives 0 > 12.
Case 2. Choose σ ∈ S3 such that σ(1) = 2, σ(2) = 3, σ(3) = 1.

As in the first case the existence of two reproducing kernels B(λ,µ) and B(ϑ,ξ) such that K̃(λ,µ)(0) =

diag(δ1, δ2, δ3) and K̃(ϑ,ξ)(0) = diag(δσ(1), δσ(2), δσ(3)) would imply, by an application of Lemma 3.8
to the ordered triples (δ1, δ2, δ3) and (δσ(1), δσ(2), δσ(3)) = (δ2, δ3, δ1), that

δ1 + δ2 + δ3 > 6,
δ2 + δ3 − 2δ1 > 6,
2δ3 − δ1 − δ2 > 6,
δ1 + δ3 − 2δ2 > 6,
2δ1 − δ2 − δ3 > 6.

Adding second and fifth of these inequalities gives 0 > 12.
Case 3. Take σ ∈ S3 such that σ(1) = 3, σ(2) = 1, σ(3) = 2.
Finally, continuing in the same manner in the previous two cases, the existence of two reproducing

kernels B(λ,µ) and B(ϑ,ξ) such that K̃(λ,µ)(0) = diag(δ1, δ2, δ3) and K̃(ϑ,ξ)(0) = diag(δσ(1), δσ(2), δσ(3))
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would imply, by an application of Lemma 3.8 to the ordered triples (δ1, δ2, δ3) and (δσ(1), δσ(2), δσ(3)) =
(δ3, δ1, δ2), that

δ1 + δ2 + δ3 > 6,
δ2 + δ3 − 2δ1 > 6,
2δ3 − δ1 − δ2 > 6,
δ1 + δ2 − 2δ3 > 6,
2δ2 − δ3 − δ1 > 6.

Adding third and fourth inequalities from this set of inequalities, we have 0 > 12. �

Corollary 4.11. There does not exist any multiplication operator M (ϑ,ξ) other than M (λ′,µ′) or

M (bλ,bµ) such that the set of eigenvalues of K̃(ϑ,ξ)(0) and K̃(λ,µ)(0) are equal but K̃(ϑ,ξ)(0) 6= K̃(λ,µ)(0),

where B(λ,µ), B(λ̃,µ̃), B(bλ,bµ) are as in Proposition 4.4 and Proposition 4.5.

Proof. Combining Corollary 4.8, Theorem 3.11, Corollary 3.10 and Proposition 4.10, we obtain a
proof of this corollary. �

Remark 4.12. We discuss the case m = 1. From Lemma 3.3, we see that K̃(λ,µ)(0) = diag(2λ −
α1 − 1, 2λ + α1 + 1), where λ > 1/2, µ = (1, µ1), µ1 > 0, α1 = d1

−1, d1 is defined as before. If

K̃(λ,µ)(0) = diag(δ1, δ2), δi > 0 for i = 1, 2, for some λ > 1/2 and µ = (1, µ1), µ1 > 0. Then

arguing as in Lemma 3.8, one notes that 2λ = δ1+δ2
2 , α1 = δ2−δ1−2

2 . As 2λ > 1 and α1 = d−1 > 0
it follows that δ1 + δ2 > 2 and δ2 − δ1 > 2 are necessary conditions for existence of a reproducing
kernel B(λ,µ)such that K̃(λ,µ)(0) = diag(δ1, δ2). If δi > 0 for i = 1, 2, proceeding as in Theorem 4.2,
one observes that δ2 − δ1 > 2, δ1 + δ2 > 2 and d1 >

1
2λ−1 = 2

δ1+δ2−2 are the sufficient conditions

for existence of a reproducing kernel B(λ,µ) such that K̃(λ,µ)(0) = diag(δ1, δ2). Conversely, if δi > 0
for i = 1, 2 and δ2 − δ1 > 2 then clearly δ1 + δ2 > 2 and d1 = 2

δ2−δ1−2 > 2
δ1+δ2−2 . So, δi > 0 for

i = 1, 2 and δ2 − δ1 > 2 are the necessary and sufficient conditions for the existence of reproducing
kernel B(λ,µ) such that K̃(λ,µ)(0) = diag(δ1, δ2).

Remark 4.13. If δi > 0 for i = 1, 2 and δ2 − δ1 > 2 there does not exist a reproducing kernel B(ϑ,ξ)

other than B(λ,µ) (up to equivalence as discussed in Remark 4.9) such that K̃(ϑ,ξ)(0) = diag(δ2, δ1). If

B(ϑ,ξ) exists satisfying the above requirements then from Remark 4.12, we see that both of δ2−δ1 > 2
and δ1 − δ2 > 2 have to be simultaneously satisfied. This is impossible. Hence there does not exist
inequivalent multiplication operators M (λ,µ) and M (ϑ,ξ) such that the set of eigenvalues of K̃(ϑ,ξ)(0)

equals those of K̃(λ,µ)(0) but K̃(ϑ,ξ)(0) 6= K̃(λ,µ)(0).

Theorem 4.14. Suppose that B(λ,µ), B(λ′ ,µ′) and B(λ,µ), B(bλ,bµ) are as in Proposition 4.4 and
Proposition 4.5 respectively. Then

(i) the multiplication operators M (λ,µ) and M (λ′,µ′) are not equivalent although K̃(λ,µ)(z) and

K̃(λ′ ,µ′)(z) are unitarily equivalent for z in D.

(ii) the multiplication operators M (λ,µ) and M (bλ,bµ) are not equivalent although K̃(λ,µ)(z) and

K̃(bλ,bµ)(z) are unitarily equivalent for z in D.

Proof. From Proposition 4.4, we see that the curvatures of the associated bundles have the same
set of eigenvalues at zero namely, {δ1, δ2, δ3}. Since curvature is self-adjoint the set of eigenvalues is

the complete set of unitary invariants for the curvature. So, K̃(λ,µ)(0) and K̃(λ′,µ′)(0) are unitarily

equivalent. Since the operators M (λ,µ) and M (λ′,µ′) are homogeneous, by an application of Theorem
2.6, we see that K̃(λ,µ)(z) and K̃(λ′,µ′)(z) are unitary equivalence for z ∈ D. Now (i) follows from
part (a) of Corollary 4.8. The proof of part (ii) of this theorem is similar. �

The proof of the next Theorem will be completed after proving a sequence of Lemmas.
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Theorem 4.15. Suppose that M (λ,µ) and M (ϑ,ξ) are not unitarily equivalent and the two curva-
tures K̃(λ,µ)(z) and K̃(ϑ,ξ)(z) are unitarily equivalent for z ∈ D. Then there does not exist any in-

vertible matrix L in M3 satisfying LK̃(λ,µ)(0) = K̃(ϑ,ξ)(0)L for which L(K̃(λ,µ))z̄(0) = (K̃(ϑ,ξ))z̄(0)L
also. In other words, the covariant derivative of order (0, 1) detects the inequivalence.

Lemma 4.16. Suppose that there exists reproducing kernels B(λ,µ), B(λ′ ,µ′) with K̃(λ,µ)(0) =

diag(δ1, δ2, δ3), K̃(λ′,µ′)(0) = diag(δρ(1), δρ(2), δρ(3)), δ1 6= δ2 and C in M3 is such that CK̃(λ,µ)(0) =

K̃(λ′ ,µ′)(0)C. Then C =
((
C(i, j)δρ(i),j

))
for C(i, j) ∈ C, i, j = 1, 2, 3, where ρ ∈ S3 is given by

ρ(1) = 2, ρ(2) = 1, ρ(3) = 3.

Proof. The proof of this Lemma is immediate from Lemma 3.14, once we ensure that δ1, δ2, δ3 are
distinct. Recalling notations from Lemma 3.3, we write δ1 = 2λ − α1 − 2, δ2 = 2λ + α1 − α2,
δ3 = 2λ+ α2 + 2. Clearly, δ3 − δ1 = α1 + α2 + 4 > 0. Recalling notations from Proposition 4.4, one
has δ2 = 2λ′ −α′

1 − 2, δ1 = 2λ′ +α′
1 −α′

2, δ3 = 2λ′ +α′
2 + 2. So, δ3 − δ2 = α1 +α2 + 4 > 0. We have

δ3 > δ1, δ3 > δ2 and δ1 6= δ2 by hypothesis. Hence the proof is complete. �

The proof of the next Lemma is similar and is therefore omitted.

Lemma 4.17. Suppose that there exists reproducing kernels B(λ,µ), B(bλ,bµ) with K̃(λ,µ)(0) =

diag(δ1, δ2, δ3), K̃(bλ,bµ)(0) = diag(δτ(1), δτ(2), δτ(3)), δ2 6= δ3 and C in M3 is such that CK̃(λ,µ)(0) =

K̃(bλ,bµ)(0)C. Then C =
((
C(i, j)δτ(i),j

))3
i,j=1

for C(i, j) ∈ C, i, j = 1, 2, 3, where τ ∈ S3 is given by

τ(1) = 1, τ(2) = 3, τ(3) = 2.

Lemma 4.18. Suppose that C =
((
C(i, j)δσ(i),j

))3
i,j=1

for σ = ρ or τ in S3. Then C is invertible if

and only if C(i, σ(i)) 6= 0 for i = 1, 2, 3 and σ = ρ or τ in S3.

Proof. One observes that detC 6= 0 if and only if C(i, σ(i)) 6= 0 for i = 1, 2, 3 and σ = ρ or τ in S3.
The proof is therefore complete. �

The proof of the following Lemma is straight forward. We recall that S(c1, . . . , cm)(`, p) = c`δp+1,`,
0 ≤ p, ` ≤ m.

Lemma 4.19. Suppose that C =
((
C(i, j)δσ(i),j

))3
i,j=1

, C(i, σ(i)) 6= 0 for i = 1, 2, 3 and σ = ρ, τ in

S3 is such that CS(c1, c2)
tr = S(c̃1, c̃2)

trC for ci, c̃i in C, i = 1, 2. Then ci = c̃i = 0 for i = 1, 2.

Lemma 4.20. (K̃(λ,µ))z̄(0) is not the zero matrix.

Proof. If possible let (K̃(λ,µ))z̄(0) = 0. Then it follows from Lemma 3.3 that −√
α1(1 + α1 − α2

2 ) =
−√

α2(1+α2− α1
2 ) = 0. Equivalently, 1+α1− α2

2 = 1+α2− α1
2 , as α1 and α2 are positive. This implies

that α1 = α2. So, (K̃(λ,µ))z̄(0) = 0 implies by an application of Lemma 3.3 that −√
α1(1 + α1

2 ) = 0,
which is impossible as α1 is positive. �

Proof of Theorem 4.15: We observe by applying Proposition 4.4, Proposition 4.5 and Proposition
4.10 that if M (ϑ,ξ) is a multiplication operator not unitarily equivalent to M (λ,µ) then (ϑ, ξ) = (λ′,µ′)

or (λ̂, µ̂). We arrive at the desired conclusion by an straight forward application of Corollary 4.16,
Corollary 4.17, Lemma 4.18, Lemma 4.19 and Lemma 4.20. �

Remark 4.21. The calculations for all the homogeneous operators constructed in [14] are not very
different. However, we have not succeeded in completely answering the question raised in [9, page.
39] using these claculations. Indeed, for generic bundles associated with the entire class of operators
from [14], we have shown that the simultaneous unitary equivalence class of the curvature at 0 along
with the covariant derivative of curvature at 0 of order (0, 1) is a complete set of unitary invariants
for these operators.
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[14] A. Korányi and G. Misra, Homogeneous operators on Hilbert spaces of holomorphic functions, Preprint, 2006.
[15] G. Misra and S. Shyam Roy, On Irreducibility of a class of homogeneous operators, Operator Theory: Advances

and Applications, Vol. 176, 165-198, 2007 Birkhauser Verlag Basel/ Switzerland.
[16] L. Peng and G. Zhang, Tensor products of holomorphic representations and bilinear differential operators, J. Funct.

Anal. 210 (2004), 171 – 192.
[17] R. O. Wells, Differential analysis on complex manifolds, Springer, 1973.
[18] D. R. Wilkins, Homogeneous vector bundles and Cowen-Douglas operators, Internat. J. Math. 4 (1993), no. 3,

503–520.

Indian Statistical Institute, R. V. College Post, Bangalore 560 059,

E-mail address, Gadadhar Misra: gm@isibang.ac.in

E-mail address, Subrata Shyam Roy: ssroy@isibang.ac.in


