isibang/ms/2007/3 Feburary 22nd, 2007 http://www.isibang.ac.in/~statmath/eprints

On the existence of non-abelian representations of slim dense near hexagons having big quads

BINOD KUMAR SAHOO AND N. S. NARASIMHA SASTRY

Indian Statistical Institute, Bangalore Centre 8th Mile Mysore Road, Bangalore, 560059 India

On the existence of non-abelian representations of slim dense near hexagons having big quads

Binod Kumar Sahoo

Department of Mathematics National Institute of Technology Rourkela - 769008, India *E-mail: binodkumar@gmail.com*

and

N. S. Narasimha Sastry

Statistics & Mathematics Unit Indian Statistical Institute R.V. College Post Bangalore - 560059, India *E-mail: nsastry@isibang.ac.in*

Abstract. It is known that [21] if a slim dense near hexagon S admits a non-abelian representation in a group R, then $|R| = 2^{\beta}$, $1 + n(S) \leq \beta \leq 1 + \dim V(S)$, where n(S) and $\dim V(S)$ are as defined in Section 1. In this paper, we show that, among the slim dense near hexagons admitting big quads (see (1.1) for notation), $DH_6(2^2)$, \mathbb{E}_3 and \mathbb{G}_3 do not admit non-abelian representations and the remaining ones, $Q_6^-(2) \otimes Q_6^-(2)$, $Q_6^-(2) \times \mathbb{L}_3$, $DW_6(2)$, \mathbb{H}_3 , $W_4(2) \times \mathbb{L}_3$ and $Q_4^+(2) \times \mathbb{L}_3$, admit a non-abelian representation in an extraspecial 2-group of order $2^{1+n(S)}$ (Theorem 1.3).

Key words. Near polygons, generalized quadrangles, non-abelian representations, extraspecial 2-groups

AMS subject classification (2000). 51E12, 05B25

1. Introduction

Let S = (P, L) be a partial linear space with lines of size three. For distinct points $x, y \in P$, we write $x \sim y$ if they are collinear, otherwise we write $x \nsim y$. If $x, y \in P$ and $x \sim y$, then we denote by xy the unique line containing x and y and define x * y by $xy = \{x, y, x * y\}$. For unexplained terminology, see [20] and [21].

Definition 1.1 ([14], p.525). A representation (R, ψ) of S with representation group R is a mapping $\psi : x \mapsto \langle r_x \rangle$ from P into the set of subgroups of R of order 2 such that the following hold:

- (i) $R = \langle r_x : x \in P \rangle.$
- (ii) For each line $\{x, y, x * y\}$ of S, $\{1, r_x, r_y, r_{x*y}\}$ is a Klein four group.

A representation (R, ψ) of S is faithful if ψ is injective and is abelian or non-abelian according as R is abelian or not. Note that, in [14], 'non-abelian representation' means that 'the representation group is not necessarily abelian'. For an abelian representation, the representation group can be considered as a vector space over the field F_2 with two elements. If S is connected (that is; the collinearity graph $\Gamma(P)$ of S is connected), then there exists a unique abelian representation, called the universal abelian representation, of S with the property that any other abelian representation of S is a composition of it with a linear mapping [18]. The F_2 -vector space V(S) underlying the universal abelian representation of S is called the universal representation module of S.

We refer to [15] for more on universal abelian representations of point-line geometries; and [13] and ([20], Sections 1 and 2) for more on non-abelian representations of partial linear spaces with p + 1 points per line, p a prime.

A near polygon [22] here is a connected partial linear space S = (P, L) with at least three points per line and of finite diameter (that is, the diameter of $\Gamma(P)$ is finite) such that: for each point-line pair $(x, l) \in P \times L$, x is nearest to exactly one point of l. Here, the distance d(x, y) between two points x and y of S is measured in $\Gamma(P)$. If the diameter of S is n, then S is called a near 2n-gon. If n = 2, then S is a generalized quadrangle (GQ, for short) and if n = 3, then it is called a near hexagon. For more on near polygons, see [10].

Let S = (P, L) be a near 2*n*-gon. For $x \in P$ and $A \subseteq P$, we define $x^{\perp} = \{x\} \cup \{y \in P : x \sim y\}$ and $A^{\perp} = \bigcap_{x \in A} x^{\perp}$. A subset of P is a subspace of S if any line of S containing at least two of its points is contained in it. For a subset A of P, the subspace $\langle A \rangle$ generated by A is the intersection of all subspaces of S containing A. A geometric hyperplane of S is a subspace of S, different from the empty set and

P, that meets each line of S non-trivially. A subspace C of P is convex if every geodesic in $\Gamma(P)$ between two points of C is entirely contained in C. A quad of S is a convex subspace of P of diameter 2 such that no point of it is adjacent to all other points of it. If $x_1, x_2 \in P$ with $d(x_1, x_2) = 2$ and $|\{x_1, x_2\}^{\perp}| \geq 2$, then x_1 and x_2 are contained in a unique quad, denoted by $Q(x_1, x_2)$, and this quad $Q(x_1, x_2)$ is a generalized quadrangle ([22], Proposition 2.5, p.10). We say that S is dense if every pair of points at distance 2 is contained in a quad.

Let S = (P, L) be a dense near 2*n*-gon. Then, the number, t+1, of lines containing a point of S is independent of the point ([5], Lemma 19, p.152). Let $t_2 = \{|\{x, y\}^{\perp}| - 1 : x, y \in P, d(x, y) = 2\}$. We say that S has parameters (s, t, t_2) if each line of S contains s + 1 points, each point is contained in t + 1 lines and t_2 is as above. If n = 2, then $t_2 = \{t\}$, though t_2 may have more than one element in general. A near 4-gon with parameters $(s, t, \{t\})$ is written as a (s, t)-GQ. We say that a quad of S is of type (s, t') if it is a (s, t')-GQ. If Q is a quad of S, then for $x \in P \setminus Q$, either

- (i) there is a unique point $y \in Q$ (depending on x) collinear with x and d(x, z) = d(x, y) + d(y, z) for all $z \in Q$; or
- (*ii*) d(x,Q) = 2 and the set $\mathcal{O}_x = \{y \in Q : d(x,y) = 2\}$ is an ovoid of Q.

([22], Proposition 2.6, p.12). We say that the quad Q is *big* if (*i*) holds for each $x \in P \setminus Q$. If Q is a big quad of S and $x \in P \setminus Q$, then we denote by x_Q the unique point y as in (*i*).

A near polygon is *slim* if each of its lines contains exactly three points. Let S = (P, L) be a slim dense near 2*n*-gon, $n \ge 1$. If n = 1, then $S \simeq \mathbb{L}_3$, a line of size 3. If n = 2, then S is a (2, t)-GQ. In that case, P is finite, t = 1, 2 or 4 and for each value of t there exists a unique (2, t)-GQ, up to isomorphism ([7], Theorem 7.3, p.99). Thus, S is isomorphic to one of the classical generalized quadrangles $Q_4^+(2)$, $W_4(2) \simeq Q_5(2)$ and $Q_6^-(2)$ for t = 1, 2 and 4, respectively. From ([4], Theorem 1.1, p.349), there are 11 possibilities for S, up to isomorphism, when n = 3. Further, each of these slim dense near hexagons is uniquely determined by its parameters s = 2, t and t_2 (see [2], [3], [4] and [22]). For other classification results about slim dense near polygons, see [23] and [10].

Let S = (P, L) be a slim dense near hexagon having big quads. Since a (2,4)-GQ admits no ovoids, it follows that every quad of S of type (2,4) is big. Let Q be a quad of S. If Q is of type (2, t'), then $|P| \ge |Q|(1 + 2(t - t'))$ and equality holds if and only if Q is big (see [4], p.359). In particular, if a quad of S of type (2, t') is big, then so are all quads of S of that type. If Q is big and $\{a, b, c\}$ is a line of S disjoint from Q, then $\{a_Q, b_Q, c_Q\}$ is a line of Q ([5], Lemma 5, p.148).

Lemma 1.2 (see [4], Proposition 4.3, p.354). Let Q_1 and Q_2 be two disjoint big quads of S. Let τ be the map from Q_1 to Q_2 defined by $\tau(x) = x_{Q_2}$, $x \in Q_1$. Then

- (i) τ is an isomorphism from Q_1 to Q_2 .
- (*ii*) The set $Q_1 * Q_2 = \{x * x_{Q_2} : x \in Q_1\}$ is a big quad of S.

Further, $Y = Q_1 \cup Q_2 \cup Q_1 * Q_2$ is a subspace of S isomorphic to the near hexagon $Q_1 \times \mathbb{L}_3$, a direct product of Q_1 and \mathcal{L}_3 (see Section 2).

Let *B* be the collection of all big quads of *S* and L_B be the collection of subsets $\{Q_1, Q_2, Q_1 * Q_2\}$ of *B*, where Q_1 and Q_2 are disjoint. Then $\mathcal{F} = (B, L_B)$ is a Fischer space (see [4], Corollary 4.4, p.354). That is, \mathcal{F} is a partial linear space satisfying the following conditions:

- (i) Each line of \mathcal{F} contains exactly three points.
- (*ii*) The subspace generated by any two intersecting lines of \mathcal{F} is isomorphic to the affine plane of order three or the dual affine plane of order two.

(see [1], p.92). The partial linear space \mathcal{F} is called the *Fischer space on big quads* of S which is used here in the study of non-abelian representations of S. We also remark that some of the slim dense near hexagons are constructed in ([4], p.352) using Fischer spaces.

We list below the slim dense near hexagons admitting big quads with their parameters (see [4], Theorem 1.1, p.349).

Near hexagon	P	t	t_2	dimV(S)	n(S)
$DH_{6}(2^{2})$	891	20	$\{4^\star\}$	22	20
\mathbb{E}_3	567	14	$\{2, 4^{\star}\}$	21	20
\mathbb{G}_3	405	11	$\{1, 2, 4^{\star}\}$	20	20
$Q_6^-(2) \otimes Q_6^-(2)$	243	8	$\{1, 4^{\star}\}$	18	18
$Q_6^-(2) \times \mathbb{L}_3$	81	5	$\{1, 4^{\star}\}$	12	12
$DW_6(2)$	135	6	$\{2^\star\}$	15	8
\mathbb{H}_3	105	5	$\{1, 2^{\star}\}$	14	8
$W_4(2) \times \mathbb{L}_3$	45	3	$\{1, 2^{\star}\}$	10	8
$Q_4^+(2) \times \mathbb{L}_3$	$\overline{27}$	2	$\{1^{\star}\}$	8	8

(1.1)

Here, dimV(S) denotes the dimension of the universal representation module of S and n(S) denotes the F_2 -rank of the matrix $A_3 : P \times P \longrightarrow \{0, 1\}$ defined by $A_3(x, y) = 1$ if d(x, y) = 3 and zero otherwise. We add a star in column t_2 if and only if the corresponding quads are big.

In ([21], Theorem 1.6), it is proved that the representation group R for a nonabelian representation (R, ψ) of S is a finite group of order 2^{β} , where $1 + n(S) \leq \beta \leq 1 + \dim V(S)$.

In this paper, we prove

Theorem 1.3. Let S = (P, L) be a slim dense near hexagon having big quads.

- (i) If $S = DH_6(2^2)$, \mathbb{E}_3 or \mathbb{G}_3 , then every representation of S is abelian.
- (ii) If S is one of the near hexagons $Q_6^-(2) \otimes Q_6^-(2)$, $Q_6^-(2) \times \mathbb{L}_3$, $DW_6(2)$, \mathbb{H}_3 , $W_4(2) \times \mathbb{L}_3$ and $Q_4^+(2) \times \mathbb{L}_3$, then S admits a non-abelian representation such that the representation group is an extraspecial 2-group of order $2^{1+n(S)}$.

The structure of the Fischer space \mathcal{F} on big quads of S is used in proving Theorem 1.3(*i*) and in the construction of non-abelian representation for $Q_6^-(2) \otimes Q_6^-(2)$.

In Section 2, we give a construction for each of the slim dense near hexagons having big quads. In Section 3, we study the structure of the near hexagon relative to a line in the Fischer space \mathcal{F} . We prove Theorem 1.3(*i*) in Section 4 and Theorem 1.3(*ii*) in Section 5.

2. Constructions

 $DH_6(2^2)$ and $DW_6(2)$: Let S = (P, L) be a polar space of rank $n \ge 2$ (see [6]). The partial linear space, whose point set is the collection of all maximal singular subspaces of S and lines are the collections of all maximal singular subspaces of S containing a specific singular subspace of co-dimension 1 in each of them, is called the *dual polar* space of rank n associated with S. Cameron characterized these geometries in terms of points and lines and proved that dual polar spaces of rank n are dense near 2n-gons ([8], Theorem 1, p.75). The neat hexagons $DH_6(2^2)$ and $DW_6(2)$ are the unitary and symplectic dual polar spaces of rank 3, respectively. All slim dense near hexagons having big quads are subspaces of $DH_6(2^2)$ (see [4], p.353).

 $Q_4^+(2) \times \mathbb{L}_3$, $W_4(2) \times \mathbb{L}_3$ and $Q_6^-(2) \times \mathbb{L}_3$: Let $S_1 = (P_1, L_1)$ and $S_2 = (P_2, L_2)$ be two partial linear spaces. Then, their *direct product* $S_1 \times S_2$ is the partial linear space whose point set is $P_1 \times P_2$ and the line set consists of all subsets of $P_1 \times P_2$ projecting to a single point in P_i for each *i* and projecting in P_j onto an element of L_j , where $\{i, j\} = \{1, 2\}$. A direct product of near polygons is again a near polygon ([5], Theorem 1, p.146). The slim dense near hexagons on 81, 45 and 27 points are direct products of a (2, t)-GQ with \mathbb{L}_3 for t = 4, 2, 1, respectively.

 $Q_6^-(2) \otimes Q_6^-(2)$: The following description of this near hexagon is taken from [12]. Let S = (P, L) be a (2,4)-GQ, $T = \{l_1 \cdots, l_9\} \subset L$ be a spread of S and l be an arbitrary line in T. Let $\phi_j : P \longrightarrow l_j$ be the map taking each $x \in P$ to the unique point of l_j nearest to x in S. Let $\mathcal{G} = \mathcal{G}(S, T, l)$ be the graph with vertex set $l \times T \times T$. Two distinct vertices (x, l_i, l_j) and (y, l_m, l_n) are *adjacent* whenever at least one of the following two conditions holds:

- (1) j = n and $\phi_i(x)$ and $\phi_m(y)$ are collinear points in S;
- (2) i = m and $\phi_i(x)$ and $\phi_n(y)$ are collinear points in S.

Note that if i = m and j = n, then (1) and (2) both are satisfied. Any two adjacent vertices of \mathcal{G} are contained in a unique maximal clique of size three. The points and the lines of $Q_6^-(2) \otimes Q_6^-(2)$ are, respectively, the vertices and the maximal cliques of \mathcal{G} .

 \mathbb{G}_3 : Let the vector space \mathbb{F}_4^6 with base $\{e_0, \dots, e_5\}$ be equipped with the non-singular hermitian form $(x, y) = x_0 y_0^2 + x_1 y_1^2 + \dots + x_5 y_5^2$. Let H denote the corresponding hermitian variety in $PG(5, 2^2)$. The support S_α of a point $\alpha = \mathbb{F}_4 x$ of $PG(5, 2^2)$ is the set of all $i \in \{0, 1, \dots, 5\}$ for which $(x, e_i) \neq 0$ and its cardinality is called the weight of α . A point of $PG(5, 2^2)$ belongs to H if and only if its weight is even. A subspace of $PG(5, 2^2)$ contained in H is said to be *good* if it is generated by a set of points whose supports are pairwise disjoint. Then, \mathbb{G}_3 is a subspace of $DH_6(2^2)$ whose point set consists of all good subspaces of H of dimension 2 (see [11]).

 \mathbb{E}_3 : A non-empty set \mathcal{O} of points of a partial linear space S is called a *hyperoval* if every line of S intersects \mathcal{O} in zero or two points. The unitary polar space $H_6(2^2)$ of rank three has two isomorphism classes of hyperovals [16]. The hyperovals of one class contain 126 points and the hyperovals of the other class contain 162 points. Let \mathcal{O} be a hyperoval of $H_6(2^2)$ of size 126. Each maximal singular subspace of $H_6(2^2)$ has zero or six points in common with \mathcal{O} . Then, \mathbb{E}_3 is the subspace of $DH_6(2^2)$ consisting of all points intersecting \mathcal{O} in six points (see [10], p.159).

 \mathbb{H}_3 : Let X be a set of size 8. The point set of \mathbb{H}_3 is the set of all partitions of X into 2-subsets; and the line set consists of all triples of these partitions sharing two 2-subsets of X (see [4], p.355).

The following alternate construction of \mathbb{H}_3 and $DW_6(2)$ [19] is used in Section 5.

Proposition 2.1. Let S = (P, L) and $S^1 = (P^1, L^1)$ be two (2,2)-GQs and let $\pi : x \mapsto x^1, x \in P, x^1 \in P^1$, denote an isomorphism from S to S^1 . Let

$$\begin{split} \mathcal{P} &= \{(x, y^1) \in P \times P^1 : y^1 \in x^{1^{\perp}}\}; \\ \mathcal{L} &= \{\{(x, u^1), (y, v^1), (z, w^1)\} : \{x, y, z\} \text{ is a line or a complete triad of points of } S \\ & and \ \{x^1, y^1, z^1\}^{\perp} = \{u^1, v^1, w^1\} \text{ in } S^1\}; \\ \mathbb{P} &= \mathcal{P} \cup P \cup P^1; \\ \mathbb{L} &= \mathcal{L} \cup \mathcal{L}^1, \text{ where } \mathcal{L}^1 = \{\{x, (x, u^1), u^1\} : (x, u^1) \in \mathcal{P}\}. \end{split}$$

Then $S = (\mathcal{P}, \mathcal{L}) \simeq \mathbb{H}_3$ and $S = (\mathbb{P}, \mathbb{L}) \simeq DW_6(2)$ ([19], Theorems 2.1 and 2.2). Clearly, \mathbb{H}_3 is a geometric hyperplane of $DW_6(2)$.

3. Preliminaries

Let S = (P, L) be a slim dense near hexagon having big quads. Fix two disjoint big quads Q_1 and Q_2 of S. Let $Q_3 = Q_1 * Q_2$ and $Y = Q_1 \cup Q_2 \cup Q_3$. By Lemma 1.2, Y is a subspace of S isomorphic to $Q_4^+(2) \times \mathbb{L}_3, W_4(2) \times \mathbb{L}_3$ or $Q_6^-(2) \times \mathbb{L}_3$ according as Q_1 and Q_2 are of type (2,1), (2,2) or (2,4). Now, fix a big quad Q of S disjoint from Y. Let $\{i, j, k\} = \{1, 2, 3\}$. For $x \in P \setminus Y$, we define $x^j = x_{Q_j}$ and, for $x \in Q_i$, we define $z_x^j = x_{Q_j}$. Thus, for $x \in Q_i, \{x, z_x^j, z_x^k\}$ is a line of Y meeting each of Q_i, Q_j and Q_k . For a line $l = \{a, b, c\}$ of S, we set $l_Q = \{a_Q, b_Q, c_Q\}$ if $l \cap Q$ is empty, and $l^j = \{a^j, b^j, c^j\}$ if $l \cap Q_j$ is empty. We denote by τ_j the isomorphism from Q to Q_j defined by $\tau_j(x) = x^j, x \in Q$ and by τ_{ij} the isomorphism from Q_i to Q_j defined by $\tau_{ij}(x) = z_x^j, x \in Q_i$ (see Lemma 1.2(i)). For $x \in P \setminus (Y \cup Q)$, we denote by x_Q^i the point $(x_Q)^i$ in Q_i . Similarly, for a line l disjoint from both Y and Q, we denote by l_Q^i the line $(l_Q)^i$ in Q_i .

Lemma 3.1. Let $x \in P \setminus Y$. Then:

- (i) $d(z_{x^i}^j, x^j) = 1$ and $d(x^i, x^j) = 2$.
- (ii) $\{x^{i}, z^{i}_{rj}, z^{i}_{rk}\}$ is a line in Q_{i} .

Proof. (i) Since $x \in \Gamma_1(x^i) \cap \Gamma_1(x^j)$, $d(x^i, x^j) = 2$. Further, $d(x^i, x^j) = d(x^i, z^j_{x^i}) + d(z^j_{x^i}, x^j)$. So $d(z^j_{x^i}, x^j) = 1$.

(*ii*) By (*i*), $x^i \sim z_{x^j}^i$ and $x^i \sim z_{x^k}^i$. We show that $z_{x^j}^i \sim z_{x^k}^i$. The quad $Q(x^j, x^k)$ of Y is of type (2,1) and $\{x^j, x^k\}^{\perp} = \{z_{x^j}^k, z_{x^k}^j\}$ in Y. Now, from the parallel lines $\{x^j, z_{x^j}^i, z_{x^j}^k\}$ and $\{x^k, z_{x^k}^i, z_{x^k}^j\}$ in $Q(x^j, x^k)$, it follows that $z_{x^j}^i \sim z_{x^k}^i$.

Lemma 3.2. Let $l = \{a, b, c\}$ be a line of S intersecting Y at c.

- (i) If $c \in Q_i \cup Q_j$, then $d(a^i, b^j) = 2$.
- (ii) If $c \in Q_k$, then $d(a^i, b^j) = 1$. In fact, $a^i = z^i_{h^j}$.

Proof. (i) Let c be in, say, Q_i . Since $a^i = b^i = c$, $d(a^i, b^j) = d(b^i, b^j) = 2$ by Lemma 3.1(i).

(*ii*) We have $a^k = b^k = c$. Since l is disjoint from Q_i , $l^i = \{a^i, b^i, c^i = z_c^i\}$ is a line of Q_i . By Lemma 3.1(*ii*), $\{b^i, z_{b^j}^i, z_{b^k}^i = z_c^i\}$ is also a line of Q_i . So, $a^i = z_{b^j}^i$ and $d(a^i, b^j) = 1$.

Lemma 3.3. Let *l* be a line of *S* disjoint from *Y* and $x, y \in l$ with $x \neq y$.

(i) If $l^{j} = x^{j} z_{x^{i}}^{j}$ in Q_{j} , then $(y^{i}, y^{j}) = (z_{x^{j}}^{i}, x^{j} * z_{x^{i}}^{j})$ or $(x^{i} * z_{x^{j}}^{i}, z_{x^{i}}^{j})$. In particular, $l^{i} = x^{i} z_{x^{j}}^{i}$ in Q_{i} , $l^{j} = x^{j} z_{x^{i}}^{j}$ in Q_{j} and $\tau_{ij}(l^{i}) = l^{j}$ are equivalent. (ii) $d(x^{i}, y^{j}) \leq 2$ if and only if $l^{i} = x^{i} z_{x^{j}}^{i}$ in Q_{i} .

Proof. (i) If $l^j = x^j z_{x^i}^j$, then $y^j \in \{z_{x^i}^j, x^j * z_{x^i}^j\}$. Assume that $y^j = x^j * z_{x^i}^j$. Since $\tau_{ji}(x^j z_{x^i}^j) = x^i z_{x^j}^i$, $z_{y^j}^i = x^i * z_{x^j}^i$ and so $y^i \sim x^i * z_{x^j}$ (Lemma 3.1(i)). Since $y^i \sim x^i$ also, y^i is a point in the line $x^i z_{x^j}^i$. Now, $d(y^i, y^j) = 2$ implies that $y^i = z_{x^j}^i$.

If $y^j = z_{x^i}^j$, then applying the above argument to $(x * y)^j = x^j * z_{x^i}^j$, we get $(x * y)^i = z_{x^j}^i$ and so, $y^i = x^i * z_{x^j}^i$.

(*ii*) If $l^i = x^i z_{x^j}^i$ in Q_i , then $\tau_{ij}(l^i) = l^j$ by (*i*) and it follows that $d(x^i, y^j) \leq 2$. Suppose that $l^i \neq x^i z_{x^j}^i$ in Q_i . By (*i*), $l^j \neq x^j z_{x^i}^j$ in Q_j . So $y^j \nsim z_{x^i}^j$, and $d(x^i, y^j) = d(x^i, z_{x^i}^j) + d(z_{x^i}^j, y^j) = 1 + 2 = 3$.

Lemma 3.4. For every $x \in Q$, there exists a unique line l in Q containing x such that $\tau_{ij}(l^i) = l^j$. In particular, $l^i = \{x^i, z^i_{x^j}, z^i_{x^k}\}$.

Proof. Since τ_i is an isomorphism from Q to Q_i , there exists a line l of Q containing x such that $l^i = x^i z_{x^j}^i$. By Lemma 3.3(*i*), $\tau_{ij}(l^i) = l^j$. The line l in Q through x such that $\tau_{ij}(l^i) = l^j$ is unique because, for any other line \overline{l} of Q containing x, $\tau_{ij}(\overline{l}^i)$ and \overline{l}^j are two disjoint lines in Q_j containing $z_{x^i}^j$ and x^j , respectively. Now, $l^i = x^i z_{x^j}^i = \{x^i, z_{x^j}^i, z_{x^k}^i\}$ (see Lemma 3.1(*ii*)).

Notation 3.5. For $x \in Q$, we denote by ζ_x the unique line l in Q containing x as in Lemma 3.4 and we write $T_Q = \{\zeta_x : x \in Q\}$.

Corollary 3.6. T_Q is a spread of Q.

Proof. This follows because, $\zeta_x = \zeta_y$ for $x \in Q$ and $y \in \zeta_x$, by Lemma 3.4.

Let $l = \{a, b, c\}$ be a line of Q. First, let $l \in T_Q$. Set $T^l = l^i \cup l^j \cup l^k$ and $T^l_{jk} = l^i \cup \tau_{ij}(l^i) \cup \tau_{ik}(l^i)$. The set T^l_{jk} is a quad of Y of type (2,1) whose lines are the rows and the columns of the matrix

(3.2)
$$T_{jk}^{l} = \begin{bmatrix} a^{i} & z_{a^{i}}^{j} & z_{a^{i}}^{k} \\ b^{i} & z_{b^{i}}^{j} & z_{b^{i}}^{k} \\ c^{i} & z_{c^{i}}^{j} & z_{c^{i}}^{k} \end{bmatrix}.$$

Since $l \in T_Q$, Lemma 3.4 implies that T^l coincides with T^l_{jk} . So T^l is a quad of Y of type (2, 1) whose lines are the rows and columns of one of the matrices

(3.3)
$$T^{l} = \begin{bmatrix} a^{i} & c^{j} & b^{k} \\ b^{i} & a^{j} & c^{k} \\ c^{i} & b^{j} & a^{k} \end{bmatrix}; \text{ or } T^{l} = \begin{bmatrix} a^{i} & b^{j} & c^{k} \\ b^{i} & c^{j} & a^{k} \\ c^{i} & a^{j} & b^{k} \end{bmatrix}$$

Note that if $b^k \sim a^i$, then the line containing them is $\{a^i, c^j, b^k\}$.

Now, let $l \notin T_Q$. Then, $\tau_{ij}(l^i)$ and l^j are disjoint lines in Q_j . The set $T_i^l = l^i \cup \tau_{ji}(l^j)\tau_{ki}(l^k)$ form a (2, 1)-GQ in Q_i . In fact, we can write

$$(3.4) \ T_i^l = \begin{bmatrix} a^i & b^i & c^i \\ z_{a^j}^i & z_{b^j}^i & z_{c^j}^i \\ z_{a^k}^i & z_{b^k}^i & z_{c^k}^i \end{bmatrix}; T_j^l = \begin{bmatrix} z_{a^i}^j & z_{b^i}^j & z_{c^i}^j \\ a^j & b^j & c^j \\ z_{a^k}^j & z_{b^k}^j & z_{c^k}^j \end{bmatrix}; \text{ and } T_k^l = \begin{bmatrix} z_{a^i}^k & z_{b^i}^k & z_{c^i}^k \\ z_{a^j}^k & z_{b^j}^k & z_{c^j}^k \\ a^k & b^k & c^k \end{bmatrix}.$$

Each row as well as each column in T_i^l (respectively, T_j^l, T_k^l) is a line of Q_i (respectively, Q_j, Q_k). Further, the (m, n)-th entries from T_i^l, T_j^l and T_k^l form a line of Y.

As a consequence of the above, we have

Corollary 3.7. Let l be a line of Q. For distinct $a, b \in l$, $d(a^i, b^j) \leq 2$ or $d(a^i, b^j) = 3$ according as $l \in T_Q$ or not.

4. Proof of Theorem 1.3(i)

A finite 2-group G is extraspecial if its Frattini subgroup $\Phi(G)$, the commutator subgroup G' and the center Z(G) coincide and have order 2. An extraspecial 2-group is of exponent 4 and of order 2^{1+2m} for some integer $m \ge 1$ and the maximum of the orders of its abelian subgroups is 2^{m+1} (see [9], section 20, p.78,79). An extraspecial 2-group G of order 2^{1+2m} is a central product of either m copies of the dihedral group D_8 of order 8 or m-1 copies of D_8 with a copy of the quaternion group Q_8 of order 8. In the first case, G possesses a maximal elementary abelian subgroup of order 2^{1+m} and we write $G = 2^{1+2m}_+$. If the later holds, then all maximal abelian subgroups of G are of type $2^{m-1} \times 4$ and we write $G = 2^{1+2m}_-$.

Let S = (P, L) be a slim dense near hexagon having big quads of type (2,4) and (R, ψ) be a non-abelian representation of S. For $x, y \in P$ with $d(x, y) \leq 2$, $[r_x, r_y] =$

1 : if d(x, y) = 2, we apply ([20], Theorem 1.5(*i*), p.55) to the restriction of ψ to the quad Q(x, y). From ([20], Theorem 2.9, p.58, see [20], Example 2.2, p.56) and ([21], Theorem 1.6), we have

Proposition 4.1. The following hold:

- (i) For $x, y \in P$, $[r_x, r_y] \neq 1$ if and only if d(x, y) = 3. In that case, $\langle r_x, r_y \rangle$ is a dihedral group of order 8.
- (ii) |R'| = 2 and $R' = \Phi(R) \subseteq Z(R)$.
- (iii) $r_x \notin Z(R)$ for each $x \in P$, and ψ is faithful.
- (iv) R is of order 2^{β} , where $1 + n(S) \leq \beta \leq 1 + \dim V(S)$.
- (v) If $\beta = 1 + n(S)$, then R is an extraspecial 2-group. In that case, $R = 2^{1+n(S)}_+$ except for the near hexagon $Q_6^-(2) \otimes Q_6^-(2)$, in which case $R = 2^{1+n(S)}_-$.

We repeatedly use Proposition 4.1(i), mostly without mention.

Let Q_1 and Q_2 be two disjoint big quads of S and Y be the subspace of S generated by them. Then, $Y \simeq Q_6^-(2) \times \mathbb{L}_3$ and $Y = Q_1 \cup Q_2 \cup Q_3$, where $Q_3 = Q_1 * Q_2$ (see Lemma 1.2(*ii*)). Let (R, ψ) be a non-abelian representation of S. Set $M = \langle \psi(Y) \rangle$ and $N = C_R(M)$. Then $M \simeq 2^{1+12}_+$ (Theorem 4.1(v)) and R is a central product of M and N, written as $R = M \circ N$. In the following, we use the notation of Section 3.

Lemma 4.2 ([21], Proposition 5.3). For each $x \in P \setminus Y$, r_x has a unique decomposition as $r_x = r_{z_{x^2}} r_{z_{x^1}} n_x$, where n_x is an involution in $N \setminus Z(R)$.

Lemma 4.3 ([21], Corollary 5.5). Let Q be a big quad of S disjoint from Y and $I_2(N)$ be the set of involutions in N. Let δ be the map from Q to $I_2(N)$ defined by $\delta(x) = n_x, x \in Q$. Then:

- (i) δ is one-one.
- (ii) For $x, y \in Q$, $[\delta(x), \delta(y)] = 1$ if and only if x = y or $x \sim y$.
- (iii) There exists a spread T in Q such that for $x, y \in Q$ with $x \sim y$,

$$\delta(x * y) = \begin{cases} \delta(x)\delta(y) & \text{if } xy \in T \\ \delta(x)\delta(y)\theta & \text{if } xy \notin T \end{cases};$$

where $R' = \{1, \theta\}$ (see Proposition 4.1(ii)).

The proof of the above two lemmas is mainly based on the fact that big quads of S are of type (2,4).

Proposition 4.4. Let S = (P, L) be a slim dense near hexagon having big quads of type (2, 4). Suppose that the Fischer space on big quads of S contains a subspace H isomorphic to the dual affine plane of order 2. Then, every representation of S is abelian.

Proof. Let $H = \{Q_1, Q_2, Q_3, Q, T_1, T_2\}$ with lines $\{Q_1, Q_2, Q_3\}, \{Q_1, Q, T_1\}, \{T_1, T_2, Q_3\}$ and $\{Q, T_2, Q_2\}$. Then, $Y = Q_1 \cup Q_2 \cup Q_3$ is isomorphic to $Q_6^-(2) \times \mathbb{L}_3$ and Q is a big quad of S disjoint from Y. Suppose that (R, ψ) is a non-abelian representation of S and let M and N be as above. Let $l = \{a, b, c\}$ be a line of S meeting T_1 at a, T_2 at b and Q_3 at c. We show that $n_a = n_b, n_a = n_{aQ}$ and $n_b = n_{bQ}$. Since $a_Q \neq b_Q, n_{aQ} = n_{bQ}$ would contradict Lemma 4.3(*i*), thus completing the proof.

For $m \in \{1, 2\}$, l is disjoint from Q_m , so $l^m = \{a^m, b^m, c^m = z_c^m\}$ is a line of Q_m . By Lemma 3.2(*ii*), $(a^1, b^1) = (z_{b^2}^1, z_{a^2}^1)$ and $(a^2, b^2) = (z_{b^1}^2, z_{a^1}^2)$. So $r_a = r_{z_{a^2}^1} r_{z_{a^1}^2} n_a = r_{b^1} r_{b^2} n_a$ by Lemma 4.2. Similarly, $r_b = r_{a^1} r_{a^2} n_b$. Now, $r_a r_b = (r_{b^1} r_{b^2})(r_{a^1} r_{a^2}) n_a n_b = (r_{b^1} r_{a^1})(r_{b^2} r_{a^2}) n_a n_b = r_{c^1} r_{c^2} n_a n_b$. The second equality holds since $d(a^1, b^2) = 1$ by Lemma 3.2(*ii*). Since $c^1 = z_c^1, c^2 = z_c^2$ and $\{c, z_c^1, z_c^2\}$ is a line of Y, we get $r_a r_b = r_c n_a n_b$. But $r_a r_b = r_c$ by the definition of a representation. So $n_a = n_b$.

Now, consider the line $l_a = \{a, a_Q, a^1 = a_Q^1\}$ meeting T_1 at a, Q at a_Q and Q_1 at $a^1 = a_Q^1$. We have $r_a r_{a_Q} = r_{a^1}$. Since l_a is disjoint from $Q_2, l_a^2 = \{a^2, a_Q^2, z_{a^1}^2 = z_{a_Q}^2\}$ is a line of Q_2 . Now, $r_a r_{a_Q} = r_{z_{a^2}^1} r_{z_{a^2}^1} r_{z_{a^2}^2} r_{z_{a^2}^2} n_a n_{a_Q}$. By Lemma 3.2(i), $d(a^1, a_Q^2) = 2$ and so, $[r_{z_{a^1}^2}, r_{z_{a^2}^2}] = 1$. Since $a^1 = a_Q^1$, we get $r_a r_{a_Q} = r_{z_{a^2}^1} r_{z_{a^2}^2} n_a n_{a_Q}$. Since the line l_a^2 is disjoint from Q_1 , its projection on Q_1 is the line $\{a^1 = a_Q^1, z_{a^2}^1, z_{a^2_Q}^1\}$. So $r_a r_{a_Q} = r_{a^1} n_a n_{a_Q}$. Thus, $n_a = n_{a_Q}$. Similarly, considering the line $l_b = \{b, b_Q, b^2 = b_Q^2\}$ disjoint from Q_1 , the above argument yields that $n_b = n_{b_Q}$. This completes the proof.

Proof of Theorem 1.3(*i*). Let S = (P, L) be either \mathbb{E}_3 or \mathbb{G}_3 . Let Δ_S be the graph on big quads of S, two distinct big quads being adjacent when they have non-empty intersection. If $S = \mathbb{G}_3$, then $\Delta_{\mathbb{G}_3}$ is the 3-coclique extension of the (2,2)-GQ, and if $S = \mathbb{E}_3$, then $\Delta_{\mathbb{E}_3}$ is locally the collinearity graph of the (2,4)-GQ (see [4], p.361). In either case, it follows that for two adjacent vertices V_1 and V_2 of Δ_S , there exists a vertex V of Δ_S which is not adjacent to both V_1 and V_2 . Consider the Fischer space \mathcal{F} on big quads of S. Since V_1 and V_2 are not collinear in \mathcal{F} , the subspace H of \mathcal{F} generated by the two intersecting lines $\{V, V_1, V * V_1\}$ and $\{V, V_2, V * V_2\}$ is isomorphic to the dual affine plane of order 2. So, by Proposition 4.4, every representation of S is abelian. Since S is a subspace of $DH_6(2^2)$ (see [4], p.353), Proposition 4.1(*i*) implies that every representation of $DH_6(2^2)$ is abelian. \Box

5. Proof of Theorem 1.3(ii)

In this section, we construct non-abelian representations for each of the near hexagons in Theorem 1.3(ii).

5.1. $Q_6^-(2) \times \mathbb{L}_3$, $W_4(2) \times \mathbb{L}_3$ and $Q_4^+(2) \times \mathbb{L}_3$. Let $R = 2^{1+2k}_+$, $k \in \{4, 6\}$, $R' = \{1, \theta\}$ and V = R/R'. We consider V as a vector space over F_2 . The map $f: V \times V \longrightarrow$ F_2 taking (xR', yR') to 0 or 1 according as [x, y] = 1 or not, is a non-degenerate symplectic bilinear form on V. Write V as an orthogonal direct sum of k hyperbolic planes K_i $(1 \le i \le k)$ in V and let H_i be the inverse image of K_i in R. Then, H_i is generated by two elements x_i and x_i^1 such that $[x_i, x_i^1] = \theta$. Let $M = \langle x_i : 1 \le i \le k \rangle$ and $M^1 = \langle x_i^1 : 1 \leq i \leq k \rangle$. Then, M and M^1 are elementary abelian 2-subgroups of R of order 2^k each. Further, M, M^1 and Z(R) pairwise intersect trivially and $R = MM^1Z(R)$.

Let F = (Q, B) be a (2, t)-GQ in M with $M = \langle Q \rangle$. Then, (k, t) = (4, 1), (4, 2) or (6,4). (If (k,t) = (4,2), then F is of symplectic type.) For each $m \in Q$, the subgroup $H_m = \langle z \in Q : z \in m^{\perp} \rangle$ of M is of index 2 in M ([17], 4.2.4, p.68). The centralizer of H_m in M^1 is a subgroup $\langle \kappa_m^1 \rangle$ of M^1 of order 2. Then, $M^2 = \langle m \kappa_m^1 : m \in Q \rangle$ is an elementary abelian 2-subgroup of R of order 2^k intersecting each of M, M^1 and Z(R) trivially. We set

$$\begin{aligned} Q^1 &= \{\kappa_m^1 \in M^1 : m \in Q\}, \\ Q^2 &= \{m\kappa_m^1 \in M^2 : m \in Q\}, \\ B^1 &= \{\{\kappa_a^1, \kappa_b^1, \kappa_c^1\} : \{a, b, c\} \in B\}, \\ B^2 &= \{\{a\kappa_a^1, b\kappa_b^1, c\kappa_c^1\} : \{a, b, c\} \in B\}. \end{aligned}$$

Then, $F^1 = (Q^1, B^1)$ and $F^2 = (Q^2, B^2)$ are (2, t)-GQs in M^1 and M^2 , respectively. Now, take

$$\begin{split} \mathbf{Q} &= Q \cup Q^1 \cup Q^2, \\ \mathbf{B} &= B \cup B^1 \cup B^2 \cup \{\{m, m\kappa_m^1, \kappa_m^1\} : m \in Q\}. \end{split}$$

Then, S = (Q, B) is a partial linear space, isomorphic to $Q_4^+(2) \times \mathbb{L}_3$ if (k, t) = (4, 1); $W_4(2) \times \mathbb{L}_3$ if (k, t) = (4, 2); and $Q_6^-(2) \times \mathbb{L}_3$ if (k, t) = (6, 4). Note that F, F^1 and F^2 are the only big quads in the last two cases. Thus we get non-abelian representation for $Q_6^-(2) \times \mathbb{L}_3$, $W_4(2) \times \mathbb{L}_3$ and $Q_4^+(2) \times \mathbb{L}_3$.

5.2. \mathbb{H}_3 and $DW_6(2)$. Let $R = 2^{1+8}_+$. Let F and F^1 be the symplectic (2,2)-GQs for (k,t) = (4,2) as in Subsection 5.1. The map $\sigma : Q \longrightarrow Q^1$ defined by $m \mapsto \kappa_m^1, m \in Q$, is an isomorphism from F to F^1 . We set

$$\mathcal{Q} = \{mn^1 : m \in Q, n^1 \in Q^1, [m, n^1] = 1\}.$$

We define collinearity in \mathcal{Q} . For distinct $m_1 n_1^1, m_2 n_2^1 \in \mathcal{Q}$ with $m_1, m_2 \in Q$ and $n_1^1, n_2^1 \in Q^1$, we say that $m_1 n_1^1 \sim m_2 n_2^1$ if and only if $[m_1, n_2^1] = [m_2, n_1^1] = 1$ and $(m_1 m_2)(n_1^1 n_2^1) \in \mathcal{Q}$. The second condition implies that $m_1 \neq m_2$ and $n_1^1 \neq n_2^1$. The line containing $m_1 n_1^1$ and $m_2 n_2^1$ is $\{m_1 n_1^1, m_2 n_2^1, (m_1 m_2)(n_1^1 n_2^1)\}$. Let \mathcal{B} be the set of all such lines in \mathcal{Q} . Set

$$\mathbb{Q} = Q \cup Q^1 \cup \mathcal{Q}, \text{ and } \mathbb{B} = \mathcal{B} \cup \mathcal{B}^1,$$

where $\mathcal{B}^1 = \{\{m, mn^1, n^1\} : mn^1 \in \mathcal{Q}\}$. Using the constructions of \mathbb{H}_3 and $DW_6(2)$ in Proposition 2.1, we now show that $\mathcal{F} = (\mathcal{Q}, \mathcal{B}) \simeq \mathbb{H}_3$ and $\mathbb{F} = (\mathbb{Q}, \mathbb{B}) \simeq DW_6(2)$, thus giving non-abelian representation for \mathbb{H}_3 and $DW_6(2)$.

Let S = (P, L), $S^1 = (P^1, L^1)$, $S = (\mathcal{P}, \mathcal{L})$, $\mathbb{S} = (\mathbb{P}, \mathbb{L})$ and the map π be as in Proposition 2.1. Let $\alpha : P \longrightarrow Q$ be an isomorphism from S to F and $\beta : P^1 \longrightarrow Q^1$ be the isomorphism from F^1 to Q^1 such that the following diagram commute:

$$\begin{array}{cccc} P & \stackrel{\pi}{\longrightarrow} & P^1 \\ \alpha \downarrow & & \downarrow \beta \\ Q & \stackrel{\sigma}{\longrightarrow} & Q^1. \end{array}$$

Thus, $\beta(u^1) = \sigma \alpha \pi^{-1}(u^1)$, $u^1 \in P^1$. We show that, if $x \in P$ and $u^1 \in P^1$, then $(x, u^1) \in \mathcal{P}$ if and only if $\alpha(x)\beta(u^1) \in \mathcal{Q}$. First, assume that $(x, u^1) \in \mathcal{P}$ and $u \in P$ be such that $\pi(u) = u^1$. Since $(x, u^1) \in \mathcal{P}$, $x \in u^{\perp}$ and $\alpha(x) \in \alpha(u)^{\perp}$. This implies that $[\alpha(x), \sigma(\alpha(u))] = 1$, since $\kappa^1_{\alpha(u)} = \sigma(\alpha(u))$. But $[\alpha(x), \sigma(\alpha(u))] = [\alpha(x), \sigma\alpha\pi^{-1}(u^1)] = [\alpha(x), \beta(u^1)]$. So $\alpha(x)\beta(u^1) \in \mathcal{Q}$. Reversing the argument we conclude that $(x, u^1) \in \mathcal{P}$ when $\alpha(x)\beta(u^1) \in \mathcal{Q}$.

Let the map $\rho : \mathbb{P} \longrightarrow \mathbb{Q}$ be equal to α on P, β on P^1 and $\rho((x, u^1)) = \alpha(x)\beta(u^1)$ for $(x, u^1) \in \mathcal{P}$. Then, ρ induces a bijection from \mathcal{L} to \mathcal{B} and from \mathcal{L}^1 to \mathcal{B}^1 . For the injectivity on \mathcal{L} , we use the fact that if $\{u, v, w\}$ is either a line or a complete triad in Q or Q^1 , then uvw = 1 ([21], Proposition 3.5). So $\mathbb{S} \simeq \mathbb{F}$. Further, the restriction of ρ to \mathcal{P} is an isomorphism from \mathcal{S} to \mathcal{F} .

[If $m_1n_1^1$ and $m_2n_2^1$ are distinct points of \mathcal{Q} with $m_1, m_2 \in Q$ and $n_1^1, n_2^1 \in Q^1$, then the following hold:

- (1) $d(m_1n_1^1, m_2n_2^1) = 1$ if and only if $m_1 \neq m_2, n_1^1 \neq n_2^1$ and $[m_1, n_2^1] = [m_2, n_1^1] = 1$.
- (2) $d(m_1n_1^1, m_2n_2^1) = 2$ if and only if one of the following occur:
 - (i) $m_1 = m_2, n_1^1 \neq n_2^1;$
 - (*ii*) $m_1 \neq m_2, n_1^1 = n_2^1;$
 - (*iii*) $m_1 \neq m_2, n_1^1 \neq n_2^1$ and $[m_1, n_2^1] = [m_2, n_1^1] \neq 1$.
- (3) $d(m_1n_1^1, m_2n_2^1) = 3$ if and only if $m_1 \neq m_2, n_1^1 \neq n_2^1$ and one of the following occur:
 - (i) $[m_1, n_2^1] = 1$ and $[m_2, n_1^1] \neq 1$;
 - (*ii*) $[m_1, n_2^1] \neq 1$ and $[m_2, n_1^1] = 1$.]

5.3. $Q_6^-(2) \otimes Q_6^-(2)$. Let S = (P, L) be the near hexagon $Q_6^-(2) \otimes Q_6^-(2)$. We refer to ([4], p.363) for the description of the Fischer space on the set of the 18 big quads of S. This set partitions into two families \mathcal{F}_1 and \mathcal{F}_2 of size 9 each such that each \mathcal{F}_i defines a partition of the point set P of S. Let \mathcal{U}_i , i = 1, 2, be the partial linear space whose points are the big quads of \mathcal{F}_i ; every pair of distinct points of \mathcal{U}_i are collinear. Further, if Q_1 and Q_2 are two distinct points of \mathcal{U}_i , then the line containing them is $\{Q_1, Q_2, Q_3\}$, where $Q_3 = Q_1 * Q_2$ (Lemma 1.2(*ii*)). Then, \mathcal{U}_i is an affine plane of order 3.

Consider the affine plane \mathcal{U}_1 . Fix an affine line $\{Q_1, Q_2, Q_3\}$ in \mathcal{U}_1 . Then, $Y = Q_1 \cup Q_2 \cup Q_3$ is isomorphic to $Q_6^-(2) \times \mathbb{L}_3$. Fix an affine point Q in \mathcal{U}_1 such that $Q \cap Y$ is empty. Taking $\{i, j, k\} = \{1, 2, 3\}$, we make use of the notation and the results of Section 3 in the rest of this section.

Let $l = \{a, b, c\}$ be a line of S not contained in Y. If l meets Y at some point c, say, and is disjoint from Q, then exactly one of the lines aa_Q and bb_Q meet Y. If l meets Q at some point and is disjoint from Y, then l corresponds to the affine line of \mathcal{U}_1 containing Q and parallel to $\{Q_1, Q_2, Q_3\}$. Further, if $x \in l \setminus (l \cap Q)$, then the line xx^i is disjoint from Q. Now, let l be disjoint from both Y and Q. Then l is contained in a point of \mathcal{U}_1 different from Q and Q_i , $i \in \{1, 2, 3\}$; or it corresponds to the affine line of \mathcal{U}_1 not containing Q and parallel to $\{Q_1, Q_2, Q_3\}$. So, the lines aa_Q, bb_Q and cc_Q either meet Y or all have empty intersection with Y. In the first case, if $xx_Q \cap Y = \{x_Y\}$ for $x \in l$ and $l_Y = \{x_Y : x \in l\}$, then l_Y is a line of Q_i for some $i \in \{1, 2, 3\}$; or $|l_Y \cap Q_i| = 1$ for each $i \in \{1, 2, 3\}$ (l_Y need not be a line in this case).

Lemma 5.1. Let $l = \{a, b, c\}$ be a line of S disjoint from $Y \cup Q$ such that the line xx_Q meets Y at x_Y for each $x \in l$. Let $m, n \in \{1, 2, 3\}, m \neq n$.

- (i) If l is contained in a point of \mathcal{U}_1 , then $d(a^m, b^n) \leq 2$ or $d(a^m, b^n) = 3$ according as $l_Q \in T_Q$ or not.
- (ii) If l corresponds to the affine line of \mathcal{U}_1 not containing Q and parallel to $\{Q_1, Q_2, Q_3\}$, then $l_Q \notin T_Q$ and $d(a^m, b^n) = 3$.

Proof. (i) Let $l_Y = \{a_Y, b_Y, c_Y\}$. Then, l_Y is a line of Q_i, Q_j or Q_k , say Q_i . (If K is the affine point of \mathcal{U}_1 containing l, then $Q_i = K * Q$.) Let $x \in l$. Then $x^i = x_Q^i = x_Y \in Q_i$, so $l^i = l_Q^i$. The line $l_x = \{x, x_Q, x_Y\}$ is disjoint from Q_j and Q_k . So $l_x^j = \{x^j, x_Q^j, z_{x_Y}^j = z_{x_Q^j}^j\}$ and $l_x^k = \{x^k, x_Q^k, z_{x_Y}^k = z_{x_Q^j}^k\}$ are lines of Q_j and Q_k respectively.

If $l_Q \in T_Q$, then $l_Q^j = \{x_Q^j, z_{x_Q^j}^j, z_{x_Q^k}^j\}$ by Lemma 3.4. Since $|l_Q^j \cap l_x^j| \ge 2$, we get $l_Q^j = l_x^j$. Thus $x^j \in l_Q^j$ for each $x \in l$ and so, $l^j = l_Q^j$. Similarly, $l^k = l_Q^k$. Now, Corollary 3.7 completes the proof of (i) in this case.

If $l_Q \notin T_Q$, then consider (3.4) for the line l_Q and the lines l_x^j and l_x^k above. Then, l_x^j and l_x^k are the lines corresponding to the *x*-column in $T_j^{l_Q}$ and $T_k^{l_Q}$, respectively. So $z_{x_Q^k}^j = x^j$ and $z_{x_Q^j}^k = x^k$ and (*i*) in this case follows from Corollary 3.7.

(*ii*) Here l_Y meets each of Q_i, Q_j and Q_k . We may assume that $a_Y \in Q_i, b_Y \in Q_j$ and $c_Y \in Q_k$. Then $a^i = a_Q^i = a_Y, b^j = b_Q^j = b_Y$ and $c^k = c_Q^k = c_Y$. Suppose that $l_Q \in T_Q$. Since $\tau_{ik}(l_Q^i) = l_Q^k$ (Lemma 3.4), we may assume that $b_Q^k \sim a_Q^i$ (see (3.3)). Then, $z_{a_Q^j}^j = c_Q^j$. The line $l_a = \{a, a_Q, a_Y = a_Q^i\}$ is disjoint from Q_j . So $l_a^j = \{a^j, a_Q^j, z_{a_Q^j}^j = c_Q^j\}$ is a line in Q_j . But $l_Q^j = \{a_Q^j, b^j = b_Q^j, c_Q^j\}$ is a line in Q_j , and so $a^j = b^j$, a contradiction to the fact that $\{a^j, b^j, c^j\}$ is a line in Q_j . So $l_Q \notin T_Q$. Since $a^i = a_Q^i, b^j = b_Q^j, c^k = c_Q^k$, (3.4) applied to the line l_Q together with Corollary 3.7 implies (*ii*).

Lemma 5.2. Let x be a point in $P \setminus (Y \cup Q)$ such that the line xx_Q is disjoint from Y. Let $\zeta_{x_Q} = \{x_Q, a_x, b_x\} \in T_Q$ and $xx_Q = \{x, x_Q, y\}$. Then $\{(x^1, x^2, x^3), (y^1, y^2, y^3)\} = \{(a_x^1, a_x^2, a_x^3), (b_x^1, b_x^2, b_x^3)\}.$ **Proof.** Let $l = xx_Q$. If $x^i \in \zeta_{x_Q}^i$, then $\zeta_{x_Q}^i = l^i$. By definition of ζ_{x_Q} and Lemma 3.4, $\tau_{ij}(\zeta_{x_Q}^i) = \zeta_{x_Q}^j$. So $z_{x^i}^j \in \zeta_{x_Q}^j$. Since $x^j \sim z_{x^i}^j$ and $x^j \sim x_Q^j$ in the line $\zeta_{x_Q}^j$, it follows that $x^j \in \zeta_{x_Q}^j$. So $l^i = x^i z_{x^j}^i$. Then, $\tau_{ij}(l^i) = l^j$ (Lemma 3.3(*i*)). So $l^j = \zeta_{x_Q}^j$ and the result follows (see (3.3)). Thus, it is enough we show that $x^i \in \zeta_{x_Q}^i$.

Suppose that $x^i \notin \zeta_{x_Q}^i$. Let $\overline{l} = \{x, x^i, w\}$ be the line xx^i of S. Then, \overline{l} is disjoint from Q. Consider the line $\overline{l}_Q = \{x_Q, (x^i)_Q, w_Q\}$ of Q. Since $(x^i)_Q \notin \zeta_{x_Q}$, $\overline{l}_Q \neq \zeta_{x_Q}$ and $\zeta_{x_Q} \cap \overline{l}_Q = \{x_Q\}$. The line ww_Q meets either Q_j or Q_k , say Q_k . Since \overline{l} is disjoint from both Q_j and Q_k , $\overline{l}^j = \{x^j, z_{x^i}^j, w^j\}$ and $\overline{l}^k = \{x^k, z_{x^i}^k, w^k = w_Q^k\}$ are lines of Q_j and Q_k , respectively. Applying Lemma 3.2(*ii*) to \overline{l} , we get $w^j \sim x^k$ and $w^k \sim x^j$.

Now, $d(x^k, x_Q) = d(x^k, x) + d(x, x_Q) = 2$ and $d(x^k, w_Q) = d(x^k, w^k) + d(w^k, w_Q) = 2$. So, $d(x^k, (x^i)_Q) = 1$. Again, $d(x^j, x_Q) = d(x^j, x) + d(x, x_Q) = 2$ and $d(x^j, w_Q) = d(x^j, w^k) + d(w^k, w_Q) = 2$ (since $w^k \sim x^j$). So, $d(x^j, (x^i)_Q) = 1$. Let $c = (x^i)_Q$. Then, $c^j = x^j$ and $c^k = x^k$. Now, $\overline{l}_Q^k = c^k w_Q^k = c^k x_{x^j}^k = c^k z_{c^j}^k$. Applying Lemma 3.3(*i*) to \overline{l}_Q , we get $\tau_{kj}(\overline{l}_Q^k) = \overline{l}_Q^j$. So $\overline{l}_Q \in T_Q$ (see Lemma 3.4). But $\zeta_{x_Q} \in T_Q$ and $\zeta_{x_Q} \cap \overline{l}_Q = \{x_Q\}$. This leads to a contradiction to the fact that T_Q is a spread of Q(Corollary 3.6). So $x^i \in \zeta_{x_Q}^i$.

In view of Lemma 4.3, we prove the following.

Lemma 5.3. Let $N = 2^{1+6}_{-}$ with $N' = \{1, \theta\}$ and let $I_2(N)$ be the set of involutions in N. There exists a map δ from Q to $I_2(N)$ satisfying the following:

- (i) δ is one-one.
- (ii) For $x, y \in Q$, $[\delta(x), \delta(y)] = 1$ if and only if either x = y or $x \sim y$.
- (iii) If $x, y \in Q$ and $x \sim y$, then

$$\delta(x * y) = \begin{cases} \delta(x)\delta(y) & \text{if } xy \in T_Q \\ \delta(x)\delta(y)\theta & \text{if } xy \notin T_Q \end{cases}$$

Proof. We use the following model for Q ([17], 6.1.1, p.122): Let $\Omega = \{1, 2, 3, 4, 5, 6\}$ and $\Omega' = \{1', 2', 3', 4', 5', 6'\}$. A factor of Ω is a set of three pair-wise disjoint 2-subsets of Ω . Let \mathcal{E} be the set of all 2-subsets of Ω and \mathcal{F} be the set of all factors of Ω . Then, the point set of Q is $\mathcal{E} \cup \Omega \cup \Omega'$ and the line set is $\mathcal{F} \cup \{\{i, \{i, j\}, j'\} : 1 \le i \ne j \le 6\}$. We may assume that the spread T_Q of Q consists of the following lines:

$$l_{1} = \{\{1, 2\}, \{3, 4\}, \{5, 6\}\}; \ l_{2} = \{\{1, 4\}, 1, 4'\}; \ l_{3} = \{\{2, 6\}, 2, 6'\}; \\ l_{4} = \{\{1, 6\}, \{2, 4\}, \{3, 5\}\}; \ l_{5} = \{\{1, 5\}, 1', 5\}; \ l_{6} = \{\{2, 3\}, 2', 3\}; \\ l_{7} = \{\{1, 3\}, \{2, 5\}, \{4, 6\}\}; \ l_{8} = \{\{3, 6\}, 3', 6\}; \ l_{9} = \{\{4, 5\}, 4, 5'\}.$$

We write N as a central product $N = \langle x_1, y_1 \rangle \circ \langle x_2, y_2 \rangle \circ Q_8$, where x_i, y_i are involutions, $\langle x_i, y_i \rangle$ is isomorphic to the dihedral group D_8 of order 8, and Q_8 is the quaternion group of order 8. Let $Q_8 = \{1, \theta, i, j, k, i^3, j^3, k^3\}$, where $i^2 = j^2 = k^2 = \theta, ij = k$ and $ji = k^3 = k\theta$. We define $\delta : Q \longrightarrow I_2(N)$ as follows:

$$\delta(l_1) = \{x_1, x_2, x_1 x_2\};$$

$$\begin{split} \delta(l_2) &= \{x_1y_1y_2i, x_2y_2j, x_1x_2y_1k\theta\};\\ \delta(l_3) &= \{x_1y_1i\theta, x_1x_2y_2k, x_2y_1y_2j\theta\};\\ \delta(l_4) &= \{y_1, y_1y_2, y_2\};\\ \delta(l_5) &= \{x_1x_2y_1i, x_2y_2k\theta, x_1y_1y_2j\};\\ \delta(l_6) &= \{x_2y_1y_2i\theta, x_1x_2y_2j\theta, x_1y_1k\};\\ \delta(l_7) &= \{x_1x_2y_1y_2\theta, x_2y_1\theta, x_1y_2\theta\};\\ \delta(l_8) &= \{x_1x_2y_2i\theta, x_1y_1j\theta, x_2y_1y_2k\};\\ \delta(l_9) &= \{x_2y_2i, x_1x_2y_1j, x_1y_1y_2k\theta\}. \end{split}$$

Here, if $l_i = \{a, b, c\}$, then $\delta(l_i) = \{\delta(a), \delta(b), \delta(c)\}$ preserving the order. It can be verified that δ satisfies the conditions (i), (ii) and (iii) of the lemma.

Consider the map $\delta : Q \longrightarrow I_2(N)$ in Lemma 5.3. We now extend δ to $P \setminus Y$. For $x \in P \setminus (Y \cup Q)$, let $\zeta_{x_Q} = \{x_Q, a_x, b_x\} \in T_Q$. If the line xx_Q intersects Y, then we define $\delta(x) = \delta(x_Q)$. If xx_Q is disjoint from Y, let $(b_x^1, b_x^2, b_x^3) = (x^1, x^2, x^3)$ (see Lemma 5.2). In that case, we define $\delta(x) = \delta(a_x)$. That is; for $x \in P \setminus (Y \cup Q)$,

$$\delta(x) = \begin{cases} \delta(x_Q) & \text{if } xx_Q \text{ intersects } Y\\ \delta(a_x) & \text{if } xx_Q \cap Y \text{ is empty and } (x^1, x^2, x^3) = (b_x^1, b_x^2, b_x^3) \end{cases}$$

We now construct a non-abelian representation of S. Let $R = 2^{1+18}_{-}$ with $R' = \{1, \theta\}$. We write R as a central product $R = M \circ N$, where $M = 2^{1+12}_{+}$ and N^{1+6}_{-} . Let (M, λ) be a non-abelian representation of Y (see Subsection 5.1). Define a map $\beta : P \longrightarrow R$ as follows:

$$\beta(x) = \begin{cases} \lambda(x) & \text{if } x \in Y \\ \lambda(z_{x^2}^1)\lambda(z_{x^1}^2)\delta(x) & \text{if } x \in P \setminus Y \end{cases}$$

For $x \in P \setminus Y$, Lemma 3.1(*i*) implies that $d(z_{x^1}^2, z_{x^2}^1) = 2$. So $[\lambda(z_{x^2}^1), \lambda(z_{x^1}^2)] = 1$ and $\beta(x)$ is an involution.

Proposition 5.4. (R,β) is a non-abelian representation of S.

Proof. Only condition (*ii*) of Definition 1.1 needs to be verified. Let $l = \{u, v, w\}$ be a line of S. We assume that l is not contained in Y and that $l \cap Y = \{w\}$ if l intersects Y. We show that $\beta(u)\beta(v) = \beta(w)$. We have

(5.5)
$$\beta(u)\beta(v) = \lambda(z_{u^2}^1)\lambda(z_{v^2}^1)\lambda(z_{v^1}^2)\lambda(z_{v^1}^2)\delta(u)\delta(v)r',$$

where $r' = [\lambda(z_{u^1}^2), \lambda(z_{v^2}^1)] \in R'$.

Case (I) Let l intersects Y at w. Then Lemma 3.2 yields that r' = 1. If $w \in Q_1$, then $u^1 = v^1 = w$ and $\beta(u)\beta(v) = \lambda(z_{u^2}^1)\lambda(z_{v^2}^1)\delta(u)\delta(v) = \lambda(w)\delta(u)\delta(v)$. The last equality holds because $\{z_{u^2}^1, z_{v^2}^1, w\}$ is a line of Q_1 . Similarly, $\beta(u)\beta(v) = \lambda(w)\delta(u)\delta(v)$ if $w \in Q_2$. If $w \in Q_3$, then $\{z_{u^2}^1, z_{v^2}^1, z_w^1\}$ and $\{z_{u^1}^2, z_{v^1}^2, z_w^2\}$ are lines of Q_1 and Q_2 respectively. So, $\beta(u)\beta(v) = \lambda(z_w^1)\lambda(z_w^2)\delta(u)\delta(v) = \lambda(w)\delta(u)\delta(v)$. The last equality holds because $\{z_w^1, z_w^2, w\}$ is a line of Y. Since $\beta(w) = \lambda(w)$, we get $\beta(u)\beta(v) = \beta(w)\delta(u)\delta(v)$. Thus, we need to prove that $\delta(u) = \delta(v)$.

If l intersects Q, say $l \cap Q = \{v\}$, then $u_Q = v$ and so, $\delta(u) = \delta(v)$. Let $l \cap Q$ be empty. Exactly one of the lines uu_Q and vv_Q , say uu_Q , meets Y. So $\delta(u) = \delta(u_Q)$. Let $l_{v_Q} = \{v_Q, a_v, b_v\}$. By Lemma 5.2, we assume that $(v^1, v^2, v^3) = (b_v^1, b_v^2, b_v^3)$. Then $\delta(v) = \delta(a_v)$. Since $w \in \{v^1, v^2, v^3\}$, it follows that $b_v \sim w$. So $w_Q = b_v$ and $u_Q = a_v$. Thus, $\delta(u) = \delta(u_Q) = \delta(a_v) = \delta(v)$.

Case (II) Let l be disjoint from Y. Since $\{z_{u^2}^1, z_{v^2}^1, z_{w^2}^1\}$ and $\{z_{u^1}^2, z_{v^1}^2, z_{w^1}^2\}$ are lines of Q_1 and Q_2 respectively, we get $\beta(u)\beta(v) = \lambda(z_{w^2}^1)\lambda(z_{w^1}^2)\delta(u)\delta(v)r'$. To complete the proof, we need to show that either r' = 1 and $\delta(u)\delta(v) = \delta(w)$ or $r' = \theta$ and $\delta(u)\delta(v) = \delta(w)\theta$. This holds by Corollary 3.7 and Lemma 5.3(*iii*) if $l \subset Q$.

Assume that l intersects Q at a point, say w. Let $\zeta_w = \{w, a, b\} \in T_Q$. Applying Lemma 5.2, we get $\zeta_w^j = l^j$ in Q_j and $\{\delta(u), \delta(v)\} = \{\delta(a), \delta(b)\}$. This, together with $\zeta_w \in T_Q$, yields that $\delta(u)\delta(v) = \delta(w)$ (Lemma 5.3(*iii*)) and r' = 1 (Corollary 3.7).

Now, assume that $l \cap Q$ is empty. If the lines uu_Q , vv_Q and ww_Q meet Y, then Lemmas 5.1 and 5.3(*iii*) complete the proof. So, we may assume that none of uu_Q , vv_Q and ww_Q meet Y. First, let $l_Q \in T_Q$. Then $l_Q = \zeta_{u_Q} = \zeta_{w_Q} = \zeta_{w_Q}$. Applying Lemma 5.2 to the lines xx_Q , $x \in l$, it follows that $l_Q^j = l^j$ in Q_j and $(\delta(u), \delta(v), \delta(w)) =$ $(\delta(w_Q), \delta(u_Q), \delta(v_Q))$ or $(\delta(v_Q), \delta(w_Q), \delta(u_Q))$. This implies that $\delta(u)\delta(v) = \delta(w)$ (Lemma 5.3(*iii*)) and r' = 1 (Corollary 3.7).

Now, let $l_Q \notin T_Q$. For $x \in l$, let $\zeta_{x_Q} = \{x_Q, a_x, b_x\}$. We may assume, by Lemma 5.2, that $(x^1, x^2, x^3) = (a_x^1, a_x^2, a_x^3)$. So, $\delta(x) = \delta(b_x)$. For distinct $x, y \in l$, $a_x^i = x^i \sim y^i = a_y^i$ in Q_i . Thus, $l_a = \{a_u, a_v, a_w\}$ and $l_b = \{b_u, b_v, b_w\}$ are lines of Q. Since $l_b \notin T_Q$, $\delta(u)\delta(v) = \delta(b_u)\delta(b_v) = \delta(b_w)\theta = \delta(w)\theta$. Again, $l_a \notin T_Q$ implies that $d(u^1, v^2) = d(a_u^1, a_v^2) = 3$ (Corollary 3.7) and so, $r' = \theta$. This completes the proof. \Box

References

- M. Aschbacher, "3-Transposition Groups", Cambridge Tracts in Mathematics, 124, Cambridge University Press, Cambridge, 1997.
- [2] A. E. Brouwer, The uniqueness of the near hexagon on 729 points, Combinatorica 2 (1982), 333–340.
- [3] A. E. Brouwer, The uniqueness of the near hexagon on 759 points, "Finite Geometries" (Pullman, Wash., 1981), pp. 47–60, Lecture Notes in Pure and Appl. Math., 82, Dekker, New York, 1983.
- [4] A. E. Brouwer, A. M. Cohen, J. I. Hall and H. A. Wilbrink, Near polygons and Fischer spaces, Geom. Dedicata 49 (1994), 349–368.
- [5] A. E. Brouwer and H. A. Wilbrink, The sturcture of near polygons with quads, *Geom. Dedicata* 14 (1983), 145–176.
- [6] F. Buekenhout and E. Shult, On the foundations of polar geometry, Geom. Dedicata 3 (1974), 155–170.
- [7] P. J. Cameron, "Projective and Polar Spaces", available from http://www.maths.qmul.ac.uk/pjc/pps/
- [8] P. J. Cameron, Dual polar spaces, Geom. Dedicata 12 (1982), 75–85.
- [9] K. Doerk and T. Hawkes, "Finite Soluble Groups", de Gruyter Expositions in Mathematics, 4, Walter de Gruyter & Co., Berlin, 1992.
- [10] B. De Bruyn, "Near Polygons", Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2006.

- B. De Bruyn, New near polygons from Hermitian varieties, Bull. Belg. Math. Soc. Simon Stevin 10 (2003), 561–577.
- B. De Bruyn, On near hexagons and spreads of generalized quadrangles, J. Algebraic Combin. 11 (2000), 211–226.
- [13] A. A. Ivanov, Non-abelian representations of geometries, "Groups and Combinatorics" in memory of Michio Suzuki, 301–314, Adv. Stud. Pure Math., 32, Math. Soc. Japan, Tokyo, 2001.
- [14] A. A. Ivanov, D. V. Pasechnik and S. V. Shpectorov, Non-abelian representations of some sporadic geometries, J. Algebra 181 (1996), 523–557.
- [15] Anna Kasikova and Ernest E. Shult, Absolute embeddings of point-line geometries, J. Algebra 238 (2001), 265–291.
- [16] D. Pasechnik, Extending polar spaces of rank at least 3, J. Combin. Theory Ser. A 72 (1995), 232–242.
- [17] S. E. Payne and J. A. Thas, "Finite Generalized Quadrangles", Research Notes in Mathematics, 110, Pitman (Advanced Publishing Program), Boston, MA, 1984.
- [18] M. A. Ronan, Embeddings and hyperplanes of discrete geometries, European J. Combin. 8 (1987), 179–185.
- [19] B. K. Sahoo, New constructions of two slim dense near hexagons, preprint. Available from http://arxiv.org/PS_cache/math/pdf/0612/0612468.pdf
- [20] B. K. Sahoo and N. S. N. Sastry, A characterization of finite symplectic polar spaces of odd prime order, J. Combin. Theory Ser. A 114 (2007), 52–64.
- [21] B. K. Sahoo and N. S. N. Sastry, On the order of a non-abelian representation group of a slim dense near hexagon, preprint. Available from http://arxiv.org/PS_cache/math/pdf/0612/0612513.pdf
- [22] E. Shult and A. Yanushka, Near n-gons and line systems, Geom. Dedicata 9 (1980), 1–72.
- [23] P. Vandecasteele, On the classification of dense near polygons with lines of size 3, Ph.D Thesis, Universiteit Gent, 2004.

Available from: http://cage.rug.ac.be/geometry/theses.php