isibang/ms/2007/3
Feburary 22nd, 2007
http://www.isibang.ac.in/~ statmath/eprints

On the existence of non-abelian representations of slim dense near hexagons having big quads

Binod Kumar Sahoo and N. S. Narasimha Sastry

Indian Statistical Institute, Bangalore Centre 8th Mile Mysore Road, Bangalore, 560059 India

On the existence of non-abelian representations of slim dense near hexagons having big quads

Binod Kumar Sahoo
Department of Mathematics
National Institute of Technology
Rourkela - 769008, India
E-mail: binodkumar@gmail.com
and
N. S. Narasimha Sastry
Statistics \& Mathematics Unit
Indian Statistical Institute
R.V. College Post
Bangalore - 560059, India
E-mail: nsastry@isibang.ac.in

Abstract

It is known that [21] if a slim dense near hexagon S admits a non-abelian representation in a group R, then $|R|=2^{\beta}, 1+n(S) \leq$ $\beta \leq 1+\operatorname{dim} V(S)$, where $n(S)$ and $\operatorname{dim} V(S)$ are as defined in Section 1. In this paper, we show that, among the slim dense near hexagons admitting big quads (see (1.1) for notation), $D H_{6}\left(2^{2}\right), \mathbb{E}_{3}$ and \mathbb{G}_{3} do not admit non-abelian representations and the remaining ones, $Q_{6}^{-}(2) \otimes$ $Q_{6}^{-}(2), Q_{6}^{-}(2) \times \mathbb{L}_{3}, D W_{6}(2), \mathbb{H}_{3}, W_{4}(2) \times \mathbb{L}_{3}$ and $Q_{4}^{+}(2) \times \mathbb{L}_{3}$, admit a non-abelian representation in an extraspecial 2 -group of order $2^{1+n(S)}$ (Theorem 1.3).

Key words. Near polygons, generalized quadrangles, non-abelian representations, extraspecial 2-groups

AMS subject classification (2000). 51E12, 05B25

1. Introduction

Let $S=(P, L)$ be a partial linear space with lines of size three. For distinct points $x, y \in P$, we write $x \sim y$ if they are collinear, otherwise we write $x \nsim y$. If $x, y \in P$ and $x \sim y$, then we denote by $x y$ the unique line containing x and y and define $x * y$ by $x y=\{x, y, x * y\}$. For unexplained terminology, see [20] and [21].

Definition 1.1 ([14], p.525). A representation (R, ψ) of S with representation group R is a mapping $\psi: x \mapsto\left\langle r_{x}\right\rangle$ from P into the set of subgroups of R of order 2 such that the following hold:
(i) $R=\left\langle r_{x}: x \in P\right\rangle$.
(ii) For each line $\{x, y, x * y\}$ of $S,\left\{1, r_{x}, r_{y}, r_{x * y}\right\}$ is a Klein four group.

A representation (R, ψ) of S is faithful if ψ is injective and is abelian or non-abelian according as R is abelian or not. Note that, in [14], 'non-abelian representation' means that 'the representation group is not necessarily abelian'. For an abelian representation, the representation group can be considered as a vector space over the field F_{2} with two elements. If S is connected (that is; the collinearity graph $\Gamma(P)$ of S is connected), then there exists a unique abelian representation, called the universal abelian representation, of S with the property that any other abelian representation of S is a composition of it with a linear mapping [18]. The F_{2}-vector space $V(S)$ underlying the universal abelian representation of S is called the universal representation module of S.

We refer to [15] for more on universal abelian representations of point-line geometries; and [13] and ([20], Sections 1 and 2) for more on non-abelian representations of partial linear spaces with $p+1$ points per line, p a prime.

A near polygon [22] here is a connected partial linear space $S=(P, L)$ with at least three points per line and of finite diameter (that is, the diameter of $\Gamma(P)$ is finite) such that: for each point-line pair $(x, l) \in P \times L, x$ is nearest to exactly one point of l. Here, the distance $d(x, y)$ between two points x and y of S is measured in $\Gamma(P)$. If the diameter of S is n, then S is called a near $2 n$-gon. If $n=2$, then S is a generalized quadrangle (GQ, for short) and if $n=3$, then it is called a near hexagon. For more on near polygons, see [10].

Let $S=(P, L)$ be a near $2 n$-gon. For $x \in P$ and $A \subseteq P$, we define $x^{\perp}=\{x\} \cup\{y \in$ $P: x \sim y\}$ and $A^{\perp}=\bigcap_{x \in A} x^{\perp}$. A subset of P is a subspace of S if any line of S containing at least two of its points is contained in it. For a subset A of P, the subspace $\langle A\rangle$ generated by A is the intersection of all subspaces of S containing A. A geometric hyperplane of S is a subspace of S, different from the empty set and
P, that meets each line of S non-trivially. A subspace C of P is convex if every geodesic in $\Gamma(P)$ between two points of C is entirely contained in C. A quad of S is a convex subspace of P of diameter 2 such that no point of it is adjacent to all other points of it. If $x_{1}, x_{2} \in P$ with $d\left(x_{1}, x_{2}\right)=2$ and $\left|\left\{x_{1}, x_{2}\right\}^{\perp}\right| \geq 2$, then x_{1} and x_{2} are contained in a unique quad, denoted by $Q\left(x_{1}, x_{2}\right)$, and this quad $Q\left(x_{1}, x_{2}\right)$ is a generalized quadrangle ([22], Proposition $2.5, \mathrm{p} .10$). We say that S is dense if every pair of points at distance 2 is contained in a quad.

Let $S=(P, L)$ be a dense near $2 n$-gon. Then, the number, $t+1$, of lines containing a point of S is independent of the point ([5], Lemma 19, p.152). Let $t_{2}=\left\{\left|\{x, y\}^{\perp}\right|-1\right.$: $x, y \in P, d(x, y)=2\}$. We say that S has parameters $\left(s, t, t_{2}\right)$ if each line of S contains $s+1$ points, each point is contained in $t+1$ lines and t_{2} is as above. If $n=2$, then $t_{2}=\{t\}$, though t_{2} may have more than one element in general. A near 4 -gon with parameters $(s, t,\{t\})$ is written as a (s, t)-GQ. We say that a quad of S is of type $\left(s, t^{\prime}\right)$ if it is a $\left(s, t^{\prime}\right)$-GQ. If Q is a quad of S, then for $x \in P \backslash Q$, either
(i) there is a unique point $y \in Q$ (depending on x) collinear with x and $d(x, z)=$ $d(x, y)+d(y, z)$ for all $z \in Q$; or
(ii) $d(x, Q)=2$ and the set $\mathcal{O}_{x}=\{y \in Q: d(x, y)=2\}$ is an ovoid of Q.
([22], Proposition 2.6, p.12). We say that the quad Q is big if (i) holds for each $x \in P \backslash Q$. If Q is a big quad of S and $x \in P \backslash Q$, then we denote by x_{Q} the unique point y as in (i).

A near polygon is slim if each of its lines contains exactly three points. Let $S=$ (P, L) be a slim dense near $2 n$-gon, $n \geq 1$. If $n=1$, then $S \simeq \mathbb{L}_{3}$, a line of size 3. If $n=2$, then S is a $(2, t)$-GQ. In that case, P is finite, $t=1,2$ or 4 and for each value of t there exists a unique ($2, t)$-GQ, up to isomorphism ([7], Theorem 7.3, p.99). Thus, S is isomorphic to one of the classical generalized quadrangles $Q_{4}^{+}(2)$, $W_{4}(2) \simeq Q_{5}(2)$ and $Q_{6}^{-}(2)$ for $t=1,2$ and 4, respectively. From ([4], Theorem 1.1, p.349), there are 11 possibilities for S, up to isomorphism, when $n=3$. Further, each of these slim dense near hexagons is uniquely determined by its parameters $s=2, t$ and t_{2} (see [2], [3], [4] and [22]). For other classification results about slim dense near polygons, see [23] and [10].

Let $S=(P, L)$ be a slim dense near hexagon having big quads. Since a $(2,4)$-GQ admits no ovoids, it follows that every quad of S of type $(2,4)$ is big. Let Q be a quad of S. If Q is of type $\left(2, t^{\prime}\right)$, then $|P| \geq|Q|\left(1+2\left(t-t^{\prime}\right)\right)$ and equality holds if and only if Q is big (see [4], p.359). In particular, if a quad of S of type ($2, t^{\prime}$) is big, then so are all quads of S of that type. If Q is big and $\{a, b, c\}$ is a line of S disjoint from Q, then $\left\{a_{Q}, b_{Q}, c_{Q}\right\}$ is a line of Q ([5], Lemma 5, p.148).

Lemma 1.2 (see [4], Proposition 4.3, p.354). Let Q_{1} and Q_{2} be two disjoint big quads of S. Let τ be the map from Q_{1} to Q_{2} defined by $\tau(x)=x_{Q_{2}}, x \in Q_{1}$. Then
(i) τ is an isomorphism from Q_{1} to Q_{2}.
(ii) The set $Q_{1} * Q_{2}=\left\{x * x_{Q_{2}}: x \in Q_{1}\right\}$ is a big quad of S.

Further, $Y=Q_{1} \cup Q_{2} \cup Q_{1} * Q_{2}$ is a subspace of S isomorphic to the near hexagon $Q_{1} \times \mathbb{L}_{3}$, a direct product of Q_{1} and \mathcal{L}_{3} (see Section 2).

Let B be the collection of all big quads of S and L_{B} be the collection of subsets $\left\{Q_{1}, Q_{2}, Q_{1} * Q_{2}\right\}$ of B, where Q_{1} and Q_{2} are disjoint. Then $\mathcal{F}=\left(B, L_{B}\right)$ is a Fischer space (see [4], Corollary 4.4, p.354). That is, \mathcal{F} is a partial linear space satisfying the following conditions:
(i) Each line of \mathcal{F} contains exactly three points.
(ii) The subspace generated by any two intersecting lines of \mathcal{F} is isomorphic to the affine plane of order three or the dual affine plane of order two.
(see [1], p.92). The partial linear space \mathcal{F} is called the Fischer space on big quads of S which is used here in the study of non-abelian representations of S. We also remark that some of the slim dense near hexagons are constructed in ([4], p.352) using Fischer spaces.

We list below the slim dense near hexagons admitting big quads with their parameters (see [4], Theorem 1.1, p.349).

Near hexagon	$\|P\|$	t	t_{2}	$\operatorname{dim} V(S)$	$n(S)$
$D H_{6}\left(2^{2}\right)$	891	20	$\left\{4^{\star}\right\}$	22	20
\mathbb{E}_{3}	567	14	$\left\{2,4^{\star}\right\}$	21	20
\mathbb{G}_{3}	405	11	$\left\{1,2,4^{\star}\right\}$	20	20
$Q_{6}^{-}(2) \otimes Q_{6}^{-}(2)$	243	8	$\left\{1,4^{\star}\right\}$	18	18
$Q_{6}^{-}(2) \times \mathbb{L}_{3}$	81	5	$\left\{1,4^{\star}\right\}$	12	12
$D W_{6}(2)$	135	6	$\left\{2^{\star}\right\}$	15	8
\mathbb{H}_{3}	105	5	$\left\{1,2^{\star}\right\}$	14	8
$W_{4}(2) \times \mathbb{L}_{3}$	45	3	$\left\{1,2^{\star}\right\}$	10	8
$Q_{4}^{+}(2) \times \mathbb{L}_{3}$	27	2	$\left\{1^{\star}\right\}$	8	8

Here, $\operatorname{dim} V(S)$ denotes the dimension of the universal representation module of S and $n(S)$ denotes the F_{2}-rank of the matrix $A_{3}: P \times P \longrightarrow\{0,1\}$ defined by $A_{3}(x, y)=1$ if $d(x, y)=3$ and zero otherwise. We add a star in column t_{2} if and only if the corresponding quads are big.

In ([21], Theorem 1.6), it is proved that the representation group R for a nonabelian representation (R, ψ) of S is a finite group of order 2^{β}, where $1+n(S) \leq \beta \leq$ $1+\operatorname{dim} V(S)$.

In this paper, we prove
Theorem 1.3. Let $S=(P, L)$ be a slim dense near hexagon having big quads.
(i) If $S=D H_{6}\left(2^{2}\right), \mathbb{E}_{3}$ or \mathbb{G}_{3}, then every representation of S is abelian.
(ii) If S is one of the near hexagons $Q_{6}^{-}(2) \otimes Q_{6}^{-}(2), Q_{6}^{-}(2) \times \mathbb{L}_{3}, D W_{6}(2), \mathbb{H}_{3}$, $W_{4}(2) \times \mathbb{L}_{3}$ and $Q_{4}^{+}(2) \times \mathbb{L}_{3}$, then S admits a non-abelian representation such that the representation group is an extraspecial 2 -group of order $2^{1+n(S)}$.

The structure of the Fischer space \mathcal{F} on big quads of S is used in proving Theorem $1.3(i)$ and in the construction of non-abelian representation for $Q_{6}^{-}(2) \otimes Q_{6}^{-}(2)$.

In Section 2, we give a construction for each of the slim dense near hexagons having big quads. In Section 3, we study the structure of the near hexagon relative to a line in the Fischer space \mathcal{F}. We prove Theorem $1.3(i)$ in Section 4 and Theorem 1.3(ii) in Section 5.

2. Constructions

$D H_{6}\left(2^{2}\right)$ and $D W_{6}(2)$: Let $S=(P, L)$ be a polar space of rank $n \geq 2$ (see [6]). The partial linear space, whose point set is the collection of all maximal singular subspaces of S and lines are the collections of all maximal singular subspaces of S containing a specific singular subspace of co-dimension 1 in each of them, is called the dual polar space of rank n associated with S. Cameron characterized these geometries in terms of points and lines and proved that dual polar spaces of rank n are dense near $2 n$-gons ([8], Theorem 1, p.75). The neat hexagons $D H_{6}\left(2^{2}\right)$ and $D W_{6}(2)$ are the unitary and symplectic dual polar spaces of rank 3, respectively. All slim dense near hexagons having big quads are subspaces of $D H_{6}\left(2^{2}\right)$ (see [4], p.353).
$Q_{4}^{+}(2) \times \mathbb{L}_{3}, W_{4}(2) \times \mathbb{L}_{3}$ and $Q_{6}^{-}(2) \times \mathbb{L}_{3}:$ Let $S_{1}=\left(P_{1}, L_{1}\right)$ and $S_{2}=\left(P_{2}, L_{2}\right)$ be two partial linear spaces. Then, their direct product $S_{1} \times S_{2}$ is the partial linear space whose point set is $P_{1} \times P_{2}$ and the line set consists of all subsets of $P_{1} \times P_{2}$ projecting to a single point in P_{i} for each i and projecting in P_{j} onto an element of L_{j}, where $\{i, j\}=\{1,2\}$. A direct product of near polygons is again a near polygon ([5], Theorem 1, p.146). The slim dense near hexagons on 81,45 and 27 points are direct products of a $(2, t)$-GQ with \mathbb{L}_{3} for $t=4,2,1$, respectively.
$Q_{6}^{-}(2) \otimes Q_{6}^{-}(2):$ The following description of this near hexagon is taken from [12]. Let $S=(P, L)$ be a $(2,4)-\mathrm{GQ}, T=\left\{l_{1} \cdot \cdot \cdot, l_{9}\right\} \subset L$ be a spread of S and l be an arbitrary line in T. Let $\phi_{j}: P \longrightarrow l_{j}$ be the map taking each $x \in P$ to the unique point of l_{j} nearest to x in S. Let $\mathcal{G}=\mathcal{G}(S, T, l)$ be the graph with vertex set $l \times T \times T$. Two distinct vertices $\left(x, l_{i}, l_{j}\right)$ and $\left(y, l_{m}, l_{n}\right)$ are adjacent whenever at least one of the following two conditions holds:
(1) $j=n$ and $\phi_{i}(x)$ and $\phi_{m}(y)$ are collinear points in S;
(2) $i=m$ and $\phi_{j}(x)$ and $\phi_{n}(y)$ are collinear points in S.

Note that if $i=m$ and $j=n$, then (1) and (2) both are satisfied. Any two adjacent vertices of \mathcal{G} are contained in a unique maximal clique of size three. The points and the lines of $Q_{6}^{-}(2) \otimes Q_{6}^{-}(2)$ are, respectively, the vertices and the maximal cliques of \mathcal{G}.
\mathbb{G}_{3} : Let the vector space \mathbb{F}_{4}^{6} with base $\left\{e_{0}, \cdots, e_{5}\right\}$ be equipped with the non-singular hermitian form $(x, y)=x_{0} y_{0}^{2}+x_{1} y_{1}^{2}+\cdots+x_{5} y_{5}^{2}$. Let H denote the corresponding hermitian variety in $P G\left(5,2^{2}\right)$. The support S_{α} of a point $\alpha=\mathbb{F}_{4} x$ of $P G\left(5,2^{2}\right)$ is the set of all $i \in\{0,1, \cdots, 5\}$ for which $\left(x, e_{i}\right) \neq 0$ and its cardinality is called the weight of α. A point of $\operatorname{PG}\left(5,2^{2}\right)$ belongs to H if and only if its weight is even. A
subspace of $\operatorname{PG}\left(5,2^{2}\right)$ contained in H is said to be good if it is generated by a set of points whose supports are pairwise disjoint. Then, \mathbb{G}_{3} is a subspace of $D H_{6}\left(2^{2}\right)$ whose point set consists of all good subspaces of H of dimension 2 (see [11]).
\mathbb{E}_{3} : A non-empty set \mathcal{O} of points of a partial linear space S is called a hyperoval if every line of S intersects \mathcal{O} in zero or two points. The unitary polar space $H_{6}\left(2^{2}\right)$ of rank three has two isomorphism classes of hyperovals [16]. The hyperovals of one class contain 126 points and the hyperovals of the other class contain 162 points. Let \mathcal{O} be a hyperoval of $H_{6}\left(2^{2}\right)$ of size 126. Each maximal singular subspace of $H_{6}\left(2^{2}\right)$ has zero or six points in common with \mathcal{O}. Then, \mathbb{E}_{3} is the subspace of $D H_{6}\left(2^{2}\right)$ consisting of all points intersecting \mathcal{O} in six points (see [10], p.159).
\mathbb{H}_{3} : Let X be a set of size 8 . The point set of \mathbb{H}_{3} is the set of all partitions of X into 2-subsets; and the line set consists of all triples of these partitions sharing two 2-subsets of X (see [4], p.355).

The following alternate construction of \mathbb{H}_{3} and $D W_{6}(2)[19]$ is used in Section 5 .
Proposition 2.1. Let $S=(P, L)$ and $S^{1}=\left(P^{1}, L^{1}\right)$ be two (2,2)-GQs and let π : $x \mapsto x^{1}, x \in P, x^{1} \in P^{1}$, denote an isomorphism from S to S^{1}. Let

$$
\begin{aligned}
\mathcal{P}= & \left\{\left(x, y^{1}\right) \in P \times P^{1}: y^{1} \in x^{1 \perp}\right\} ; \\
\mathcal{L}= & \left\{\left\{\left(x, u^{1}\right),\left(y, v^{1}\right),\left(z, w^{1}\right)\right\}:\{x, y, z\} \text { is a line or a complete triad of points of } S\right. \\
& \text { and } \left.\left\{x^{1}, y^{1}, z^{1}\right\}^{\perp}=\left\{u^{1}, v^{1}, w^{1}\right\} \text { in } S^{1}\right\} ; \\
\mathbb{P}= & \mathcal{P} \cup P \cup P^{1} ; \\
\mathbb{L}= & \mathcal{L} \cup \mathcal{L}^{1}, \text { where } \mathcal{L}^{1}=\left\{\left\{x,\left(x, u^{1}\right), u^{1}\right\}:\left(x, u^{1}\right) \in \mathcal{P}\right\} .
\end{aligned}
$$

Then $\mathcal{S}=(\mathcal{P}, \mathcal{L}) \simeq \mathbb{H}_{3}$ and $\mathbb{S}=(\mathbb{P}, \mathbb{L}) \simeq D W_{6}(2)$ ([19], Theorems 2.1 and 2.2). Clearly, \mathbb{H}_{3} is a geometric hyperplane of $D W_{6}(2)$.

3. Preliminaries

Let $S=(P, L)$ be a slim dense near hexagon having big quads. Fix two disjoint big quads Q_{1} and Q_{2} of S. Let $Q_{3}=Q_{1} * Q_{2}$ and $Y=Q_{1} \cup Q_{2} \cup Q_{3}$. By Lemma 1.2, Y is a subspace of S isomorphic to $Q_{4}^{+}(2) \times \mathbb{L}_{3}, W_{4}(2) \times \mathbb{L}_{3}$ or $Q_{6}^{-}(2) \times \mathbb{L}_{3}$ according as Q_{1} and Q_{2} are of type $(2,1),(2,2)$ or $(2,4)$. Now, fix a big quad Q of S disjoint from Y. Let $\{i, j, k\}=\{1,2,3\}$. For $x \in P \backslash Y$, we define $x^{j}=x_{Q_{j}}$ and, for $x \in Q_{i}$, we define $z_{x}^{j}=x_{Q_{j}}$. Thus, for $x \in Q_{i},\left\{x, z_{x}^{j}, z_{x}^{k}\right\}$ is a line of Y meeting each of Q_{i}, Q_{j} and Q_{k}. For a line $l=\{a, b, c\}$ of S, we set $l_{Q}=\left\{a_{Q}, b_{Q}, c_{Q}\right\}$ if $l \cap Q$ is empty, and $l^{j}=\left\{a^{j}, b^{j}, c^{j}\right\}$ if $l \cap Q_{j}$ is empty. We denote by τ_{j} the isomorphism from Q to Q_{j} defined by $\tau_{j}(x)=x^{j}, x \in Q$ and by $\tau_{i j}$ the isomorphism from Q_{i} to Q_{j} defined by $\tau_{i j}(x)=z_{x}^{j}, x \in Q_{i}$ (see Lemma 1.2(i)). For $x \in P \backslash(Y \cup Q)$, we denote by x_{Q}^{i} the point $\left(x_{Q}\right)^{i}$ in Q_{i}. Similarly, for a line l disjoint from both Y and Q, we denote by l_{Q}^{i} the line $\left(l_{Q}\right)^{i}$ in Q_{i}.

Lemma 3.1. Let $x \in P \backslash Y$. Then:
(i) $d\left(z_{x^{i}}^{j}, x^{j}\right)=1$ and $d\left(x^{i}, x^{j}\right)=2$.
(ii) $\left\{x^{i}, z_{x^{j}}^{i}, z_{x^{k}}^{i}\right\}$ is a line in Q_{i}.

Proof. (i) Since $x \in \Gamma_{1}\left(x^{i}\right) \cap \Gamma_{1}\left(x^{j}\right), d\left(x^{i}, x^{j}\right)=2$. Further, $d\left(x^{i}, x^{j}\right)=d\left(x^{i}, z_{x^{i}}^{j}\right)+$ $d\left(z_{x^{i}}^{j}, x^{j}\right)$. So $d\left(z_{x^{i}}^{j}, x^{j}\right)=1$.
(ii) By $(i), x^{i} \sim z_{x^{j}}^{i}$ and $x^{i} \sim z_{x^{k}}^{i}$. We show that $z_{x^{j}}^{i} \sim z_{x^{k}}^{i}$. The quad $Q\left(x^{j}, x^{k}\right)$ of Y is of type $(2,1)$ and $\left\{x^{j}, x^{k}\right\}^{\perp}=\left\{z_{x^{j}}^{k}, z_{x^{k}}^{j}\right\}$ in Y. Now, from the parallel lines $\left\{x^{j}, z_{x^{j}}^{i}, z_{x^{j}}^{k}\right\}$ and $\left\{x^{k}, z_{x^{k}}^{i}, z_{x^{k}}^{j}\right\}$ in $Q\left(x^{j}, x^{k}\right)$, it follows that $z_{x^{j}}^{i} \sim z_{x^{k}}^{i}$.

Lemma 3.2. Let $l=\{a, b, c\}$ be a line of S intersecting Y at c.
(i) If $c \in Q_{i} \cup Q_{j}$, then $d\left(a^{i}, b^{j}\right)=2$.
(ii) If $c \in Q_{k}$, then $d\left(a^{i}, b^{j}\right)=1$. In fact, $a^{i}=z_{b j}^{i}$.

Proof. (i) Let c be in, say, Q_{i}. Since $a^{i}=b^{i}=c, d\left(a^{i}, b^{j}\right)=d\left(b^{i}, b^{j}\right)=2$ by Lemma 3.1(i).
(ii) We have $a^{k}=b^{k}=c$. Since l is disjoint from $Q_{i}, l^{i}=\left\{a^{i}, b^{i}, c^{i}=z_{c}^{i}\right\}$ is a line of Q_{i}. By Lemma 3.1(ii), $\left\{b^{i}, z_{b^{j}}^{i}, z_{b^{k}}^{i}=z_{c}^{i}\right\}$ is also a line of Q_{i}. So, $a^{i}=z_{b^{j}}^{i}$ and $d\left(a^{i}, b^{j}\right)=1$.

Lemma 3.3. Let l be a line of S disjoint from Y and $x, y \in l$ with $x \neq y$.
(i) If $l^{j}=x^{j} z_{x^{i}}^{j}$ in Q_{j}, then $\left(y^{i}, y^{j}\right)=\left(z_{x^{j}}^{i}, x^{j} * z_{x^{i}}^{j}\right)$ or $\left(x^{i} * z_{x^{j}}^{i}, z_{x^{i}}^{j}\right)$. In particular, $l^{i}=x^{i} z_{x^{j}}^{i}$ in $Q_{i}, l^{j}=x^{j} z_{x^{i}}^{j}$ in Q_{j} and $\tau_{i j}\left(l^{i}\right)=l^{j}$ are equivalent.
(ii) $d\left(x^{i}, y^{j}\right) \leq 2$ if and only if $l^{i}=x^{i} z_{x^{j}}^{i}$ in Q_{i}.

Proof. (i) If $l^{j}=x^{j} z_{x^{i}}^{j}$, then $y^{j} \in\left\{z_{x^{i}}^{j}, x^{j} * z_{x^{i}}^{j}\right\}$. Assume that $y^{j}=x^{j} * z_{x^{i}}^{j}$. Since $\tau_{j i}\left(x^{j} z_{x^{i}}^{j}\right)=x^{i} z_{x^{j}}^{i}, z_{y^{j}}^{i}=x^{i} * z_{x^{j}}^{i}$ and so $y^{i} \sim x^{i} * z_{x^{j}}$ (Lemma 3.1(i)). Since $y^{i} \sim x^{i}$ also, y^{i} is a point in the line $x^{i} z_{x^{j}}^{i}$. Now, $d\left(y^{i}, y^{j}\right)=2$ implies that $y^{i}=z_{x^{j}}^{i}$.

If $y^{j}=z_{x^{i}}^{j}$, then applying the above argument to $(x * y)^{j}=x^{j} * z_{x^{i}}^{j}$, we get $(x * y)^{i}=z_{x^{j}}^{i}$ and so, $y^{i}=x^{i} * z_{x^{j}}^{i}$.
(ii) If $l^{i}=x^{i} z_{x^{j}}^{i}$ in Q_{i}, then $\tau_{i j}\left(l^{i}\right)=l^{j}$ by (i) and it follows that $d\left(x^{i}, y^{j}\right) \leq 2$. Suppose that $l^{i} \neq x^{i} z_{x^{j}}^{i}$ in Q_{i}. By $(i), l^{j} \neq x^{j} z_{x^{i}}^{j}$ in Q_{j}. So $y^{j} \nsim z_{x^{i}}^{j}$, and $d\left(x^{i}, y^{j}\right)=$ $d\left(x^{i}, z_{x^{i}}^{j}\right)+d\left(z_{x^{i}}^{j}, y^{j}\right)=1+2=3$.

Lemma 3.4. For every $x \in Q$, there exists a unique line l in Q containing x such that $\tau_{i j}\left(l^{i}\right)=l^{j}$. In particular, $l^{i}=\left\{x^{i}, z_{x^{j}}^{i}, z_{x^{k}}^{i}\right\}$.

Proof. Since τ_{i} is an isomorphism from Q to Q_{i}, there exists a line l of Q containing x such that $l^{i}=x^{i} z_{x^{j}}^{i}$. By Lemma 3.3 $(i), \tau_{i j}\left(l^{i}\right)=l^{j}$. The line l in Q through x such that $\tau_{i j}\left(l^{i}\right)=l^{j}$ is unique because, for any other line \bar{l} of Q containing x, $\tau_{i j}\left(\bar{l}^{i}\right)$ and \bar{l}^{j} are two disjoint lines in Q_{j} containing $z_{x^{i}}^{j}$ and x^{j}, respectively. Now, $l^{i}=x^{i} z_{x^{j}}^{i}=\left\{x^{i}, z_{x^{j}}^{i}, z_{x^{k}}^{i}\right\}$ (see Lemma 3.1(ii)).

Notation 3.5. For $x \in Q$, we denote by ζ_{x} the unique line l in Q containing x as in Lemma 3.4 and we write $T_{Q}=\left\{\zeta_{x}: x \in Q\right\}$.

Corollary 3.6. T_{Q} is a spread of Q.
Proof. This follows because, $\zeta_{x}=\zeta_{y}$ for $x \in Q$ and $y \in \zeta_{x}$, by Lemma 3.4.

Let $l=\{a, b, c\}$ be a line of Q. First, let $l \in T_{Q}$. Set $T^{l}=l^{i} \cup l^{j} \cup l^{k}$ and $T_{j k}^{l}=l^{i} \cup \tau_{i j}\left(l^{i}\right) \cup \tau_{i k}\left(l^{i}\right)$. The set $T_{j k}^{l}$ is a quad of Y of type $(2,1)$ whose lines are the rows and the columns of the matrix

$$
T_{j k}^{l}=\left[\begin{array}{ccc}
a^{i} & z_{a^{i}}^{j} & z_{a^{i}}^{k} \tag{3.2}\\
b^{i} & z_{b^{i}}^{j} & z_{b^{i}}^{k} \\
c^{i} & z_{c^{i}}^{j} & z_{c^{i}}^{k}
\end{array}\right]
$$

Since $l \in T_{Q}$, Lemma 3.4 implies that T^{l} coincides with $T_{j k}^{l}$. So T^{l} is a quad of Y of type $(2,1)$ whose lines are the rows and columns of one of the matrices

$$
T^{l}=\left[\begin{array}{ccc}
a^{i} & c^{j} & b^{k} \tag{3.3}\\
b^{i} & a^{j} & c^{k} \\
c^{i} & b^{j} & a^{k}
\end{array}\right] ; \text { or } T^{l}=\left[\begin{array}{ccc}
a^{i} & b^{j} & c^{k} \\
b^{i} & c^{j} & a^{k} \\
c^{i} & a^{j} & b^{k}
\end{array}\right]
$$

Note that if $b^{k} \sim a^{i}$, then the line containing them is $\left\{a^{i}, c^{j}, b^{k}\right\}$.
Now, let $l \notin T_{Q}$. Then, $\tau_{i j}\left(l^{i}\right)$ and l^{j} are disjoint lines in Q_{j}. The set $T_{i}^{l}=$ $l^{i} \cup \tau_{j i}\left(l^{j}\right) \tau_{k i}\left(l^{k}\right)$ form a $(2,1)$-GQ in Q_{i}. In fact, we can write

$$
T_{i}^{l}=\left[\begin{array}{ccc}
a^{i} & b^{i} & c^{i} \tag{3.4}\\
z_{a^{j}}^{i} & z_{b^{j}}^{i} & z_{c^{j}}^{i} \\
z_{a^{k}}^{i} & z_{b^{k}}^{i} & z_{c^{k}}^{i}
\end{array}\right] ; T_{j}^{l}=\left[\begin{array}{ccc}
z_{a^{i}}^{j} & z_{b^{i}}^{j} & z_{c^{i}}^{j} \\
a^{j} & b^{j} & c^{j} \\
z_{a^{k}}^{j} & z_{b^{k}}^{j} & z_{c^{k}}^{j}
\end{array}\right] ; \text { and } T_{k}^{l}=\left[\begin{array}{ccc}
z_{a^{i}}^{k} & z_{b^{i}}^{k} & z_{c^{i}}^{k} \\
z_{a^{j}}^{k} & z_{b^{j}}^{k} & z_{c^{j}}^{k} \\
a^{k} & b^{k} & c^{k}
\end{array}\right] .
$$

Each row as well as each column in T_{i}^{l} (respectively, T_{j}^{l}, T_{k}^{l}) is a line of Q_{i} (respectively, Q_{j}, Q_{k}). Further, the (m, n)-th entries from T_{i}^{l}, T_{j}^{l} and T_{k}^{l} form a line of Y.

As a consequence of the above, we have
Corollary 3.7. Let l be a line of Q. For distinct $a, b \in l, d\left(a^{i}, b^{j}\right) \leq 2$ or $d\left(a^{i}, b^{j}\right)=3$ according as $l \in T_{Q}$ or not.

4. Proof of Theorem 1.3(i)

A finite 2-group G is extraspecial if its Frattini subgroup $\Phi(G)$, the commutator subgroup G^{\prime} and the center $Z(G)$ coincide and have order 2. An extraspecial 2-group is of exponent 4 and of order $2^{1+2 m}$ for some integer $m \geq 1$ and the maximum of the orders of its abelian subgroups is 2^{m+1} (see [9], section 20, p.78,79). An extraspecial 2-group G of order $2^{1+2 m}$ is a central product of either m copies of the dihedral group D_{8} of order 8 or $m-1$ copies of D_{8} with a copy of the quaternion group Q_{8} of order 8 . In the first case, G possesses a maximal elementary abelian subgroup of order 2^{1+m} and we write $G=2_{+}^{1+2 m}$. If the later holds, then all maximal abelian subgroups of G are of type $2^{m-1} \times 4$ and we write $G=2_{-}^{1+2 m}$.

Let $S=(P, L)$ be a slim dense near hexagon having big quads of type $(2,4)$ and (R, ψ) be a non-abelian representation of S. For $x, y \in P$ with $d(x, y) \leq 2,\left[r_{x}, r_{y}\right]=$

1 : if $d(x, y)=2$, we apply ([20], Theorem $1.5(i)$, p.55) to the restriction of ψ to the quad $Q(x, y)$. From ([20], Theorem 2.9, p.58, see [20], Example 2.2, p.56) and ([21], Theorem 1.6), we have

Proposition 4.1. The following hold:
(i) For $x, y \in P,\left[r_{x}, r_{y}\right] \neq 1$ if and only if $d(x, y)=3$. In that case, $\left\langle r_{x}, r_{y}\right\rangle$ is a dihedral group of order 8 .
(ii) $\left|R^{\prime}\right|=2$ and $R^{\prime}=\Phi(R) \subseteq Z(R)$.
(iii) $r_{x} \notin Z(R)$ for each $x \in P$, and ψ is faithful.
(iv) R is of order 2^{β}, where $1+n(S) \leq \beta \leq 1+\operatorname{dimV}(S)$.
(v) If $\beta=1+n(S)$, then R is an extraspecial 2-group. In that case, $R=2_{+}^{1+n(S)}$ except for the near hexagon $Q_{6}^{-}(2) \otimes Q_{6}^{-}(2)$, in which case $R=2_{-}^{1+n(S)}$.

We repeatedly use Proposition $4.1(i)$, mostly without mention.
Let Q_{1} and Q_{2} be two disjoint big quads of S and Y be the subspace of S generated by them. Then, $Y \simeq Q_{6}^{-}(2) \times \mathbb{L}_{3}$ and $Y=Q_{1} \cup Q_{2} \cup Q_{3}$, where $Q_{3}=Q_{1} * Q_{2}$ (see Lemma 1.2(ii)). Let (R, ψ) be a non-abelian representation of S. Set $M=\langle\psi(Y)\rangle$ and $N=C_{R}(M)$. Then $M \simeq 2_{+}^{1+12}$ (Theorem $\left.4.1(v)\right)$ and R is a central product of M and N, written as $R=M \circ N$. In the following, we use the notation of Section 3.

Lemma 4.2 ([21], Proposition 5.3). For each $x \in P \backslash Y, r_{x}$ has a unique decomposition as $r_{x}=r_{z_{x^{2}}^{1}} r_{z_{x^{1}}^{2}} n_{x}$, where n_{x} is an involution in $N \backslash Z(R)$.
Lemma 4.3 ([21], Corollary 5.5). Let Q be a big quad of S disjoint from Y and $I_{2}(N)$ be the set of involutions in N. Let δ be the map from Q to $I_{2}(N)$ defined by $\delta(x)=n_{x}, x \in Q$. Then:
(i) δ is one-one.
(ii) For $x, y \in Q,[\delta(x), \delta(y)]=1$ if and only if $x=y$ or $x \sim y$.
(iii) There exists a spread T in Q such that for $x, y \in Q$ with $x \sim y$,

$$
\delta(x * y)= \begin{cases}\delta(x) \delta(y) & \text { if } x y \in T \\ \delta(x) \delta(y) \theta & \text { if } x y \notin T\end{cases}
$$

$$
\text { where } R^{\prime}=\{1, \theta\} \text { (see Proposition 4.1(ii)). }
$$

The proof of the above two lemmas is mainly based on the fact that big quads of S are of type $(2,4)$.

Proposition 4.4. Let $S=(P, L)$ be a slim dense near hexagon having big quads of type $(2,4)$. Suppose that the Fischer space on big quads of S contains a subspace H isomorphic to the dual affine plane of order 2. Then, every representation of S is abelian.

Proof. Let $H=\left\{Q_{1}, Q_{2}, Q_{3}, Q, T_{1}, T_{2}\right\}$ with lines $\left\{Q_{1}, Q_{2}, Q_{3}\right\},\left\{Q_{1}, Q, T_{1}\right\},\left\{T_{1}, T_{2}, Q_{3}\right\}$ and $\left\{Q, T_{2}, Q_{2}\right\}$. Then, $Y=Q_{1} \cup Q_{2} \cup Q_{3}$ is isomorphic to $Q_{6}^{-}(2) \times \mathbb{L}_{3}$ and Q is a big quad of S disjoint from Y.

Suppose that (R, ψ) is a non-abelian representation of S and let M and N be as above. Let $l=\{a, b, c\}$ be a line of S meeting T_{1} at a, T_{2} at b and Q_{3} at c. We show that $n_{a}=n_{b}, n_{a}=n_{a_{Q}}$ and $n_{b}=n_{b_{Q}}$. Since $a_{Q} \neq b_{Q}, n_{a_{Q}}=n_{b_{Q}}$ would contradict Lemma 4.3(i), thus completing the proof.

For $m \in\{1,2\}, l$ is disjoint from Q_{m}, so $l^{m}=\left\{a^{m}, b^{m}, c^{m}=z_{c}^{m}\right\}$ is a line of Q_{m}. By Lemma 3.2(ii), $\left(a^{1}, b^{1}\right)=\left(z_{b^{2}}^{1}, z_{a^{2}}^{1}\right)$ and $\left(a^{2}, b^{2}\right)=\left(z_{b^{1}}^{2}, z_{a^{1}}^{2}\right)$. So $r_{a}=r_{z_{a^{1}}} r_{z_{a^{2}}} n_{a}=$ $r_{b^{1}} r_{b^{2}} n_{a}$ by Lemma 4.2. Similarly, $r_{b}=r_{a^{1}} r_{a^{2}} n_{b}$. Now, $r_{a} r_{b}=\left(r_{b^{1}} r_{b^{2}}\right)\left(r_{a^{1}} r_{a^{2}}\right) n_{a} n_{b}=$ $\left(r_{b^{1}} r_{a^{1}}\right)\left(r_{b^{2}} r_{a^{2}}\right) n_{a} n_{b}=r_{c^{1}} r_{c^{2}} n_{a} n_{b}$. The second equality holds since $d\left(a^{1}, b^{2}\right)=1$ by Lemma 3.2(ii). Since $c^{1}=z_{c}^{1}, c^{2}=z_{c}^{2}$ and $\left\{c, z_{c}^{1}, z_{c}^{2}\right\}$ is a line of Y, we get $r_{a} r_{b}=$ $r_{c} n_{a} n_{b}$. But $r_{a} r_{b}=r_{c}$ by the definition of a representation. So $n_{a}=n_{b}$.

Now, consider the line $l_{a}=\left\{a, a_{Q}, a^{1}=a_{Q}^{1}\right\}$ meeting T_{1} at a, Q at a_{Q} and Q_{1} at $a^{1}=a_{Q}^{1}$. We have $r_{a} r_{a_{Q}}=r_{a^{1}}$. Since l_{a} is disjoint from $Q_{2}, l_{a}^{2}=\left\{a^{2}, a_{Q}^{2}, z_{a^{1}}^{2}=z_{a_{Q}^{1}}^{2}\right\}$ is a line of Q_{2}. Now, $r_{a} r_{a_{Q}}=r_{a_{a}^{1}} r_{z_{a^{1}}^{2}} r_{z_{a_{Q}^{1}}} r_{z_{a_{Q}^{2}}^{2}} n_{a} n_{a_{Q}}$. By Lemma 3.2(i), d($\left.a^{1}, a_{Q}^{2}\right)=2$ and so, $\left[r_{z_{a}^{2}}^{2}, r_{z_{a_{Q}^{2}}^{1}}\right]=1$. Since $a^{1}=a_{Q}^{1}$, we get $r_{a} r_{a_{Q}}=r_{z_{a}^{1}} r_{z_{a_{Q}^{1}}} n_{a} n_{a_{Q}}$. Since the line l_{a}^{2} is disjoint from Q_{1}, its projection on Q_{1} is the line $\left\{a^{1}=a_{Q}^{1}, z_{a^{2}}^{1}, z_{a_{Q}^{2}}^{1}\right\}$. So $r_{a} r_{a_{Q}}=r_{a^{1}} n_{a} n_{a_{Q}}$. Thus, $n_{a}=n_{a_{Q}}$. Similarly, considering the line $l_{b}=\left\{b, b_{Q}, b^{2}=\right.$ $\left.b_{Q}^{2}\right\}$ disjoint from Q_{1}, the above argument yields that $n_{b}=n_{b_{Q}}$. This completes the proof.

Proof of Theorem 1.3(i). Let $S=(P, L)$ be either \mathbb{E}_{3} or \mathbb{G}_{3}. Let Δ_{S} be the graph on big quads of S, two distinct big quads being adjacent when they have non-empty intersection. If $S=\mathbb{G}_{3}$, then $\Delta_{\mathbb{G}_{3}}$ is the 3-coclique extension of the (2,2)-GQ, and if $S=\mathbb{E}_{3}$, then $\Delta_{\mathbb{E}_{3}}$ is locally the collinearity graph of the (2,4)-GQ (see [4], p.361). In either case, it follows that for two adjacent vertices V_{1} and V_{2} of Δ_{S}, there exists a vertex V of Δ_{S} which is not adjacent to both V_{1} and V_{2}. Consider the Fischer space \mathcal{F} on big quads of S. Since V_{1} and V_{2} are not collinear in \mathcal{F}, the subspace H of \mathcal{F} generated by the two intersecting lines $\left\{V, V_{1}, V * V_{1}\right\}$ and $\left\{V, V_{2}, V * V_{2}\right\}$ is isomorphic to the dual affine plane of order 2. So, by Proposition 4.4, every representation of S is abelian. Since S is a subspace of $D H_{6}\left(2^{2}\right)$ (see [4], p.353), Proposition 4.1(i) implies that every representation of $D H_{6}\left(2^{2}\right)$ is abelian.

5. Proof of Theorem 1.3(ii)

In this section, we construct non-abelian representations for each of the near hexagons in Theorem 1.3(ii).
5.1. $Q_{6}^{-}(2) \times \mathbb{L}_{3}, W_{4}(2) \times \mathbb{L}_{3}$ and $Q_{4}^{+}(2) \times \mathbb{L}_{3}$. Let $R=2_{+}^{1+2 k}, k \in\{4,6\}, R^{\prime}=\{1, \theta\}$ and $V=R / R^{\prime}$. We consider V as a vector space over F_{2}. The map $f: V \times V \longrightarrow$ F_{2} taking $\left(x R^{\prime}, y R^{\prime}\right)$ to 0 or 1 according as $[x, y]=1$ or not, is a non-degenerate symplectic bilinear form on V. Write V as an orthogonal direct sum of k hyperbolic planes $K_{i}(1 \leq i \leq k)$ in V and let H_{i} be the inverse image of K_{i} in R. Then, H_{i} is generated by two elements x_{i} and x_{i}^{1} such that $\left[x_{i}, x_{i}^{1}\right]=\theta$. Let $M=\left\langle x_{i}: 1 \leq i \leq k\right\rangle$
and $M^{1}=\left\langle x_{i}^{1}: 1 \leq i \leq k\right\rangle$. Then, M and M^{1} are elementary abelian 2-subgroups of R of order 2^{k} each. Further, M, M^{1} and $Z(R)$ pairwise intersect trivially and $R=M M^{1} Z(R)$.

Let $F=(Q, B)$ be a $(2, t)$-GQ in M with $M=\langle Q\rangle$. Then, $(k, t)=(4,1),(4,2)$ or $(6,4)$. (If $(k, t)=(4,2)$, then F is of symplectic type.) For each $m \in Q$, the subgroup $H_{m}=\left\langle z \in Q: z \in m^{\perp}\right\rangle$ of M is of index 2 in M ([17], 4.2.4, p.68). The centralizer of H_{m} in M^{1} is a subgroup $\left\langle\kappa_{m}^{1}\right\rangle$ of M^{1} of order 2. Then, $M^{2}=\left\langle m \kappa_{m}^{1}: m \in Q\right\rangle$ is an elementary abelian 2-subgroup of R of order 2^{k} intersecting each of M, M^{1} and $Z(R)$ trivially. We set

$$
\begin{aligned}
& Q^{1}=\left\{\kappa_{m}^{1} \in M^{1}: m \in Q\right\} \\
& Q^{2}=\left\{m \kappa_{m}^{1} \in M^{2}: m \in Q\right\} \\
& B^{1}=\left\{\left\{\kappa_{a}^{1}, \kappa_{b}^{1}, \kappa_{c}^{1}\right\}:\{a, b, c\} \in B\right\} \\
& B^{2}=\left\{\left\{a \kappa_{a}^{1}, b \kappa_{b}^{1}, c \kappa_{c}^{1}\right\}:\{a, b, c\} \in B\right\}
\end{aligned}
$$

Then, $F^{1}=\left(Q^{1}, B^{1}\right)$ and $F^{2}=\left(Q^{2}, B^{2}\right)$ are $(2, t)$-GQs in M^{1} and M^{2}, respectively. Now, take

$$
\begin{aligned}
& \mathrm{Q}=Q \cup Q^{1} \cup Q^{2} \\
& \mathrm{~B}=B \cup B^{1} \cup B^{2} \cup\left\{\left\{m, m \kappa_{m}^{1}, \kappa_{m}^{1}\right\}: m \in Q\right\}
\end{aligned}
$$

Then, $\mathrm{S}=(\mathrm{Q}, \mathrm{B})$ is a partial linear space, isomorphic to $Q_{4}^{+}(2) \times \mathbb{L}_{3}$ if $(k, t)=(4,1)$; $W_{4}(2) \times \mathbb{L}_{3}$ if $(k, t)=(4,2)$; and $Q_{6}^{-}(2) \times \mathbb{L}_{3}$ if $(k, t)=(6,4)$. Note that F, F^{1} and F^{2} are the only big quads in the last two cases. Thus we get non-abelian representation for $Q_{6}^{-}(2) \times \mathbb{L}_{3}, W_{4}(2) \times \mathbb{L}_{3}$ and $Q_{4}^{+}(2) \times \mathbb{L}_{3}$.
5.2. \mathbb{H}_{3} and $D W_{6}(2)$. Let $R=2_{+}^{1+8}$. Let F and F^{1} be the symplectic (2,2)-GQs for $(k, t)=(4,2)$ as in Subsection 5.1. The map $\sigma: Q \longrightarrow Q^{1}$ defined by $m \mapsto \kappa_{m}^{1}, m \in Q$, is an isomorphism from F to F^{1}. We set

$$
\mathcal{Q}=\left\{m n^{1}: m \in Q, n^{1} \in Q^{1},\left[m, n^{1}\right]=1\right\}
$$

We define collinearity in \mathcal{Q}. For distinct $m_{1} n_{1}^{1}, m_{2} n_{2}^{1} \in \mathcal{Q}$ with $m_{1}, m_{2} \in Q$ and $n_{1}^{1}, n_{2}^{1} \in Q^{1}$, we say that $m_{1} n_{1}^{1} \sim m_{2} n_{2}^{1}$ if and only if $\left[m_{1}, n_{2}^{1}\right]=\left[m_{2}, n_{1}^{1}\right]=1$ and $\left(m_{1} m_{2}\right)\left(n_{1}^{1} n_{2}^{1}\right) \in \mathcal{Q}$. The second condition implies that $m_{1} \neq m_{2}$ and $n_{1}^{1} \neq n_{2}^{1}$. The line containing $m_{1} n_{1}^{1}$ and $m_{2} n_{2}^{1}$ is $\left\{m_{1} n_{1}^{1}, m_{2} n_{2}^{1},\left(m_{1} m_{2}\right)\left(n_{1}^{1} n_{2}^{1}\right)\right\}$. Let \mathcal{B} be the set of all such lines in \mathcal{Q}. Set

$$
\mathbb{Q}=Q \cup Q^{1} \cup \mathcal{Q}, \text { and } \mathbb{B}=\mathcal{B} \cup \mathcal{B}^{1}
$$

where $\mathcal{B}^{1}=\left\{\left\{m, m n^{1}, n^{1}\right\}: m n^{1} \in \mathcal{Q}\right\}$. Using the constructions of \mathbb{H}_{3} and $D W_{6}(2)$ in Proposition 2.1, we now show that $\mathcal{F}=(\mathcal{Q}, \mathcal{B}) \simeq \mathbb{H}_{3}$ and $\mathbb{F}=(\mathbb{Q}, \mathbb{B}) \simeq D W_{6}(2)$, thus giving non-abelian representation for \mathbb{H}_{3} and $D W_{6}(2)$.

Let $S=(P, L), S^{1}=\left(P^{1}, L^{1}\right), \mathcal{S}=(\mathcal{P}, \mathcal{L}), \mathbb{S}=(\mathbb{P}, \mathbb{L})$ and the map π be as in Proposition 2.1. Let $\alpha: P \longrightarrow Q$ be an isomorphism from S to F and $\beta: P^{1} \longrightarrow Q^{1}$ be the isomorphism from F^{1} to Q^{1} such that the following diagram commute:

Thus, $\beta\left(u^{1}\right)=\sigma \alpha \pi^{-1}\left(u^{1}\right), u^{1} \in P^{1}$. We show that, if $x \in P$ and $u^{1} \in P^{1}$, then $\left(x, u^{1}\right) \in \mathcal{P}$ if and only if $\alpha(x) \beta\left(u^{1}\right) \in \mathcal{Q}$. First, assume that $\left(x, u^{1}\right) \in \mathcal{P}$ and $u \in P$ be such that $\pi(u)=u^{1}$. Since $\left(x, u^{1}\right) \in \mathcal{P}, x \in u^{\perp}$ and $\alpha(x) \in \alpha(u)^{\perp}$. This implies that $[\alpha(x), \sigma(\alpha(u))]=1$, since $\kappa_{\alpha(u)}^{1}=\sigma(\alpha(u))$. But $[\alpha(x), \sigma(\alpha(u))]=$ $\left[\alpha(x), \sigma \alpha \pi^{-1}\left(u^{1}\right)\right]=\left[\alpha(x), \beta\left(u^{1}\right)\right]$. So $\alpha(x) \beta\left(u^{1}\right) \in \mathcal{Q}$. Reversing the argument we conclude that $\left(x, u^{1}\right) \in \mathcal{P}$ when $\alpha(x) \beta\left(u^{1}\right) \in \mathcal{Q}$.

Let the map $\rho: \mathbb{P} \longrightarrow \mathbb{Q}$ be equal to α on P, β on P^{1} and $\rho\left(\left(x, u^{1}\right)\right)=\alpha(x) \beta\left(u^{1}\right)$ for $\left(x, u^{1}\right) \in \mathcal{P}$. Then, ρ induces a bijection from \mathcal{L} to \mathcal{B} and from \mathcal{L}^{1} to \mathcal{B}^{1}. For the injectivity on \mathcal{L}, we use the fact that if $\{u, v, w\}$ is either a line or a complete triad in Q or Q^{1}, then $u v w=1$ ([21], Proposition 3.5). So $\mathbb{S} \simeq \mathbb{F}$. Further, the restriction of ρ to \mathcal{P} is an isomorphism from \mathcal{S} to \mathcal{F}.
[If $m_{1} n_{1}^{1}$ and $m_{2} n_{2}^{1}$ are distinct points of \mathcal{Q} with $m_{1}, m_{2} \in Q$ and $n_{1}^{1}, n_{2}^{1} \in Q^{1}$, then the following hold:
(1) $d\left(m_{1} n_{1}^{1}, m_{2} n_{2}^{1}\right)=1$ if and only if $m_{1} \neq m_{2}, n_{1}^{1} \neq n_{2}^{1}$ and $\left[m_{1}, n_{2}^{1}\right]=\left[m_{2}, n_{1}^{1}\right]=$ 1.
(2) $d\left(m_{1} n_{1}^{1}, m_{2} n_{2}^{1}\right)=2$ if and only if one of the following occur:
(i) $m_{1}=m_{2}, n_{1}^{1} \neq n_{2}^{1}$;
(ii) $m_{1} \neq m_{2}, n_{1}^{1}=n_{2}^{1}$;
(iii) $m_{1} \neq m_{2}, n_{1}^{1} \neq n_{2}^{1}$ and $\left[m_{1}, n_{2}^{1}\right]=\left[m_{2}, n_{1}^{1}\right] \neq 1$.
(3) $d\left(m_{1} n_{1}^{1}, m_{2} n_{2}^{1}\right)=3$ if and only if $m_{1} \neq m_{2}, n_{1}^{1} \neq n_{2}^{1}$ and one of the following occur:
(i) $\left[m_{1}, n_{2}^{1}\right]=1$ and $\left[m_{2}, n_{1}^{1}\right] \neq 1$;
(ii) $\left[m_{1}, n_{2}^{1}\right] \neq 1$ and $\left[m_{2}, n_{1}^{1}\right]=1$.]
5.3. $Q_{6}^{-}(2) \otimes Q_{6}^{-}(2)$. Let $S=(P, L)$ be the near hexagon $Q_{6}^{-}(2) \otimes Q_{6}^{-}(2)$. We refer to ([4], p.363) for the description of the Fischer space on the set of the 18 big quads of S. This set partitions into two families \mathcal{F}_{1} and \mathcal{F}_{2} of size 9 each such that each \mathcal{F}_{i} defines a partition of the point set P of S. Let $\mathcal{U}_{i}, i=1,2$, be the partial linear space whose points are the big quads of \mathcal{F}_{i}; every pair of distinct points of \mathcal{U}_{i} are collinear. Further, if Q_{1} and Q_{2} are two distinct points of \mathcal{U}_{i}, then the line containing them is $\left\{Q_{1}, Q_{2}, Q_{3}\right\}$, where $Q_{3}=Q_{1} * Q_{2}$ (Lemma 1.2(ii)). Then, \mathcal{U}_{i} is an affine plane of order 3.

Consider the affine plane \mathcal{U}_{1}. Fix an affine line $\left\{Q_{1}, Q_{2}, Q_{3}\right\}$ in \mathcal{U}_{1}. Then, $Y=$ $Q_{1} \cup Q_{2} \cup Q_{3}$ is isomorphic to $Q_{6}^{-}(2) \times \mathbb{L}_{3}$. Fix an affine point Q in \mathcal{U}_{1} such that $Q \cap Y$ is empty. Taking $\{i, j, k\}=\{1,2,3\}$, we make use of the notation and the results of Section 3 in the rest of this section.

Let $l=\{a, b, c\}$ be a line of S not contained in Y. If l meets Y at some point c, say, and is disjoint from Q, then exactly one of the lines $a a_{Q}$ and $b b_{Q}$ meet Y. If l
meets Q at some point and is disjoint from Y, then l corresponds to the affine line of \mathcal{U}_{1} containing Q and parallel to $\left\{Q_{1}, Q_{2}, Q_{3}\right\}$. Further, if $x \in l \backslash(l \cap Q)$, then the line $x x^{i}$ is disjoint from Q. Now, let l be disjoint from both Y and Q. Then l is contained in a point of \mathcal{U}_{1} different from Q and $Q_{i}, i \in\{1,2,3\}$; or it corresponds to the affine line of \mathcal{U}_{1} not containing Q and parallel to $\left\{Q_{1}, Q_{2}, Q_{3}\right\}$. So, the lines $a a_{Q}, b b_{Q}$ and $c c_{Q}$ either meet Y or all have empty intersection with Y. In the first case, if $x x_{Q} \cap Y=\left\{x_{Y}\right\}$ for $x \in l$ and $l_{Y}=\left\{x_{Y}: x \in l\right\}$, then l_{Y} is a line of Q_{i} for some $i \in\{1,2,3\}$; or $\left|l_{Y} \cap Q_{i}\right|=1$ for each $i \in\{1,2,3\}$ (l_{Y} need not be a line in this case).

Lemma 5.1. Let $l=\{a, b, c\}$ be a line of S disjoint from $Y \cup Q$ such that the line $x x_{Q}$ meets Y at x_{Y} for each $x \in l$. Let $m, n \in\{1,2,3\}, m \neq n$.
(i) If l is contained in a point of \mathcal{U}_{1}, then $d\left(a^{m}, b^{n}\right) \leq 2$ or $d\left(a^{m}, b^{n}\right)=3$ according as $l_{Q} \in T_{Q}$ or not.
(ii) If l corresponds to the affine line of \mathcal{U}_{1} not containing Q and parallel to $\left\{Q_{1}, Q_{2}, Q_{3}\right\}$, then $l_{Q} \notin T_{Q}$ and $d\left(a^{m}, b^{n}\right)=3$.

Proof. (i) Let $l_{Y}=\left\{a_{Y}, b_{Y}, c_{Y}\right\}$. Then, l_{Y} is a line of Q_{i}, Q_{j} or Q_{k}, say Q_{i}. (If K is the affine point of \mathcal{U}_{1} containing l, then $Q_{i}=K * Q$.) Let $x \in l$. Then $x^{i}=x_{Q}^{i}=x_{Y} \in Q_{i}$, so $l^{i}=l_{Q}^{i}$. The line $l_{x}=\left\{x, x_{Q}, x_{Y}\right\}$ is disjoint from Q_{j} and Q_{k}. So $l_{x}^{j}=\left\{x^{j}, x_{Q}^{j}, z_{x_{Y}}^{j}=z_{x_{Q}^{i}}^{j}\right\}$ and $l_{x}^{k}=\left\{x^{k}, x_{Q}^{k}, z_{x_{Y}}^{k}=z_{x_{Q}^{i}}^{k}\right\}$ are lines of Q_{j} and Q_{k} respectively.

If $l_{Q} \in T_{Q}$, then $l_{Q}^{j}=\left\{x_{Q}^{j}, z_{x_{Q}^{i}}^{j}, z_{x_{Q}^{k}}^{j}\right\}$ by Lemma 3.4. Since $\left|l_{Q}^{j} \cap l_{x}^{j}\right| \geq 2$, we get $l_{Q}^{j}=l_{x}^{j}$. Thus $x^{j} \in l_{Q}^{j}$ for each $x \in l$ and so, $l^{j}=l_{Q}^{j}$. Similarly, $l^{k}=l_{Q}^{k}$. Now, Corollary 3.7 completes the proof of (i) in this case.

If $l_{Q} \notin T_{Q}$, then consider (3.4) for the line l_{Q} and the lines l_{x}^{j} and l_{x}^{k} above. Then, l_{x}^{j} and l_{x}^{k} are the lines corresponding to the x-column in $T_{j}^{l_{Q}}$ and $T_{k}^{l_{Q}}$, respectively. So $z_{x_{Q}^{k}}^{j}=x^{j}$ and $z_{x_{Q}^{j}}^{k}=x^{k}$ and (i) in this case follows from Corollary 3.7.
(ii) Here l_{Y} meets each of Q_{i}, Q_{j} and Q_{k}. We may assume that $a_{Y} \in Q_{i}, b_{Y} \in Q_{j}$ and $c_{Y} \in Q_{k}$. Then $a^{i}=a_{Q}^{i}=a_{Y}, b^{j}=b_{Q}^{j}=b_{Y}$ and $c^{k}=c_{Q}^{k}=c_{Y}$. Suppose that $l_{Q} \in T_{Q}$. Since $\tau_{i k}\left(l_{Q}^{i}\right)=l_{Q}^{k}$ (Lemma 3.4), we may assume that $b_{Q}^{k} \sim a_{Q}^{i}$ (see (3.3)). Then, $z_{a_{Q}^{i}}^{j}=c_{Q}^{j}$. The line $l_{a}=\left\{a, a_{Q}, a_{Y}=a_{Q}^{i}\right\}$ is disjoint from Q_{j}. So $l_{a}^{j}=\left\{a^{j}, a_{Q}^{j}, z_{a_{Q}^{i}}^{j}=c_{Q}^{j}\right\}$ is a line in Q_{j}. But $l_{Q}^{j}=\left\{a_{Q}^{j}, b^{j}=b_{Q}^{j}, c_{Q}^{j}\right\}$ is a line in Q_{j}, and so $a^{j}=b^{j}$, a contradiction to the fact that $\left\{a^{j}, b^{j}, c^{j}\right\}$ is a line in Q_{j}. So $l_{Q} \notin T_{Q}$. Since $a^{i}=a_{Q}^{i}, b^{j}=b_{Q}^{j}, c^{k}=c_{Q}^{k}$, (3.4) applied to the line l_{Q} together with Corollary 3.7 implies (ii).

Lemma 5.2. Let x be a point in $P \backslash(Y \cup Q)$ such that the line $x x_{Q}$ is disjoint from Y. Let $\zeta_{x_{Q}}=\left\{x_{Q}, a_{x}, b_{x}\right\} \in T_{Q}$ and $x_{Q}=\left\{x, x_{Q}, y\right\}$. Then $\left\{\left(x^{1}, x^{2}, x^{3}\right),\left(y^{1}, y^{2}, y^{3}\right)\right\}=$ $\left\{\left(a_{x}^{1}, a_{x}^{2}, a_{x}^{3}\right),\left(b_{x}^{1}, b_{x}^{2}, b_{x}^{3}\right)\right\}$.

Proof. Let $l=x x_{Q}$. If $x^{i} \in \zeta_{x_{Q}}^{i}$, then $\zeta_{x_{Q}}^{i}=l^{i}$. By definition of $\zeta_{x_{Q}}$ and Lemma 3.4, $\tau_{i j}\left(\zeta_{x_{Q}}^{i}\right)=\zeta_{x_{Q}}^{j}$. So $z_{x^{i}}^{j} \in \zeta_{x_{Q}}^{j}$. Since $x^{j} \sim z_{x^{i}}^{j}$ and $x^{j} \sim x_{Q}^{j}$ in the line $\zeta_{x_{Q}}^{j}$, it follows that $x^{j} \in \zeta_{x_{Q}}^{j}$. So $l^{i}=x^{i} z_{x^{j}}^{i}$. Then, $\tau_{i j}\left(l^{i}\right)=l^{j}$ (Lemma 3.3(i)). So $l^{j}=\zeta_{x_{Q}}^{j}$ and the result follows (see (3.3)). Thus, it is enough we show that $x^{i} \in \zeta_{x_{Q}}^{i}$.

Suppose that $x^{i} \notin \zeta_{x_{Q}}^{i}$. Let $\bar{l}=\left\{x, x^{i}, w\right\}$ be the line $x x^{i}$ of S. Then, \bar{l} is disjoint from Q. Consider the line $\bar{l}_{Q}=\left\{x_{Q},\left(x^{i}\right)_{Q}, w_{Q}\right\}$ of Q. Since $\left(x^{i}\right)_{Q} \notin \zeta_{x_{Q}}, \bar{l}_{Q} \neq \zeta_{x_{Q}}$ and $\zeta_{x_{Q}} \cap \bar{l}_{Q}=\left\{x_{Q}\right\}$. The line $w w_{Q}$ meets either Q_{j} or Q_{k}, say Q_{k}. Since \bar{l} is disjoint from both Q_{j} and $Q_{k}, \bar{l}^{j}=\left\{x^{j}, z_{x^{i}}^{j}, w^{j}\right\}$ and $\bar{l}^{k}=\left\{x^{k}, z_{x^{i}}^{k}, w^{k}=w_{Q}^{k}\right\}$ are lines of Q_{j} and Q_{k}, respectively. Applying Lemma 3.2(ii) to \bar{l}, we get $w^{j} \sim x^{k}$ and $w^{k} \sim x^{j}$.

Now, $d\left(x^{k}, x_{Q}\right)=d\left(x^{k}, x\right)+d\left(x, x_{Q}\right)=2$ and $d\left(x^{k}, w_{Q}\right)=d\left(x^{k}, w^{k}\right)+d\left(w^{k}, w_{Q}\right)=2$. So, $d\left(x^{k},\left(x^{i}\right)_{Q}\right)=1$. Again, $d\left(x^{j}, x_{Q}\right)=d\left(x^{j}, x\right)+d\left(x, x_{Q}\right)=2$ and $d\left(x^{j}, w_{Q}\right)=$ $d\left(x^{j}, w^{k}\right)+d\left(w^{k}, w_{Q}\right)=2$ (since $\left.w^{k} \sim x^{j}\right)$. So, $d\left(x^{j},\left(x^{i}\right)_{Q}\right)=1$. Let $c=\left(x^{i}\right)_{Q}$. Then, $c^{j}=x^{j}$ and $c^{k}=x^{k}$. Now, $\bar{l}_{Q}^{k}=c^{k} w_{Q}^{k}=c^{k} w^{k}=c^{k} z_{x^{j}}^{k}=c^{k} z_{c^{j}}^{k}$. Applying Lemma $3.3(i)$ to \bar{l}_{Q}, we get $\tau_{k j}\left(\bar{l}_{Q}^{k}\right)=\bar{l}_{Q}^{j}$. So $\bar{l}_{Q} \in T_{Q}$ (see Lemma 3.4). But $\zeta_{x_{Q}} \in T_{Q}$ and $\zeta_{x_{Q}} \cap \bar{l}_{Q}=\left\{x_{Q}\right\}$. This leads to a contradiction to the fact that T_{Q} is a spread of Q (Corollary 3.6). So $x^{i} \in \zeta_{x_{Q}}^{i}$.

In view of Lemma 4.3, we prove the following.
Lemma 5.3. Let $N=2_{-}^{1+6}$ with $N^{\prime}=\{1, \theta\}$ and let $I_{2}(N)$ be the set of involutions in N. There exists a map δ from Q to $I_{2}(N)$ satisfying the following:
(i) δ is one-one.
(ii) For $x, y \in Q,[\delta(x), \delta(y)]=1$ if and only if either $x=y$ or $x \sim y$.
(iii) If $x, y \in Q$ and $x \sim y$, then

$$
\delta(x * y)=\left\{\begin{array}{ll}
\delta(x) \delta(y) & \text { if } x y \in T_{Q} \\
\delta(x) \delta(y) \theta & \text { if } x y \notin T_{Q}
\end{array} .\right.
$$

Proof. We use the following model for Q ([17], 6.1.1, p.122): Let $\Omega=\{1,2,3,4,5,6\}$ and $\Omega^{\prime}=\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}, 5^{\prime}, 6^{\prime}\right\}$. A factor of Ω is a set of three pair-wise disjoint 2 -subsets of Ω. Let \mathcal{E} be the set of all 2 -subsets of Ω and \mathcal{F} be the set of all factors of Ω. Then, the point set of Q is $\mathcal{E} \cup \Omega \cup \Omega^{\prime}$ and the line set is $\mathcal{F} \cup\left\{\left\{i,\{i, j\}, j^{\prime}\right\}: 1 \leq i \neq j \leq 6\right\}$. We may assume that the spread T_{Q} of Q consists of the following lines:

$$
\begin{aligned}
l_{1} & =\{\{1,2\},\{3,4\},\{5,6\}\} ; l_{2}=\left\{\{1,4\}, 1,4^{\prime}\right\} ; l_{3}=\left\{\{2,6\}, 2,6^{\prime}\right\} ; \\
l_{4} & =\{\{1,6\},\{2,4\},\{3,5\}\} ; l_{5}=\left\{\{1,5\}, 1^{\prime}, 5\right\} ; l_{6}=\left\{\{2,3\}, 2^{\prime}, 3\right\} \\
l_{7} & =\{\{1,3\},\{2,5\},\{4,6\}\} ; l_{8}=\left\{\{3,6\}, 3^{\prime}, 6\right\} ; l_{9}=\left\{\{4,5\}, 4,5^{\prime}\right\} .
\end{aligned}
$$

We write N as a central product $N=\left\langle x_{1}, y_{1}\right\rangle \circ\left\langle x_{2}, y_{2}\right\rangle \circ Q_{8}$, where x_{i}, y_{i} are involutions, $\left\langle x_{i}, y_{i}\right\rangle$ is isomorphic to the dihedral group D_{8} of order 8 , and Q_{8} is the quaternion group of order 8 . Let $Q_{8}=\left\{1, \theta, i, j, k, i^{3}, j^{3}, k^{3}\right\}$, where $i^{2}=j^{2}=k^{2}=\theta, i j=k$ and $j i=k^{3}=k \theta$. We define $\delta: Q \longrightarrow I_{2}(N)$ as follows:

$$
\delta\left(l_{1}\right)=\left\{x_{1}, x_{2}, x_{1} x_{2}\right\} ;
$$

$$
\begin{aligned}
& \delta\left(l_{2}\right)=\left\{x_{1} y_{1} y_{2} i, x_{2} y_{2} j, x_{1} x_{2} y_{1} k \theta\right\} ; \\
& \delta\left(l_{3}\right)=\left\{x_{1} y_{1} i \theta, x_{1} x_{2} y_{2} k, x_{2} y_{1} y_{2} j \theta\right\} ; \\
& \delta\left(l_{4}\right)=\left\{y_{1}, y_{1} y_{2}, y_{2}\right\} ; \\
& \delta\left(l_{5}\right)=\left\{x_{1} x_{2} y_{1} i, x_{2} y_{2} k \theta, x_{1} y_{1} y_{2} j\right\} ; \\
& \delta\left(l_{6}\right)=\left\{x_{2} y_{1} y_{2} i \theta, x_{1} x_{2} y_{2} j \theta, x_{1} y_{1} k\right\} ; \\
& \delta\left(l_{7}\right)=\left\{x_{1} x_{2} y_{1} y_{2} \theta, x_{2} y_{1} \theta, x_{1} y_{2} \theta\right\} ; \\
& \delta\left(l_{8}\right)=\left\{x_{1} x_{2} y_{2} i \theta, x_{1} y_{1} j \theta, x_{2} y_{1} y_{2} k\right\} ; \\
& \delta\left(l_{9}\right)=\left\{x_{2} y_{2} i, x_{1} x_{2} y_{1} j, x_{1} y_{1} y_{2} k \theta\right\} .
\end{aligned}
$$

Here, if $l_{i}=\{a, b, c\}$, then $\delta\left(l_{i}\right)=\{\delta(a), \delta(b), \delta(c)\}$ preserving the order. It can be verified that δ satisfies the conditions (i), (ii) and (iii) of the lemma.

Consider the map $\delta: Q \longrightarrow I_{2}(N)$ in Lemma 5.3. We now extend δ to $P \backslash Y$. For $x \in P \backslash(Y \cup Q)$, let $\zeta_{x_{Q}}=\left\{x_{Q}, a_{x}, b_{x}\right\} \in T_{Q}$. If the line $x x_{Q}$ intersects Y, then we define $\delta(x)=\delta\left(x_{Q}\right)$. If $x x_{Q}$ is disjoint from Y, let $\left(b_{x}^{1}, b_{x}^{2}, b_{x}^{3}\right)=\left(x^{1}, x^{2}, x^{3}\right)$ (see Lemma 5.2). In that case, we define $\delta(x)=\delta\left(a_{x}\right)$. That is; for $x \in P \backslash(Y \cup Q)$,

$$
\delta(x)= \begin{cases}\delta\left(x_{Q}\right) & \text { if } x x_{Q} \text { intersects } Y \\ \delta\left(a_{x}\right) & \text { if } x x_{Q} \cap Y \text { is empty and }\left(x^{1}, x^{2}, x^{3}\right)=\left(b_{x}^{1}, b_{x}^{2}, b_{x}^{3}\right) .\end{cases}
$$

We now construct a non-abelian representation of S. Let $R=2_{-}^{1+18}$ with $R^{\prime}=$ $\{1, \theta\}$. We write R as a central product $R=M \circ N$, where $M=2_{+}^{1+12}$ and N_{-}^{1+6}. Let (M, λ) be a non-abelian representation of Y (see Subsection 5.1). Define a map $\beta: P \longrightarrow R$ as follows:

$$
\beta(x)=\left\{\begin{array}{ll}
\lambda(x) & \text { if } x \in Y \\
\lambda\left(z_{x^{2}}^{1}\right) \lambda\left(z_{x^{1}}^{2}\right) \delta(x) & \text { if } x \in P \backslash Y
\end{array} .\right.
$$

For $x \in P \backslash Y$, Lemma 3.1 (i) implies that $d\left(z_{x^{1}}^{2}, z_{x^{2}}^{1}\right)=2$. So $\left[\lambda\left(z_{x^{2}}^{1}\right), \lambda\left(z_{x^{1}}^{2}\right)\right]=1$ and $\beta(x)$ is an involution.

Proposition 5.4. (R, β) is a non-abelian representation of S.
Proof. Only condition (ii) of Definition 1.1 needs to be verified. Let $l=\{u, v, w\}$ be a line of S. We assume that l is not contained in Y and that $l \cap Y=\{w\}$ if l intersects Y. We show that $\beta(u) \beta(v)=\beta(w)$. We have

$$
\begin{equation*}
\beta(u) \beta(v)=\lambda\left(z_{u^{2}}^{1}\right) \lambda\left(z_{v^{2}}^{1}\right) \lambda\left(z_{u^{1}}^{2}\right) \lambda\left(z_{v^{1}}^{2}\right) \delta(u) \delta(v) r^{\prime}, \tag{5.5}
\end{equation*}
$$

where $r^{\prime}=\left[\lambda\left(z_{u^{1}}^{2}\right), \lambda\left(z_{v^{2}}^{1}\right)\right] \in R^{\prime}$.
Case (I) Let l intersects Y at w. Then Lemma 3.2 yields that $r^{\prime}=1$. If $w \in Q_{1}$, then $u^{1}=v^{1}=w$ and $\beta(u) \beta(v)=\lambda\left(z_{u^{2}}^{1}\right) \lambda\left(z_{v^{2}}^{1}\right) \delta(u) \delta(v)=\lambda(w) \delta(u) \delta(v)$. The last equality holds because $\left\{z_{u^{2}}^{1}, z_{v^{2}}^{1}, w\right\}$ is a line of Q_{1}. Similarly, $\beta(u) \beta(v)=\lambda(w) \delta(u) \delta(v)$ if $w \in Q_{2}$. If $w \in Q_{3}$, then $\left\{z_{u^{2}}^{1}, z_{v^{2}}^{1}, z_{w}^{1}\right\}$ and $\left\{z_{u^{1}}^{2}, z_{v^{1}}^{2}, z_{w}^{2}\right\}$ are lines of Q_{1} and Q_{2} respectively. So, $\beta(u) \beta(v)=\lambda\left(z_{w}^{1}\right) \lambda\left(z_{w}^{2}\right) \delta(u) \delta(v)=\lambda(w) \delta(u) \delta(v)$. The last equality holds because $\left\{z_{w}^{1}, z_{w}^{2}, w\right\}$ is a line of Y. Since $\beta(w)=\lambda(w)$, we get $\beta(u) \beta(v)=$ $\beta(w) \delta(u) \delta(v)$. Thus, we need to prove that $\delta(u)=\delta(v)$.

If l intersects Q, say $l \cap Q=\{v\}$, then $u_{Q}=v$ and so, $\delta(u)=\delta(v)$. Let $l \cap Q$ be empty. Exactly one of the lines $u u_{Q}$ and $v v_{Q}$, say $u u_{Q}$, meets Y. So $\delta(u)=\delta\left(u_{Q}\right)$. Let $l_{v_{Q}}=\left\{v_{Q}, a_{v}, b_{v}\right\}$. By Lemma 5.2, we assume that $\left(v^{1}, v^{2}, v^{3}\right)=\left(b_{v}^{1}, b_{v}^{2}, b_{v}^{3}\right)$. Then $\delta(v)=\delta\left(a_{v}\right)$. Since $w \in\left\{v^{1}, v^{2}, v^{3}\right\}$, it follows that $b_{v} \sim w$. So $w_{Q}=b_{v}$ and $u_{Q}=a_{v}$. Thus, $\delta(u)=\delta\left(u_{Q}\right)=\delta\left(a_{v}\right)=\delta(v)$.

Case (II) Let l be disjoint from Y. Since $\left\{z_{u^{2}}^{1}, z_{v^{2}}^{1}, z_{w^{2}}^{1}\right\}$ and $\left\{z_{u^{1}}^{2}, z_{v^{1}}^{2}, z_{w^{1}}^{2}\right\}$ are lines of Q_{1} and Q_{2} respectively, we get $\beta(u) \beta(v)=\lambda\left(z_{w^{2}}^{1}\right) \lambda\left(z_{w^{1}}^{2}\right) \delta(u) \delta(v) r^{\prime}$. To complete the proof, we need to show that either $r^{\prime}=1$ and $\delta(u) \delta(v)=\delta(w)$ or $r^{\prime}=\theta$ and $\delta(u) \delta(v)=\delta(w) \theta$. This holds by Corollary 3.7 and Lemma $5.3(i i i)$ if $l \subset Q$.

Assume that l intersects Q at a point, say w. Let $\zeta_{w}=\{w, a, b\} \in T_{Q}$. Applying Lemma 5.2, we get $\zeta_{w}^{j}=l^{j}$ in Q_{j} and $\{\delta(u), \delta(v)\}=\{\delta(a), \delta(b)\}$. This, together with $\zeta_{w} \in T_{Q}$, yields that $\delta(u) \delta(v)=\delta(w)$ (Lemma 5.3(iii)) and $r^{\prime}=1$ (Corollary 3.7).

Now, assume that $l \cap Q$ is empty. If the lines $u u_{Q}, v v_{Q}$ and $w w_{Q}$ meet Y, then Lemmas 5.1 and $5.3(i i i)$ complete the proof. So, we may assume that none of $u u_{Q}, v v_{Q}$ and $w w_{Q}$ meet Y. First, let $l_{Q} \in T_{Q}$. Then $l_{Q}=\zeta_{u_{Q}}=\zeta_{v_{Q}}=\zeta_{w_{Q}}$. Applying Lemma 5.2 to the lines $x x_{Q}, x \in l$, it follows that $l_{Q}^{j}=l^{j}$ in Q_{j} and $(\delta(u), \delta(v), \delta(w))=$ $\left(\delta\left(w_{Q}\right), \delta\left(u_{Q}\right), \delta\left(v_{Q}\right)\right)$ or $\left(\delta\left(v_{Q}\right), \delta\left(w_{Q}\right), \delta\left(u_{Q}\right)\right)$. This implies that $\delta(u) \delta(v)=\delta(w)$ (Lemma 5.3(iii)) and $r^{\prime}=1$ (Corollary 3.7).

Now, let $l_{Q} \notin T_{Q}$. For $x \in l$, let $\zeta_{x_{Q}}=\left\{x_{Q}, a_{x}, b_{x}\right\}$. We may assume, by Lemma 5.2, that $\left(x^{1}, x^{2}, x^{3}\right)=\left(a_{x}^{1}, a_{x}^{2}, a_{x}^{3}\right)$. So, $\delta(x)=\delta\left(b_{x}\right)$. For distinct $x, y \in l, a_{x}^{i}=$ $x^{i} \sim y^{i}=a_{y}^{i}$ in Q_{i}. Thus, $l_{a}=\left\{a_{u}, a_{v}, a_{w}\right\}$ and $l_{b}=\left\{b_{u}, b_{v}, b_{w}\right\}$ are lines of Q. Since $l_{b} \notin T_{Q}, \delta(u) \delta(v)=\delta\left(b_{u}\right) \delta\left(b_{v}\right)=\delta\left(b_{w}\right) \theta=\delta(w) \theta$. Again, $l_{a} \notin T_{Q}$ implies that $d\left(u^{1}, v^{2}\right)=d\left(a_{u}^{1}, a_{v}^{2}\right)=3$ (Corollary 3.7) and so, $r^{\prime}=\theta$. This completes the proof.

References

[1] M. Aschbacher, "3-Transposition Groups", Cambridge Tracts in Mathematics, 124, Cambridge University Press, Cambridge, 1997.
[2] A. E. Brouwer, The uniqueness of the near hexagon on 729 points, Combinatorica 2 (1982), 333-340.
[3] A. E. Brouwer, The uniqueness of the near hexagon on 759 points, "Finite Geometries" (Pullman, Wash., 1981), pp. 47-60, Lecture Notes in Pure and Appl. Math., 82, Dekker, New York, 1983.
[4] A. E. Brouwer, A. M. Cohen, J. I. Hall and H. A. Wilbrink, Near polygons and Fischer spaces, Geom. Dedicata 49 (1994), 349-368.
[5] A. E. Brouwer and H. A. Wilbrink, The sturcture of near polygons with quads, Geom. Dedicata 14 (1983), 145-176.
[6] F. Buekenhout and E. Shult, On the foundations of polar geometry, Geom. Dedicata 3 (1974), 155-170.
[7] P. J. Cameron, "Projective and Polar Spaces", available from
http://www.maths.qmul.ac.uk/pjc/pps/
[8] P. J. Cameron, Dual polar spaces, Geom. Dedicata 12 (1982), 75-85.
[9] K. Doerk and T. Hawkes, "Finite Soluble Groups", de Gruyter Expositions in Mathematics, 4, Walter de Gruyter \& Co., Berlin, 1992.
[10] B. De Bruyn, "Near Polygons", Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2006.
[11] B. De Bruyn, New near polygons from Hermitian varieties, Bull. Belg. Math. Soc. Simon Stevin 10 (2003), 561-577.
[12] B. De Bruyn, On near hexagons and spreads of generalized quadrangles, J. Algebraic Combin. 11 (2000), 211-226.
[13] A. A. Ivanov, Non-abelian representations of geometries, "Groups and Combinatorics" - in memory of Michio Suzuki, 301-314, Adv. Stud. Pure Math., 32, Math. Soc. Japan, Tokyo, 2001.
[14] A. A. Ivanov, D. V. Pasechnik and S. V. Shpectorov, Non-abelian representations of some sporadic geometries, J. Algebra 181 (1996), 523-557.
[15] Anna Kasikova and Ernest E. Shult, Absolute embeddings of point-line geometries, J. Algebra 238 (2001), 265-291.
[16] D. Pasechnik, Extending polar spaces of rank at least 3, J. Combin. Theory Ser. A 72 (1995), 232-242.
[17] S. E. Payne and J. A. Thas, "Finite Generalized Quadrangles", Research Notes in Mathematics, 110, Pitman (Advanced Publishing Program), Boston, MA, 1984.
[18] M. A. Ronan, Embeddings and hyperplanes of discrete geometries, European J. Combin. 8 (1987), 179-185.
[19] B. K. Sahoo, New constructions of two slim dense near hexagons, preprint. Available from http : //arxiv.org/PS_cache/math/pdf/0612/0612468.pdf
[20] B. K. Sahoo and N. S. N. Sastry, A characterization of finite symplectic polar spaces of odd prime order, J. Combin. Theory Ser. A 114 (2007), 52-64.
[21] B. K. Sahoo and N. S. N. Sastry, On the order of a non-abelian representation group of a slim dense near hexagon, preprint.
Available from http : //arxiv.org/PS_cache/math/pdf/0612/0612513.pdf
[22] E. Shult and A. Yanushka, Near n-gons and line systems, Geom. Dedicata 9 (1980), 1-72.
[23] P. Vandecasteele, On the classification of dense near polygons with lines of size 3, Ph.D Thesis, Universiteit Gent, 2004.
Available from: http ://cage.rug.ac.be/geometry/theses.php

