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Abstract

Let G be a p-adic algebraic group of polynomial growth and H
be a closed subgroup of G. We prove the growth conjecture for the

homogeneous space G/H, that is, G/H supports a recurrent random

walk if and only if G/H has polynomial growth of degree atmost two.
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Let G be a locally compact separable group. A probability measure µ on
G is called adapted if the closed subgroup generated by the support of µ is
G and µ is called spread-out if µk is not singular with respect to the Haar
measure on G for some k ≥ 1.

Let (Xn) be a sequence of iid random variables on G with common law µ.
Assume that µ is adapted and spread-out. For g ∈ G, let Sg

n = Xn · · ·X1 · g
be the left random walk on G starting at g ∈ G defined by µ. Let H be a
closed subgroup of G and π: G → G/H be the canonical quotient map. In
this note we consider the induced random walk Zn = π(Se

n) = Xn · · ·X1 · H
on the homogeneous space G/H.

Let A be a Borel subset of G/H. Then define for x = π(g) ∈ G/H,

Rx
A = {w |

∞∑

n=0

1A(π(Sg
n)) = ∞}

and
hA(x) = P (Rx

A).
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An element x ∈ G/H is called recurrent if hV (x) = 1 for all neighbourhood
V of x in G/H and x is called transient if there exists a neighbourhood V of
x in G/H such that hV (x) = 0. Théorème 2 of [4] proves the dichotomy that
all states are recurrent or all states are transient. We say that the random
walk (Zn) on G/H is recurrent if all states x ∈ G/H are recurrent: see [3]
and [4] for various results on random walks on homogeneous spaces.

Let us further assume that the homogeneous space G/H has a G-invariant
measure m: Theorem 2.49 of [1] gives a necessary and sufficient conditions
for the homogeneous space G/H to have a G-invariant measure. We say that
G/H has polynomial growth if to each compact neighbourhood V of e in G,
there is an integer k ≥ 0 and a constant c > 0 such that

m(π(V n)) ≤ cnk

for all n ≥ 1.
It can be easily seen that G has polynomial growth implies that for any

closed subgroup H of G, G/H also has polynomial growth and the converse
is true if H is compact: if G has polynomial growth, then for any closed
subgroup H, G/H has a G-invariant measure as G and H are unimodular.
Here we show the following generalization: this result is proved in I.1.2 of [3]
for Lie groups, here we present a modified version suitable for our purpose.

Lemma 1 Let G be a locally compact separable group and H1 be a closed
subgroup of G. Suppose H is a closed subgroup of H1 and H1/H is compact.
Then the growth of G/H is same as the growth of G/HK.

Proof Let π: G → G/H and π̃: G → G/H1 be the canonical quotient map.
Let φ: G/H → G/H1 be defined by φ(aH) = aH1 for all a ∈ G. Then φ is
a continuous G-equivariant map. Let m be a G-invariant measure on G/H.
Define m̃ on G/H1 by m̃(E) = m(φ−1(E)) for any mesurable set E in G/H1.
Then m̃ is a G-invariant measure on G/H1. Since H1/H is compact, there
exists a compact set K in H1 such that H1 = KH. Let V be a compact
neighbourhood of e in G. Then xH ∈ φ−1π̃(V ) if and only if φ(xH) = π̃(y)
for some y ∈ V if and only if y−1x ∈ H1 = KH for some y ∈ V if and
only if y′−1x ∈ H for some y′ ∈ V K if and only if xH ∈ π(V K). Thus,
φ−1(π̃(V n)) = π(V nK) and hence m̃(π̃(V n)) = m(π(V nK)). Thus, G/H
and G/H1 have same type of growth.

Guivarch and Keane [2] formulated the natural growth conjecture which
classifies all groups that admit recurrent random walks and the precise con-
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jecture is that a locally compact group admits recurrent random walks if and
only if it has polynomial growth of degree atmost two. Recently [6] proved
the conjecture for p-adic Lie groups. [3], [4] and [8] proved a similar con-
jecture for homogneous spaces of certain connected Lie groups of type R.
Thus, motivated by these considerations we prove a similar conjecture for
homogeneous spaces of p-adic algebraic groups of polynomial growth.

It can be easily seen that if the random walk on G defined by µ is recurrent
on G ' G/(e), then for any closed subgroup H of G, the induced random
walk on the homogeneous space G/H defined by µ is recurrent. We next
obtain the following general form.

Lemma 2 Let G be a locally compact separable group and H be a closed
subgroup of G. Let π be the canonical projection of G onto G/H. Let N be
a closed subgroup of H and π̃ be the canonical projection of G onto G/N .
Let µ be an adapted probability measure on G and (Sn) be the random walk
on G defined by µ. Suppose the induced random walk (Z̃n = π̃(Sn)) on G/N
is recurrent. Then the induced random walk (Zn = π(Sn)) on G/H is also
recurrent.

Proof Let x ∈ G/H and g ∈ G be such that π(g) = x. Let y = π̃(g) ∈
G/N . Let V be a neighbourhood of x. Then there exists a neighbourhood
W of g containing H such that π(W ) = V . Let Ṽ = π̃(W ). Then Ṽ
is a neighbourhood of y ∈ G/N . Since Z̃n is recurrent, for almost all ω,
Z̃y

n = π̃(Sg
n) ∈ Ṽ infinitely often. Let φ: G/N → G/H be the map defined

by φ(aN) = aH for all a ∈ G. Then φ(π̃(a)) = π(a) for all a ∈ G and
π is a G-equivariant continuous map. This implies that φ(Ṽ ) = V and
φ(Z̃y

n) = Zx
n = π(Sg

n) as φ is G-equivariant. Thus, for almost all ω, Zx
n ∈ V

infinitely often. Hence x is recurrent.

The next result is proved in II.1.1 of [3] for Lie groups and the same proof
works in the general case also as shown below.

Lemma 3 Let G be a locally compact separable group and H1 be closed sub-
group of G. Suppose H is a closed subgroup of H1 such that H1/H is compact.
Let π: G → G/H and π1: G → G/H1 be the canonical projections. Suppose H
is a subgroup of H1 such that H/H1 is compact. Let µ be an adapted spread-
out probability measure on G and (Sn) be the random walk on G defined by
µ. Then the induced random walk (Wn = π1(Sn)) on G/H1 is recurrent if
and only if the induced random walk (Zn = π(Sn)) on G/H is also recurrent.
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Proof Let η: G/H → G/H1 be η(gH) = gH1 for all g ∈ G. Then η is a
continuous, open and closed G-equivariant map. Let x ∈ G/H and g ∈ G
be such that π(g) = x. Let y = π1(g) ∈ G/H1. Then for any set C in
G/H1, since H1/H is compact, C is compact in G/H1 if and only if η−1(C)
is compact in G/H and since η is G-equivariant, Wny = π1(Sn)y ∈ C if and
only if Znx = π(Sn)x ∈ η−1(C) as η(π(g)) = π1(g) for any g ∈ G. Thus
proving the lemma.

We now consider p-adic algebraic groups. Let Qp be the field of p-adic
numbers: see [9] for some details on Qp. We say that G is a p-adic algebraic
group if G is the group of Qp-rational points in G for some algebraic group
G defined over Qp.

Example The following locally compact second countable groups are p-adic
algebraic groups.

1. the additive group Qp and the multiplicative group Q∗

p of non-zero p-
adic numbers, known as one-dimensional split torus.

2. The groups GLn(Qp) the group of all invertible matrices over Qp.

3. The special linear group SLn(Qp) = {A ∈ GLn(Qp) | det (A) = 1}.

4. The p-adic affine group Q∗

p n Qp. More generally, H n Qn
p where H is

a p-adic algebraic subgroup of GLn(Qp).

5. the group of all upper triangular matrices UTn(Qp) = {A = (aij) ∈
GLn(Qp) | aij = 0 if j < i} and the group of unipotent matrices
Un(Qp) = {A = (aij) ∈ UTn(Qp) | aii = 1}.

The growth properties of these examples also can be obtained using results
in [6]. For instance, the group Un(Qp) has polynomial growth of degree zero
and the group Q∗

p has polynomial growth of degree one whereas the groups
GLn(Qp), SLn(Qp) and the affine group Q∗

p n Qp have exponential growth.
We now prove the growth conjecture for homogeneous spaces of p-adic

algebraic groups of polynomial growth.

Theorem 1 Let G be a p-adic algebraic group of polynomial growth and H
be a closed subgroup of G. Then the following are equivalent:

(1) G/H supports a recurrent random walk;
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(2) G/H has polynomial growth of degree at most two.

Proof We first analyze the structure of G and H. Let U be the unipotent
radical of G. By Corollary 2.1 of [6], G = UKZk, where K is a compact
group, Zk is central and k is the degree of growth of G. Let H1 = HUK. As
Zk centralizes U , U has a basis of compact open subgroups normalized by
ZkK. Let V1 be a compact open subgroup in U normalized by ZkK. Now,
H1 = D1UK where D1 = H1∩Zk as G = ZkUK. Let H2 = (H∩ZkKV1)KV1.
Then H2 = D2KV1 where D2 = H2 ∩Zk. Thus, D2 ⊂ D1. For x ∈ D1, there
exists a u ∈ U and y ∈ K such that xyu ∈ H. Now (xyu)n = xnynun ∈ H
where un = y−n+1uyn−1 · · · y−1uyu for any n ≥ 1. Since U is a union of K-
invariant compact open subgroups, we get that unu

−1
m ∈ V1 for some n 6= m.

This implies that xnynunu−1
m y−mx−m ∈ (H ∩ ZkKV1) and hence xk ∈ H2 =

(H ∩ ZkKV1)KV1 for some k 6= 0. So, xk ∈ D2. This shows that D1/D2 is
a finitely generated torsion abelian group and hence it is finite. This implies
that D1 and D2 have the same degree of growth.

Suppose G/H supports a recurrent random walk. Then by Lemma 2,
G/H1 ' (G/UK)/(H1/UK) supports a recurrent random walk. Since G/UK
is an abelian group, we get that (G/UK)/(H1/UK) has polynomial growth
of degree at most two (see [7]). As the isomorphism (G/UK)/(H1/UK) '
G/H1 is G-equivariant, we get that G/H1 also has polynomial growth of
degree at most two. This implies that Zk/D1 has rank atmost two. Let
V = FKV1 where F is a finite symmetric generating subset in Zk. Let N
be the open subgroup of G generated by V . Since N/H2 ' Zk/D2, N/H2

has polynomial growth of degree at most two. Now, N = ZkKV1 and so
H∩N = H∩ZkKV1 ⊂ (H∩ZkKV1)KV1 = H2. This shows that H2/(H∩N)
is compact. Thus, by Lemma 1, N/(H ∩ N) has polynomial growth of de-
gree at most two. Since N is an open subgroup, x(H ∩ N) 7→ xH is a
N -equivariant homeomorphism of N/(H ∩ N) and the image of N in G/H.
Hence G/H has polynomial growth of degree at most two. This proves that
(1) implies (2).

Now assume that G/H has polynomial growth of degree at most two.
Let V be a compact open subgroup of G containing K. Let G1 = ZkV
and H1 = G1 ∩ H. Let φ1: G1/H1 → G/H be the canonical quotient map.
Then φ1(G1/H1) is closed and open in G/H and hence we get that φ1 is a G1-
equivariant homeomorphism onto its image. If m is a G-invariant measrue on
G/H, then m1 is a G1-invariant measure on G1/H1 where m1(E) = m(φ1(E))
for any borel subset E of G1/H1. Thus, G1/H1 also has polynomial growth
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of degree at most two. By Lemma 1, G1/H1V also has polynomial growth
of degree at most two. Since G1 = ZkV , H1V = ZlV where k − 2 ≤ l ≤ k.
Now, G/Zl is a p-adic Lie group of polynomial growth of degree at most two
and hence by Theorem 3.1 of [6], G/Zl supports a recurrent random walk.
Since Zl ⊂ H1V , by Lemma 2, G/H1V supports a recurrent random walk.
Now Lemma 3 implies that G/H1 supports a recurrent random walk. Since
H1 ⊂ H, using Lemma 2, we get that G/H supports a recurrent random
walk. This proves (2) implies (1).
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