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Abstract

We study whether the Boundary Harnack Principle holds for positive solutions for the equation
∆u = up in D with boundary value u = φ on ∂D. When D is a bounded Lipschitz domain and φ is
continuous we show that the answer is affirmative if p ≥ 1. Furthermore there is a p0 ∈ (−∞, 0] such
that if p < p0 the problem does not even have positive solution. For a bounded C1,1 domain we show
that p0 = −1.

1 Introduction

The boundary Harnack principle (BHP) is a key tool in obtaining many results in classical potential
theory. Suppose u and v are two positive harmonic functions on D ⊂ Rn that vanish on a subset Γ of
∂D. The principle (stated precisely in Section 2) says that, under certain regularity assumption on D, u
and v tend to zero at Γ at the same rate. Over the past three decades, there has been a lot of research
devoted to proving that positive harmonic functions satisfy the principle in a large class of domains [4].

Our discussion starts with another natural question: When do positive solutions to the semilinear elliptic
Dirichlet problem,

{
∆u = f(u) in D,

u = φ on ∂D,
(1.1)

with φ = 0 on Γ, satisfy the BHP? One quickly observes that, in general, subharmonic functions do not
satisfy BHP (see for example Remark 1.4(ii)), but subharmonic functions bounded below by a positive
harmonic function do satisfy the principle.

Under certain regularity conditions on D ⊂ Rn and φ, where n ≥ 3, the existence of solutions to (1.1)
bounded below by a positive harmonic function was established in [7] when f satisfies the condition that
−u ≤ f(u) ≤ u for |u| < ε for some ε > 0, and in [1] the case when 0 ≤ f(u) ≤ u−α for some α ∈ (0, 1)
was resolved.

The equation ∆u = up in D with u = φ on ∂D has also been widely studied. For 1 ≤ p ≤ 2, it
has been studied probabilistically using the exit measure of super-Brownian motion (a measure valued
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branching process), by Dynkin, Le Gall, Kuznetsov, and others [20, 13, 14]. Properties of solutions
when f(u) = up, p ≥ 1, with both finite and singular boundary conditions have also been studied by a
number of authors using analytic techniques. We briefly review a sample. Bandle and Marcus [2] give
results on asymptotic behavior and uniqueness of the “blow-up solution” u which includes the case of
the non-linear problem ∆u = up for any p > 1. Loewner and Nirenberg [21] had studied the special
case of p = (n + 2)/(n − 2), which has connection with problem of conformal deformation of metrics
in Riemannian geometry. Fabbris and Veron [15] have studied the problem of removable singularities.
Related work on boundary singularities can be found in [17].

Choi-Mckenna [8] and Lazer-Mckenna [19] have studied a variety of singular boundary value problems of
the type ∆u = −g(x)u−α in D with u = 0 on ∂D, where α > 0 and g is a non-negative function. From
their work, existence of solutions bounded below by a positive harmonic function can be established.

In this paper we consider the equation ∆u = up in D with u = φ on ∂D. We assume that φ vanishes on
an open subset Γ of ∂D. Then we study the existence and behavior of positive solutions for various p ∈ R

and for bounded C1,1 and Lipschitz domains. We are concerned with whether such positive solutions
enjoy the boundary Harnack principle; that is whether any two positive solutions approach to zero at Γ
at the same rate. In the next subsection we state our results precisely.

In the sequel, for two positive functions f and g, the notation f(x) ≈ g(x) for x ∈ U means that there
is a positive constant c ≥ 1 such that c−1g(x) ≤ f(x) ≤ c g(x) for x ∈ U . We use C(D) and C∞(D) to
denote the space of continuous functions on D and the space of continuous functions in D that vanishes
on ∂D, respectively. For two positive constants a and b, a∧ b := min{a, b}. We will use B(x, r) to denote
the open ball in Rn centered at x with radius r.

1.1 Main Results

Let D ⊂ Rn be an open connected set, where n ≥ 2. Let D1 be an open subset of Rn such that
Γ := D1 ∩ ∂D 6= ∅. Throughout the paper, we denote the Green function of 1

2∆ in D with Dirichlet
boundary condition by GD.

Consider the equation
1
2∆u = up in D, (1.2)

where p ∈ R.

Definition 1.1. We say that u ∈ C(D) is a mild solution to (1.2) if

u(x) = h(x) −
∫

D

GD(x, y)up(y)dy, x ∈ D,

where h ∈ C(D) is a harmonic function in D satisfying h|∂D = u|∂D.

We consider the following classes of functions.

• H+ = H+(D, Γ) denotes the class of functions h ∈ C(D), that are positive and harmonic in D and
vanish on Γ.

• Sp
+ = Sp

+(D, Γ) denotes the class of mild solutions u ∈ C(D) to (1.2) that are positive in D and
vanish on Γ.
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• Sp
H = Sp

H (D, Γ) denotes the class of u ∈ Sp
+ for which u ≈ h in D for some h ∈ H+.

The reason of introducing the subclass Sp
H is due to the following BHP for positive harmonic function in

bounded Lipschitz domains due to Ancona, B. Dahlberg and J. M. Wu (see [3, p.176] for a proof).

Theorem 1.2. Suppose that D is a bounded Lipschitz domain in Rn with n ≥ 2. Then there is a constant
c ≥ 1 such that for every z ∈ ∂D, r > 0 and two positive harmonic functions u and v in B(z, 2r) ∩ D
that vanish continuously on ∂D ∩ B(z, 2r), we have

u(x)

v(x)
≤ c

u(y)

v(y)
for every x, y ∈ D ∩ B(z, r). (1.3)

In view of the above theorem, we see that when D is a bounded Lipschitz domain in Rn, functions in Sp
H

enjoy the boundary Harnack principle (1.3). So the purpose of this paper is to investigate how large the
class Sp

H is, in particular, when is Sp
H = Sp

+ or Sp
H = ∅.

We are now ready to state the main results of this paper. We begin with a result when D is a bounded
C1,1-domain. Recall that a bounded domain D ⊂ Rn is said to be C1,1-smooth if for every point z ∈ ∂D,
there is r > 0 such that D∩B(z, r) is the region in B(z, r), under some local coordinate system centered
at z, that lies above the graph of a function whose first derivatives are Lipschitz continuous.

Theorem 1.3. Assume that n ≥ 2 and D is a bounded C1,1-domain in Rn.

(i) For p ≥ 1, ∅ 6= Sp
H = Sp

+;

(ii) For −1 < p < 1, ∅ 6= Sp
H ⊂ Sp

+;

(iii) For p ≤ −1, Sp
H = Sp

+ = ∅.

Remark 1.4. (i) The proof of Theorem 1.3 is based on s two-sided Green function estimate for Brow-
nian motion in D; see Proposition 2.5 below. Theorem 1.3 in fact holds not only for Lapla-
cian but also for a large class of uniformly elliptic operators in a bounded C2-domain D. Let

L = 1
2

∑n
i,j=1

∂
∂xi

(
aij(x) ∂

∂xj

)
, where aij has continuous derivatives on D (i.e. it is C1(D)), and

A(x) = (aij(x)) is a symmetric matrix-valued function that is uniformly bounded and elliptic. Then
by Theorem 3.3 of Grüter and Widman [18], the Green function GL

D(x, y) of L in D satisfies the
following estimate

GL
D(x, y) ≤ cδD(x) |x − y|1−n, x, y ∈ D,

where c > 0 and δD(x) is the Euclidean distance between x and Dc. On the other hand, we know
from Lemma 4.6.1 and Theorem 4.6.11 of Davies [10] that GL

D(x, y) ≥ c δD(x)δD(y). For r > 0,
define Dr = {x ∈ D : δD(x) < r}. Thus for fixed y0 ∈ D and r < δD(y0),

GL
D(x, y0) ≈ δD(x) for x ∈ Dr. (1.4)

It is well known that Harnack and boundary Harnack principles hold for L and the Green function

GL
D(x, y) ≈

{
|x − y|2−n when n ≥ 3,

log(1 + |x − y|−2) when n = 2.

for x, y ∈ D \ Dr with r > 0. Hence by a similar argument as that in Bogdan [6], we conclude
that the estimate (2.6)-(2.7) hold for the Green function GL

D of L in D . Then by imitating the
argument as in the proof of Theorem 1.3 we can obtain the result for L as well.
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(ii) Now suppose D = [0, 1]n and −1 < p < 1. Let u(x) = cp(x1)
2

1−p , where cp =
(

2(1+p)
(1−p)2

) 2
1−p

and x1 is

the first coordinate of x = (x1, . . . , xn). Now u ∈ Sp
+ clearly and due to the one dimensional nature

of this example one can establish u 6∈ Sp
H . This suggests that Theorem 1.3(ii) could be replaced by:

−1 < p < 1, ∅ 6= Sp
H ( Sp

+. However, we were not able to generalize the above example to general
bounded C1,1- domains D.

We now consider the case when D is a bounded Lipschitz domain in Rn. Let X be Brownian motion
in Rn and τD := inf{t > 0 : Xt /∈ D} the first exit time of X from D. It is well-known that the Green
function GD(x, y) for the part process XD of X killed upon leaving domain D (or equivalently, for 1

2∆
in D with Dirichlet boundary condition) exists and is continuous on D × D except along the diagonal.
Fix some x0 ∈ D and set ϕ(x) := GD(x, x0) ∧ 1.

Theorem 1.5. Let D be a bounded Lipschitz domain satisfying

Ex[τD ] ≤ c ϕ(x) for every x ∈ D. (1.5)

Then there exists p0 ∈ (−∞, 0] such that the following holds.

(i) If p ≥ 1 then Sp
H 6= ∅ and Sp

H = Sp
+,

(ii) Sp
H 6= ∅ for p > p0,

(iii) Sp
H = Sp

+ = ∅ for p < p0.

We conjecture that for p ∈ (p0, 1), ∅ 6= Sp
H ( Sp

+. Next, we study when condition (1.5) holds. For
θ ∈ (0, π), let Γ(θ) be the truncated circular cone in Rn with angle θ defined by

Γ(θ) := {x ∈ Rn : |x| < 1 and x · e1 > |x| cos θ} , (1.6)

where e1 := (1, 0, · · · , 0) ∈ Rn. We say that a bounded Lipschitz domain D satisfies the interior cone
condition with common angle θ, if there is some a > 0 such that for every point x ∈ ∂D, there is a cone
Γ ⊂ D with vertex at x that is conjugate to aΓ(θ).

The result below shows that condition (1.5) holds for bounded Lipschitz domains in Rn satisfying the
interior cone condition with common angle strictly larger than cos−1(1/

√
n). In particular, it is satisfied

for bounded Lipschitz domains in Rn whose Lipschitz constant is strictly less than 1/
√

n − 1.

Theorem 1.6. Let D be a bounded Lipschitz domain in Rn with n ≥ 2 satisfying an interior cone
condition with common angle θ ∈

(
cos−1(1/

√
n), π

)
. Then there is a constant c ≥ 1 such that

c−1ϕ(x) ≤ Ex[τD ] ≤ c ϕ(x) for every x ∈ D.

While the lower bound for Ex[τD] in fact holds for every bounded Lipschitz domain, we show in Theorem
3.3 that the condition on θ is sharp for the upper bound (hence for (1.5)). Namely, for domains that
satisfy the interior cone condition with common angle less than cos−1(1/

√
n), condition (1.5) does not,

in general, hold.

Remark 1.7. (i) Theorem 1.6 has also been obtained independently by M. Bieniek and K. Burdzy [5]
using a different method.
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(ii) We have stated all our results for solutions of the equation (1.2). However if we assume that f(u) ≈ up

then the proofs of our main results can be suitably modified to yield the same quantitative behavior
for solutions of the equation (1.1).

The rest of the paper is organised as follows. In the next section we present some technical lemmas and
estimates on the Green function which are required for the proof of Theorem 1.3 and Theorem 1.5. In
Section 3, we prove Theorem 1.6 and show that the condition on the common angle, so that the upper
bound in this statement holds, is sharp (Theorem 3.3). Finally in Section 4 we prove Theorem 1.5 and
in Section 5 we prove Theorem 1.3.

2 Preliminaries

2.1 Auxiliary estimates

Let (Ω,F , {Ft}t≥0, Px, x ∈ Rn) be a complete filtered probability space on which X is a Brownian motion
on Rn, starting from x. For h harmonic in D, we denote by Ph

x the h-transform of Px under h. Ex (Eh
x)

denotes expectation with respect to Px (respectively, Ph
x). For any set A ⊂ Rn we denote

τA = inf{t : Xt /∈ A}.

The following is a well known result. We provide a proof here for reader’s convenience. This result in
fact holds for more general potential q ≥ 0, for example, q is in some Kato class.

Lemma 2.1. Assume that every point of ∂D is regular with respect to Dc. Let h ∈ H+ and q ≥ 0. The
function v given by

v(x) = Ex

[
h(XτD

)e−
R τD
0

q(Xs)ds
]
, x ∈ D (2.1)

satisfies

v(x) = h(x) −
∫

D

GD(x, y)q(y)v(y)dy x ∈ D. (2.2)

The converse is true if q is bounded.

Proof. The proof is along the lines of [7]. Suppose that v is given by (2.1). Then for x ∈ D, by the
Markov property of X ,

v(x) = Ex

[
h(XτD

)e−
R τD
0

q(Xs)ds
]

= h(x) + Ex

[
h(XτD

)
(
e−

R τD
0

q(Xs)ds − 1
)]

= h(x) − Ex

[
h(XτD

)

∫ τD

0

q(Xt)e
−

R τD
t q(Xs)dsdt

]

= h(x) − Ex

[∫ τD

0

q(Xt) EXt

[
h(XτD

)e−
R τD
0

q(Xs)ds
]
dt

]

= h(x) − Ex

[∫ τD

0

q(Xt)v(Xt)dt

]

= h(x) −
∫

D

GD(x, y)q(y)v(y)dy
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For the converse, assume q ≥ 0 is bounded. Suppose now that v satisfies (2.1), then v solves the equation:

1

2
∆v − qv = 0 in D with v|∂D = h|∂D. (2.3)

As q ≥ 0 is bounded, it is well known that solutions to equation (2.3) are continuous on D and C1 in
D (see, e.g., [16]). Furthermore solution of (2.3) enjoys the maximum principle and therefore is unique.
This proves the Lemma.

Lemma 2.2. There exists a constant γ = γ(D) > 0 such that for every h ∈ H+ and p > 1− 2γ, we have

sup
x∈D

Eh
x

[∫ τD

0

hp−1(Xs)ds

]
≤ C1 < ∞,

where C1 depends only on h, p and D.

Proof. We will be mainly using the notation in [3], page 200-201. Let lk = {x : h(x) = 2k} for any k ∈ Z.
Note that there exists k0 such that lk = ∅ for k ≥ k0. Define S−1 = 0 and let S0 = τD ∧ inf{t : Xt ∈ ∪lk}.
For i ≥ 1, let Si = τD ∧ inf{t > Si−1 : Xt ∈ ∪lk\lWi−1

}, where Wi−1 is the k such that XSi−1
∈ lk. Let

vk = supx∈lk
Eh

x[S1]. From [3], one has that:

(a) there exists a constant γ(D) > 0 such that for any k, vk ≤ c02
2kγ(D)

(b) there exists a constant c1 such that
∑∞

i=0 Ph
x(Wi = k) ≤ c1 for all x ∈ D. Hence

Eh
x

[∫ τD

0

hp−1(Xs)ds

]
=

∞∑

i=0

Eh
x

[∫ Si

Si−1

hp−1(Xs)ds

]

≤ c2

∞∑

i=0

Eh
x

[
2Wi−1(p−1)(Si − Si−1)

]

= c

∞∑

i=0

Eh
x

[
2Wi−1(p−1)Eh

XSi−1
(S1)

]

≤ c

∞∑

i=0

Eh
x

[
2Wi−1(p−1)vWi−1

]

= c
∞∑

i=0

k0∑

k=−∞
Eh

x

[
2Wi−1(p−1)vWi−1

1(Wi−1 = k)
]

= c

k0∑

k=−∞
vk2k(p−1)Eh

x

[ ∞∑

i=0

1(Wi−1 = k)

]

≤ c

k0∑

k=−∞
22kγ(D)2k(p−1) (2.4)

Hence if p > 1 − 2γ(D) then Eh
x

[∫ τD

0 hp−1(Xs)
]

< C1 for all x ∈ D.

Lemma 2.3. Let h ∈ H+. Suppose that p is a real number such that

sup
x∈D

∫

D

GD(x, y)h(y)p(1+ε)dy < ∞

for some ε > 0. Then

(i) The family of functions {GD(x, ·)hp(·) : x ∈ D} is uniformly integrable over D.
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(ii) Let Bh,p = {g : D → R : g is Borel measurable and |g(x)| ≤ hp(x) for all x ∈ D}. The family of
functions {

∫
GD(·, y)g(y)dy : g ∈ Bh,p} is uniformly bounded and equicontinuous in C∞(D), and,

consequently, it is relatively compact in C∞(D).

The above assertions hold especially when p > 1 − 2γ(D), where γ(D) is the constant in Lemma 2.2

Proof. Let q > 1 be such that q−1 +(1+ ε)−1 = 1. For any Borel measurable set A, by Hölder inequality,

∫

A

G(x, y)h(y)p dy ≤
(∫

D

G(x, y)p(1+ε) dy

)1/(1+ε) (∫

A

G(x, y) dy

)1/q

.

Since D is a bounded, it follows that supx∈D

∫
D G(x, y)h(y)p dy < ∞ and

lim
δ→0

sup
A:m(A)<δ

sup
x∈D

∫

A

G(x, y)h(y)p dy = 0,

where m denotes the Lebesgue on Rd. Therefore the family of functions {G(x, ·)h(·)p, x ∈ D} is uniformly
integrable over D. This in particularly implies that, due to the continuity of x → G(x, y) on D \ {y},
function x →

∫
D

GD(x, y)h(y)p dy is continuous on D and vanishes on ∂D. On the other hand, by using
triangle inequality, the family of functions {|GD(x, ·) − GD(y, ·)|h(·)p : x, y ∈ D} is uniformly integrable
on D. Therefore function (x, y) →

∫
D
|GD(x, z) − GD(y, z)|h(z)p dz is continuous on D × D.

For each g ∈ Bh,p, as |g| ≤ hp, the family of functions Bh,p is continuous in D, uniformly bounded, and
converge uniformly to zero as x → ∂D. For any x, y in D and g ∈ Bh,p,

∣∣∣∣
∫

D

GD(x, z)g(z)dy −
∫

D

GD(y, z)g(z)dz

∣∣∣∣ ≤
∫

D

| GD(x, z) − GD(y, z) | h(z)pdz. (2.5)

Therefore the family of functions in the statement of the lemma is equi-continuous in D.

When p > 1 − 2γ(D), one can always find an ε > 0 such that p(1 + ε) > 1 − 2γ. Thus by Lemma 2.2

sup
x∈D

∫

D

G(x, y) h(y)p(1+ε) dy = sup
x∈D

h(x) Eh
x

[∫ τD

0

h(Xs)
p(1+ε)−1ds

]
< ∞

and so the hypothesis of the Lemma is satisfied and the result holds. 2

2.2 Green function estimates

We begin with an estimate for Green function in C1,1 domains.

Lemma 2.4. Suppose that D is a bounded C1,1 domain. Then

GD(x, y) ≈ min

{
1

|x − y|n−2
,

δD(x)δD(y)

|x − y|n
}

when n ≥ 3 (2.6)

GD(x, y) ≈ log

(
1 +

δD(x)δD(y)

|x − y|2
)

when n = 2. (2.7)

Proof. Estimate (2.6) is due to K.-O. Widman and Z. Zhao (see [22]). Estimate (2.7) is established
as Theorem 6.23 in [9] for bounded C2-smooth domain D. However the proof carries over to bounded
C1,1-domains.
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For the rest of this subsection we will assume that D is a bounded Lipschitz domain in Rn with n ≥ 2.
Recall that we defined ϕ(x) := GD(x, x0) ∧ 1, where x0 ∈ D is fixed.

Let r(x, y) := δD(x) ∨ δD(y) ∨ |x − y| and (r0, λ) be the Lipschitz characteristics of D. For x, y ∈ D, we
let Ax,y = x0 if r(x, y) ≥ r0/32 and when r := r(x, y) < r0/32, Ax,y is any point in D such that

B(Ax,y, κr) ⊂ D ∩ B(x, 3r) ∩ B(y, 3r),

with κ := 1
2
√

1+λ2
.

Proposition 2.5. Let D ⊂ Rn be a bounded Lipschitz domain with n ≥ 2. Then there is a constant
c > 1 such that on D × D \ d,

GD(x, y) ≈ ϕ(x)ϕ(y)

ϕ(Ax,y)2
1

|x − y|n−2
when n ≥ 3, (2.8)

c−1 ϕ(x)ϕ(y)

ϕ(Ax,y)2
≤ GD(x, y) ≤ c

ϕ(x)ϕ(y)

ϕ(Ax,y)2
log

(
1 +

1

|x − y|2
)

when n = 2. (2.9)

Proof. When n = 3, (2.8) is proved in [6] as Theorem 2. So it remains to show (2.9) when n = 2.

Since D is bounded, there is a ball B ⊃ D. It follows from [9, Lemma 6.19] that for x, y ∈ D,

GD(x, y) ≤ GB(x, y) ≤ 1

2π
ln

(
1 + 4

δB(x)δB(y)

|x − y|2
)

≤ c ln
(
1 + |x − y|−2

)
.

On the other hand, by [9, Lemma 6.7], for every c1, there is a constant c2 > 0 such that

GD(x, y) ≥ c2 for x, y ∈ D with |x − y| ≤ c1 min{δD(x), δD(y)}.

From these, inequality (2.9) can be proved in the same way as the proofs for [6, Proposition 6 and
Theorem 2].

3 Boundary decay rate for Lipschitz Domains

In this section we prove Theorem 1.6, and the sharpness of the requirement on the common angle in its
statement. To prove Theorem 1.6 we will need the following result.

Proposition 3.1. Let D ⊂ Rn be a bounded Lipschitz domain with n ≥ 2 and ϕ1 be the first positive
eigenfunction for the Dirichlet Laplacian in D normalized to have

∫
D ϕ1(x)2dx = 1. If D satisfies interior

cone condition with common angle θ ∈
(
cos−1(1/

√
n), π

)
, there are positive constants ε > 0 and a > 0

such that
ϕ1(x) ≥ a δD(x)2−ε for every x ∈ D,

where δD(x) denotes the Euclidean distance between x and Dc.

Proof. By Theorem 4.6.8 of [10] and its proof, there is some constant a > 0 such that

ϕ1(x) ≥ a δD(x)α for every x ∈ D,
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where α > 0 is the constant determined by

α(α + n − 2) = λ1(θ). (3.1)

Here λ1(θ) is the first eigenvalue for the Dirichlet Beltrami-Laplace operator in the unit spherical cap
determined by Γ(θ) ∩ {x ∈ Rn : |x| = 1}. The first eigenvalue λ1(θ) can be determined in terms of
hypergeometric function and so does α. Recall the hypergeometric function

F (α, β, γ, z) := 1 +
αβ

γ

z

1!
+

α(α + 1)β(β + 1)

γ(γ + 1)

z2

2!
+

α(α + 1)(α + 2)β(β + 1)(β + 2)

γ(γ + 1)(γ + 2)

z3

3!
+ · · ·

Let θ(p, n) be the smallest positive zero of F
(
−p, p + n − 2, n−1

2 , 1−cos θ
2

)
. It is known that p 7→ θ(p, n)

is continuous and strictly decreasing with θ(1, n) = π/2 (cf. p.62 of [12]). Let θ 7→ p(θ, n) be the inverse
function of p 7→ θ(p, n). We know from [12, p.59 and p.63] that α in (3.1) is equal to

α = p(θ, n). (3.2)

Note that

F

(
−2, n,

n − 1

2
, z

)
= 1 − 4n

n − 1
z +

4n

n − 1
z2,

which has roots n−√
n

2n and n+
√

n
2n . Set z = 1−cos θ

2 . The corresponding smallest positive root for θ is
cos θ0 = 1√

n
or θ0 = cos−1(1/

√
n). In other words, we have for n ≥ 2,

θ(2, n) = cos−1(1/
√

n), or equivalently, p(cos−1(1/
√

n), n) = 2. (3.3)

As θ 7→ p(θ, n) is strictly decreasing, we have p(θ, n) < 2 for every θ > cos−1(1/
√

n). This proves the
proposition.

Recall that ϕ(x) := GD(x, x0)∧1. The following lemma, which is known to the experts, gives the relation
between ϕ and ϕ1.

Lemma 3.2. Suppose that D is a bounded Lipschitz domain in Rn with n ≥ 2. There is a constant c ≥ 1
such that

c−1ϕ1(x) ≤ ϕ(x) ≤ c ϕ1(x) for x ∈ D.

Proof. It is well-known that D is intrinsic ultracontactive (cf. [10]) and so for every t > 0, there is a
constant ct ≥ 1 such that

c−1
t ϕ1(x)ϕ1(y) ≤ pD(t, x, y) ≤ ct ϕ1(x)ϕ1(y) for every x, y ∈ D. (3.4)

For the definition of intrinsic ultracontractivity and its equivalent characterizations, see Davies and Simon
[11]. By (3.4), we have

ϕ(x) ≥
∫

D

pD(1, x, y)ϕ(y)dy ≥ c

(∫

D

ϕ(y)ϕ1(y)dy

)
ϕ1(x).

Thus there is a constant c1 > 0 such that

ϕ(x) ≥ c1ϕ1(x) for every x ∈ D. (3.5)

On the other hand, let K := {x ∈ D : GD(x, x0) ≥ 1}, which is a compact subset of D. Observe that

both ϕ and ϕ1 are continuous and strictly positive in D. So a := supx∈K
ϕ(x)
ϕ1(x) is a positive and finite

number. Since ϕ is harmonic in D \K and ∆ϕ1(x) = −λ1ϕ1(x) with λ1 > 0, we have ∆(ϕ− a−1ϕ1) ≥ 0

9



on D \ K. As both ϕ and ϕ1 vanish continuously on ∂D and ϕ(x) − aϕ1(x) ≤ 0 on K, we have by the
maximal principle for harmonic functions that

ϕ(x) ≤ a ϕ1(x) for every x ∈ D \ K. (3.6)

This proves the Lemma.

Proof of Theorem 1.6 Let K = {x ∈ D : GD(x, x0) ≥ 1}, which is a compact subset of D. By
taking r0 > 0, we may and do assume that the Euclidean distance between K and Dc is at least r0.
Since ϕ is a positive harmonic function in D \ K that vanishes on ∂D, by Carleson’s estimate (see, e.g.,
Theorem III.1.8 of [3]), there is a universal constant c1 = c1(D, K) > 0 such that ϕ(y) ≤ c1 ϕ(Ax,y)
whenever r(x, y) < r0/32. Note also that ϕ is bounded on D and that, by Proposition 3.1 and (3.5),
ϕ(x) ≥ c δD(x)2−ε.

When n ≥ 3, we have by (2.8),

GD(x, y) ≤ c
ϕ(x)ϕ(y)

ϕ(Ax,y)2
1

|x − y|n−2
, x, y ∈ D,

Thus we have

GD1(x)

ϕ(x)
≤ c

∫

D

ϕ(y)

ϕ(Ax,y)

1

ϕ(Ax,y)|x − y|n−2
dy

= c

∫

{y∈D:r(x,y)≥r0/32}

ϕ(y)

ϕ(Ax,y)2
1

|x − y|n−2
dy

+c

∫

{y∈D:r(x,y)<r0/32}

ϕ(y)

ϕ(Ax,y)

1

ϕ(Ax,y) |x − y|n−2
dy

≤ c

∫

D

1

|x − y|n−2
dy + c

∫

{y∈D:r(x,y)<r0/32}

1

(r(x, y)2−ε |x − y|n−2
dy

≤ c + c

∫

{y∈D:r(x,y)<r0/32}

1

|x − y|n−ε
dy

≤ c < ∞.

When n = 2, we have by (2.9),

GD1(x)

ϕ(x)
≤ c

∫

D

ϕ(y)

ϕ(Ax,y)

1

ϕ(Ax,y)
log(1 + |x − y|−2)dy

= c

∫

{y∈D:r(x,y)≥r0/32}

ϕ(y)

ϕ(Ax,y)2
1

|x − y|ε/2
dy

+c

∫

{y∈D:r(x,y)<r0/32}

ϕ(y)

ϕ(Ax,y)

1

ϕ(Ax,y) |x − y|ε/2
dy

≤ c

∫

D

1

|x − y|ε/2
dy + c

∫

{y∈D:r(x,y)<r0/32}

1

(r(x, y)2−ε |x − y|ε/2
dy

≤ c + c

∫

{y∈D:r(x,y)<r0/32}

1

|x − y|2−(ε/2)
dy

≤ c < ∞.

For the lower bound, note that both ϕ(x) and x 7→
∫

K GD(x, y)dy are positive harmonic functions in D\K
vanishing continuously on ∂D, and that GD1 is bounded on D. By the boundary Harnack inequality
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(Theorem 1.2), there is a constant c0 ∈ (0, 1) so that

Ex [τDD] ≥
∫

K

GD(x, y)dy ≥ c0ϕ(x) for every x ∈ D \ K.

By taking c0 > 0 smaller if necessary, we conclude that Ex[τDD] ≥ c0ϕ(x) for every x ∈ D. The theorem
is now proved.

The next result says that Theorem 1.6 is sharp.

Theorem 3.3. Let D = Γ(θ) be a truncated circular cone in Rn with common angle θ < cos−1(1/
√

n)
and n ≥ 2, defined by (1.6). Then there are constants c > 0 and α > 2 such that

GD1(x) ≥ c δD(x)2−αϕ(x) for every x = (x1, 0, · · · , 0) with 0 < x1 < 1/2. (3.7)

Proof It is known (see, e.g., two lines above (4.6.6) on page 129 of [10]) that ϕ1(x) decays at rate
δD(x)α as x → 0 along the axis of the cone Γ(θ), where α is given by (3.1). We see from (3.2)-(3.3) that
α > 2 when θ < cos−1(1/

√
n). Clearly there is ε ∈ (0, 1/2) such that B(x, δD(x)) ⊂ D \ K for every

x = (x1, 0, · · · , 0) with 0 < x1 < ε. This together with (3.6) implies in particular that there is a constant
c > 0 such that

ϕ(x) ≤ a ϕ1(x) ≤ c δD(x)α for x = (x1, 0, · · · , 0) with 0 < x1 < ε.

By Harnack inequality,
ϕ(y) ≤ c ϕ(x) ≤ cδD(x)α ≤ cδD(y)α (3.8)

for every y ∈ B(x, δD(x)/2) and every x = (x1, 0, · · · , 0) with 0 < x1 < ε. By Proposition 2.5,

GD(x, y) ≥ c
ϕ(x)ϕ(y)

ϕ(Ax,y)2
1

|x − y|n−2
, x, y ∈ D,

where Ax,y is as given in the proof of Theorem 1.6. Here for the case of n = 2, we use the convention
that 00 = 1. Let x = (x1, 0, · · · , 0) with 0 < x1 < ε. For y ∈ B(x, δD(x)/4) \ B(x, δD(x)/6), we can take
Ax,y = y. Note that in this case, δD(y) ≤ 5δD(x)/4 ≤ 15|x − y|. We therefore have

GD1(x) ≥
∫

B(x, δD(x)/2)\B(x, δD(x)/3)

GD(x, y)dy

≥ c ϕ(x)

∫

B(x, δD(x)/2)\B(x, δD(x)/3)

1

ϕ(y)|x − y|n−2
dy

≥ c ϕ(x)

∫

B(x, δD(x)/2)\B(x, δD(x)/3)

1

|x − y|α |x − y|n−2
dy

≥ c ϕ(x)δD(x)2−α.

This establishes the theorem.

Remark 3.4. Note that the circular cone Γ(θ) with angle θ = cos−1(1/
√

n) has Lipschitz constant
1/

√
n − 1 at its vertex. So if D is a bounded Lipschitz domain in Rn with Lipschitz constant strictly

less than 1/
√

n − 1, then D satisfies interior cone condition with common angle θ ∈
(
cos−1(1/

√
n), π

)
.

We point out that this is only a sufficient condition. The aforementioned interior cone condition can be
satisfied in some bounded Lipschitz domains with Lipschitz constant larger than 1/

√
n − 1. A smooth

domain with an inward sharp cone is such an example.
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4 Proof of Theorem 1.5

(i) Fix p ≥ 1 and h ∈ H+. Let γ = γ(D) be the constant obtained in Lemma 2.2 for this h. Define
Λ =

{
u ∈ C(D) : e−γh ≤ u ≤ h

}
. Clearly, Λ is a closed non-empty convex sub-set of C(D). Let GD(·, ·)

be the Green function of the domain D. Define T : Λ → C(D) as

T (u)(x) = Ex

[
h(XτD

) exp

(
−
∫ τD

0

up−1(Xs)ds

)]

¿From Lemma 2.1 one can conclude that T (u)(x) = h(x)−
∫

GD(x, y)up−1(y)T (u)(y)dy. Now for u ∈ Λ,
T (u) ≤ h and hence up−1T (u) ∈ Bh,p. By Lemma 2.3, we conclude that

{∫
GD(·, y)up−1(y)T (u)(y)dy : u ∈ Λ

}

is relatively compact in C∞(D). Therefore, as h ∈ H+ we have

T (u) ∈ C(D) for every u ∈ Λ.

Moreover

T (Λ) is relatively compact in (C(D), ‖ · ‖∞). (4.1)

If un ∈ Λ is such that ‖un − u‖∞ → 0, then up−1
n (x) → up−1(x) for all x ∈ D. Now for u ∈ Λ,

up−1(x) ≤ hp−1(x) for all x ∈ D. An application of the Dominated Convergence Theorem implies that
T (un)(x) → T (u)(x) for all x ∈ D and by (4.1), the convergence holds in the uniform norm. We have
shown that

T : Λ → Λ is continuous. (4.2)

For any u ∈ Λ, x ∈ D

T (u)(x)

h(x)
=

Ex

[
h(XτD

) exp(−
∫ τD

0 up−1(Xs)ds)
]

h(x)

= Eh
x

[
exp

(
−
∫ τD

0

hp−1(Xs)ds

)]

≥ exp

(
−Eh

x

[∫ τD

0

hp−1(Xs)ds

])

≥ exp(−C1)

where the last inequality follows from Lemma 2.2. By continuity we have T (u)(x) ≥ exp(−C1)h(x),
x ∈ D. Hence we have shown that

T (Λ) ⊂ Λ. (4.3)

Therefore from (4.1), (4.2), (4.3) and Schauder’s fixed point theorem [16, Theorem 11.1], T has a fixed
point in Λ. Therefore there exists a u such that u(x) = Ex

[
h(XτD

) exp
(
−
∫ τD

0
up−1(Xs)ds

)]
. From

Lemma 2.1 we can conclude that u ∈ Sp
H . Therefore Sp

H 6= ∅ for p ≥ 1.

By definition, Sp
H ⊂ Sp

+. Let u ∈ Sp
+. Since p ≥ 1, it follows from Lemma 2.1 that

u(x) = Ex

[
h(XτD

) exp

(
−
∫ τD

0

up−1(Xs)ds

)]
, x ∈ D

12



for some h ∈ H+. Clearly, u(x) ≤ h(x) for x ∈ D. By Jensen’s inequality

u(x)

h(x)
≥ Ex

[
h(XτD

) exp(−
∫ τD

0
hp−1(Xs)ds)

]

h(x)

≥ Eh
x

[
exp

(
−
∫ τD

0

hp−1(Xs)ds

)]

≥ exp

(
−Eh

x

[∫ τD

0

hp−1(Xs)ds

])

≥ exp(−C1)

Hence u(x) ≥ h(x) exp(−γ) for any x ∈ D. This implies that u ∈ Sp
H , and therefore Sp

H = Sp
+.

(ii) For any h ∈ H+, by (3.4),

h(x) ≥
∫

D

pD(t, x, y)h(y)dy ≥ c ϕ1(x).

Hence for p ≥ 0, by assumption (1.5),

Eh
x

[∫ τD

0

hp−1(Xs)ds

]
=

GDhp(x)

h(x)
≤ ‖h‖p

∞
c

GD1(x)

ϕ(x)
≤ c1 < ∞.

Using a similar fixed point argument as in (i), we have Sp
H 6= ∅ for p ≥ 0.

For h ∈ H+, define

α(h) = inf

{
p : sup

x∈D

GDhp(x)

h(x)
< ∞

}
(4.4)

and define
p0 = inf

h∈H+

α(h). (4.5)

We now show that p0 > −∞. By (4.4) and (4.5), it suffices to show that

there exists q ∈ R such that sup
x∈D

GDh−q(x)

h(x)
= ∞. (4.6)

By [9, Lemma 6.7], for every c1, there is a constant c2 > 0 such that

GD(x, y) ≥ c2 for x, y ∈ D with |x − y| ≤ c1 min{δD(x), δD(y)}.
Fix c1 > 0 and a corresponding c2 > 0. Note that, for a suitable constant c3 > 0, which depends only on
c1, |y − x| ≤ c3δD(x) implies |x − y| ≤ c1 min{δD(x), δD(y)}. Hence

GDh−q(x)

h(x)
=

∫
D GD(x, y)h−q(y)dy

h(x)

≥
c2

∫
{|x−y|<cmin{δD(x),δD(y)} h−q(y)dy

h(x)

≥
c2

∫
B(x,c3δD(x)) h−q(y)dy

h(x)

By [3, Lemma 1.9, page 185, equation (1.22)], there exist constants c4 > 0 and β > 0, such that
h(y) ≤ c4δD(y)β for all y ∈ B(x, c3δD(x)). Hence, for constants c5, c6 > 0,

GDh−q(x)

h(x)
≥ c5

∫
B(x,c3δD(x)) δD(y)−qβdy

δD(x)β

13



≥ c6δ(x)−qβ+d−β .

If q is chosen sufficiently large, the last expression above is unbounded over D. This proves (4.6) and
thus p0 > −∞.

We see from above that p0 ≤ 0 and that for every p > p0, using the fixed point argument as in (i), one
has Sp

H 6= ∅.

(iii) Now we show that for every p < p0, Sp
+ = ∅. Suppose Sp

+ 6= ∅. Then

u(x) = h(x) −
∫

D

GD(x, y)up(y) dy

for some h ∈ H+. As u ≤ h and p < p0 ≤ 0,

Eh
x

[∫ τD

0

hp−1(Xs)ds

]
=

GDhp (x)

h(x)
≤ GDup (x)

h(x)
=

h(x) − u(x)

h(x)
= 1 − u(x)

h(x)
≤ 1.

This contradicts the definition of p0 in (4.5). Hence Sp
+ = ∅ for every p < p0.

5 Proof of Theorem 1.3

(i) As any bounded C1,1 domain satisfies the hypothesis of Theorem 1.5, the results follows directly from
Theorem 1.5(1).

(ii). It is well known that for bounded C1,1 domain D, the Euclidean boundary ∂D is the same as the
minimal Martin boundary for ∆ in D. So for any h ∈ H+, there is a finite positive measure µ on ∂D
such that

h(x) =

∫

∂D

KD(x, z) µ(dz),

where KD(x, z) is the Martin kernel for ∆ in D. It is a direct consequence of (2.6) and (2.9) that

KD(x, z) ≈ δD(x)

|x − z|n for x ∈ D and z ∈ ∂D. (5.1)

Hence
h(x) ≥ cδD(x) for x ∈ D. (5.2)

Note that for each fixed z ∈ ∂D, x 7→ KD(x, z) is a positive harmonic function in D.

We first assume that n ≥ 3. It follows from Zhao [22]

GD(x, y) ≤ c min
{
δD(x)|x − y|1−n, δD(x)δD(y)|x − y|−n

}
. (5.3)

If −1 < p < 0, then by (5.3) and (5.2)

sup
x∈D

Eh
x

[∫ τD

0

hp−1(Xs)ds

]
= sup

x∈D

∫
D GD(x, y)hp(y)dy

h(x)

≤ c sup
x∈D

(
δD(x)−1

∫

D

δD(x)δD(y)−p

|x − y|n−1−p
δD(y)p dy

)

= c sup
x∈D

∫

D

1

|x − y|n−1−p
< ∞.
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If 0 ≤ p < 1, since h is bounded, by (5.3) and (5.2) we have

sup
x∈D

Eh
x

[∫ τD

0

hp−1(Xs)ds

]
= sup

x∈D

∫
D GD(x, y)hp(y)dy

h(x)

≤ c sup
x∈D

(
δD(x)−1

∫

D

δD(x)

|x − y|n−1
dy

)

= c sup
x∈D

∫

D

1

|x − y|n−1
< ∞.

Now we can imitate the arguments presented in the proof of Theorem 1.5(ii), to conclude that Sp
H 6= ∅

when −1 < p < 1 and n ≥ 3.

We now assume n = 2. If −1 < p < 0, then by (2.7) and (5.2)

sup
x∈D

Eh
x

[∫ τD

0

hp−1(Xs)ds

]
= sup

x∈D

∫
D

GD(x, y)hp(y)dy

h(x)

≤ c sup
x∈D

(
δD(x)−1

∫

D

log

(
1 +

δD(x)δD(y)

|x − y|2
)

δD(y)p dy

)
.

Observe that log(1 + ab) ≤ ab ≤ ab−p for a > 0 and 0 < b ≤ 1 and log(1 + ab) ≤ (−1/p)b−pb−p ≤
(−1/p)ab−p for a ≥ 1 and b > 0. Thus

log

(
1 +

δD(x)δD(y)

|x − y|2
)

≤ c
δD(x)

|x − y|
δ(y)−p

|x − y|−p
(5.4)

when either δD(x) ≥ |x − y| or δD(y) ≤ |x − y|. It follows that

sup
x∈D

Eh
x

[∫ τD

0

hp−1(Xs)ds

]

≤ c sup
x∈D

(∫

D

1

|x − y|1−p
dy + δD(x)−1

∫

{y∈D:δD(x)<|x−y|<δD(y)}
log

(
1 +

δD(x)δD(y)

|x − y|2
)

δD(y)p dy

)

≤ c sup
x∈D

(
1 + δD(x)−1

∫

{y∈D:δD(x)<|x−y|<δD(y)}

δD(x)−pδD(y)−p

|x − y|−2p
δD(y)p dy

)

≤ c sup
x∈D

(
1 + δD(x)−1−p

∫

{y∈D:|x−y|>δD(x)}

1

|x − y|−2p
dy

)

≤ c + c sup
x∈D

δD(x)1+p < ∞.

Consider 0 ≤ p < 1. Since h is bounded, by (2.7), (5.2) and as any C1,1-domain satisfies the hypothesis
of Theorem 1.5, we have

sup
x∈D

Eh
x

[∫ τD

0

hp−1(Xs)ds

]
= sup

x∈D

∫
D

GD(x, y)hp(y)dy

h(x)

≤ c sup
x∈D

(
δD(x)−1GD1(x)

)

= c sup
x∈D

(
δD(x)−1ϕ(x)

)
< ∞.

The last inequality is due to the fact that ϕ(·) ≈ δD(·) in D, which is a consequence of (5.1) and the
boundary Harnack principle (Theorem 1.2).
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Now we can imitate the arguments presented in the proof of Theorem 1.5(ii), to conclude that Sp
H 6= ∅

when −1 < p < 0 and n = 2. We thus obtain (ii).

(iii). Suppose that there exists a mild solution u to (1.2) which is positive in D and vanishing on Λ.
Then, by definition, there is a positive harmonic function h that vanishes on Λ such that u = h−GDup.
Hence

u(x) ≤ h(x) and GDup(x) ≤ h(x) for every x ∈ D. (5.5)

On the other hand there is a finite positive measure µ on ∂D such that µ(Λ) = 0 and

h(x) =

∫

∂D

KD(x, z)µ(dz) =

∫

∂D\Λ
KD(x, z)µ(dz), x ∈ D.

Take z0 ∈ Λ and r0 > 0 such that B(z0, 2r0) ⊂ D1. Then by (5.1),

h(x) ≈ δD(x) for x ∈ D ∩ B(z0, r0). (5.6)

Since p ≤ −1 and u(y) ≤ h(y), we have

u(y)p ≥ cp δD(y)p ≥ cp δD(y)−1 for y ∈ D ∩ B(z0, r0).

Now take a sequence of points {xk} in D ∩ B(z0, r0) that converges to z0. Then for n ≥ 3, by Fatou’s
lemma,

lim inf
k→∞

GDup(xk)

h(xk)
≥ c lim inf

k→∞

∫
D∩B(z0,r0)

GD(xk , y)δD(y)−1 dy

δD(xk)

≈ c lim inf
k→∞

∫

D∩B(z0,r0)

δD(xk)−1 min

{
1

|xk − y|n−2
,

δD(xk)δD(y)

|xk − y|n
}

δD(y)−1 dy

≥ c

∫

D∩B(z0,r0)

lim inf
k→∞

δD(xk)−1 min

{
1

|xk − y|n−2
,

δD(xk)δD(y)

|xk − y|n
}

δD(y)−1 dy

= c

∫

D∩B(z0,r0)

|z0 − y|−ndy

= ∞.

This contradicts inequality (5.5). Therefore Sp
+ = ∅ when n ≥ 3.

Similarly, when n = 2, by Fatou’s lemma,

lim inf
k→∞

GDup(xk)

h(xk)
≥ c lim inf

k→∞

∫
D∩B(z0,r0)

GD(xk , y)δD(y)−1 dy

δD(xk)

≈ c lim inf
k→∞

∫

D∩B(z0,r0)

δD(xk)−1 log

(
1 +

δD(xk)δD(y)

|xk − y|2
)

δD(y)−1 dy

≥ c

∫

D∩B(z0,r0)

lim inf
k→∞

δD(xk)−1 log

(
1 +

δD(xk)δD(y)

|xk − y|2
)

δD(y)−1 dy

= c

∫

D∩B(z0,r0)

|z0 − y|−2dy

= ∞.

This again contradicts inequality (5.5). Therefore Sp
+ = ∅ when n = 2.
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