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Abstract

Andersen’s sum formula for tilting modules for reductive algebraic groups is derived
as a consequence of the older Jantzen sum formula for Weyl modules. The connection
between the two sum formulas is obtained by interpreting each formula as the calculation
of a suitable Euler characteristic. Some observations about the weights involved in these
sum formulas are also included.
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0. Introduction

Consider the category of rational representations of a reductive algebraic group over
an algebraically closed field of positive characteristic. H. H. Andersen defined a filtration
of the space of equivariant homomorphisms from a Weyl module into a tilting module.
He also proved in most cases a sum formula for this filtration. The filtration and the
sum formula are reminiscent of the well-known Jantzen filtration of Weyl modules and
the corresponding Jantzen sum formula. In section 2.2 below we will see a different and
complete proof of Andersen’s formula via the known Jantzen sum formula. For the proof we
will need to independently interpret each sum formula as the calculation of the same Euler
characteristic. For Andersen’s formula this is observed in 1.3, based on some reasoning
from [Andersen2] summarized in 1.1-1.2. For Jantzen’s formula the interpretation was
observed in [Kulkarni] and is recalled in 2.1. A slightly different description of the weights
involved in both sum formulas appears in 2.3.

Let us fix notation and recall some standard facts. Z, k and R will always denote
respectively the ring of integers, a field of prime characteristic p and the ring Zp of the
corresponding p-adic integers. Let GZ be a split and connected reductive algebraic group
scheme over Z. We will use standard machinery from [Jantzen] such as the dominant
weights obtained by choosing a set of positive roots R+ for a split maximal torus, the
Weyl group W , etc.

For any commutative ring A by base change we get a corresponding group scheme GA.
The dominant integral weights λ index the Weyl modules ∆A(λ) and the dual Weyl modules
∇A(λ). These modules are characteristic-free, i.e., ∆Z(λ) is Z-free, ∆A(λ) = ∆Z(λ) ⊗ A
and likewise for dual Weyl modules. A GA-module with a (dual) Weyl filtration is one
that has a finite filtration whose successive factors are (dual) Weyl modules. A tilting
GA-module is a module that has a Weyl filtration as well as a dual Weyl filtration. The
multiplicity of a (dual) Weyl module corresponding to a given dominant weight λ in any
(dual) Weyl filtration of a tilting GA-module Q is the same (e.g., by considering the
formal character of Q) and will be denoted by [Q : ∆A(λ)]. This can be extended to
an arbitrary integral weight ν by considering the corresponding Weyl character χ(ν), see
[Jantzen II.5.7(1), II.5.9(1)]. So if there is an element w ∈ W of length `(w) with λ = w ·ν
dominant, we let [Q : χ(ν)] = (−1)`(w)[Q : ∆A(λ)]. Otherwise let [Q : χ(ν)] = 0.

For a dominant weight λ there is a unique indecomposable tilting Gk-module Tk(λ)
with highest weight λ and any tilting Gk-module is uniquely a direct sum of these. Finding
the formal character of Tk(λ) is an important open problem. Andersen’s sum formula
enables one to do this in some cases, just as Jantzen’s sum formula permits calculation of
formal characters of simple modules in some cases. See [Andersen2, Introduction and 2.13].
To define his filtration, Andersen works over GR (see below). By [Andersen1], every tilting
GR-module is uniquely a direct sum of tilting GR-modules TR(λ) with TR(λ)⊗ k = Tk(λ).
In particular any tilting Gk-module lifts uniquely to a tilting GR-module.
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We will need some homological machinery. Define (see [Kulkarni])

E(M,N) = div|HomGZ
(M,N)tor|+

∑
i>0

(−1)idiv|ExtiGZ
(M,N)|

for finitely generated GZ-modules M and N , where div stands for taking the divisor of a
rational number. Below we will see how the calculation of E for pairs of Weyl modules
is equivalent to Jantzen’s as well as Andersen’s sum formula. For the latter we will need
ER, the analogue of E defined by working over GR. Note that if M and N are Z-free
GZ-modules of finite rank, then by the Universal Coefficient Theorem [Jantzen I.4.18]
ExtiGR

(M ⊗ R,N ⊗ R) = ExtiGZ
(M,N) ⊗ R as Zp is flat over Z. So for such M and

N , ER(M ⊗ R,N ⊗ R) = (the coefficient of [p] in E(M,N))[p]. Finally let us record the
following fundamental homological facts, see [Jantzen, II.B].

Theorem 1. Let the base ring A = Z or R. Then for dominant weights λ and µ,
(i) ExtiGA

(∆A(µ),∇A(λ)) = 0 unless (µ = λ and i = 0). HomGA
(∆A(λ),∇A(λ)) = A.

(ii) ExtiGA
(∆A(µ),∆A(λ)) = 0 unless µ < λ or (µ = λ and i = 0), where < is the

usual dominance partial order on weights. HomGA
(∆A(λ),∆A(λ)) = A.

1. Andersen’s sum formula and its connection with E

1.1. Andersen’s filtration. In this section fix a prime p and a dominant weight λ.
In 1.1 and 1.2 we will reproduce the setup and the reasoning from [Andersen2, 1.3-1.5].
For a tilting GR-module Q, Andersen gives a descending filtration Fλ(Q)j of Fλ(Q) =
HomGR

(∆R(λ)), Q) = R[Q:∆R(λ)] (by Theorem 1.(i)). To define this filtration, fix an
enumeration of dominant weights such that λi < λj implies i < j. Let [Q : ∆R(λj)] = nj .
By Theorem 1.(ii) Q has a finite filtration Q = Q0 ⊃ Q1 ⊃ Q2 . . . with Qi−1/Qi = ∆(λi)ni

such that λi < λj implies i < j. Let i be the index such that the chosen λ = λi. Consider
the two short exact sequences

(1) 0 → Qi−1 → Q → Q/Qi−1 → 0 and (2) 0 → Qi → Qi−1 → ∆(λ)ni → 0.

Since [Q/Qi−1 : ∆R(λ)] = 0 we have HomGR
(∆R(λ), Q/Qi−1) = 0. Therefore any map ϕ

in Fλ(Q) factors through Qi−1 and hence can be composed with the surjection in (2) to
get Φ(ϕ) in EndGR

(∆R(λ))ni . Since [Qi : ∆R(λ)] = 0 we have HomGR
(∆R(λ), Qi) = 0

and hence Φ is an injection between modules isomorphic to Rni . Define

Fλ(Q)j = {ϕ ∈ Fλ(Q)|Φ(ϕ) ∈ pjEndGR
(∆R(λ))ni}.

(Earlier [Andersen1] used the pairing HomGR
(∆R(λ)), Q)×HomGR

(Q,∇R(λ)) → R, (see
Theorem 1.(i)) to define the same filtration. The equivalence with the above description is
proved in [Andersen2, Proposition 1.6].) Continuing the analogy with Jantzen’s filtration,
Andersen then defines F̄λ(Q ⊗R k)j = the image of Fλ(Q)j in Fλ(Q) ⊗R k, which is a
filtration of Fλ(Q)⊗R k = HomGk

(∆k(λ), Q⊗R k). Henceforth we will write Q̄ for Q⊗R k.
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1.2. Andersen’s sum formula. Continue with the setting of 1.1. As in the case
of Jantzen’s sum formula, to calculate

∑
j>0 dimF̄λ(Q̄)j amounts to calculating the p-

adic valuation of the cokernel of Φ, see [Jantzen II.8.18]. To identify coker(Φ) con-
sider the long exact sequences obtained by applying HomGR

(∆R(λi),−) to (1) and (2).
The Hom terms in both sequences have been analyzed above. In the first sequence for
t > 0, ExttGR

(∆R(λ), Q/Qi−1) = 0 (since [Q/Qi−1 : ∆R(λj)] = 0 for any λj > λ) and
ExttGR

(∆R(λ), Q) = 0 (since Q has a dual Weyl filtration). Hence ExttGR
(∆R(λ), Qi−1) =

0 for t > 0. Using this for t = 1 in the second long exact sequence one gets the short exact
sequence

(3) 0 → Fλ(Q) Φ→ EndGR
(∆R(λ))ni → Ext1GR

(∆R(λ), Qi) → 0.

(3) is enough for Andersen’s proof (see below), but we will need to make the remaining
step explicit for use in 1.3. Since ExttGR

(∆R(λ),∆R(λ)) = 0 for t > 0, the entire long
exact sequence reduces to (3). In particular ExttGR

(∆R(λ), Qi) = 0 for t 6= 1.

Theorem 2. (Andersen’s sum formula)
∑

j>0 dimF̄λ(Q̄)j = − the coefficient of [p] in∑
α∈R+

∑
m<0 or m>〈λ+ρ,α̌ 〉

div(m)[Q̄ : χ(λ−mα)].

Andersen proves his sum formula as follows. Using the linkage principle, it is enough to
work with one block at a time. Using translation functors, he reduces the problem to
a regular block. Andersen shows by careful analysis that the claimed formula and the
Ext1 in (3) behave in the same fashion under wall crossing functors and then finishes the
proof via an induction. See [Andersen2, Section 2]. The use of regular weights restricts
the validity of this proof to p ≥ the Coxeter number for G, even though the formula was
expected to be valid without this restriction. We will take a slightly different tack in 1.3
which will lead to another proof in Section 2 that works for all p.

1.3. Andersen’s sum formula and E. Continue with the setting in 1.1 and 1.2. By
the third sentence following (3), we have

∑
j>0 dimF̄λ(Q̄)j = − the coefficient of [p] in

ER(∆R(λ), Qi). Now by additivity of ER (see [Kulkarni, 1.2]),

ER(∆R(λ), Qi) =
∑
j>i

njER(∆R(λ),∆R(λj)) =
∑

j

njER(∆R(λ),∆R(λj)),

where we have used the fact that for j ≤ i, ER(∆R(λ),∆R(λj)) = 0 by Theorem 1.(ii).
Combining this with the comparison between E and ER from the introduction, we have∑

j>0 dimF̄λ(Q̄)j = − the coefficient of [p] in
∑

j njE(∆Z(λ),∆Z(λj)). To compare this
with the statement of Theorem 2, define for a dominant weight µ

(4) U(λ, µ) = {(α, m)|α ∈ R+,m < 0 or m > 〈λ+ρ, α̌ 〉, λ−mα = w ·µ for some w ∈ W}.

(Such w must be unique.) Then Theorem 2 is easily seen to be equivalent to the following
statement.

(5) E(∆Z(λ),∆Z(µ)) =
∑

U(λ,µ)

(−1)`(w)div(m).
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2. Connection between Jantzen’s and Andersen’s sum formulas via E

2.1. Jantzen’s sum formula and E. The Jantzen filtration ∆i
k(λ) of the Weyl module

∆k(λ) is obtained from a generator of HomGZ
(∆Z(λ),∇Z(λ)) (see Theorem 1.(i)) exactly

as Andersen’s filtration was obtained from the map Φ in 1.1. Letting ch denote the formal
character, Jantzen’s sum formula [Jantzen II.8.19(1)] (see also [Jantzen II.8.16(1)]) states:∑

i>0 ch(∆i
k(λ)) = − the coefficient of [p] in∑

β∈R+

∑
0<n<〈λ+ρ,β 〉̌

div(n)χ(λ− nβ).

[Kulkarni, Corollary 1.4] observes the following connection with E. For a dominant
weight µ, the coefficient of ch(∆k(µ)) in

∑
i>0 ch(∆i

k(λ)) = − the coefficient of [p] in
E(∆Z(µ),∆Z(λ)). Thus in view of 1.3 either of the sum formulas must imply the other.
Let us derive Andersen’s formula using this connection. Define for a dominant weight µ

(6) V (λ, µ) = {(β, n)|β ∈ R+, 0 < n < 〈λ + ρ, β 〉̌, λ− nβ = x · µ for some x ∈ W}.

(Such x must be unique.) Then Jantzen’s sum formula is easily seen to be equivalent to
the following statement.

(7) E(∆Z(µ),∆Z(λ)) =
∑

V (λ,µ)

(−1)`(x)div(n).

2.2. A proof of Andersen’s sum formula. We will prove Theorem 2 by showing the
equivalence of (5) and (7). Clearly it is enough to produce a bijection between U(λ, µ) and
V (µ, λ) for which n = ±m and x = w−1. This is an easy check as follows.

First suppose (α, m) ∈ U(λ, µ) is given with λ−mα = w·µ. So w−1 ·λ = µ+m(w−1α).

Case 1a. If w−1α ∈ R+ then let β = w−1α and n = −m. We have

(8) 〈µ + ρ,w−1α̌ 〉 = 〈w−1(λ + ρ)−m(w−1α), w−1α̌ 〉 = 〈λ + ρ, α̌ 〉 − 2m.

Since 〈µ+ρ, β 〉̌ and 〈λ+ρ, α̌ 〉 are both positive, the possibility m > 〈λ+ρ, α̌ 〉 in (4) cannot
be true. So m < 0 and hence n = −m > 0. Also 〈µ+ρ, β 〉̌ = 〈λ+ρ, α̌ 〉−2m > −2m = 2n.
So 0 < n < 1

2 〈µ + ρ, β 〉̌, in particular (β, n) ∈ V (µ, λ).

Case 1b. If w−1α ∈ −R+ then let β = −w−1α and n = m. By (8) we have 〈µ+ρ, β 〉̌ =
2m− 〈λ + ρ, α̌ 〉. Since 〈µ + ρ, β 〉̌ and 〈λ + ρ, α̌ 〉 are both positive, the possibility m < 0
in (4) cannot be true. So m > 〈λ + ρ, α̌ 〉. Thus n = m > 0. Also 〈µ + ρ, β 〉̌ =
2m−〈λ+ ρ, α̌ 〉 > m = n, as desired. (Since 0 < 〈λ+ ρ, α̌ 〉 = 2m−〈µ+ ρ, β 〉̌, we actually
have 1

2 〈µ + ρ, β 〉̌ < m = n < 〈µ + ρ, β 〉̌.)

To give the inverse map, suppose (β, n) ∈ V (µ, λ) is given with µ − nβ = x · λ. So
x−1 · µ = λ + n(x−1β).
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Case 2a. If x−1β ∈ R+ then let α = x−1β and m = −n. We have m < 0 since n > 0
by (6), so (α, m) ∈ U(λ, µ). Clearly this case is inverse to Case 1a. (n must satisfy the
bounds in the last sentence of Case 1a by the calculation there.)

Case 2b. If x−1β ∈ −R+ then let α = −x−1β and m = n. Now via a calculation
similar to (8) we have 〈λ + ρ, α̌ 〉 = 2n − 〈µ + ρ, β 〉̌ < 2n − n = m, so (α, m) ∈ U(λ, µ).
Clearly this case is inverse to Case 1b (and again the bounds obtained there on n must
hold in this case). This completes the proof of (5) and hence that of Theorem 2.

2.3. Some observations regarding the sets U(λ, µ) and V (λ, µ). Consider the following
key condition involved in the definition of these sets. “The line through λ in the direction
of some root intersects the orbit of µ (under the dot action of W ).” Since λ−mα = w ·µ ⇔
w−1 · λ = µ + m(w−1α), the stated condition is symmetric in λ and µ. The asymmetry in
the definitions of comes from the numerical inequalities in (4) and (6) stipulating where
on the line the intersection must occur. Some natural questions arise in this regard. For
Andersen’s (respectively Jantzen’s) sum formula corresponding to a dominant weight λ,
only those dominant weights µ for which µ < λ (respectively λ < µ) matter. (This
follows, e.g, by (5) and (7) respectively since nontriviality of E(∆Z(λ),∆Z(µ)) requires
λ < µ by Theorem 1.(ii).) So one may wonder how the asymmetry resulting from these
conditions compares with the respective numerical inequalities. One may also seek a simple
explanation for the apparent symmetry in 2.2 between Case 1a and Case 1b as well as that
between the cases 2a and 2b. These questions are addressed in the next proposition.

Proposition. Let λ and µ be distinct dominant weights. Then the set U(λ, µ) (re-
spectively V (λ, µ)) is empty unless λ < µ (respectively µ < λ), in which case it equals
{(α, m)|α ∈ R+, λ − mα = w · µ for some w ∈ W}. Moreover there is a fixed point free
involution on each set given by (α, m) ↔ (α, 〈λ + ρ, α̌ 〉 −m). In particular the cardinality
of each of these sets is even.

Proof. Throughout the proof suppose that w · µ = λ −mα with α ∈ R+. One gets
the needed involution by noting that

(9) (sαw) · µ = sα · (λ−mα) = sα · λ + mα = λ− (〈λ + ρ, α̌ 〉 −m)α.

Since (sαw)−1α = −w−1α, (9) sets up a pairing between the two parts into which the
set U(λ, µ) (respectively V (λ, µ)) is divided by the cases 1a and 1b (respectively 2a and
2b–suitably modified by interchanging λ and µ since we used V (µ, λ) in 2.2). It also
explains the bisection of the total numerical range allowed in each set around the midpoint
1
2 〈λ + ρ, α̌ 〉 by the respective pair of cases.

Since λ and µ are dominant, w · µ ≤ µ and w−1 · λ ≤ λ with equalities iff w is the
identity. Recall that by (8) we have 〈µ + ρ,w−1α̌ 〉 = 〈λ + ρ, α̌ 〉 − 2m. It suffices to show
that one must have λ < µ or µ < λ appropriately depending on the value of m. First note
that m = 1

2 〈λ + ρ, α̌ 〉 is impossible, e.g., because that would mean 〈µ + ρ,w−1α̌ 〉 = 0.

Case I. If m < 0, then λ < λ−mα = w · µ ≤ µ.
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Case II. If m = 0, then w = identity and µ = λ, contrary to our assumption.

Case III. If 0 < m < 1
2 〈λ + ρ, α̌ 〉, then 〈µ + ρ,w−1α̌ 〉 > 0. So w−1α ∈ R+ and hence

µ < µ + m(w−1α) = w−1 · λ ≤ λ.

Remaining three cases. If 1
2 〈λ+ρ, α̌ 〉 < m < 〈λ+ρ, α̌ 〉 (respectively, if m = 〈λ+ρ, α̌ 〉,

if m > 〈λ + ρ, α̌ 〉), then using (9) one reduces to Case III (respectively, case II, Case I) to
conclude that µ < λ (respectively, µ = λ, λ < µ). This finishes the proof of the proposition.

Notes. 1) Suppose for now that Case I holds, i.e., w · µ = λ −mα with α ∈ R+ and
m < 0. Let β = w−1α and m′ = 〈λ+ρ, α̌ 〉−m. One can write down all the order relations
forced on the weights involved in the given situation and its “mirror image” under (9).
These weights are µ, its translates by w and sαw, λ and its translates by w−1 and w−1sα.
One easily sees using available information that w−1sα ·λ = µ−m′β < µ+mβ = w−1 ·λ ≤
λ < λ −mα = w · µ ≤ µ. (So for instance −mα ≤ µ − λ ≤ −mβ and hence α ≤ β with
equality iff w = identity.) For the remaining weight one has sαw · µ = λ −m′α < λ and
examples show that in general sαw ·µ is not comparable to either of w−1sα ·λ and w−1 ·λ.
A parallel analysis applies to Case III (e.g., via the bijection in 2.2). Then one uses (9) to
transfer these results to the “mirror image” cases.

2) Via (8) the cases above can be formulated entirely in terms of the weights λ and µ
without reference to m. Cases I, II and III are respectively equivalent to 〈µ + ρ,w−1α̌ 〉 >
〈λ + ρ, α̌ 〉 > 0, 〈µ + ρ,w−1α̌ 〉 = 〈λ + ρ, α̌ 〉 > 0 and 〈λ + ρ, α̌ 〉 > 〈µ + ρ,w−1α̌ 〉 > 0. For
the “mirror image” cases, w−1α ∈ −R+ so one replaces 〈µ+ρ,w−1α̌ 〉 by −〈µ+ρ,w−1α̌ 〉.

2.4. Remarks and questions. 1) Exactly how do the sets U(λ, µ) and V (λ, µ) look like?
By 2.2 and 2.3 it suffices to consider just one of the sets, say V (λ, µ). Let us comment
on the special case of the general linear group. Here it is not hard to see that this set,
when nonempty, has cardinality exactly two, i.e., the root α is determined uniquely by the
pair of dominant weights in question. So V (λ, µ) is empty iff E(∆Z(µ),∆Z(λ)) is trivial.
[Kulkarni, Theorem 2.3] identifies for the general linear group the pairs of dominant weights
for which the sets V (λ, µ) are nonempty and describes E(∆Z(µ),∆Z(λ)) in the language
of partitions. It should be interesting to get such explicit descriptions for other reductive
groups.

2) Andersen has defined tilting filtrations for quantum groups at a root of unity. By
a reasoning parallel to his proof in the modular case he also obtained an analogous sum
formula for these filtrations in presence of regular weights. The above reasoning with
appropriate modifications should work without restriction for the quantum sum formula
as well.

3) G. McNinch established a completely different connection between Jantzen’s and
Andersen’s filtrations in the presence of “Howe duality” in positive characteristic. [McN-
inch, Theorem 2] shows that Fλ(Q) for a self-dual full titling module Q naturally becomes
a Weyl module for the Howe dual group and moreover, under this identification, Ander-
sen’s filtration is carried to Jantzen’s filtration. It should be interesting if one can find a
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link between the above reasoning (which is able to deal only with sum formulas, not with
individual filtration terms) and McNinch’s work. In a similar vein it would be extremely
interesting to find a homological interpretation for the dimensions of individual terms in
Andersen’s filtration.

4) It seems plausible that one should be able to directly prove Andersen’s formula by
reduction to SL2 case in a way similar to Andersen’s proof of Jantzen’s sum formula. In
fact H. H. Andersen has directly proved (7) using this approach (private communication).
Coupled with the results in this paper, this gives a uniform and self-contained proof of
both sum formulas. Such a treatment will appear in [AK].
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