
isibang/ms/2006/5
March 27th, 2006

http://www.isibang.ac.in/˜ statmath/eprints

Quadratic factors of f (X)− g(Y ) in odd
characteristic

Manisha Kulkarni and B. Sury

Indian Statistical Institute, Bangalore Centre
8th Mile Mysore Road, Bangalore, 560059 India





QUADRATIC FACTORS OF f(X)− g(Y ) IN ODD CHARACTERISTIC

MANISHA KULKARNI AND B.SURY

Abstract. If f, g ∈ K[X] where K has odd characteristic, and f(X)−g(Y ) has an irreducible

quadratic factor in K[X, Y ], we show that f and g must have the same degree and can be

expressed in terms of Dickson polynomials. This generalizes a theorem of Bilu in characteristic

zero.

Introduction.

The motivation for this study comes from a characteristic zero problem in Diophantine equa-
tions. That problem is to decide, for given polynomials f, g ∈ Z[X], whether there are infinitely
many integral solutions for the equation f(x) = g(y). The work of several people, including no-
tably deep work of M.Fried, culminated in a remarkable theorem of Y.Bilu & R.Tichy [3]. The
approach to the Bilu-Tichy theorem depends on the classical theorem of Siegel which asserts :
Let F (X, Y ) ∈ Q[X, Y ] be absolutely irreducible. If F (X, Y ) = 0 has infinitely many integral
solutions, then the plane curve F (X, Y ) = 0 has genus 0 and at the most two points at infinity.
The question as to whether the number of points at infinity for the curve f(x) = g(y) is at
most 2, was shown by M.Fried to reduce to two questions, one of which is whether f(X)−g(Y )
has a quadratic factor in Q[X, Y ]. Y.Bilu [1] solved this problem and we try to generalize
this to positive characteristic. Berrondo and Gallardo [2] have considered a special case of the
polynomial f(x)− g(y) when characteristic is 2. We confine ourselves to odd characteristic.
Even though our result here has no applications to Diophantine equations that we are aware
of, it may still be worthwhile to study these problems in positive characteristic as well. The
reason is that many of the ideas involved in the (characteristic zero) approach have bearing
on other problems in number theory like Kronecker conjugacy which may have formulations in
positive characteristic also.

Some notations.

Before stating the theorem, we recall some notations. Let K be any field of positive character-
istic p. For any polynomial P ∈ K[X] and any c ∈ K̄, the c-type of P is defined to be the tuple
(e1, e2, · · · , er) of multiplicities e1 ≤ e2 ≤ · · · er of the irreducible factors of P (X)− c over K̄.
If P is nonconstant, it is said to be tame if p divides neither deg P nor any of the ei’s occurring
in the c-type for any c. It should be noted that every nonconstant polynomial of degree < p is
tame.
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Main theorem.
Let K be a field of odd characteristic p.
Assume :
(i) f(X)− g(Y ) ∈ K[X, Y ] has an irreducible quadratic factor q(X, Y ), and
(iii) either deg (f) or deg (g) is not a multiple of p.
Then, there exist φ, f1, g1 ∈ K[X] such that :
(i) f = φ ◦ f1, g = φ ◦ g1, and
(ii) q(X, Y )|(f1(X)− g1(Y )), with deg f1 = deg g1.
Moreover, if one of f, g is tame, then f1, g1 are of the form

f1(X) = Dn(X + β, a) ,

g1(X) = Dn((αX + γ)(ζ + ζ−1), a)

for some n ∈ N, a, β, γ ∈ K, α ∈ K∗.
Finally, in general, if f is not necessarily tame, but neither p nor 4 divides deg f , then one
may write f1 = P1 ◦ P2 · · · ◦ Pr where each Pi is an indecomposable polynomial in K[X] which
is either linear or Dl(X, 1) or X l for some prime l 6= p.
Further, in this case g1 is explicitly expressible in terms of the coefficients of q(X, Y ) and those
of the polynomials occurring in the decomposition of f1 above.

Here Dn(X, a) is the Dickson polynomial of degree n defined below, and ζ is a primitive n-th
root of unity in K̄.
Our proof follows that of Bilu in characteristic 0, but we require some results due to G.Turnwald
and P.Müller to carry it through. We have only considered the case when the characteristic p

does not divide the egree of f because only under this condition, we have enough understanding
of the monodromy group of f to conclude facts like the existence of an n-cycle in it where n =
deg f . In the non-tame case, we have assumed that the degree is not a multiple of 4 because
we need a certain technical result (quoted as an observation at the end of the proof) on the
zeroes of Dickson polynomials. The article [5] is a convenient source for analogues in positive
characteristic of several characteristic 0 results.

Dickson polynomials

Let A be any integral domain with quotient field F .
Denote by F̄ , an algebraic closure of F . We shall be applying the facts on Dickson polynomials
only when A = K, a field of positive characteristic.
For a ∈ A, and n ∈ N, the Dickson polynomial Dn(X, a) ∈ A[X] is the unique polynomial of
degree n which satisfies Dn(z + a/z, a) = zn + an/zn.
The existence of Dn(X, a) is easily proved by the recursion

Dn+2(X, a) = XDn+1(X, a)− aDn(X, a)

and from

D1(X, a) = X, D2(X, a) = X2 − 2a.
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It is also seen then that the coefficients are polynomials in a with (image in A of) integer
coefficients.
We note the evident properties :

(i) If char A = p > 0, then Dnp(X, a) = Dn(X, a)p,
(ii) Dmn(X, a) = Dm(Dn(X, a), an),
(iii) Dn(bX, b2a) = bnDn(X, a).

The following important property is elementary to prove :

Proposition 1 ( [5], proposition 1.7)
Assume that F̄ contains a primitive n-th root of unity ζ (so char F 6 |n) and that A contains
ζ + ζ−1. Then, for each a ∈ A, Dn(X, a) − Dn(Y, a) factorises in A[X, Y ] into irreducible
factors of degrees ≤ 2 as follows:

Dn(X, a)−Dn(Y, a) =

(X − Y )
(n−1)/2∏

k=1

(X2 − (ζk + ζ−k)XY + Y 2 + a(ζk − ζ−k))

or

(X2 − Y 2)
(n−2)/2∏

k=1

(X2 − (ζk + ζ−k)XY + Y 2 + a(ζk − ζ−k))

according as to whether n is odd or even. The quadratic factors are all distinct when a 6= 0.

The following result provides a key link between c-types and the Dickson polynomials. The
first part is from [5], lemma 1.11 and the second one is from [3], theorem 5.2.

Proposition 2 .
Assume f ∈ F [X] is monic, of degree n ≥ 3. Assume that char F does not divide n. Then, in
either of the following two cases, we must have f(X) = Dn(X + b, a) + c for some a, b, c ∈ F

and a 6= 0 :
(a) Suppose that, for each c ∈ F̄ the c-type of f is either (1, 1, · · · , 1) or (1, d, d, · · · , d) for
some d (depending on c but) not divisible by char F , or
(b) suppose that there are exactly two constants c1, c2 such that f has c1-type (1, 1, 2, 2, · · · , 2)
and c2-type (2, 2, · · · , 2) and no other c such that f(X)− c has multiple roots.

Arithmetic monodromy groups.

Start with char K = p > 0 odd and fix an algebraic closure K̄. Let X, t be algebraically
independent elements over K. One works with the irreducible, separable polynomial f(X)− t

over K(t). Let Uf denote the splitting field of f(X) − t over K(t), Its Galois group is called
the arithmetic monodromy group of f over K and is denoted by MonK(f); it is viewed as a
permutation group of the roots of f(X)− t ∈ K(t)[X]. The corresponding Galois group when
K is replaced by K̄ is called the geometric monodromy group and is denoted by Mon(f). Let
K̃ denote the constant subfield of Uf ; i.e., the algebraic closure of K in Uf . Then K̃ is Galois
over K and the monodromy group Mon(f) is the normal subgroup of MonK(f) which fixes
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K̃(t). The Galois group Gal(K̃/K) can be identified with the quotient. In other words, we
have an exact sequence

1 → Mon(f) → MonK(f) → Gal(K̃/K) → 1.

Lemma 1. ( [5], lemmata 3.3,3.4)
If c ∈ K̄ is such that f(X) has c-type (e1, e2, · · · , er) and, if p does not divide e1e2 · · · er, then
MonK(f) contains an element of cycle type (e1, e2, · · · , er). Moreover, if p 6 |n, then MonK(f)
always contains an n-cycle.

The discussion of a solvable monodromy group for a polynomial in positive characteristic is
carried out in [6] using some classical theorems of Galois and Ritt on primitive permutation
groups. It is proved by Turnwald in [6] that :

Lemma 2.
Let f ∈ K[X] have degree n > 1 with char K = p not dividing n.
(i) If f has a decomposition f = f1 ◦ f2 ◦ · · · fr in K[X], then MonK(f) is solvable if, and only
if, each MonK(fi) is.
(ii) If f is indecomposable, then MonK(f) is a primitive permutation group (that is, stabilisers
of points are maximal subgroups).
(iii) If f is indecomposable, and MonK(f) is also solvable, one must have n = 4 or n must be
a prime.

Dihedral groups

Recall that the dihedral group Dn of order 2n is the group of symmetries of the regular n-gon;
it can be defined by the presentation < x, y|x2, (xy)2, yn >.
We have the characterisation :
A finite group which is generated by two involutions x, xy whose product has order n, is iso-
morphic to Dn.
Dn can be realised as a subgroup of Sn generated by an n-cycle and a product of [(n − 1)/2]
disjoint transpositions.
A subgroup of Sn which contains an n-cycle and is isomorphic to some Dk, must be isomorphic
to Dn (that is, k = n). We also note :
(i) All subgroups of Sn which are isomorphic to Dn are conjugate. Each n-cycle is contained
in a unique such subgroup.
(ii) A nontrivial element of subgroup of Sn which is isomorphic to Dn must be either a product
of ((n/d) number of) disjoint d-cycles for some d|n or a product of [(n− 1)/2] disjoint trans-
positions; that is, the cycle types occurring are of the type (d, d, · · · , d) or (1, 2, 2, · · · , 2) (when
n is odd) or (1, 1, 2, 2, · · · , 2) (when n is even).

A lemma of Bilu.
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Bilu proved the following result in characteristic 0 but it works in positive characteristic p not
dividing n as well. One may rewrite his proof replacing symbols like cosine and sine etc. by
the appropriate expressions in terms of primitive roots of unity.

Lemma 3. ( [1])
For n ≥ 3, p 6 |n, the absolute monodromy group Mon(Dn(X, a)) ∼= Dn if, a 6= 0, and is cyclic
of order n for a = 0.
In particular, if UDn(X,a) denotes the splitting field of Dn(X, a)− t over K(t), then the degree
of the field K̄UDn(X,a) over K̄(t) is 2n or n according as to whether a 6= 0 or a = 0.
Moreover, the constant subfield in the respective cases, is K(ζ + ζ−1) and K(ζ), where ζ is a
primitive n-th root of unity in K̄.

Proof of main theorem.

We take f monic for convenience, and that p 6 | deg f without loss of generality. The proof will
proceed by induction on deg f .

Start with a root x0 ∈ K(t) of f(X)− t.
Let y0 ∈ K(t) be such that q(x0, y0) = 0; then g(y0) = t.
Thus, we have two finite extensions K(x0),K(y0) of K(t).
Look at K(x0) ∩K(y0).
By Luröth’s theorem, it is K(z) for some z ∈ K(t) which is integral over K[t]. In fact, since

K(t) = K(f(x0)) ⊆ K(x0) ∩K(y0) ⊆ K(x0)

and

K(t) = K(g(y0)) ⊆ K(x0) ∩K(y0) ⊆ K(y0),

by Luröth’s theorem, there exist f0, g0 ∈ K[X] such that

z = f0(x0) = g0(y0)

and

K(x0) ∩K(y0) = K(z).

Writing φ0 ∈ K[X] such that φ0(z) = t, we have

f = φ0 ◦ f0, g = φ0 ◦ g0.

Note that f0(x0)− g0(y0) = 0.
Being irreducible, q(X, Y ) must divide any polynomial h(X, Y ) ∈ K[X, Y ] which satisfies
h(x0, y0) = 0. Therefore, q(X, Y ) divides f0(X)− g0(Y ).
If

K(x0) ∩K(y0) = K(z) = K(f0(x0)) = K(g0(y0))

is a proper extension of K(t) = K(f(x0)) = K(g(y0)), then degree of f0 is less than deg f .
Proceed similarly with f0, g0 in place of f, g. Thus, after a finite number of steps, we get
polynomials f1, g1 such that q(X, Y ) divides f1(X) − g1(Y ), f = φ1 ◦ f1, g = φ1 ◦ g1 for some
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φ1 ∈ K[X] and K(x0)∩K(y0) = K(t). From now onwards, we shall assume this and call f1, g1

as f, g again. As we shall see, the splitting field Uf will turn out to be the field K(x0, y0).

Claims : If K(x0) ∩K(y0) = K(t), then
(i) deg f = deg g.
(ii) The coefficients of X2, Y 2, and XY in q(X, Y ) are all non-zero.
(iii) The splitting field Uf of f(X) − t over K(t) is K(x0, y0). In particular, MonK(f), is the
Galois group Gal (Uf/K(t)) ∼= Dn where deg f = deg g = n.

Proof.

A key observation is that since q(x0, y0) = 0, the degrees

[K(x0, y0) : K(x0)] , [K(x0, y0) : K(x0)] ≤ 2.

On the other hand, these degrees cannot be 1; otherwise, x0 or y0 would be in K(x0)∩K(y0) =
K(t), and therefore the irreducible polynomial f(X) − t must have degree 1, a contradiction.
Hence, we have

[K(x0, y0) : K(x0)] = [K(x0, y0) : K(x0)] = 2.

Thus,

[K(x0, y0) : K(t)] = [K(x0, y0) : K(x0)][K(x0) : K(t)] = 2 degf,

[K(x0, y0) : K(t)] = [K(x0, y0) : K(y0)][K(y0) : K(t)] = 2 degg.

We conclude deg f = deg g which proves claim (i).

To see (ii), write q(X, Y ) = αX2 + βXY + γY 2+ terms of degree ≤ 1.
If γ = 0, then q(x0, Y ) is linear in Y and then K(x0, y0) = K(x0), a contradiction.
Similarly, we have α 6= 0.
Now, if β = 0, we can write q(X, Y ) = f0(X) − g0(Y ) with deg f0, deg g0 = 2. Note that
f0(x0) = g0(y0) ∈ K(x0) ∩K(y0) = K(t). Then,

deg f = [K(x0) : K(t)] ≤ [K(x0) : K(f0(x0))] ≤ deg f0 ≤ 2

which is a contradiction.

For proving (iii), we use the notation Uf for the splitting field of f(X)− t introduced earlier.
Now, K(x0, y0) is a separable extension of K(t); let us consider its normal closure L in K(t).
Then, the subgroup Gal (L/K(x0)) of Gal(L/K(t)) leaves invariant the quadratic extension
K(x0, y0) of K(x0).
Similarly, the subgroup Gal (L/K(y0)) of Gal(L/K(t)) leaves invariant the quadratic extension
K(x0, y0) of K(y0).
By the hypothesis that K(x0)∩K(y0) = K(t), these two subgroups generate the whole of Gal
(L/K(t)), which must itself leave invariant the field K(x0, y0).
This means L = K(x0, y0) and so K(x0, y0) is a Galois extension of K(t).
Therefore, Uf ⊆ K(x0, y0).
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It suffices to show now that y0 ∈ Uf .
Now, if we write

q(X, Y ) = αX2 + βXY + γY 2 + uX + vY + w

then q(X, y0) ∈ K(y0)[X] has two roots x0 and x1, say.
Note that f(x1) = t and so x1 is also in Uf .
Thus, x0 + x1 ∈ Uf .
But,

x0 + x1 = −(βy0 + u)/α

which gives (since β 6= 0) that y0 ∈ Uf .
This proves

Uf = K(x0, y0)

and (iii) follows from the characterisation of Dn recalled above, since the nontrivial elements of
Gal (Uf/K(x0)) and of Gal (Uf/K(y0)) have order 2, and generate MonK(f) = Gal(Uf/K(t))
in view of

K(x0) ∩K(y0) = K(t).

We have also used the fact that MonK(f) contains an n-cycle as p 6 |n.

Completion of proof when f is tame :

Firstly, we note that if the original polynomial f is tame, then any polynomial f1 with f = φ◦f1

is also tame ( [5], remark 4.2), and we are working now with such f1 as our f .
Using the observation (ii) on dihedral groups, MonK(f) is a subgroup of Sn whose nontrivial
elements have the cycle types (d, d, · · · , d) for some d|n or (1, 2, 2, · · · , 2) or (1, 1, 2, 2, · · · , 2).
As f is tame, lemma 1 tells us that the only possible c-types of f for any c ∈ K̄ are either
(d, d, · · · , d) for some d|n or (1, 2, 2, · · · , 2) or (1, 1, 2, 2, · · · , 2).
Let us separately consider the cases when the degree n of f is odd and when it is even.
First, consider the case when n is odd.
If there is some c with the c-type (d, d, · · · , d) with 1 < d ≤ n, then f(X)− c =

∏l
i=1(X −αi)d

implies that there are l(d−1) roots of f ′ by this c. As ld = n, we have n(d(c)−1)/d(c) ≥ 2n/3
roots for f ′ from this c as d(c) ≥ 3. If we had two such different c’s, then we would have at
least 4n/3 roots for f ′, an impossibility since 4n/3 > n− 1.
Further, if this c were the only constant giving a root of f ′, then we would have n(d(c) −
1)/d(c) = n− 1; that is, n = d(c). Hence, f(X)− c = (X − α)n = Dn(X − α, 0).
Now, suppose that apart from c, there is at least one other constant c′ giving a root of f ′; then
necessarily f has c′-type (1, 2, 2, · · · , 2).
Writing f(X)− c′ = (X−β)

∏r
i=1(X−θi)2, this c′ accounts for r = (n−1)/2 roots of f ′. Since

2n/3 + (n− 1)/2 > n− 1, this is impossible as well.
Finally, if there is no c such that f has c-type of the form (d, d, · · · , d) for ay divisor d > 1 of n,
then there must be exactly two constants c1, c2 with f having ci-type (1, 2, · · · , 2) for i = 1, 2.
By proposition 2 (i), we must have f(X) = Dn(X + b, a) + c for some constants a, b, c ∈ K.
Now, let n be even.
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Then, any constant c giving a multiple root for f(X)−c gives type (d, d, · · · , d) for some divisor
d > 1 of n or type (1, 1, 2, · · · , 2).
If f(X)− c1 =

∏l
i=1(X −αi)d(c1), then we get l(d(c1)− 1) = n(d(c1)− 1)/d(c1) ≥ n/2 roots for

f ′. Thus, if we had two such constants c1, c2, then we would have ≥ n/2 + n/2 > n− 1 roots
for f ′, an impossibility.
Suppose there is exactly one c1 such that f has c1-type (d, d, · · · , d) for some divisor d > 1 of
n.
If there are no other constants giving roots for f ′, then we have n − 1 = degf ′ = n(d(c1) −
1)/d(c1); that is, d(c1) = n. So, f(X)− c1 = (X − α)n = Dn(X − α, 0).
Suppose there is some c0 such that f has c0-type (1, 1, 2, · · · , 2). This gives rise to (n − 2)/2
roots of f ′. As c1 gives n(d(c1)− 1)/d(c1) ≥ n/2 roots of f ′, we must have d(c1) = 2 and c1, c0

are the only constants giving roots of f ′. This time, we can apply proposition 2 (ii) to get that
f(X) = Dn(X + b, a) + c for some a, b, c ∈ K.
Finally, if there is no c1 giving the type (d, d, · · · , d) for any divisor d > 1 of n, then we must
have n = 4 and exactly three c’s which give the type (1, 1, 2).
Writing f(X)− ci = (X −αi)(X − βi)(X − θi)2 for i = 1, 2, 3, we have that all the α’s, β’s and
θ’s to be distinct.
Hence f ′(X) = 4

∏3
i=1(X − θi). We claim that this is impossible.

The coefficient of X3 in (X − α1)(X − β1)(X − θ1)2 − (X − α2)(X − β2)(X − θ2)2 is zero, as
this polynomial is a constant c2 − c1. This gives us

α2 + β2 − α1 − β1 = 2θ1 − 2θ2 · · · (A)

On the other hand, f ′(X) = (f(X)− c1)′ gives

4(X − θ2)(X − θ3) = (2X − α1 − β1)(X − θ1) + 2(X − α1)(X − β1).

The coefficient of X gives

2(θ2 + θ3) = θ1 + α1 + β1.

Similarly,

2(θ1 + θ3) = θ2 + α2 + β2.

Subtracting, we have

2θ1 − 2θ2 = α2 + β2 − α1 − β1 + θ2 − θ1 · · · (B)

But then (A) and (B) imply θ1 = θ2, a contradiction of the assumption that θ’s are distinct.
Hence this case n = 4 with exactly three c’s of type (1, 1, 2) cannot arise.
Hence, we have shown in all cases that f(X) = Dn(X + b, a) + c for some a, b, c ∈ K.
We shall show now that g(X) = ±Dn( uX+v

ζk(n−1)/2+1/ζk(n−1)/2 , a) + c for some k ∈ {0, 1, · · · , n− 1}
with ζk 6= −1.

Now, as in the proof of claim (iii), using the notation x0 and x1 for the two roots of q(X, y0),
the sum x0 + x1 = −(βy0 + u)/α for some α, β ∈ K∗.
Since f(x0) = f(x1) = t, and since f(X) = Dn(X + b, a) + c, the polynomial Dn(X, a) + c− t

has roots x0 + b, x1 + b.



QUADRATIC FACTORS OF f(x) − g(y) 9

We now use the observation (made in [1]) that the sum x0 +x1 +2b must be a root of a certain
polynomial of the form Dn(uX + v, a)± (c− t).
More precisely, the following observation implies that x0+x1+2b is a root of Dn( X

ζk(n−1)/2+1/ζk(n−1)/2 , a)−
(t− c) for some k ∈ {0, 1, · · · , n− 1} with ζk 6= −1.

Observation.
Assume that a primitive n-th root of unity ζ 6∈ K and that ζ + ζ−1 ∈ K when a = 0. If x0, x1

are roots of Dn(X, a)−t with x0+x1 6= 0, then x0+x1 is a root of Dn( X
ζk(n−1)/2+1/ζk(n−1)/2 , a)−t

for some
k ∈ {0, 1, · · · , n− 1} with ζk 6= −1.
Proof.
If we write x0 = z+a/z for some z, then the various roots of Dn(X, a)−t are clearly ζkz+a/ζkz

for k ∈ {0, 1, · · · , n−1}. We have then x1 = ζkz+a/ζkz for one of these k 6= 0. As x0 +x1 6= 0,
clearly ζk 6= −1.
We have

x0 + x1 = (1 + ζk)z +
a

z
+

a

ζkz

= (ζk(n−1)/2 +
1

ζk(n−1)/2
)(

z

ζk(n−1)/2
+

aζk(n−1)/2

z
).

Thus,

Dn(
z

ζk(n−1)/2
+

aζk(n−1)/2

z
, a) = zn +

an

zn
= Dn(x0, a) = t.

This proves that x0 + x1 is a root of

Dn(
X

ζk(n−1)/2 + 1
ζk(n−1)/2

, a)− t.

This completes the proof of the observation.

Getting back to our f(X) = Dn(X + b)+ c, note that the roots x0, x1 of q(X, y0) are such that
x0 + x1 6= 0; otherwise, we will have a contradiction as follows. Recall

q(X, Y ) = αX2 + βXY + γY 2 + uX + vY + w

in K[X, Y ] means that x0+x1 = −(βy0+u)/α can be zero only if y0 ∈ K. This being impossible,
we do have x0 + x1 6= 0 and, in the above observation, we have shown that x0 + x1 + 2b =
2b− (βy0 + u)/α is a root of Dn( X

ζk(n−1)/2+1/ζk(n−1)/2 , a)− (t− c).
We rewrite x0 + x1 + 2b = ry0 + s for some r, s ∈ K, r 6= 0.
In other words, y0 is a root of the irreducible polynomial Dn( rX+s

ζk(n−1)/2+1/ζk(n−1)/2 , a) − (t − c)
over K(t).
As g(X)− t is also an irreducible polynomial over K(t) having the same degree and for which
y0 is a root, we must have

λg(X) = Dn(
rX + s

ζk(n−1)/2 + 1/ζk(n−1)/2
, a)− (t− c)
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for some λ ∈ K∗.
Comparing the coefficients of t, (as t, x are algebraically independent over K), one obtains
λ = 1. We have

g(X) = Dn(
rX + s

ζk(n−1)/2 + 1/ζk(n−1)/2
, a) + c.

Thus, if we choose φ(X) = X+c, we note that f(X) = (φ◦f1)(X) where f1(X) = Dn(X+b, a).
Further, if g1(X) = Dn( rX+s

ζk(n−1)/2+1/ζk(n−1)/2 , a), then noting that g = φ ◦ g1 and that q(X, Y )
divides f1(X)− g1(Y ), the theorem is proved in the tame case.

Completion of proof in the general (non-tame) case.

Recall the assumption that 4 does not divide deg f was made in the theorem. We shall use the
following remarkable result due to P.Müller ( [4], Theorem 4) which is proved using valuation
theory :

Proposition 3. ( [4])
Let K be of odd characteristic p, and let P ∈ K[X] have degree a prime l 6= p. Suppose Mon(P )
is a solvable group. Then, P (X) = λDl(X, a) + µ where a = 0 or 1.

Recall that the claims in the body of the proof yield the corollary that MonK(f) is solvable.
In fact, we know that it is isomorphic to the dihedral group Dn.
By lemma 2 (ii) and (iii), f is a composition of indecomposable polynomials of degrees 1, 4
or a prime whose monodromy groups are solvable. By our assumption, (since neither 4 nor p

divides deg f), in the decomposition of f , each of the indecomposable polynomials has degree
1 or a prime 6= p.
Applying the above proposition of Muller, we have that f must have the form

f = P1 ◦ P2 ◦ · · · ◦ Pr

for polynomials Pi ∈ K[X] each of which is either linear or equals Dl(X, 1) or X l for some
prime l 6= p.
We may write f(X) = Dl(h(X), a) where a = 0 or 1 and h = P2 ◦ P3 ◦ · · · ◦ Pr - the situation
when P1 is linear is easily taken care of at the end.
If h(X) = h0 + h1X + · · · + hmXm, then h(x0), h(x1) are roots of Dl(X, 1) − t. Therefore,
h(x0) + h(x1) is a root of Dl( X

ζk(l−1)/2+ζ−k(l−1)/2 , a)− t.

Before proceeding with the rest of the proof, we recall that the polynomial q(X, y0) of degree
2 in X has the two roots x0 and x1. We have

x0 + x1 = ry0 + s

x0x1 = uy2
0 + vy0 + w

for some r, s, u, v, w ∈ K with ru 6= 0.
Using the above expressions for the sum and product of x0, x1, one shows by induction on m

that xm
0 +xm

1 is a polynomial Pm(y0) of degree m over K. Thus, it follows that h(x0)+h(x1) =
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Qm(y0) where Qm ∈ K[X] has degree m.
Therefore,

Dl(
Qm(y0)

ζk(l−1)/2 + ζ−k(l−1)/2
, a) = t.

By the irreducibility of g(Y ) − t over K(t), the fact that q(X, Y ) divides each polynomial
F (X, Y ) satisfying F (x0, y0) = 0 and the fact g(y0) = t, it follows that

g(X) = Dl(
Qm(X)

ζk(l−1)/2 + ζ−k(l−1)/2
, a).

Finally, when the decomposition of f starts with a linear polynomial, then evidently one may
take φ to be linear and f1(X), g1(Y ) to be the polynomials

f1(X) = Dl(h(X), a),

g1(X) = Dl(
Qm(X)

ζk(l−1)/2 + ζ−k(l−1)/2
, a)

for some k ∈ {0, 1, · · · , l − 1}, a = 0 or 1.
We note that Qm(X) can be explicitly determined in terms of the coefficients of q(X, Y ) and
the polynomials occurring in the decomposition of f .
This completes the proof of the theorem.
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