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Abstract. Consider X, = Z;io ci€k—j, k > 1, where ¢;, j > 0, are constants
and §;, —0o < j < oo, are iid random variables belonging to the domain attraction
of a strictly stable law with index 0 < o < 2. Let 5, = Zle X;. Under certain
conditions on c¢;, it is known that for a suitable slowly varying function & (n) and for a
suitable constant 0 < H < 1, (n”ky (n))_1 Siny converges in distribution to a fractional
stable motion (indexed by « and H). In addition, it is known that if f (y) is such that
[ (If W)+ |f ®)]*) dy < oo, then under certain further conditions on the distribution
of &, n=U=Mky (n) "7, f(Sk) = L [Z_ f (y) dy, where L is the local time of the
fractional stable motion at x upto time ¢.

In this paper we obtain three further results, motivated by asymptotic inference for
certain nonlinear time series models. First, we show that if in addition [ f (y)dy =0,
then when 1/3 < H < 1 (which probably cannot be relaxed), v/n~0=Hk, (n) S°7_, f(Sk) =
W\/m , where W is standard normal, independent of LY, and b is a constant having an
explicit expression in terms of the distributions of Sy, & > 1.

Now let, for v > 1, wy, = Z?kaﬂ di—;n; where (§;,n;),—00 < j < 0o, are iid with
&; as before and E ] = 0, E[n?] < oo and E[|m&]] < co. Then if 1/3 < H < 1
as above but possibly [*° f (y)dy # 0, we show that\/n~0-Mk; (n) S-p_, f(Sk)wr =
W+/b* LY. The constant b* in the limit will be similar to that of b in the first result.

It is further shown that n=U~Fky (n) Y7, f(Sks Sk1y - Sktr) = LY [T fu (z) dz
forall0 < H < 1 and for all suitable f(zq, ...,x,), 7 > 1, where f, (z) = E[f(x,z + Si,...,x + S;)].

These convergencies are also shown to hold jointly with certain other random quan-

tities.
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1 INTRODUCTION

Consider a sequence &;, —0o < j < 00, of iid random variables belonging to the
domain of attraction of a strictly stable law with index 0 < a < 2. We recall that this

is equivalent to the statement that for a suitable slowly varying function & (n),
t—s (n'k ‘IZ@ 14 7.(t), t >0, (1)

where {Z,(t),t > 0} is an a-stable Levy motion, that is, has stationary independent
increments such that, for each 0 < ¢ < o0,

| ¢t (1-ifsign() wn (%)) ip o £
E[e™7"] = { ol if a=1

with |3| < 1. (Here and in the rest of the paper, the notation 4 signifies the convergence
in distribution of random processes in the sense of convergence in distribution of all
finite dimensional distributions.) For the details of the above statement, see for instance
Ibragimov and Linnik (1965, Chapter 2, Section 6) or Bingham et al (1987, page 344.).
Note that this definition of strict a-stability for the case o = 1 differs from the usual
one in that we take the skewness parameter 8 to be 0. When o = 2, Z,(t) becomes the
Brownian Motion with variance 2.

In addition, we shall also assume without further mentioning that
When a =2, E[§]=0and E [£]] < co.

Now consider the linear process

o0

Xp =Y cibejy k21, (2)

=0

where §;, —00 < j < 00, are as earlier with index 0 < o < 2, and ¢;, j > 0, are constants.

Let i
Sk = Z Xj.
7j=1
Under suitable conditions (specified in Section 2 below) on the constants ¢; it is known
that for a suitable H, 0 < H < 1, and for a slowly varying 1 (n) the process
-1 dd
(k1 (1)) ™" Stngg £ Ay (1),

where the limit {A, g (t),t > 0} is a Linear Fractional Stable Motion (LFSM). It is
defined by

Aan(t) =a / O {(t — ) e (—u)H*I/a} Zo(du) + a /0 t (t —u)" % 7, (du)

—0oQ
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if H# 1/a, and
Aou(t)=Zy(t) ifH=1/c

where a is a non-zero constant and {Z,(t),t € R} is an a-stable Levy motion, taken
to be Z,(t) as defined earlier for 0 < ¢ < oo, and for —oc < ¢t < 0, it is taken to be
Zo(t) = Z%(—t) with {Z%(u),0 < u < 0o} an independent copy of {Z,(u),0 < u < 00}.
See Samorodnitsky and Taqqu (1994) for the details of LESM.

Note that when H = 1/, the restriction 0 < H < 1 reduces to 1 < a < 2. When
a = 2, the LFSM reduces to the Fractional Brownian Motion.

Now suppose that [ |E [ei’\gl] ‘p d\ < oo for some p > 0, and let the function f (y)
be such that [ (|f (y)|+ |f (v)") dy < oo. Then, it follows from Jeganathan (2004a,
Statement (ii) of Theorem 3) that

W ()3 (50 =18 [ F @)y
k=1 -

where L7 is the local time of the LFSM A, g (t) at « upto the time ¢. See Jeganathan
(2004a) for the existence and other details of the local time of the LFSM.
In this paper the first main result (Theorem 1 in Section 2) consists of showing that

if the restrictions

/V@W@<wJ=L%M,/|MWWw<w, 3)

/_oof(y)dyZO, (4)

and .
- < H<1
3

hold, then

\/n (=g (n) zn:f(Sk) = W /bL? (5)

where W has the standard normal (0,1) distribution independent of LY, and b is a
nonnegative constant having an explicit expression in terms of the distributions of S,
k > 1. (We remark that the restriction % < H < 1 probably cannot be relaxed because it
cannot be relaxed in the continuous time situation, see the Remark below in this section.)

This result is known for the random walk case Sy = Z?ﬂ &; (that is, the case ¢; =0
forall j > 1, ¢y = 1), see Borodin and Ibragimov (1995, Theorem 3.3 of Chapter IV). For

the symmetric Bernoulli random walk case, it was originally discovered by Dobrushin
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(1955). But note however that many of the structural simplifications available in the
random walk case (for example the fact that S, — S is independent of Sy and has the
same distribution as that of S;) are not available for the present case, in addition to the
fact that in the present case the convergence of (n”k; (n))*1 Sing to Ag,m(t) does not
hold in the Skorokhod space D[0,1] when 0 < H < 1/« and « # 2 (see for instance
Astrauskas (1983)).

Next let, for some integer v > 1,

k

Wy = Z dr—in; = Mk + dink—1 + ... + dp_1Mk—v41, (6)
j=k—v+1

where (&;,1;), —00 < j < oo, are iid (&, are as before) with
Em]=0, E[5f] <co and E[mé&l] < oo. (7)

Then as the second main result (Theorem 2, Section 2) we obtain the convergence

\/n=(=H)gy (n) Z F(Sk)wr = W /b*L? (8)
k=1

where f(y) satisfies all the conditions in (3) but now (4) need not hold, that is, possibly

/Zf(y)dy#ﬂ-

The constant b* in the limit will have the form similar to that of b in (5).

As far as we can determine, Theorem 2 has not been known previously, even for the
for the random walk situation Sj = Z§:1 &; with wy, = 7.

Note that the requirement E [|7:£|] < oo in (7) implicitly requires certain moment
condition on &;. Tt is satisfied when a = 2 because then F [¢?] < oo (E [?] < oo already

by assumption). It is also satisfied, using Cauchy-Schwarz inequality, when
E[|nl|%} < oo for some 1 <y < when 1 < o < 2.

The convergence (8), which is needed in obtaining the asymptotic behavior of least
squares or similar estimators in certain nonlinear time series models (Jeganathan and
Phillips (2006b)), is one of the primary motivations of the present investigation. We
identify the close relationship between the convergence results (5) and (8). Though un-
fortunately (8) is not directly deducible from (5), we shall see that, once the relationship
has been identified, its proof will use similar ideas involved in (5), and in fact some of
the steps can be transported or deducible from those of (5).



As the third main result (which in some form will also be required in obtaining (5) and
(8)) we show, when 0 < H < 1, that n™ v, Y1 f(Si, Sig1s s Sigr) = LY [0 fu (z) dz
where f, (z) = E[f(z,z + S1,...,2+S;)]. We note that the conditions imposed on
f(zo, ..., x,) exclude the limits of the functionals such as the number of level crossings of
Z?Zl X; for the treatment of such functionals see Jeganathan (2004b).

The plan of the paper is as follows. The required assumptions as well as the state-
ments of the main results will be stated in Section 2, where it is also noted that the
main result can be related to a form of a martingale CLT. (Such a relationship to a mar-
tingale CLT is implicit in Borodin and Ibragimov (1995) though the methods employed
there are tied in many ways to the iid structure of the random walk case S, = Z?ﬂ &
treated there.) The proof of the main results will then consists of the verification of the
conditions of this martingale CLT, which verification will be done in Sections 3 - 5.

Notations. In addition to the convergence 4 introduced earlier, the convergence
in distribution of a sequence of random variables or random vectors will be signified as
usual by =. Throughout below we let

$(\) = B[]

For any Borel measurable function f(y) with [ |f(y)|dy < oo, f()\) stands for its Fourier
transform, that is,

Foy = / N F(y)dy.

j . .
N o€ ifg>0
907) {0 ifj <0,

We let

where the constants ¢; are as in (2) with ¢p = 1.

E, stands for the conditional expectation given the o-field o (&;; j <1).

The normalizing constant b, = n'/®k (n) (where (n) is as in (1)) will be used
exclusively in the sense of (45) below. Similarly -y, will be used in the sense of (13) or
(46) below.

Throughout the paper the notation C stands for a gemeric constant that may take
different values at different places of even the same proof of the same expression.

Remark. We note that the continuous time analogues of Theorem 1, in the forms of
generalizations of the appropriate results in for instance Yor (1983), do not follow directly
from Theorem 1. The reason is that in the method employed in the present paper the
central limit phenomenon is involved at two different levels. One at the familiar level of
the partial sum Sy itself, but another at the level of the partial sum of f(Sy) themselves.
It is the later level that is central to, and distinguishes, the present situation, whose

continuous time analogue needs to be worked out separately. Despite this one would

5



tend to believe that suitable versions of continuous time analogues will hold, though we
have not worked out all the details. In this situation, it may be noted that the restriction
1/3 < H < 1 cannot be relaxed, as can be seen from the known regularity properties
of L7 with respect to the space variable x when L7 is the local time of the fractional
Brownian motion (see Geman and Horowitz (1980, Table 2)).

As noted earlier, Theorem 2 has not been known previously, even for the situation
Sy = Z;::l &; with wy = n;. Its possible continuous time versions in some specific forms

have also been unknown. W

2 THE MAIN RESULTS AND THE RELATION TO A MAR-
TINGALE CLT

One of the following mutually exclusive conditions will be imposed on the coefficients

c; of the process X, where recall that ¢y = 1.

(A1) (The case H # 1/a, 0 < H < 1). ¢; = jA~17oy(j), with H # 1/a, 0 < H < 1,
where u(j) is slowly varying at infinity, satisfying

) ¢j=0when H—1/a <0. (9)
§=0
In addition, there is an integer ly > 0 and constants c; and ¢y such that
u(l + _]1)
(A2) (The case H =1/a, 0 < H <1). 377 |cj| < oo and 72 c;j # 0. In addition

O0<eg < < ¢g for allOSjl,jg < [l/?] andlzlo. (10)

sup |jcj| < oo. (11)
i>1

We note that the restriction (10) is automatically satisfied if u(j) is monotone in j,

because of the assumption of u(j) being slowly varying. For instance if u(j) is nonde-
I+ 2

ZEZ j;g < u((l/2) when 0 < 71,72 < [I/2], where 5((1/2)) — 4 as | — oo.

(We do not know if the monotonicity of u(j) can be assumed without loss of generality,

creasing, then 1 <

in which case the restriction (10) then holds automatically.)

Note that if (9) is violated, then the case ¢; = j# 172y () with H —1/a < 0 comes
under (A2). Also it is implicit that u(j) # 0 for all sufficiently large j.

Remark. A motivation of the condition (A1) is what has been called a Fractional
ARIMA model with stable innovations, a detailed discussion of which can be found for
instance in Samorodnitsky and Taqqu (1994, Section 7.13, page 380). In a simplest case
of this model, (2) takes the form

o0

Xk = (1 — B)_dfk = Z ijk ZC] ‘Sk —J (12)

§=0



where B is the back-shift operator B¢, = &,_1. Here we have used the formal expansion
o0

(1-B) %= Y720 ¢j (—d) B’, so that using Stirling’s approximation,

['(j+d) b
T(I(G+1)  T(d)’

¢j(—d) = lasj—ooifd#0,-1,..

where I' (.) stands for the gamma function, and ¢; (—d) =0 for j > dif d=0,—-1,....
Hence if we take H = d + %, the condition (A1) is satisfied, including (9) because
H— é < 0 is the same as d < 0 and hence

Y ei(-d)=(1-2)¢ =0 (d<0).

- =1
Jj=0

In addition, when 0 < H < 1, the series (12) converges with probability one (see
Samorodnitsky and Taqqu (1994, Theorem 7.13.1, page 381)). MW
Now let

nfu(n)k (n if (A1) is satisfied
%:{ (n)k (n) (A1) is sat (13)

(Z?‘;o cj) n'/ek (n) if (A2) is satisfied,

where k(n) is as in (1) and u(n) as in (Al). Then it is known (see Kasahara and
Maejima (1988, Theorems 5.1, 5.2 and 5.3)) that when (Al) is satisfied, the process

Y 'Sy = Aa,u(t), H # 1/a, and similarly when 1 < o < 2 and (A2) is satisfied,

Yo ' Sty T Z4(t). In view of our convention that Z,(t) = Aq1/a(t) when 1 < a < 2,

the preceding statements will be combined in the form
7 Sy £ Ao (8),
with the understanding that when (A2) is satisfied the limit is Z,(t) with 1 < a < 2.
(A3) We shall also require the following assumptions on 1 (A) (recall ¢ () = E [¢"!]).
/\w (V)]?dX < o0 (14)

and

/ AP [t (WP dA < oo for some p > 0. (15)

Note that because |1 (A)| < 1, (15) entails

/W A)PdX < 0. (16)



(This is also implied by (14) for p > 2.)

Remarks on the restrictions (14) and (15). The restriction (14) entails that
the Lebesgue density of the distribution of & exists (Kawata (1972, Theorem 11.6.1)).
If we denote this density by ¢ (z), then ¥ (\) = @ (A) and, by Plancherel’s theorem,
[ NP dx =2 [ ¢ (2)] da.

Now suppose that the preceding density ¢ (x) has a distributional derivative ¢ (x)
such that [ |¢' (z)|dz < co. Then it can be shown that & () = i@ (\) A1 where ¢ ())
is the Fourier transform of ¢’ (z). (This follows from standard facts about Fourier trans-
forms and distributional derivatives of Lebesgue integrable functions, see for instance
Rudin (1991).) In this case, in addition to (14), (15) holds for p = 5 and hence for
all p > 5. This is the case for instance when ¢ () is suitably piecewise differentiable.
From the point of view of statistical applications indicated earlier, such conditions are
not very restrictive. As a simple example suppose that ¢ (z) = %H{lesl}v the density
function of the random variable uniformly distributed over the interval [—1,1]. Then
the corresponding distributional derivative ¢’ (z) = —3 (01 (z) — 6_1 (x)), where 4, is the

Dirac delta function. W1

Theorem 1. Assume that 1/3 < H < 1. Assume further that (14) and (15) hold.
Let f (y) be Borel measurable such that (3) and (4) hold.

Furthermore, let h (y) be Borel measurable such that [ (|h(y)| + |k (y)] ) dy < 0.

Then

(is[nﬂ, S h(s), \ﬁ i (sk)> — (AQ,H(w,L? [ranw bL?) |
Tn n k=1 n k=1

where LY is the local time of Ao u(t) as before, W is standard normal independent of the

process Ny g (t) and

O<b_—/‘f (1+22E “‘S’)d,u<oo.

[ |
As noted earlier, the restriction 1/3 < H < 1 cannot probably be relaxed. To state

the next statement (recall g(j) = 327_ ¢;), define (the integer v is as in (6))

E [w e M 90E—i | | [wye—iuEy;é(g(jw)—g(j))ﬁu—j} ifr> v

=9 [wywu+re L R A & 90')5”*1)] if 1 <7 <v,

and, letting g(j) = 0 for j < 0,

o0

U, (1) = 11 ¥ (= (9() —g(G— 7)) ).

FELAV AT, ATV
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Theorem 2. Suppose that all the assumptions of Theorem 1 except (4) are satisfied,

[rwazo

Let the sequence wy be as in (6) with ny, satisfying (7).
Then

( int]» 7"Zh Sk) \/7“2f Sk) w ) (AQ,H(t),L? / h(y) dy, W b*L?),
In k=1

where, with ®, (1) and ¥, (1) as defined above,

OSb*:%/‘f(,u)‘Q(E +ZZ<I> )d,u<oo

that is, now possibly

Note that in the case » = 1 (and hence wy = 7 ), we have for r > 1,

O, (1) U, (1) = E [me "] E [pe oo H b (= (9(7) = 9(i =) ).

j=Lj#r
Also if we take 7, = 1, this reduces to @, (u) ¥, (u) = E [e™#5], as is to be expected.
Theorem 3. Assume that (14) holds. Let f(xo,...,x,), r > 1, be such that

/|f TQy ey T | dzg...dx, < oo, 1 /</|f L0y ey T | dm,) dxyg...dx,_1 < co.

(17)

Then, for all0 < H < 1,
TS (S Sty Sie) = 18 [ fu (o) da
=1 —00

where

fo(x) =E[f(x,z+ 51, ...,z + S;)].

|

As noted earlier, the restriction (17) excludes the situation such as the number of
level crossings of 2?21 X, see Jeganathan (2004b) for the treatment of such functionals.

Note that the restrictions (15) and H > 1/3 are not involved in Theorem 3. Also note
that the limit in Theorem 3 involves f (z) only in terms of ffooo f« (z) dz. For instance
the limits of 22 37" | f(Si4r—1, Si4r) and 22 37" | f(S), Si41) must be identical, which is



indeed the case, though their respective limits involve f, (z) = E[f(x + S,_1,2 + S;)]
and f, (x) = E[f(xz,z + S1)]. This is because

[EUG+ S+ sia = B ' / f($+Sr_1,w+Sr)d$}

= FE _/f(x,ac—l-Sr—Srl)dx}

_ B :/f(x,a:—i—Sl)dac] :/E[f(x,m—f—Sl)]dac,

where we have used the fact that S, — S,_; and §; — Sy = 57 are identically distributed
by stationarity.

Also note that in the case f(xo,...,x,) = fo (2o) ...fr (z,), the conditions in (17) hold
when [ |f/ (z))|dz < o0, 1=0,...,7,i=1,2.

RELATION TO A MARTINGALE CLT. We next relate Theorems 1 and 2 to
a martingale CLT. For this purpose, fix an integer [ > 2 and corresponding to Theorem

1 define, for each positive integer m,

7]
Gk = ; Z f(8), k>1, (18)
nk=1]41
[n—1]+zo 1
=it 1]+1

Similarly, corresponding to Theorem 2 define (with w; as in (6))

(7]
nmk n f (Sl) wi, k Z ]-7 (20)
. Z

]+l0 1

nmk V ’f: Sl) Wy, k 2 1. (21)

In these definitions we follow the usual convention that a sum is to be interpreted as 0

if it is with respect to an empty index set. Note that

=1

=1
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\/7" TR SRR (23)

We shall show that below (Lemma 9), for each I,

m

Z ank +

k=1

lim lim sup P

*
nmk
m—00 n—00

> 6] =0 for all € > 0, (24)

and therefore, the respective limiting behaviors of (22) and (23) will be the same as those
of Y i) Cumk and >y ¢* o (For this same reason, and for notational convenience, the
dependence on [y is not explicitly indicated. )

In Sections 3 - 5 below we establish that there is an integer ly > 1 such that the fol-
lowing facts hold (recall that F; stands for the conditional expectation given o (&;; j <)

).

(R1) There is a nonrandom A (n,m) such that

Z ‘E[n@] [Cnmk]‘ < A(n,m) — 0 as n — oo, for each m.
k=1

(R2)

m

> Epui) [Gome] = 013

k=1

as n — oo first and then m — oo, where the constant b is as specified in Theorem
1.

Recall that the convergence in distribution of a sequence of distribution functions
is metrizable, for example by the Lévy distance (see for instance Loeve (1963, page
215)). Then the preceding convergence means that the distribution of 3 ;" | E[ =y [
converges in such a metric to that of bL9 as n — oo first and then m — co.

(R3)
lim lim sup »  E [(h] =0.

n
m—00
n—0o0 k=1

The next condition (R4) pertains only to the case o = 2. To state it define

(]
Xnmk = % Z 51- (25)

l:[n%]—l—l

11



(R4) When a = 2 (in which case we have F[£;] =0 and E [£?] < 00 )

m

Z ‘E[n@] [Cnkanmk]‘ > e] = 0 for each m and € > 0.
k=1

lim sup P

n—oo

e (R*1) - (R*2): In the case of Theorem 2, we shall verify the preceding condi-
tions with ¢ . in place of Cump, n which case the corresponding conditions will be
referred to as (R*1), (R*2), (R*3) and (R*4).

Note that the preceding conditions involve iterated limits in the sense that the limits
are taken as n — oo first and then m — oo. To proceed further it is convenient to note
that they can be restated in an alternative form involving only the index n that goes to
oo. For this purpose recall that if h (n, m) is a nonrandom function of n and m such that

lim lim sup |h(n,m)| =0
m—00 n—»00

then one can find a sequence m,, 1T oo such that
h (n,m,) — 0.

If G (n,m) is random, then note that G (n,m) % 0 as n — oo first and then m — oo,
that is,
lim lim sup P[|G (n,m)| > n] =0 for all n > 0,

m—00 n—00
is equivalent to lim,, ,o limsup,_,. E [min (|G (n,m)|,1)] = 0, and therefore, taking
h(n,m) = E [min (|G (n,m)|,1)], there is a sequence m,, T oo such that £ [min (|G (n,m,)|,1)] =
0, which is equivalent to
G (n,m,) 2 0.

Thus (noting that the convergence in (R2) can be restated in terms of a suitable
metric), (R1) - (R4) entail that there is a sequence m,, T co such that

2| Bl [Cnmnk]‘ + DB [Gina) 7 0, (26)
= k=1
k=1
and
k=1



In the same way, the conditions (R*1) - (R*4) imply that (26) - (28) hold with (i
replaced by (*

nmk*

We are now in a position to present the proof of Theorem 1, when (R1) - (R4) hold.

First, for convenience, we let

Cmnk = Cnmnka Xmnk = Xnmank, k= ]-7 sy M.

Next, for the purpose of the proof, we

o cztend the array (o, 1 < k < my, to allk > 1, by taking {Cm k; k =mp, +1,...} to

be an array of ivd Gaussian (O, m%,,) random variables, independent of {;; —00 < j < oo}.

Further, we use the notation E,,, ; for the conditional expectation given the o-field

a(gj,jg[nmin}) if1<1<m,

Fmt =3, <§ja j< [nan] and Go, ;M +1 <k < l) >

Explicitly,
Fui[ ] = B[ [P

With this extension, (26) and (27) take the strengthened forms, for any 0 < v < 1,

[ml
D Bt Gmarl| = 0, (29)
k=1

[ma"7]
E [Gui] =0, (30)
k=1

and

[rn*7]
> B b1 Gk Xmak]| 2 0 (for a = 2). (31)
k=1

Now, define the martingale differences

Gk = Cmnk — B i1 [Cmak], £ =1,2,....
with respect to the o-fields F ,, x, k = 1,2, ....It is easily seen, in view of (29), that

(30) and (31) hold with (n,, replaced by (), . (32)

13



In addition, if we define
q 9 q
T (0) = B 1 |:|C;nnk‘ } = Bk 1[Gk = Bk 1 Gmak])}
k=1 k=1

then, in view of (29) and because (p, k, & = m, + 1, ... are iid Gaussian <0, m%)’ for any
s>1,

T, (smy) = bL) +5—1, s> 1. (33)

Now for each fixed ¢ > 0, define

T, (1) =1inf{q¢ >1:T,, (¢) > t}.

Note that
T, (1) =my,  ift =T, (my,). (34)

We have
{Tme @) <} ={Tp, (1) >t} € Frupu1, 1=1,2,..,

so that for each n and t > 0,
T, (t) is a stopping time with respect to the o-fields F p,, ;—1,0 = 1,2, ....

Note that for any positive integer J, P [Tm#n(t) > J] < P[Tp, (Jmy,) < t] and hence, in
view of (33),

P[Tm#(t)>t]]—>0 i J >t 1. (35)

We thus have shown, in view of (29) - (31), (35) and because m,, 1 oo,

Tmn (t)
Z Emn,k:—l [Cmnk] £> 0, (36)
k=1
Ty (1) A
Bt |G '] 20 (37)
k=1
and
Tmn (t)
> Euiet [|CiXmak]] 20 (for o = 2) (38)
k=1
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Further, because of (32) and (35),

2
Emn,'rmn(t)fl [‘C':nnﬂ'mn(t)| i| ﬁ) 0. (39)

Hence, because

T, (T (£)) > £> Ty, (7 (8) = 1) = Tony (7 (1) = B 91 [ [0

Trn,, (T, (1)) 2 ¢ (40)

Now let

Ty (t)

= 2 G

Tmn (t)

By making the convention that the sum » ;™" is empty when ¢ < 0, we may assume
for convenience that W, (t) is defined for all —oco < t < oo. Similarly, let W (¢) be the
Brownian motion for 0 < ¢ < oo and W (¢) = 0 for ¢ < 0. We then have

Lemma 4. Let W (t) be as above, and as before let Z, (t) be the a-stable motion.

Then, for 0 < a < 2 and for every M > 0 and every integer | > 0,

te— 07" G WL () | = (Za (t) = Zo (—1),W (t)) in Dge [-1,M],
j=—nl
where the processes W (t) and Z, (t) are independent. Here “ = in Dg2[—l, M] ”
signifies the convergence in distribution in the Skorokhod space Dge [—1, M].
Proof. The proof consists of reducing the situation to that of Jeganathan (2006a,
Theorem 1 and Remarks 5 and 8). First suppose that 0 < o < 2. Note that, with

nok]
1 — :
Xrmnk = Yoy Z &,  (k(n) asin (1)),
k—1
l [nm—n]—kl
[Mnt] [mnt]]
we have Y 7" Xmak = 1/% o) ZJ__nl ¢;. Hence, using (1) and noting that [ is an
integer,
mnt
5 vk 3 650 )
k=—mpl+1 J——nl
Therefore, by (1),
mnt
Z Xmnk Za (t) - Za (_l) :
k=—mnl+1

15



In addition, because %= — 0,

sup P [|Xm,k| >¢€] = 0.
il 1<k < [ M]
The preceding two facts will imply that the conditions (C1) - (C4) of Jeganathan (2006a,
Section 2.1) hold (with the stopping time k, (¢) there taken to be [m,t] ) for the array
{Xmnk, K =—my (I +1),...} (of independent random variables), with the limit B, = 0 in
Condition (C2), see Loeve(1963, Section 22.4, Central Convergence Criterion, page 311).
Here B; = 0 explicitly means Z%":Liﬂlnl 11054 (T) 20 for all L > 0 where oy (7)is
the truncated variance as defined in Jeganathan (2006a) or as in Loeéve(1963, Condition
(ii) of the Central Convergence Criterion, page 311). It is clear that this implies, in view
of (35), Yoyl g2 (7)) B0,
It is also clear from (36), (37) and (40) that the conditions (D1) - (D5) of that
paper (with the stopping time k, (t) there taken to be 7, (¢) ) hold for the the ar-
ray {C;nnk, k=1, }, with the limiting triplets (A;, B, L}) such that A} = 0= L} and
7 () og . (r) % B} =t. Inaddition, using (29), (30) and the fact Sme Ml g [|g;nn kﬂ -
o B k1 [‘Cr'nnkﬂ + W (recall that {(p,k; £ = my, + 1,...} are iid Gaussian

(O, min) ), it can be seen that Z%":LqM] aénnk (7) is bounded in probability.

Thus all the requirements specified in Jeganathan (2006a, Remarks 5 and 8) are
satisfied. This proves the lemma when 0 < o < 2.

In the case @ = 2, (31) entails that the condition (E2) in Jeganathan (2006a, as
modified in Remarks 5) holds. Hence, similar to the case 0 < o < 2 above, the proof for
this case also follows. This completes the proof of the Lemma. W

We now come back to the proof of Theorem 1. Because Lemma 4 is true for every
[ > 0, it entails (keeping in mind the conditions (Al) and (A2), see Kasahara and
Maejima (1988))

(9 Sty Wa (1)) L2 (A, (8), W (1)

where the processes W (t) and A, u(t) are independent. Further, in Section 5 below
(see the Remark following (100) below) it is shown that (or see Jeganathan (2004a,
Proposition 6 and Lemmas 7 and 8))

]

Tn - ZnEmn,kfl [
k=1

is approximated by a functional of the process 7, ' Sjny such that T,, converges in distri-

bution if ;! Sy ELLY Mg 1 (t). We then have

!

Cmnk

(V" Sty W (1), T) L2 (At (8), W (£) ,BLY) . (42)



Now with ¢ a positive integer and J > 0, let
0= Tgo < Tql < o Tgq-1 < Tgq = J

be such that

sup |7 — Tqi-1| = 0 as ¢ — oo.

1<i<q
Define
) ot i ST <7g41,1=0,1,..g — 1,
07 J AT, > .
Letting

T = bL3,
define T, ; analogously. Now, taking 7, ,41 = 00,
{Wh (Tngs) < v} =Uog {Wa (15:) < 0,7 < Ty < Tgi11}

where {W,, (74:) < v, 7 < T, < 74,41} are disjoint, and hence, for 0 < u; < ... <uy < 00
and for any reals d;,j =1,..., k,

P (Wn (Tn,q,J) < vafY;lS[nuj] < djaj =1,.., k)
= P( Uiso {W (74) < 0,7 < T < Tq,z‘+1,’Y;15[nuj] <dj,j =1, ,k})

= ZP o (74) < 0,75 < Ty < Toir1, Vo Sty < djyj =1, k) .

One can assume without loss of generality that 71, ...74 are continuity points of 7. Then
(42) together with the preceding identity entail that
P (W (Th4t) < U,’)/;ls[nuj] <d;,j=1,.., k)
— ZP (74i) S 0,70 < T < Tgiv1, Nau(uj) <dj,j=1,...,k)
= P(W(Tq,J) <v,Au(uy) <dj,j=1,....k).

In other words, we have

(Wn (Tn,q,J) afyn_ls[nt]) gé (W(Tq,J)a Aa,H (t)) .

(Note that T}, s is a function of L?, which, being a functional of A, g (), is independent
of W (t) by Lemma 4.) In addition, because W, () = W (¢) in the Skorkhod space
D0, M] with W (t) € C[0, M] for every M > 0, we have

lim lim sup P sup Wy (t) =W, (s)| >e| =0
h=0  nooco |t—s|<h,t,s€[0,M]
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for all e > 0 and all M > 0. Hence

lim lim lim sup P [|W, (T} 4.0) — Wi (T)| > €] = 0.

J—00 g0 n—00

Similarly
lim lim P[|W (Ty;) — W (T)| > ] =0.

J—00 g—00
It follows that
(Wa (T0) s 75 - Sint) = W(T), A, (1)) -

Noting that 7., (17,) = my, (see (34)) so that W, (13,) = >_py Gmnk» and in view of the in-
dependence of the processes W (t) and A, g (t) so that the distribution of (W (T), Ap,u(t))
is the same as that of (W\/@, Aq, H(t)) where W is standard normal independent of
the process A, g (t) (recall T = bLY ), the preceding convergence takes the form

(Z Cmnk:a ’Yr:ls[nt]) = (W bL(l)a Aa,H(t)) (43)
k=1

(Recall that >0 G = /2= Y41 f (Sk).) Now in Section 5 (see the Remark fol-
lowing (100) below (or in Jeganathan (2004a, Proposition 6 and Lemmas 7 and 8)) it
is shown that 2= %% | h(Sk) occurring the statement of Theorem 1 is approximated
by a functional of the process v, IS[m] such that the former converges in distribution
to LY [ h(y) dy if v, Spng Eid Ao u(t). Thus the convergence (43) holds jointly with
n 'y, > e B (Sk). This being the conclusion of Theorem 1, the proof is completed. W

3 SOME PRELIMINARIES

In this section we first present some preliminaries for the purpose of verification of
the requirements (R1) - (R4) and (R*1) - (R*4). In this section itself we shall illustrate
the intent of these preliminaries by verifying the conditions (R1) and (R*1).

To begin with recall the fact that & belongs to the domain of attraction of a strictly
stable law with index 0 < a < 2, in the sense of Section 1 above, means in particu-
lar (see Ibragimov and Linnik (1965, Theorem 2.6.5, page 85)) that, for all u in some
neighborhood of 0,

—[ul*G(|ul)(1-iB sign(u) tan (7)) if 1
_ wat _ ) e if a#
v (u) = B [e"9] {emMM) if a=1

with || < 1, where G(u) is slowly varying as u — 0. In particular there are constants
n > 0 and d > 0 such that

i (u)] < e~ du*GWD  for all |u| < 7. (44)

18



In addition, if one lets
b, =inf {u>0:u*G(u) =n""},

then b « nG(b;!) as n — oo, and in (1) one can take & (n) «~ Ga(b7t), so that we

henceforth assume for convenience that  (n) in (1) and the above b, are such that

1 1

by =naGa(b,') = na Kk (n). (45)

n

See for instance Bingham et al (1987, page 344) for the details of these facts. Then note
that, (13) takes the form

nH=1y(n)b, if the condition (A1) is satisfied
= { " o (40

(>°2,¢i)by,  if the condition (A2) is satisfied.

j=0

The following result is essentially well-known, and we supply its proof for completeness.
Lemma 5. Let n be as in (44) and by, be as in (45). Let k; be integers such that for
some integer jo > 0 and a constant C' > 0,

k; > Cj  forall j > j. (47)
Then for every 0 < ¢ < « there is a constant a > 0 such that
[ (A;1)|™ < Cem®° for all [A| < nbj, j > 1. (48)
Further, for every 6 > 0 there is a 0 < p < 1 such that

sup [¢ (Ab;")| = sup [v ()" < Cp?  forall j > 1. (49)
|A[>0b; |u|>0

Proof. According to (44), |4 (Ab; ) " < et NBT G (INTY) for all |\l < nbj. There-
fore we first recall a bound for b;*G (|| bj_l) for all sufficiently large j.
According to Potter’s inequality (see Bingham et al (1987, Theorem 1.5.6, Statement
(i), page 25), for every § > 0 there isa B > 0 such that |ggg | < Bmax{(z/y)’, (x/y)~°} for
a(s)
G(IMb; 1)
IA]” if [A] > 1, it then follows from (45) that there is a j; such that

allz > 0,y > 0. In particular

< Bmax{|A]°,|A| °}. Because max{|A|’, ||’} =

b °G (IA[b6;1) > B VN forall j > j; and |A| > 1.
Therefore, by (44), for every 0 < ¢ < « there is a a > 0 such that
W (/\bj_l) |nj < e~ dri A7 G (X7 < e N forall 1 < || < nbj, 7> 7
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where j, = max (jo, j1) (jo as in (47)). On the other hand, if j < js,

|¢ (/\b;I) ‘nj <1 = etlmilgmalnbil® < (I_n<a_x e“"bj|c) e 9N forall [A| < nb;, 7 < Jo.
<32

Further,
[ (A;)[7 < 1=ee <ee”™ ifA|<1,5>1

Hence the proof of the first part follows from the preceding three inequalities.

Regarding the second part note that, the condition (16) entails the Cramér’s condition
limsup|y—o0 |1 (A)| < 1, which is equivalent to the statement that for every § > 0, there
isa0<7=r7(d) <1 such that

sup [ (V)] <7 < 1.
A28

Hence the second statement follows, completing the proof of the lemma. MW

The following consequences of Lemma 5 will be used below. First, for any x > 0,
/ A o (A D) [P A < 0/ AFe*Ndx < O, (50)
{IAI<nbi}

using the Statement (i) of Lemma 5. Next let [y be such that for some 0 < v < 1,
[1/2] — p > [lv] for all I > Iy, where p is as in (15). Then, for any 6 > 0 and 0 < x < 3,

using the Statement (ii) of Lemma 5,
[l )Py < et [ (e P
{IAI>0b;} {IA|>db:}
= o [P AN < Cal, 12k, (5

for some constant 0 < p, < 1, using (15).

We shall also need to use the next inequality, which is a direct consequence of Holder’s
inequality, see for instance Hewitt and Stromberg (1965, page 200, Exercise (13.26)). For
convenience of reference we state it as a lemma.

Lemma 6. For any functions ¢; (u) : R* - R,i=1,...,q,

/ﬁ\%(uﬂduﬁ lj </|<pi(U)|qdu>;,q2 1.

By replacing |¢; (u)| by |€(u)|*?|¢; (u)| in this inequality, we also have
q g 1/q
[ e @la<IT([ewlla@ra) . oz 6
i=1 i=1
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We now state one consequence of this, which will be used later. For this purpose note
that, when (A1) holds,
J
g() =D e~ U (), o oo

s=0

(Note that in the case H — 1/a < 0, the requirement ) ™ ¢; = 0 (see (9)) is invoked
here.) Therefore the requirement (10) on u (j) holds for g (j) also, that is, there is an
integer lp > 0 and constants ¢; and ¢ such that g (1) # 0 and

g(l +71)

0<er < — < ¢y forall 0 < jy, 1/2 53
VS g SO Jisj2 < [1/2] (53)
for all [ > l;. This also entails that, recalling that v, = I#~/2u(l)b, so that 5 ‘g(q)‘
1H=1/oqy(]) -
9(9)! g( )
n
0< D < <D for [I/2] < g <. 54
S < oY

Also note that, for p as in (16), there is an /g such that for some 0 < v < 1,
I=1[/2] —p>[ly] foralll> .

Then, for 6 > 0 such that D7'§ = 5 with 7 as in the Statement (i) of Lemma 5, we have
I

forl > ly and k > 0,
{Ial<db } §=0 T
!

< A"
/{|A56bl} - 11

j=li/2)+1

N

b (A#) ‘ ax, using [ (V)] <1

A\ (=[1/2] =e
¥ (A%) dA) by (52)

14k A 1—[1/2] %
Al — dA
/{‘ el ,\‘gabl}‘ | w<bl> )

[1/2]+1 9(j)b;
NNEZ
< D;+~/ A (—) d\<C, by (50) and (54).  (55)
{In<Drtan} by

In the same way, for every d > 0,0 < x <3 and [ > [,
A
v (3)

NG ( )‘d)\ <c / A
/I/\>6bz} H {IA>D5"ob, }

7=0
21

l

11 ( / A
{IA<db; }

j=[/2]+1

- j:ﬁ (‘g(zl) b

IA




using (51), where 0 < p < 1. In addition, noting that ¢ (0) = 1 and [¢) (A)| < 1, for
any constants u;, v;, hy such that ming<;<;, || > 0 and ming<;<, |v1] > 0, we have for
0<1<l

2

e | [ f[wow (@)1 (o = o) ax

I<lp

I<lp

< max/\w wX) F (v~ b)) d ‘ <r;1<a;;<|um|/|w |d/\/\f fiv< e

where we have used (14) and the fact [ ‘f( ‘ d\=2r [ |f (z)]* dz < o0.

As a further preliminary, we next introduce a decomposition for Sy which will be
repeatedly used throughout below. In this section itself we shall illustrate the intent of
this decomposition, as well as the Lemmas 5 and 6, by verifying the conditions (R1) and
(R*1). Recall that

0

Sk=Y (9k =1 —g(=D)&+> gk - 1&,

l=—00

where recall that g (j) = i o Cs- The indicated decomposition is

Sk =Sk + Sk, 1<7<k—1, (58)

where

Sey= 3 (alk— 1) — g(-0)a+ Y alk— 1 (59)

l=—o0

and
k

Spj = Z k—=1)¢& = Zg ) Ek—q-

I=k—j+1

Here it is important to note that
Sk,j and Sy ; are independent.

In addition note that the marginal distribution of Sy ; is the same as that of ZZ 09 (1) &-
Next, in order to deal with (*

xmk» We have (recall that E; stands for the conditional

expectation given {&,k < j})

B [f (Sk) wi] = fi (Skw) (60)
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where Sj , is as in (59) and

B k k
file) = E f(fv+ > g(k—j)fg) > dk—mj]
L j=k—vt1 j=k—v+1

= F (aH—Zgu—] )Zd,, ﬂ?g]-
In the verifications of the conditions (R*1) - (R*4) for the variables (7, ., the function
f+ (z) will take the role of f (x) of Theorem 1, and therefore we need to check that f, (z)
satisfies the conditions (3) and (4) with f, (z) involved in place of f (z). We state this
fact separately.

Lemma 7. For f.(x) as in (60), the requirements (3) and (4) hold with f.(z)
involved in place of f (x).

Proof. First note that

[inwa < [E

dx

v—jTj

| I

(Hzgw )

= > du-j7y / f($+gg(v—j)§j> dx]
- </|f(:c)|dx)E— ; V_jnj] < oo, by (7). (61)

2
Next, by Cauchy-Schwarz inequality and using E UZ’]’ZI dy—;n; ] < C (see (7)),

fi(x) <E <CE

v—iTj

)

|

P(m+§jmv—ﬁ@>

V(m+§:mu—ﬁ@>

|

This also implies, noting |f, (z)|° = | f2 (z )\%

nojco

f(m+§:ﬂv—ﬁ®)

f(x+§:dv—ﬁ®)

fe@)’ <C (E
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The same holds for |f. (x)|4. Hence, for i = 2, 3, 4,

[1n@ra < ¢ [E||s ($+z:;g(U—j)§j) ] "

= CE -/f (m—i—ég(l/—j)fj) Z.d.?:]
— CE :-/|f(x)\idx] :C’/\f(x)\idx<oo.

IN

The arguments in (61) also entails that, noting that E [2;21 d,,_]-nj] =0,

/f* (z) dz = (/f(x) da:) E z:;d,,jnj] ~0.
/ (|x|+

) |f($)|dfb‘] < 00
by (3) and (7). This completes the proof. W
For the next result we note that, using the condition [*_|yf (y)|dy < oo,

Next,

v

> g9(v=5)§

Jj=1

Z dy—jnj

=1

[t @ldz<E

‘]?()\1) _J?()Q)‘ <Ol = A

Now (4) entails that f(O) = [% f(y)dy = 0. Thus ‘f()\)‘ < C'|A\|l. We also have
‘f(/\)‘ < C using [ |f (y)| dy < co. Thus, when (3) and (4) hold,

FO| < cmin (], 1). (62)

Lemma 8. There is a 0 < p < 1 and a positive integer ly such that

C
sup |E; [f (Sj1)]| £ —5 for all 1 > 1,
720 T

where recall that E; stands for the conditional expectation given {&, k < j}.

Under the conclusion of Lemma 7, the same bound holds for sup;~q | Ej [f (Sj1) wjrd]|
if lo > v, where wjy; and v are as in (6).

Proof. We have f (y) = = [ e f(X)d\. Hence, using (58),

1

FS) = 5= [ e PSmessind Foyan
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Therefore, because S;1;; and S7,;; are independent,

Bl < S [lfow5]|7(2)|a
- U)o

where we have used ‘E [e_i%sfﬂ’l} ‘ = ‘Hé;éw ()‘i—gz)) ‘
Now let [y be such that (55) and (56) hold. Then using (62), if I > Iy,

e

using 0 < p < 1. Hence the first part of the lemma follows.

< >‘d)\<0+0pl§€, 1> 1,
M M

Regarding the second part, it is implied by the first part of the lemma and by the
conclusion of Lemma 7, because we have E; [f (Sj+1) witi] = Ej[Ejri—v [f (Sj+1) witil],
where Ej o, [f (Sjt1) wjsd) = fi (Sj1,0) with f, (z) as in Lemma 7. (Note that S;; and
Sj+1, have the same structure and hence the conclusion of the first part of the lemma
for S;1; holds for S;1;, also.) This completes the proof. W

We next verify (24).

Lemma 9. (24) holds for each positive integer ly (recall that Ry, depends on ly).

Tn
5 (Rt + 1) = 0, (1/22)),

where recall that 7 — 0.
Proof. First suppose that £ > 2. We have (using the notation |f| (z) = |f (x)])

More specifically,

[n ]—|—l0 1
BlRmil <23 EUAIS))!
S

Now, according to the arguments of Lemma 8 with ;7 = 0 and with |f]|(.S;) in place of
f(S)) (note that ‘|f| ‘ < [|f|(y)dy < o), there is an ng and a constant C' > 0 (both
independent of & > 2 ) such that

max EllfI(S)] < C forall n > ny.
TS o e PO

Thus E [| Rymi|] < Cy/2= for all n > ny and k> 2.
In the case k = 1, note that (, /77") Rumi = 320" £(S)), which is a fixed random
variable and hence is of order O, (1).
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In view of Lemma 7 and similar to Lemma 8, the preceding arguments for R, apply
for Ry, . also. Hence the lemma follows. W

We next verify (R1) and (R*1) as a consequence of Lemma 8.

Verification of (R1) and (R*1): First consider (R1) corresponding to (,mk, where
Cumk 18 as defined in (18). We have, by the first part of Lemma 8, there is an [y (inde-
pendent of £ > 1) such that

i) )
B lomd| <4273 (B [ (S| <02 35

lo

Here recall that v, = n="u(n), where u(n) is slowly varying.
Hence if 1/2 < H < 1, it is clear that /2% 7", # — 0.
In the case 0 < H < 1/2, we have 37", =5 ~ C'%, so that
l n

w1 _3 B B
Sk~ ot < oo oy
=1

Because 1/3 < H < 1, this converges to 0, and hence (R1) is verified. In the same way
(R*1) is verified using the second part of Lemma 8. W

4 VERIFICATION OF (R2), (R*2) AND (R4)

We first consider (R2) and then we shall indicate the modifications required for (R*2).
We have

Bl = 35 By [ ()
#2035 By [1 (Spmpe) £ (Spozir)]

I=lp r=1

o) -]

Clearly, (R2) is a consequence of the next Lemmas 10 and 11 and Propositions 12 and
13.
Lemma 10. For each 1 < k < m,

where and throughout below

Nmk Mmk

8,5 23 [ [F (Spgin) 7 (S| | 0

I=lp r=q

as n — oo first and then g — oo.
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Lemma 11. -
>~ [ s (1|7 )] du < o0,
=1

where g, (1) is the characteristic function of S;. In particular the quantity b defined in
Theorem 1 is finite.

Noting that (R2) involves ) ;" | E[n 1] [¢2,.], the preceding two lemmas allow us to
concentrate, for each ¢ > 1, on the limit of

n

53 B [ (S
%;g}yf“[(kmdfﬁmmwﬂ

r=1

as n — oo first and then m — oo. This purpose is served by the next two results.
Proposition 12.

= >3 B [ (Spg)| = PO 22

k=1 1=l

as n — oo first and then m — oo.

Here note that 1 )
20)= [ P @)ds= o [T

where the last equality is obtained by Plancherel’s theorem.

Proposition 13. For each r > 1,

%kii [nk=1] [f (S[n%]ﬂ) f (S[n%]+l+r)} = (%/1&& (1) ‘J/c\(U) :

as n — oo first and then m — oo.

) L,

In place of Proposition 13, we shall obtain the following more general result, from
which Theorem 3 will also be obtained and which will also be required to verify (R*2).
Proposition 13*. Let w (u,v) be such that

//|w(a:,y)\idxdy<oo, i=1,2, /</|w(x,y)|2dy>2dx<oo.

Then for each r > 1,

%inszE[”kml [ (S[ = I]H’S[ = 1]+l+r - (%/wsr (1) W (—pay 1) d,u) LY

k=1 I=1

as n — oo first and then m — oo.
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We start with
Proof of Lemma 11. In view of (58), |¢g, (1 ‘H ),u)‘ Hence it is

enough to show that
p\ |2 2\ [
o) (5)

Z/Hw )| 0| s =

(63)

is finite, for a suitable /. Because ‘f(vﬁ)‘ C'|£| (see (62)), we have using (55) and
(56),
C C
‘f dﬂﬁ—g‘i‘cplS—Q, L > 1o,
i 7

for a suitable lo and for some 0 < p < 1. Hence, (63) is bounded by C' 7~ 3, where
note that »,° o 3 < 0o when the assumed restriction 3H > 1 holds. Hence the proof.
[ |

We now give some preliminaries. First recall from (58) that

l
Sprszt)on = Spusgta+ 2,90 9) gy,
j=1

where recall

SIRWED (o ([ 1=9) o) i

j=—00

']

(5]

Here note that the r.h.s. involves the array {§j oo < g < [n%]} which does not
depend on [. We observe that

e The vectors {S[ k=14 1<i< nmk} and {Zézlg(l —7) S[n%] 1< 1 < nmk}

are independent. Further the distribution of {Zézl g(l—7) 5[ k=1 1<iI< nmk}
is the same as that of {7};1 <1 < npy} where

l
T = Zg(l—j)§]
j=1

Hence we can write

Bpurgt) [ (Spuszapn) £ (S|

= E[f(pi+T) f (y2+ Tisr)] .
(y1.y2)= (S[n’“,;l]ﬂ,z ’S[n’“,;l]+l+r,l+r>
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Letting, for any 0 < v, <! (v, will also be allowed to tend to co appropriately),

l—vy l—vy
Ty = Zg(l_j)fj, Ty —Zg(l-i-?“—j)fj,

7j=1 7j=1

we have
I+r
FOY -G Te=Tat Y aer i
j=l—vp+1 j=l—vp+1

(Note that Ty, and T}, depend on v,.) Hence, letting @ (A, u) for the corresponding

Fourier transform of w (1, x2), we have for any 0 < v,, < [,

(27)2 Elw(y +Ti, y2 + Tiyy)]
6—i/\y1—iuy2E [e—i/\Tl—iHTHr} i ()\’ /,l,) d)\d/,L

- / e i | [e—i(““)Triz—i“(Téz,T—Tr’fz)] E [e—iA(Tl—Tr’Iz)—iu(Tm—Tsm) W (A, p) dAdp

T
— i/ —Z*yl in(y2—y1) p |:e—l>\7?f

(_ — o ) d\dp. (65)

n

. (T;l_T;l,r)] E [e_iy%(’Tl_Trjl)_i”(n+r_T;l,r_ﬂ+Tn*l)

Now (recall g(j) =01if j <0)

E '6—1%(Tz—T;l)—w(mT—Tzl,r—Tz+T;:,)]
_F efi%n(TFT;:,)fiuEéii_wl(g(l+rfj>fg(lfj))sj}
: r—1
- E e—i%n(Tz—T;;l)—qu;:l,,,nH (cl+1_j+...+cz+r—j)§j] H w (_g (]) ,U') ’
I o

where and throughout below we let

c; =0for j <0.

Similarly
-1 :
n » A
pleniontn ] < T o (90 ve)
Jj=vn "
Hence

‘E [e—u%—w(T Tn“)] E [e—i,%n(Tz—T;;l)—iu(Tl_,_T—T;l’T—TZ—FT;;I)]‘

(2 (/\ii i) _ p(cjar + -+ cj+r))

-1

TT 1 (o G ). (66)

j1=0

<

Jj=vn
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With these preliminaries, we now consider the proof of Proposition 13* through a
series of steps. (The proof of Lemma 10 will be given in the next section because it
involves computations similar to those in the verification of (R3). ) In order to state
and prove the first step, we need the following result. .

Lemma 14. Let f(xo, ..., z,), 7 > 1, be such that [ ([ |f (o, )| dz,)? dzg...dz,_1 <

0o. Then
%
/(/\f Loy s T | dxr> dzg...dz,_1 < C.

In particular for w(x,y) as in Proposition 13%

sup/|w A+ cp, p)|? d,u</</|w(:c,y)\2dy> dx < C.

Proof. We have by definition

sup /‘f Aoy - Ar_9, Ap_1 + Cl,
A05"'A7‘ 1,C

)

(Aoy <o Ar—2y Ar1 + €ty 1)

eMow0+---+Z>\r—2wr—2+z(AT—1+cu)wr—1+wwrf(xo’ - a:T)dmo...dx,

Il
—~—

= /e““”’" {/e“\ow”'"“’\T””Tlf(xo, ey Ty 1, Ty — cx,l)dxo...d:rrl} dz,.

Then by Plancherel’s theorem, for each Ag,...\._1, ¢,

2

/ f()‘Oa '--/\7'72’ /\rfl + cp, M) d,LL

2

= //eZ)‘Og”O*"'“’\T‘l‘”T‘lf(aco,...,xr1,xT—cxrl)dac0...dxrl dx,

1/2
d.’L'()...d.’ET_l

S / ‘f(x()v"'axr—laxr _Cl‘r—l)‘z dxr

1/2
= /(/‘f(‘rO""amr—l;xr)‘le‘r> dl‘o...d.’l,'r_l,

where in the second step we have used the generalized Minskowski inequality (see for
instance Folland (1984, page 186)). This proves the result. W
Lemma 15. Let w (v,y) be as in Proposition 13%, and let Ty, ,
to 2v, < [nd], 0 <6 <1
Further, let R, (y1,Y2,a,0) be the difference between

*
and T, correspond

()’ 2 37 Blw(y + Lo + Tisr) (67)
I=[nd]+1
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and

T,il _i'u‘(Tr’:l,r _T;;z) :|

R _Z.
- Z / Un (/\aﬂ'a ylayQ)E [6 A
n {lul<a;|N[<a}

I=[nd]+1
B [e_i%"(Tl_T;l)_i“(Tlﬂ—Tiz,T—TerT;Zz)} w (i — 1, M) dAdp (68)
Tn
where
Un ()\’ s Y1, 312) = e_i/\%?lyl—iu(yz—yl)'
Then

lim lim sup |{ sup |R, (y1, Yo, @, 5)|> =0 for each § > 0.

a7 n—oo (yl,yz

Proof. Note that (67) involves the left hand side of the identity (65). Further when

in (68) the f{\m<a Al<a} is replaced by fRQ, it reduces to that involving the right hand
side of (65). Therefore the difference R, (y1,¥2,a,d) in the statement of the lemma is

simply the same as (68) but with the integral |, (ul<a replaced by the [ (<

| AlI<a} | Al<a}”
where {|u| < a,|\| < a}® stands for the complement of {|u| < a,|\| < a}. For notational
simplification, we treat the case r = 1. Then, using (66) and noting that | (\)| < 1,
|Un ()‘::u" ylay2)| < C, and {‘,u‘ < a, |/\‘ < a}c - {‘,U" > @, ‘)‘| < OO} U {|:u‘ < a, |/\‘ > a'}7

we have

‘RTL (yla Yo, q, 5)|
1 n
S _
n
I=[nd]+1

-1

11

A
F (— — W u)
Tn j=ve

F(%—mu) Zw(—u)@<%—u,u>-

Ag(j - ;
(0 (% - M0j+1) < Hj:l[l/2] (G (Ai—ff) - ch+1)

d\dp

(U ()\?Y(j) - H0j+1>

n

/{u|>a,/\<00}U{|u|Sa,|>\|>a}

where we have let

Note that Hé:,n

[1/2].
Now using (52),

-1 .
A Ag(7)
F (— = W u) (0 ( — pcjpr || dAdp
/{|u|>a,|A<oo} Tn H Tn ’

i=[t/2]

because v, < [nd] /2 <

-1

11 (X Ag(7) >
< L B |

i=[t/2]

=[1/2]

d)\du) (69)

31



Here note that (making the change of variable ’\2(3) UCjq1 — b[T/\s] )

A Ag(g
/ F(——u,u) ‘w( ( )—ucj+1)
{|u>a,/ A <oo} Tn Tn
: —— —ptp= )| Y
19|01 J{j>a,n <00} 9(7)b; 9(4) by

1—[1/2]
Tn A
20uta) [ o (5
F(v—u—l—u”l )‘du

dr < CQ, (a) 12
Q@ (a) = max sup/
(a) MI<i<n v J{ju|>a} 9(j)’

Vi
1-[t/2]
and we have used the facts maxp/y<j< ‘g( - < C (see (54)) and [ ‘zp (bz) ‘ dA\ < C
(see (50) and (51)). Note that

2
- (ha ol v— Gt 2
Amm}F<y u+¢%0yuﬂdu : Vyww<” “+”dﬁ”0 dMAMM“wUM(m
1/2
<o wwra) )
{lu/>a}

where in the last step we have used Lemma 14. Thus

A -1 A .
/ F(——u,u) 11 w( 907) —ucj+1> dAdp
{lp|>a,|A|<o0} Tn - Tn

5 1/2
< ¢l ( / |¢(u)|2du> |
Yo \J{|u|>a}

_ nd
We also have Hé; (% ()‘g U — pej ) < HE’:[}[n 5/2]
[nd] /2 < [/2. Hence in the same way as above

1-[1/2)
dX\dp

1-11/2)
d\dy

where

(0 (Ag—(]) - ,“CH—I)

because v, <

[

nd] .
Y Y
/ F (— — u) II ¢ ( 96) _ ucj+1) dAdp
{lul<a,A|>a} Tn , Tn

=[]/
\ \ [[nol-lina)/2)
< ooy [ w( ) i
{|A|>dna—en} bfng]
where
. Yn
e, = aby, max Cj and d,, = min _—
] iy JBE 51 (178)/2)<5<[8] |9 ()| Dina)
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and

Q, (a) = max SUP/ F<V_ TELGY >‘d
(a) 8)/2<i<n8] v J(jui<a} BTN N

1/2
< C (/ 9 (1)]? du) <C, similar to (70).
{lu/<a}

Note that d, > d > 0 for some d > 0 (see (54)). In addition e, — 0. To see this,
assume for simplicity that b, ~ ni, and ¢; ~ j ~1-% in the case of assumption (Al).
Noting that H — 1 — é < 0, we then have e,, ~ Cnf 1. In the case of Assumption (A2),
we have |e,| < Cna~! where é — 1< 0 because 1 < a < 2.

Hence there is an ng such that {|A| > d,a —e,} C {|\| > Za} for all n > n,y. Hence

using (50) and (51)
A
v (b[n6]>

/{)\>dna—en}

where 0 < p < 1. Thus |R, (y1, Y2, a, d)| is bounded by

1/2 n 1
<o([ wa) (”— > —) +C / N 4+ O,
{lul>a} g {\Al>%a}

for all n > ny. In view of (14) and the fact 237", - < C, this completes the proof.
|
Lemma 16. Let K, (y1,y2,a,9), § > 0, be the difference between

[nd]—[[nd]/2]

d\< C / e d\ 4+ i,
{|)\|>da}

(@m)* 223" Blw (4 + T o + i) (1)
I=lo

and

n

1 ! ~
— Z / Un (/\’ My Y1, y2) E |:6_Z/\’Yn Tl:| ¢Sr (—,U,) w (_lu’a ,LL) d)‘du
{lel<a,[A|<a}

n 1=[nd] (72)

where U, (N, 11, Y1, y2) = 0% 0=2=90) g5 in Lemma 15 (and s, (1) = E [e*5] as
before). Then
lim lim lim sup (sup | Ky (Y1, Yo, a, 5)|> =

6—0 a—00 n—oo \y1,y2

Proof. According to (65) and (66), we have

y1 + T}, ys + Tz+r)]|

< / I | 0 (M2t b ien)) | (-

=[1/2]

W (i — i, u) ‘ dXd .
M
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According to the arguments contained in the in the first part of the preceding proof of
Lemma 15, this is bounded by % Thus

[nd] [nd]
Tn n 1
sup | ST E[f (g + 1) f (v + Tiwr)]| < 23—
gz | Ty =L

Clearly this converges to 0 as n — oo first and then § — 0.
Hence, in view of Lemma 15, letting R}, (y1, Yo, a,0) for the difference between (71)
and (68),

lim lim lim sup (sup |R; (y1, Yo, @, 5)|) =0.
6—0 a—o0 n—0o0 \Y1,Y2

Therefore, letting R* (y1, Y2, a, ) for the difference between (68) and (72), it is enough
to show that

lim sup (sup |Ry* (y1, Yo, a, 6)|) = 0 for each a, . (73)
n—oo \Y1,Y2
Note that without loss of generality, we can assume that v,, upon which 77, and

T, of Lemma 15 depend, is such that v, — oo and “» — 0. Then, because T; — T};; and
St g (s) & have the same distribution,
> e) — 0,

where we have used the fact that 7, ! 30" g (s) & converges in distribution and 7, ', —

vn—1

Yol Y g(s)&s
s=0

sup PmSM—ﬂM>d=P(
nél<i<n

0. Hence

Sup E [e_iv%(TI_T;ZI)_iu(n+1_T’;l,r_Tl+T;:l):| —_ E [eii“(Tl‘i‘TfTil,riﬂ_}—T;l):H — 0
[A[<a,|ul<a,[nd]<i<n
Further, noting that

Un+r—1

> [e—iu(ﬂﬁ-r—T,’:l,T—n'i'T;:l)} = H V(= (¢j + - + ¢j_r—1)) 1)
7=0

and

o0

H (0 (— (Cj + ...+ Cj—(r—l)) ,U) = g, (1) (74)

=0

we have (with r being fixed), because v, — 00,

sup
|/ <a

E [e_i“(Tl”_Til,r—Tl‘*Tn*l)] — s, (_N)‘ — 0.
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Let 0 < 7 < « be suitably close to «

* -
NOW| nl,r Tnl = ‘Zj:t/n (Cj-l-l +.ot Cj+1")§j :
such that > -2 |c;|" — 0. Then

-1
sup P(|T;,—Tyl>¢) = sup P( D (1t o+ )| > 6)
[ndl<i<oo [nd)<i<oco j=vn
o
< Cr(1+¢e7?) Z lc;|” — 0, (75)
Jj=vn

where the inequality is obtained using for instance Kasahara and Maejima (1988, Theo-
rem 2.2). Hence

sup
A <b,|p|<a,[nd]<i<n

TR " i\ L
E |:e—z/\7Ln—zu(Tn” Tnl):| —E |:e—z/\7—ni|

Hence (73) follows. This completes the proof of the Lemma. W

The preceding Lemma 16 leads to the next statement where we define

() = ()

k=1 H-1/a
m —1
e / (i LAt u> Zo(du) (76)
0 m m
and
t
T@=/u—>ﬂwawo (77)
0
Note that

-1 -1
m m

Lemma 17. For each integer m > 1,

255 Bl [0 (S Sz

converges in distribution to

( / Vs () 0 (=i 1) o ) - Hz%/ / SR E [ YTO] drax

where S (52, L) and T (t) are as defined above in (76) and (77).

Proof. Because %—m:% ~ m*~H it is enough to show that, for each m and &,
5 Nmk
Nmk
Tt Zl:1 Biot] [ (Spusstfi Sppsst]ner)| (78)
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converges in distribution to
1 ~ 1 [ (1 mrs R(:L) —iNT(t)
5 | s (W)@ (—pp)dp ) o e i) B e O] dbd.
—o0o J0 (79)

Let (y1,y2) be as in (64), that is
(y1,92) = (S[n%]ﬂ,l’ S[n%]+l+r,l+r) . (80)
With this (y1,y2), let R, (a,d) be the difference between (78) and

1 Nk i . R
T o N2 Z / Un (/\7 My Y1, y2) E [6 )\’Ynkal] wSr (_lu’) w (—,Ll/, lu) d)‘dua
Nk (27)" Sy UM <alul <a} (81)

where now
Un (/\a My Y1, y2) = e_i’\7’77vlzk y1—iu(y2—y1)

It follows from Lemma 16 that, for each € > 0,

lim lim lim sup P (| R, (a,0)| > €) = 0.

0—0 a—o0 n—s00

Therefore it is enough to show that (81) converges in distribution to (79) by taking the
limit as n — oo first, then a — oo and then § — 0.
To obtain the limit as n — oo, note that U, (A, i, y1,y2) above involves

Vi Y1 = VT:TikS[n%]H,l and  yo —y = S[n%]+l+r,l+r - S[nkm;l]—l—l,l'
Then, with Sy (%) and T (t) as defined in (76) and (77),

k-1t
-1 -1 H
(oSt mmat oy Vo Tmst) = (m i (T R) ’T(t)> |

Further note that

[ ]
S[n%]+l+r,l+r - S[n%]ﬂ,l = Z (Cl+[n%]+1—j Tt Cl+[n%]+r—j)€j’
j=—00
and hence, similar to (75),
sup P (‘S[nﬂ]ﬂw,lw - S[nﬂ]ﬂ,l > ‘5)
T <I<00 m

oo

Z(Ciﬂ + o+ Cigr) i

=)

= sup P >¢e¢| =0 forany 7, T cc.
Tn <I<00
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It then follows in the same way as in Jeganathan (2004a, Lemma 8) that (81) with

(y1,y2) as in (80) converges in distribution to

1 ! —iAm k=1 ¢ 4 ~
(27)? /{m u }{/5 G dt} Us, (=) @ (=i, 1) dAdp
<a,/p|<a

for each @ and 6 > 0. Let K (a) be the difference between this and

(55 [ v 0 Cmman) o= [~ [ e p 0] dnan

(Here m, k and ¢ are fixed.)
Then noting that ‘e‘i’\mHSmk(%)

< 1 and |¢s, ()| < |¢ (u)], we have

00 1
e k@ < ([T Eemnlvia) [ [ pEo]
(1wl 6olan) [ ] gl
Now note that

/ |E [e?TO]]dx < 0/ e=<1" g
{IAI>a} {|Al>a}

= o / e P q\
{|{A|>atH}

< oo / "M d\ = R (a), say, if 6 <t < 1.
{|A|>adH}

Hence

o

(2n)2 K (a) < R (a) / @ (s )| [0 ()| dpa+ R (0) / @ (= 2)| 0 ()] i,

—o0 {lu[>a}

where note that R (a) — 0 as a — oo and R (0) < oo. In addition

1&7 M d <S ’&7 — U, 2d 2d
/{wa}\ (= Y (W)l dp < \//\ (=4, )] u/{|”|>a}\w(u)| "
C 2 du,
< \/ [ i

where we have used [ |@ (—p, p)|” du < O, see Lemma 14. Thus K (a) — 0 as a — oc.
Next note that

6 0o
‘ / / ~Am? Sk (1) F [N )] dtd)\‘ < C ( / t—Hdt> ( / e‘“ad)\>
0 —00

051—H
1-H

VAN

—0asd—0.
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This completes the proof of the lemma. W
To complete the proof of Proposition 13*, it thus remains to obtain

Lemma 18.

I & (U] nHg(k=t b ﬂ‘
7 Z/o [%/ SR [e )‘T(t)] d/\] dt = LY as m — oo.
k=1 —x®

Proof. We first show that

i/ pmidmPS(ECL L) o [e—z‘AT(t)] d\
2 J_

hm lim sup —
m—00 m

k=1 o0

] =0
(82

To see this note that, in view of (76), S (%, ) is a-stable with scale parameter oy,

such that

t
m
H

t k-1
O-tmkzc —

m
(See Samorodnitsky and Taqqu (1994, page 345)). Hence

1 =1 [ nag(k=r e Zii
mngﬁfooe A s (= m)d)\] < _Z/‘E AS (k= m)”d)\

1 1 o
— ) — [ e dA
m k=2 Omk

C - m \ "
< _ - _c|/\|a <
< g_ (k — 1) /e d\ < C

because L 3", (2 ) < C. Here note that in the sum ), , the leading term corre-

sponding to k£ = 1 is left out, but for this we have, in the same way as above, noting
H

oum1 > C | L]

IA

Hence,

Hence, noting that |E [e=*"®]| < 1, (82) follows.
Now consider




where h; (y) > 0 is the density function of T (), i.e.,

1 [® .~ ~ .
— / e™h, (\)d\ where h,(\) = E [e710)] .

hi (y) = o

Note that for each fixed ¢, {S (’“_1 : ) 0<k< m} has the same structure as that
of {Aa,m (£),0 <k <m}. Hence Jeganathan (2004a, Proposition 6) contains the fact
that the difference between the integrand —7 > | by (—m# S (221, L)) in (83) and

T m

B n (e (5 ) ) oo

converges to 0 in mean-square, as m — oo first and then ¢ — 0. In addition it is

easy to see that the arguments in Jeganathan (2004a) also give that this mean-square
convergence is uniform over § < ¢ < 1. (Note that this is a very specific case so that the
steps in Jeganathan (2004&) will take a rather simple and direct form.)

Now, note that —ty >3", [ he (—m (y+ez))e ~2*/247 is sufficiently smooth in y
(see Jeganathan (2004a, Lemma 7)). Hence, for each € > 0, it can be seen that (84) can

be approximated, as m — oo, by

1 &1 - k—1 2
ml—sz:;\/ﬁ/ht (—m <S<7,0>+62))e dz

uniformly over § < ¢ < 1, which in turn is approximated by m%H Yo \/%—ﬁht (—mH S (ﬂ, 0))

as before as m — oo first and then € — 0.
Noting that S (%, O) =Aog (%), we thus have approximated (83) by

1 & k—1
— he [ =mf A, — ) ) dt
[ e (e (557) )
which in turn is approximated as before, as m — oo first and then § — 0, by
L & ( k—1
LS (i, (_)) it
/0 mi-H ; t H .
1 & k—1
= WZQ <_mHAa,H (T)) = (/g(y) dy) Ly =1L7
k=1

where g (y) = fol hy (y) dt. Note that [ g (y)dy = fo [ i (y) dydt = 1 because [ h; (y)dy =
1 for each ¢. In obtaining this convergence we have used Jeganathan (2004a, Theorem
4). Note that [ ¢* (y) dy < fo | b (y) dydt < Cf t~H#dt < C. This completes the proof

of the lemma, and hence the proof of Proposition 13* is completed. W
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Proof of Proposition 12. It is implicit in the proofs of Lemmas 15 and 16 that
the difference between =% 3% | % 7ime E[n@] [f2 (S[nﬂ]H)] and

R 0) 1 i 1 % / z/\'ynmk [ k— 1]+”E[ —i/\n_sz} d\
€ € "
mAH = k2T S J(aj<a)

converges to 0 in probability as n — oo first, then @ — oo and then 6 — 0, which in turn
HS k=1 t

converges in distribution to f2 (0) o Yot e e fl —amTS(52L0) B [e AT dtd,
see Lemma 17. Hence the proof follows by Lemma 18. W

Having verified (R2), we now show the same holds for (R*2) also except for some
modifications.

Verification of (R*2). To indicate the required modifications, note that

Blyict) (|Gt
= T3 B [ (Spocagar) syl

l=lo

Tn ~
203030 By [ (Spsgagad) ! (Spssajons) “puscijons
1=
where recall that wy = >°5_ .1 dg—jn; =1y + dinjg—1 + ... + dy_17g-vy1. We have

Bz 7 (Sinson) o] = Prosz 9 (St
where (recall Sy, = >7"" 5 9()&—i )
9@) = B (o + 85,) 3],
Thus, noting that [ ¢ (z)dz = E[w?] [ |f (z)|*dz = E [w?] & [ ‘f ‘ du, together with

the fact that S[ B4,
12 becomes essentlally applicable, we have

22 3 B [ (S ] = (B g5 [ |0 ) 1

I=lg

has the same structure as that of S[ k=1]4; SO that Proposition

To deal with the remaining sums, suppose that » > v. Let (recall S¥

gty — Pgtr T
Sq+r,v-)
Sﬁ-rv = Sgtr — (S;+,~r+u S;H“r) Sgrp-
Note that (sq,y,sqw) is independent of (S:,, (S%,,r4y — Siiry) + Siipy)- Then
Eqy [f (Sqg) wof (Sqir) wasr]
= B [f (Sq"’ + S* ) wef ( atrw (S;+r,r+u S;+r r) S:lk+7”a”) wq—w]
- oo ()]
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where

Wy (.T, y) =K [f (‘r + S;,u) wVf (y + (S;—H',H—u S;—H“ 'r) S;—H",u) wl/-l—?”} .

Thus, when r > v and [ > v,
Blaizt |£ (Spuizapor) wppistjors (Spistponss) ppsziyins
- E["%] [wr (S["kml]“ﬂ”’ nk= 1]+l+ru>} (85)

In the case r < v, the right hand side here takes the form

A A NS N e | (86)
with
W} (0,5) = B [ (& + 52,) 6f (5 Sty wrse].
Now, in the case r > v, (Sju, (S;JFT ™ Sjw,r)) is independent of S’

»+ryy and hence

we have
G (A ) =F N F(n)E [wye*”ﬁw*"“(Sﬁwvsﬁw)] E [wyqre #50tra]

Here, noting that S}, = Z]V;é 9(5)&—;j,

E I:wy+7'e_lusu+’r’ui| = E Z“SVV E dl/ ZE 771 Z“SVV:|

= Zd,,_z-E [t ] H Y (—g(j)p

=1 J=0,j£v—i
. * v 1 - -1 . v—1 .
Noting Su+r,r+u u+rr = Z A (.7)£U+r—j - Z;ZO g(])&/ﬂ"—j = ijo g(] + T)fu—ja

we similarly have

E [wue_iAS;,u _iu(S;+r,r+u _S;+r,r ) ]

Zd"*iE [nie(—i/\g(v—i)—iug(V—iJrr))&} H W (—g(NA— g(G +r)p).

i=1 j=0,j#v—i

In the case v = 1, note that the preceding two quantities give (recall dy = 1 and g(0) =1

)
wy (A, p) = J?()\) f(,u) E [me "™ E [me(*i/\*iug(ﬂ)&} _

In the case 0 < r < v, we have
wi(hw) = FF
N F(wE [wuwu+7«6_i’\ S 9(v—)E—in S gwtr—i)g; ] .

(/’L) E [wuwu—kre_i)‘ss'”_i“S;+T,U+r}

hy )
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Now, regarding the analogues of Proposition 13* for the sums of (85) and (86)
(note that Proposition 13* involves the sum of E[n%] [ (S[ ko 1]+Z,S[n%]+l“)} ),

we note that S[ has the same structure as that of S[ E=t]4p and similarly both

L+t
SE#,C sitra and S[]n’“,;l]+l+r,v+r have the same structure as that of S[n%hl”. It can
be seen from the proof of Proposition 13* that in both cases (85) and (86) the role of
s, (—p) (see (74)) is now played by U, (1) defined in Theorem 2. In addition note that
both @, (A, 1) and w? (\, 41) contain the factor F(\) f (1), which will serve the purpose

of W (A, 1) ¥ () in the proof of Proposition 13*. We thus see that for each r > 1,

m

> > Bl [ (Susen) ! (S s

= (%_/ ‘:f(u)

as n — oo first and then m — oco. Here ¥, (1) is as defined earlier in Theorem 2, and

~ 2 - 2 -
F)| @ () = B (—p, ) in the case 7 > v and | F ()| ®, (1) = @F (~ps, 1) in the
case r < v. Specifically

", (1) @, (1) du) L;

FE wyei“S;,u_il‘(stj+r,r+u_ss+r,r)j| FE [w e_i.U‘S:,u] ifr>v

[0} =
r (1) B [ty p i Sim 90=006 =it SIE o470 } if1<r<wv.

(This ®, (u) coincides with that involved in Theorem 2.)

Regarding Lemma 10 we shall see in the next section that its proof, under the con-
ditions of Theorem 1, depends crucially on the fact that ‘f()\) f(u)‘ < C'|p| |A|, which
holds under the conditions of Theorem 1, see (62). In the present case the role of
f()\) f(,u) is played by w, (\, p) (it is enough to restrict to the case r > v), for which
we now obtain the bound

[ir (A, )| < C (Il [A] + 1) (87)

To see this, assume for convenience that v = 1. Then

TV F () B e 0] 2 [ret->-s50061]
S C ‘E [7716_“@} FE [nle(—ﬂ—iug(r))&”

[wr (A, )]

where, using F [n;] = 0,

B [me™™@ ]| = |E [m (7 =1)]| < [ul Elmé&l] < Clyl
and similarly |E [ 2100 | < O (|A] + |pu)).
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We shall see later that (87) will give the analogue of Lemma 10, see the arguments
at the end of the proof of Lemma 10. W

We next verify (R4) (where o = 2 and hence E [§] = 0 and E [£7] < 00).

Verification of (R4): For notational convenience, we take v, = r and g (r) ~
CrH=12_ Then (Xnumk is as defined in (R4))

_1_1-H
2 2

Cnkanmk =nNn R (Il,nmk + ]2,nmk + ]3,nmk) (88)
where
[nk] o]

Il,nmk = Z Z f(Sl) é-ra

4] ]

IQ,nmk = Z Z ﬁlf (ST)

I=[n2=2]+17=l+1

and -
Lipmk= Y. f(S)&

I=[nt=1]41

Now

E[n%] [fF(S)&l = E[n%] Lf1(Si1)] with f1(y) = E&f (y+ &),

where S;; is as in (59). Note that [ fi (y)dy = 0 and similarly other restrictions in
Theorem 1 stated for f (y) are satisfied for f; (y), see Lemma 7. It is proved in the next
section (see the bound for (101)) that

2

nk
Elnecy] i [Xm:] fi(Sia) <C.
S
Hence
‘E[n%] [n‘%‘¥ls,nmkﬂ <Cn b (59)
Clearly
E[n%] 1 mi] = 0. (90)

To deal with Iy, We have

S = Befntz] + S i)
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where recall (see (58)) that S*[ e1) = Z ([) = 9(q) &—4 and is independent of

S n[nt=1]- We also have f (S o [ e f A) d\. Hence
e b R
B l6f (S]] < 5 [ B e HE=T s ] Foy|ax,
and hence
r—1
zw (r—=0)& i N i
s fepen? (S]] < 5 [ loe ]| TT Jo (o) |7 (5]

q=0,g#r—1

Now, because F [£;] = 0 and FE [€?] < oo ((R4) pertains only to the case a = 2),
iAol Al
= B le (e —1)]| <o g (-0l

Further f(;)‘ CW Also qu Ogtr l‘zp <%g (q)) ‘ d\ < C by (55) and (56).
Thus, noting that v, = r¥ and 25:1 lg (r —1)| ~ CrA+1-12 because g (s) ~ Cs#1/2,

sl

T B o] = . S By [fpy (S
Nmk T—1

< Cn e YNy g(r =)

r=1 =1

Mmk Mmk ‘

1 3H-1
< Cn 2 2 T2 — on~

Because 3H — 1 > 0, this together with (89) and (90) complete the verification of (R4).
|

We next show that the verification of (R4) entails that of (R*4).

Verification of (R*4). We have

[n]
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Note that (f (S;)w; — Ei1[f (S) wi],&), I > 1, form martingale differences and hence

(]
E[n%] Z (f (Sl) w— B [f (Sl) wl]) Xnmk
S
1 4
= %E[nkm;l] Z E_ 1{(f (Sl) w — By [f (Sl) wl]) fl}
1=[nk=1]+
[n3
= =By | Y Bailf(S)wl
| i=[n "5t +Ho

where in the last step we have used E;_; [§] = 0, so that E;_1 [E;_1 [f (S;) wi] &] = 0.

Consider
[n] [nk]
Enez) [kz] Froalr (Smsl) = Bz [kZ] o

where we have used E,_ [f (S)) m&] = ¢(Si1) for a suitable g (z) with g (z) + ¢* (z)

Lebesgue integrable. Therefore 7“E[n;c k1] [Z[ r]k ) g(Sll)} is bounded (see the
bound for (101) below), so that
1 ’VnE [W‘%] S 1 Yo (Yo C
1 <C—y /2 () =
f [ ] l[;]lg(l’l) _C\/ﬁ n(n) 1/fyn_>0
=|n=|+lo

Thus it remains to show that (R*4) holds for (... = > Ei—1[f (Si) wi]. We shall
reduce this situation to that of (R4). Recall that w, = Zé-:le d;_;n;, which sum

consists of v terms. We use induction on v. Suppose that v = 1, that is, w; = 1. Then

Er 1 [f (S)wil = Eia [f (S)m] = fe (Si,1) -

Here f.(z) = E;_1[f (x + &) m], which satisfies all the conditions of Theorem 1 (see
Lemma 7), and hence (R*4) holds for (!, . = > Ej_1[f (Si) m] when v = 1.

Now suppose that (R*4) holds for ¢, = > E;_1[f (S;)w] when v =i — 1. Then,
when v =4, we have E;_1 [f (S)) wi| = E;_1[f (S) (wi — m)] + Ei—1 [f (S;) mi], where note
that

Er 1 [f(S) (wi—m)] = B [f (S) wi] = Wi B [f (S)] = g (Si1) wf

Here wf = w;—m = Z;;%_Hl d;—jn;, and hence g (S;1) w; has the same structure as that
of f(S;)w; but with v = 4 — 1 (for which we have assumed that (R*4) holds). Hence
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one can assume that (R*4) holds for (¥, . = > ¢(S;1)w; also. We have already verified
(R*4) for &, = D Ei—1[f (Si) m]. Thus (R*4) holds for ¥, = > E;—1 [f (S;) w;] when

v = 1. This completes the proof of the lemma by induction. W

5 PROOF OF LEMMA 10 AND THE VERIFICATION OF
(R3) AND (R*3)
In the rest of the paper we let

g(g,r) =g +71)—9() = cjz1 + . + Cjpo-

We first isolate some bounds on g¢(j,7) in the next Lemma 19.
Lemma 19. Let 9 > 0 be such that

in(l—H,H,|+-H| L) ifH#L
o<y < MUl H]5) HHZ, (91)
mln( _E’E) it H=_.
Then
sup blw <Cl’ foralll1 <l<n. (92)
(1/2]<j<l,g>1,r>1 Ir

Proof. First consider the case H # é, in which case the requirement (A1) of Section
2 holds. Let 6 = 2 so that (91) becomes

0<35<min<1—H,H,‘l—H
(6%

, 1) . (93)

«

Recall the Potter’s inequality, mentioned in Lemma 5 of Section 3 above, that if G(x) is

slowly varying at oo, then there is a B > 0 such that |gg§| < Bmax{(z/y)?, (x/y)~°} for

all x > 0,y > 0. Therefore one can assume that

c; i b r#
| < B#, 9 )1 < B, - < Br’, — < Br’.
13 ifl—a ra Vr
We in particular have
by 146, —H+6
— < Cla™r . (94)
Tr

Further, noting H — 1 — 1 + & < 0 (see (93)), we have when j > [1/2],

90 +a 1) = [Cirgr1+ -+ Cigrrl

1 1
Clij+g+1)" "= )i

P+ (G +g+r

N

< Or(j+qf et < Or(min(l, )" "=, j>[1/2]. (95)
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Here, in obtaining the second inequality we have used j > [I/2] and H —1 — = +6 < 0.
Further, when H — £ < 0 (in which case H — 1 + 6 < 0, see (93)), we have

GG+ <lgG+a)| +190+g+7) < C G +9¢) = < C(min(l,q)" =", j>[1/2],
(96)

and similarly when H — é > 0,

. . _1
g +aq,r)| < C@G+g+r)' =t

ClEZ% §fj<i r<li
Cr=a+0 §f i<l r>1
{CMH‘5” if j <I,r<gq

H—é>0,q§l

IN

(97)
H-1>0¢>1
Cri—2+ if i<l r>q a5
First consider the situation
q<lI.

Using (94) and (95) and noting 1 — H — 2§ > 0 (see (93)),

mgU+mH

1-H-26
: ) P <O <1, §>[1/2].

< QlaHSp—H+6 H-1-2+5 _ (f
- !

In addition, using (96) and (97) and noting H —§ > 0 and = — 26 > 0 (see (93)), we
have

g(j+q,r)
Vr

by

- Clatop H+H0H=2+6 _ 1.~ H+0)H-6]36 <CP¥ H-— é <0,r>135<I
T Clatt A gt — O g a WP < O1¥ H - 1>0,r>1,j<L.

Now consider
q>1l.
From (95) we have,

g(G+q,r)
Yr

1-H+6 -2
b, < Clatop HidpgH-1-540 G) (é) P <C® iftr<gq j>[/2].

When H — é < 0, r > ¢, we obtain from (96) that

g(j+q,r)
Vr

by

Lis —H+d H 144 qH_‘slé_%a 5
< Clatop—HHSH- 46 _ (—) (—) ¥ < o,
r q

When H — é > 0, r > ¢, we have from (97) that

l

g(] +q’7‘) S Clé-l—&,r—H-}-J,r.H—é-l-(S — (_

Tr

by

1_94
¢ l36 < Cl3(5
r >

47



because % —26 >0 and [ < ¢ < r. This completes the proof of the lemma when H # i

Now consider the case H = <. In this case, by (11), we have sup,, |ic;/ < C. In
addition sup,>, |g (i)| < C by (A2). Therefore, the inequalities (94) - (97) hold when
H = é, and hence the remaining arguments also hold with H = é This completes the
proof of the lemma. W

Below we assume 9 of Lemma 19 satisfies (in addition to (91))
3H — 69 > 1. (98)

This is possible in view of the restriction 3H > 1.
We are now in a position to proceed with the proof of Lemma 10 and the verification
of (R3). For this purpose, note that, when 0 < v, < [I/2], using (64) - (66) we have

[Busma) [ (Spisaten it ||

-1 .
1 A .
< / II @b(M—ﬂg(w))‘
NVr J R2 =[] " Tr
— 7 A opop
< I |¢ (—g (1) —)‘ o (— -, —) ‘ dAdp
. r M Yr Vr
1=lr/2)
-1 . r—1
1 A .
- LT e (A2) ) ( IT [ (e 2))
W Jre \ iy Y i Ve
x | (i (1 + M;& - £ ﬁ) dXdys. (99)
ol Y 9(7) Y Ve

Here note that the right hand side is nonrandom.
Before giving the proof of Lemma 10, we note the following useful fact that follows
from (99) (recall ny, = [n£] — [n21] ):

| (2 35ohis- 2358 B o ()] [ 20

as n — oo first and then m — oo, for any h(x) for which both A (z) and A% (x) are
Lebesgue integrable.

Remark. This fact together with the approximation contained in the proof of Propo-
sition 12 has been used in the proof of Theorem 1 given in Section 2. In addition, es-

sentially the same arguments will be used to deduce Theorem 3 from Proposition 13%*.
[ |

To see that (100) holds note that Y- b S,y ) = S0 Bpics) [ (St ) |
1 < k < m, form an array of martingale differences, and hence the expected value in
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(100) is bounded by

Nmk

() 3| (S50 ()
< (- )’ {ZE (12 (S)] +2§n:nffE[h S) h SHT)]}. (101)

I=1 r=1
In the situation where |@ (A, p)| < C, note that (99) gives, |E [w (S}, Siir)]| < % using
(55) and (56) when I, 7 > lo. Similarly, if ‘Tz (A)‘ < C, then |E[h (S)]| < € when I > i,
Hence taking w (z,y) = h(x) h (y), and using in addition (57) when [ <y and/or r <
we see that (101) is bounded by

ORI I

11% 1171%7’"

Here 2?21% ~ C% and, using npr ~ - and v, ~ Yo T, maxy cp<m Do, 7% ~
C2 (L)' Thus (100) holds. W
Tn \TN

Proof of Lemma 10. We shall apply (99) with @ (\, p) =

F(\) F (w). The fact that
‘ ‘ < C'|A| will now be crucially used (whereas (101) uses only ‘A

B (A ‘ + ‘hA? (A)‘ <C
). Here note that, for any 9 satisfying (91),

blg (]a T)
Yr

<CP, [1)2]<j<l, r>1 (102)

ng Gr)| _ | _m ‘
79(7) big (5)

by (54) and Lemma 19. Therefore

f(i (1+Mu) _ﬁ) f(ﬁ)‘ <C<H+M+M> lul
Vi Yrg(7) Yr oy ol ol Y ) W

Hence (99) is bounded by (when @ (A, u) = f(/\) f(,u) )

) 3 \ 179 — \a(i r—1
L[ (L 2 DY (T () )T o (a0 ) |
YiYr Jr2 \ N T T/ J=[1/2] K J1=[r/2] i
/1" 1)1
< ¢ <l_+_)_ (103)
NYr \N T/ T

when [, > [y, where in obtaining the inequality we have used (55) and (56). Further
using (57), the same bound (103) holds for (99) when [ < [y and/or r < [y also. Thus
we need to show that

SR ()

lqu7l7r
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as n — oo first and then ¢ — oo. To see that this is true, take for convenience that
Yo =nt  foralln>1.

First note that, using the restriction 1 < 3H,

%ZZ%% ( Zl)i%SC(]l_?’H—)O as ¢ — 00,

=1 r=¢q llw r=q

where we have used 2= 37" | - < Cand Y3 o5 = >0 & < Cg' M. Next

S LR | o) Clogn  if2H -9 >1
B Cn' =20+ §f9H — 9 < 1.

o % — N

2
(z": z*’) - { Cn# 1 (logn)? if2H —9 > 1
~2 = H—142—4H+29 _ 1-3H+29
P n Cn =Cn 1f2H—1971105
where note that 1 — 3H + 29 < 0 in view of (98) Thus (104) holds and hence the proof
of Lemma 10 is complete.

Now, regarding the Lemma 10 for the situation of Theorem 2, it was indicated earlier
(see the end of the Verification of (R*2)) that the only difference essential difference is
that in place of @ (\, ) = f(A) f (1) in the above arguments, @, (A, 1) as defined in
the Verification of (R*2) will be involved, for which we have the inequality (67). Thus,
in place of (104), we need to verify that 2= 37" 3" 711% {(% + ;7) 7% + 71—5} — 0 as
n — oo first and then ¢ — oo, but this has been done above. W

We next verify (R3).

VERIFICATION OF (R3). We show that (recall n,; = [n£] — [n£2] )

E[Cnmk]§—5+0 - Z — (—"Z—), for some § > 0.
n _ M neo= "7
I=[n%=1]+1 j=1 (106)

j:l % 1—



We shall show in detail that

Mimk Mmk

(%)2 Z Z Z ‘E Sl+T) f2 (Sl+r+q):| ‘ (107)

1= [km1]+1r 1 ¢g=1

and
T\ 2 ["%] Nk Mmk Nmk
(f) Z Z Z Z |E [f (Sl) f (SH-T) f (SH-T-HI) f (Sl—|-'r+(I+5)]|
i=[nk=1] 41 r=L =1 s=1 (108)

is bounded by r.h.s. of (106). The same can be similarly shown to be true for the

4
nk

remaining analogues in the expansion of F [} .] = (%)ZE (Zl[_f;]“]+1 f (Sl)) .

We shall use Lemma 19 in the manner similar to the proof of Lemmas 10 above.

We first deal with (107). Using S;; as defined in (58) and 7}, T}, and T}, . as defined

nl,r

in Section 4 (recall that S; = S;; + T; with S;; independent of T; ) we have, similar to
(65),

@2m)> E [f (S) f (Sisr) 2 (Stirtq)]

— /E [@—ﬂlsz,l—/\251+r,z+r—/\351+r+q,l+r+q] E [e_i(/\1+)‘2+)‘3)T* =i+ xa) (T, =T ) =ida (T =T )

xE [e_i’\l(Tl_T;l)_i)Q(THr ~T1,0) =8 (Trer o =T r+q)} FA) F(A2) F2 (A3) dArdAad)s.

~

(| <o)

Using this and using exactly the same ideas as in (99), we have (noting

2m)* |E [f () £ (Ste) £ (Stzrsa)]]
C = Ag(d)  Aeg(,r)  Asg(i+1,9)
N YrYq / H ¥ ( * * ) ‘

ji=[1/2] Vi Vr qu
r— . . -1 .
y H1 ¢()\29(]2)+)\39(]2,Q))‘ qH w(&f}(]g))‘
jr=lr/?] T Ta Js=la/2] T4
(A A
x |f (—1 - —2> (—2 -2 ‘ dA1dAad)s, (109)
Y Yr

where recall that g(j,7) = ¢g(j +r) — g(j). We make the transformation

A3g (js) - A3g (j3)
Yq Yq

A2g (J2) | Asg(jz,0) _ 9 (J2) </\2 Ly, Yr90 )) _, 229 (52)
Tr Vg Tr Va9 (J2) Tr

Y

I

ol



Mg (1) N A2g (g1, 7) N Asg(jr+1,9) g(j) </\1 ey 19(j1,7) g Yg(j1 +r, q))
Y Yr Yq Y Yrg(Jj1) Ye9(j1)
A19(j1)
Vi

_)

Here note that, in the same way as in (102) using (54) and Lemma 19, we have

’Ylg(jla T)
Yrg(j1)

/Yrg(j% CI)

: <C?,
Yq9 (J2)

‘ <Cr,

7[9(.71 + r, q) ‘ S Clﬁ
Y49 (j1)
ngitra) |
Yq9(51)

s || atitra) ‘ < CI,[1/2] < ji <1, r,q > 1.) Therefore, in the same way (99) is

bounded by (103), the right hand side in (109) is bounded by

uniformly in the variables involved. (For instance, using (54) and Lemma 19,

C 1 1
/ (% (L] (14 (A2 27 + [Aos] P77 + | A5] 1)) + " (| A2] + [A2As] Tﬁ))

’7l7r7q T
o(2)

1 A —

X (— (|/\2| + |)\2/\3| T‘v) =+ M) H

Yr Yq -
qg—1 .

o H <)\29 J2 )‘ ( " <)\39 (]3))‘ A drod)s
iy Tr . Yq

9

(lw—i—lﬁ 9 7”9) (r 1)
— 4+ .
’7l7r7q Yr Vr 7q

Thus we need to consider

-1

Nmk Mmk 9 9

(%)2 Z IO (lulMJrT—)(T—Jri). (110)

= [ P 1]+1r 1 ¢g=1 ViV Vg Tr Tr Yq

We have, similar to (105),

(%)2 [%] "sz"sz 1970 CnP-1(logn)® if2H -9 >1
n = =i qu Cpl-3H+2 if 2H — 9 < 1.
I=[nk=t]41 r=1 4=

Essentially the same holds for all other terms in (110) except for
,_Y 2 Nmk Mmk
() Z >0

l[kl]_l_lrlql

Yo\ ST Wi
|G X S (5%)

71] 1 q=1 le’Yq r=1 ’7’!‘

which is of the form (106) because Y m¥ ’%;9 < oo in view of 3H — 29 > 1 (see (98)).
Thus the bound (106) holds for (107).
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We next consider (108). The ideas involved are the same as those used for (107).
First,

(2 ) E[f Sl) f(Ster) [ (Strrig) [ (Stiragrs)]l

/ H <)\1g J1) )\29(.71,7“) n A3g(j1+7,9) n Aag(jr+ 7+ qas)) ‘
YiVrYqs —i/7] Yr Yq Vs

i w(hg(h) +/\39(32,q)+/\4g(j2+q,8))‘

Yr Yq Vs
><qlw(&ﬂm+kw%£» fiw<hﬂm>
' Ta Yoo St T

><f(ﬁq4ﬁ>f<ﬁ-ﬁﬁ>f(ﬁ-ﬁﬁ)f<M>MMd&mwu4 (111)

i/ Yr Yr Yq Yq Vs Vs

This is obtained using the same arguments used in obtaining the bound (109). In exactly
the same way as in (109), we first make suitable transformations and then see that, using
‘f (/\)‘ < C|A], (111) is bounded by

C (l"" + 1970 4 990 ¢g? . r? +r'9q“9) (7“9 + g7 . q”) <q79 . 1 ) 1
YV Vg Vs ol Yr Yr Yo) \ V¢  Vs/) Vs

In the same way as in (110) it is easy to show, using (98), that the sum

] Nmk Mmk Mm
( ) Z Zkzkzk 1 <Z’9+l'97“’9+l'97“’9q'9+7“9+r’9q’9>

l[kl]r 1 ¢g=1 s= lle/YTryqfY Vi Yr

r’ +r v 1 1
X(___1+2><1+_>_
Yr Yq Yq Ys/) Vs

is bounded by (106). This completes the verification of (R3). W
Verification of (R*3). We start with the remark that when we verified (R3) for
f(S)), it was clear that the same verification will hold for f (S;,) also for any v > 1,

where S;, is as in (59) because S; and S;, have the same structural form. Recall that

ok =\ Zl [nk 1]+l f (S1) w, where wy is a sum of v terms, » > 1. It is convenient

to prove the claim by induction on v. Therefore we shall use the notation

l
D dim

j=l-v+1

For v = 1, we have w;; = 1, and

STFS)m =Y (F(S)m— fu () + D fe (S, (112)
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where

fe (S11) = Eia [f (S) mi]
is as in (60), corresponding to v = 1. (Here and in the rest of the proof the sum
stands for Z[ r]k 14, .) According to Lemma 7, f, (z) satisfies the conditions of f (z)
of Theorem 1. Therefore, in view of the remark made above, we are implicitly assuming

that (R3) is verified for f, (S;1).
For the remaining term in (112) note that f (S;) m — f. (Si.1) form martingale differ-
ences, and hence (see Hall and Heyde (1980, Theorem 2.11))

E [(Z (f (S)m — fe (51,1)))4}
< CE [(ZEll [(f (S)m) ) ] +CZE £ (S)m)'] - (113)

We have By [(f (S)m)*] = f&) (1) where £ (z) = E[f2 (« + &) n?]. That is,

(=)' [(zEu o)) = (2)' £ (S )]

In addition [ 7@ z)dx < 0o, which will imply (see the bound in (101) or the Remark
at the end of Jeganathan (2004a)) that

2

Gre|| ¥ men)|<e(z) v a3
(114)

[n ]—1—1 l:[nﬂ]—l—l

1-H
and hence, because max;<y<m 2= > rmF & =~ C (1) and 25" L <O,
. -

g m ["m]
(%) ZE Z 2 (S1) — 0

k=1 I=[nt=1]+1

as n — oo first and then m — oc.

Similarly 22 " E [(f (S)m)*] < C, that is, (2)* ", E [(f (S)m)*] < 02 —

Thus (R*3) holds for the case v = 1. We remark that the same arguments show that
(R*?)) holds also for f (Sl,l) M- = f (Sl,l) Wi—1,1-
Now suppose that v = 4, 7 > 2, and that (R*3) holds for v = i—1. Taking into account

the preceding remark, this means we can assume that (R*3) holds for f (S;1) wy;_;, where

-1
*
Wil = Wi — T = E , di—jn;-

j=l—it1

o4



We have

Z F(S)wy = Z (f (S)wii — Eiq [f (S1) wig]) + Z E 1 [f (S) wil

where

S EL[f (S)wd =Y Bt [f (S) (wis —m) + D Eica [ (S)mi].

Here E;_1 [f (Si)) m] = f« (Si,1) is as before, for which as noted earlier the verification of
(R3) will be the same as that for S;. Also,

Ei 1 [f (S) (Wi —m)] = By [f () wiy 1] = wii 1B [F (S)] = g (Sip) wiy 1

where g (z) = E'[f (z + &)]. This form is the same as that of f (S;,1) w}; , for which we
have assumed the induction hypothesis that (R*3) holds.
Regarding the remaining term Y (f (Si) wi; — Ei—1 [f (Si) wii]), which is a sum of
martingale differences, we have the bound analogous to (113), in which the second term is
treated in the same way as the second term in (113). The first term is £ [(Z E_1 [(f(S) wl,i)ﬂ )2] ,

where (recall wy; = w;j; | +m )

E_i [(f (Sl)wl,i)ﬂ <2 |wl*,i_1‘2 Eq [f2(S)] + 2B [f2(S)n7] -

Letting ¢ (Si1) = Ei—1 [f? (S))], it is implicit in the arguments of the verification of (R*2)
that the bound in (114) holds for

2

) [ne]
(%) E Yoo lwral (S

=it

also. Also the term E;_ [f2 (S)) n?] = iR (S1,1) has already been treated. It thus follows
that (R*3) holds for Y f (S;)w; when v = i. This completes the verification of (R*3).
|

Proof of Theorem 3. First consider the case »r = 1. Then, in view of Proposition

13*, it is enough to show that

£ | (230765500 = 2358 H [ (S S } o
k=1 =1 (115)

The proof of this is the same as that of (100) but now the inequalies (99) and (111) will be
used. To see this note that the inequality (111) holds with f (S;, Sitr) f (Si4r+q> Sitr+q+s)
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in place of f(S)) f (Sitr) f (Sir+q) f (Si4riq+s), and hence in particular (taking r =
lL,g=i—1,s=1)
1 (St Sia) £ (St Stvin)]| € .
i
Similarly (99) gives |E [f? (S;, Si31)]| < % Hence the proof of (115) is the same as that
of (100). The proof of the general case r > 2 is similar; using the statement of Lemma
14 for the general case r > 2. We omit the details. W
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