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OBSTRUCTION THEORY AND CHARACTERISTIC CLASSES
Vishwambhar Pati

1. Euler Class

1.1. The Lefschetz Fixed Point Theorem.

Definition 1.1.1 (Lefschetz Number). Let X be a topological space with total rational homology
H∗(X, Q) finite dimensional. Let f : X → X be a continuous self map of X. We define the Lefschetz
number of f by the formula:

L(f) :=
∞∑

i=0

(−1)i Tr[fi∗ : Hi(X, Q) → Hi(X, Q)]

Clearly, by definition, it is a homotopy invariant of f . Also note that L(f) = χ(X), the Euler charac-
teristic of X, for any map homotopic to idX .

We now state the following remarkable theorem of Lefschetz.

Theorem 1.1.2 (Lefschetz Fixed Point Theorem). Let X be a finite simplicial complex, and f : X → X

be a continuous self-map of X. If f has no fixed points, then L(f) = 0.

Remark 1.1.3. The theorem is sharp. If one drops the finiteness (=compactness) condition, one sees
that translation Ta : R → R by a 6= 0 has no fixed points, but the Lefschetz number L(Ta) = 1. Similarly
(Exercise!) one can easily construct a self map f of X = S1 ∨S1 with the wedge point as the only fixed
point, but with L(f) = 0, which shows that the converse statement is false.

It is natural to ask whether L(f) actually counts the number of fixed points in some sense. That this
is not (naively) so is clear from the following example.

Example 1.1.4. Let X = D2 = {z ∈ C :| z |≤ 1}, the closed unit disc, which is a finite simplicial
complex. Let f : D2 → D2 be the self map f(z) = z2. Note that F (f) = {0, 1}, but L(f) = Tr[f0∗ :
Q → Q] = 1. Worse yet, the map g(z) = z2

2 is homotopic to f , so L(f) = L(g), but F (g) = {0} 6= F (f).
So L(f) certainly doesn’t compute the number of fixed points of f .

As an example where it does count the fixed points, we have the following:

Example 1.1.5. Let X = S2 = C ∪ {∞} be the Riemann sphere, and let f : X → X be the map
z 7→ z2. Then the set of fixed points F (f) = {0, 1,∞} is of cardinality 3. On the other hand one finds
that f∗ is multiplication by 2 on H2(X, Q) = Q, and identity on H0(X, Q) = Q, and Hi = 0 for i 6= 0, 2.
So L(f) = 3 = #F (f).
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So let us review what we need for L(f) to count some number, preferably #(F (f)), the set of fixed
points of F , assuming it is finite. We observe that for any topological space X, and continuous map
f : X → X with finite fixed point set F (f), F (f) is the cardinality of the intersection Γf ∩ ∆X ,
where Γf := {(x, f(x)) ∈ X × X : x ∈ X} is the graph of f in X × X, and ∆X := ΓIdX

is the
diagonal in X ×X. To compute the cardinality of this set algebraically, one needs a good homological
or cohomological intersection theory for X ×X.

Suppose X is a compact connected n-manifold that is orientable. In this situation, X × X is also
compact connected orientable of dimension 2n, and there is a beautiful (co)-homological intersection
theory on X and X × X due to Poincare. The upshot is that for X as above of dimension n there is
a Poincare duality isomorphism: DX := (−) ∩ [X] : Hi(X, Z) → Hn−i(X, Z), where [X] ∈ Hn(X, Z)
is the fundamental or orientation class of X. To compute the intersection number of a homology class
α ∈ Hi(X, Z) with a complementary dimensional (n− i)-class β ∈ Hn−i(X, Z), one defines:

α#β := 〈D−1
X (α) ∪D−

X(β), [X]〉 = 〈D−1
X (β), α〉

Similarly, one can define the intersection number of complementary dimensional cohomology classes by
α#β := 〈α ∪ β, [X]〉.

Now for X as above the map (1, f) : X → X ×X gives the graph homology class [Γf ] := (1, f)∗[X]
and the diagonal homology class [∆X ] := ∆∗[X], both in Hn(X × X, Z). They are of complemetary
dimension in X×X, and one can calculate their intersection number in X×X as defined above. Indeed:

Theorem 1.1.6 (Lefschetz-Poincare). Let X be a compact connected oriented manifold, and let f :
X → X be any continuous map. Then there is the identity:

L(f) = [Γf ]#[∆X ]

where the intersection number on the right is computed in X ×X. If X is a compact smooth manifold,
and f is a smooth map such that Γf intersects ∆X transversely in in the finite set Σ, the intersection
number on the right is the sum

∑
x∈Σ ε(x), where ε(x) = ±1 is a sign that computes whether the local

orientation of Γf followed by the local orientation of ∆X at x is + or − the local orientation of X ×X

at x.

Remark 1.1.7. (The transversality assumption) If X is a smooth compact oriented manifold, and
f : X → X is merely a continuous map, one can still geometrically interpret the intersection number on
the right by first making a small perturbation of f to a smooth map f1 which is homotopic to f , and
then again perturbing f1 by a small amount to get a smooth f2 such that Γf2 meets ∆X transversely at
all points of intersection. (Deep results of Sard and Thom are needed for this). One can construct an
easy example of a map f : S1 → S1 to see that transversality is essential for the geometric intersection
number to agree with the algebraic one. (Make Γf meet ∆ tangentially at exactly one point. Note
[∆]#[∆] = 0 in the torus S1 × S1.)
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1.2. The Euler Characteristic. We now focus on the smooth case. Suppose X is a smooth compact
oriented manifold of dimension n, and suppose we are given a smooth vector field v : X → TX on
X. (Here TX denotes the tangent bundle of X). Then by the theorem on existence and uniqueness
of ODE’s, there is a 1-parameter group of self-diffeomorphisms φt : X → X, with φo = IdX , and
v(x) = dφt(x)

dt |t=0
for all x ∈ X.

Further assume that v has an isolated set of zeros Z(v) = {x ∈ X : v(x) = 0}. Then for all t ∈ R,
φt(x) = x for all x ∈ Z(v), so Z(v) ⊂ F (φt) for each t. By using the mean-value theorem one can see
that for ε > 0 small enough, Z(v) = F (φε). Also for all t, φt is homotopic to φ0 = IdX . Thus for such
small ε, it is reasonable to expect that #Z(v) = #F (φε) = L(φε) = L(IdX) = χ(X).

It is clear that if we can guarantee the transversality condition for f = φε, then we would have such
an equality by the Theorem 1.1.6 above. To do this one would need a condition on v: i.e. that v have
only non-degenerate zeros. More precisely

Theorem 1.2.1 (Poincare-Hopf Index Theorem). Let X be a smooth compact connected oriented
manifold, and let v : X → TX be a smooth vector field on X, with zero set Z(v). Assume that for each
x ∈ Z(v), the Jacobian of the map Dv(x) : Tx(X) → Tx(X) is non-singular (i.e. X is non-degenerate).
Then Z(v) is a finite set of points, and Im v is transverse to the zero section. Then we have:

χ(X) =
∑

x∈Z(v)

indxv

where indxv := ε(x) = ±1 can be computed by looking at the sign of det Dv(x).

Clearly a smooth vector field with no zeros is non-degenerate and the sum on the right is 0. As a
consequence,

Corollary 1.2.2. If X as above has an everywhere non-vanishing smooth vector field then its Euler
characteristic is zero. In fact, the converse is also true (that is, the Euler characteristic is the only
obstruction, though it requires more work to prove).

In particular, every compact connected Lie Group has Euler characteristic 0. The even-dimensional
spheres S2n cannot have a nowhere vanishing vector field (called the Hairy Ball Theorem), and in
particular, cannot be given the structure of a Lie Group compatible with their differentiable structure.
On the other hand, the odd-dimensional spheres S2n−1 all have Euler characteristic zero, and it is an
easy exercise to construct nowhere vanishing vector fields on them (using the embedding into R2n = Cn

and multiplication by i.) Incidentally, only the spheres S0, S1 and S3 are topological groups with their
usual topology. S7 can be made a ‘non-associative’ topological group. This is a very deep result due to
J.F. Adams.

Thus, we see that the Euler characteristic χ(X) is an obstruction to finding a nowhere vanishing
vector field on X. That is, it is an obstruction to finding a trivial vector subbundle of rank 1 in the
tangent bundle TX. As we saw above, the Euler characteristic is a homotopy and hence a topological
invariant. It is remarkable that the obstruction to the solution of a smooth problem on X is a topological
invariant! In fact the result of Poincare-Hopf is true even for continuous vector-fields with isolated zeros,
provided one defines the index suitably.
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1.3. Thom class and Euler class. Let X be a compact oriented connected smooth manifold. It is
not hard to see that a tubular neighbourhood U of the diagonal ∆ in X × X is diffeomorphic to the
closed unit disc bundle D(TX) (with respect to any Riemannian metric) of the tangent bundle TX of
X (one again needs the Picard Theorem on ODE’s). Under this diffeo, the diagonal ∆ ⊂ U goes over
to the zero-section 0TX of TX. Let v : X → TX be a smooth vector field, which we can globally scale
by ε > 0 to assume that ‖v(x)‖ < 1 for all x ∈ X.

Then under the above diffeo, the intersection number Γφε
#∆ discussed earlier can be replicated by

the intersection number Im (v)#0TX of the section v with the zero section 0TX .

Using this as the point of departure, let us consider π : E → X to be any oriented vector bundle
of rank n on an arbitrary (paracompact, Hausdorff, 2nd countable) topological space X. Saying E is
oriented is equivalent to requiring that the top exterior power bundle ΛnE → X is a trivial line bundle.

Question: Is there a way to use the oriented compact 2n-manifold D(E) (with boundary the unit
sphere bundle S(E) := ∂ D(E)) to do intersection theory and compute the intersection number of the
image of a section s : X → E and the zero-section 0E?

There is a version of Poincare duality available for an oriented manifold with boundary such as
(D(E), S(E)), called Alexander-Lefschetz Duality. But the first step is to identify the homology (or
cohomology) class in H∗(D(E), S(E)) which corresponds to the diagonal class in X × X discussed
earlier. To this end we have the famous:

Theorem 1.3.1 (Thom Isomorphism). Let π : E → X be an oriented rank n-bundle on a topological
space X (always assumed paracompact, Hausdorff and 2-nd countable hereafter). Then there is a unique
relative cohomology class UE ∈ Hn(D(E), S(E); Z) called the Thom class of E such that UE restricts
to a generator of Hn(D(Ex), S(Ex); Z) = Hn(Dn, Sn−1; Z) ' Z for each x ∈ X. Furthermore, the map:

φE : Hi(X, Z) → Hi+n(D(E), S(E); Z)

α 7→ (π∗α) ∪ UE

is an isomorphism called the Thom isomorphism. (The right hand side is defined via the cup product
Hi(D(E), Z) ⊗ Hn(D(E), S(E); Z) ∪→ Hi+n(D(E), S(E); Z)). If E is not assumed oriented, the same
result is true with Z2-coefficients replacing Z-coefficients throughout.

The result is not at all difficult to prove. The existence of UE follows by the definition of orientability,
which says that the sheaf or ‘bundle’ of abelian groups H(D(Ex), S(Ex); Z) on X, (a local system or
locally constant sheaf of abelian groups by local triviality of E) is actually a constant sheaf. Then the
isomorphism itself follows from the Kunneth formula for E a trivial bundle, and hence for any locally
trivial bundle E by restricting to trivialising open sets and using a Mayer-Vietoris patching argument.

To motivate the forthcoming definition of the Euler class, assume X is a compact connected ori-
ented topological manifold of dimension n. Then the orientablility of E implies that (D(E), S(E)) is
a compact oriented connected 2n-manifold with boundary. It turns out that this Thom class UE ∈
Hn(D(E), S(E); Z) is Alexander-Lefschetz dual to the complementary dimensional homology class
[0E ] ∈ Hn(D(E); Z) under the Alexander-Lefschetz Duality isomorphism Hi(D(E), S(E); Z) → H2n−i(D(E); Z).
Since a section s : X → D(E) is homotopic to the 0-section 0 : X → D(E), it follows that the intersection
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number s∗[X]#[0E ] is precisely the integer χ(E) defined by UE ∪UE = χ(E)φE [X]. This is because by
the Thom isomorphism above φE [X] is the generating (orientation) class in H2n(D(E), S(E); Z). Hence
it is reasonable to make the following definition for any topological space X.

Definition 1.3.2 (Euler class). Let E be an oriented rank n-bundle on a topological space X. Define
the Euler-class e(E) ∈ Hn(X, Z) of E by the formula e(E) := φ−1

E (UE ∪ UE). (In the particular case
when X is an oriented manifold it satisfies 〈e(E), [X]〉 = χ(E), by the above discussion).

In case E is not assumed orientable, the same definition applied with Z2 coefficients gives the top
Stiefel-Whitney class wn(E) ∈ Hn(X, Z2). When E is orientable, wn(E) is the mod 2 reduction of e(E).

Theorem 1.3.3. Let E, be an oriented rank n bundle on X a compact oriented connected n-manifold.
Assume that there is a nowhere vanishing section s : X → E of E. Then e(E) = 0. When E, X are not
assumed oriented, wn(E) = 0.

The proof is immediate, since a section s with no zeros implies that the intersection number of s(X)
and 0E is zero. But more remarkably, we have:

Theorem 1.3.4. Let X be any finite simplicial complex of dimension n, and E be an oriented vector
bundle on X. Then E admits a nowhere vanishing section s if and only if e(X) = 0.

The proof of this stronger fact needs the identification of e(E) via obstruction theory.
The Euler class satisfies the following properties:

Proposition 1.3.5 (Properties of e(E) and wn(E)). The Euler and top Steifel-Whitney class satisfy
the following:

(i): (Functoriality under pullbacks) Let E be an oriented rank n bundle on a topological space X,
and f : Y → X a continuous map. Then e(f∗E) = f∗e(E), where f∗ : Hn(X, Z) → Hn(Y, Z)
is the induced map on cohomology. Analogous statement with Z2-coefficients and wn(E) for
arbitrary (not necessarily orientable) E.

(ii): (Trivial bundles) For a trivial bundle E = εn, e(E) = 0. Likewise, wn(E) = 0.
(iii): (Whitney sum formula) For two oriented bundles E and F on X of ranks n and m respectively,

the Euler class of the rank m+n bundle E⊕F is given by e(E⊕F ) = e(E)∪e(F ) ∈ Hm+n(X, Z).
Analogous statement for wn, when E and F are not assumed orientable.

(iv): (Euler characteristic) If X is a smooth compact connected oriented manifold of dimension n,
then e(TX) = χ(X)[X]. (The last 3 properties are also satisfied for the silly definition e(E) ≡ 0
for all bundles E! This property shows that there are bundles with non- zero Euler class).

Note that the only if part of the above Theorem 1.3.4 follows from (ii) and (iii) above.



6

2. Chern and Stiefel-Whitney classes

2.1. Real and complex line bundles. Quite analogously to real vector bundles of rank n, we also
have the notion of complex vector bundles of (complex) rank n. By default, they are real vector bundles
of (real) rank 2n. Most importantly, by the fact that | det A |2= det AR, where A is a complex linear
map (of Cn), and AR is the corresponding real linear map (of R2n), it follows that all complex vector
bundles are oriented when considered as real bundles. Furthermore, this real orientation is uniquely and
canonically determined.

Definition 2.1.1 (First Chern class and first Stiefel-Whitney class). A complex line bundle, i.e. a
complex vector bundle L of rkCL = 1 on X is automatically a real oriented rank 2 bundle LR on X (by
forgetting the complex structure). We define its first Chern class by:

c1(L) := e(LR) ∈ H2(X, Z)

(It turns out that L is a trivial bundle iff c1(L) = 0.) Finally, we define the total Chern class c(L) :=
1 + c1(L) ∈ H∗(X, Z).

Likewise, if L is a real line bundle on X, its first Stiefel-Whitney class is the top Stiefel-Whitney class
w1(L) ∈ H1(X, Z2) defined earlier. (It turns out that L is a trivial line bundle iff w1(L) = 0). Define
the total Stiefel-Whitney class w(L) := 1 + w1(L) ∈ H∗(X, Z2).

By the Property (i) in Proposition 1.3.5, it follows that the first (resp. total) Chern class and first
(resp. total) Stiefel-Whitney class are functorial with respect to pullbacks. We recall the real projective
space Pn(R) of all real 1-dimensional subspaces in Rn+1. On Pn(R) there is the real tautological line
bundle λR, whose fibre over [v] ∈ Pn(R) is the line Rv. Similarly, there is the complex tautological line
bundle λC on the analogously defined complex projective space Pn(C).

The following proposition is crucial in the sequel.

Proposition 2.1.2. Let F = R (resp. C), and let Pn(F) denote the projective space of dimension n

over F. Let c (resp. w) denote the generating cohomology class in H2(Pn(C), Z) evaluating to 1 on
S2 = P1(C) ⊂ Pn(C) with its natural orientation as a complex manifold (resp. the unique non-zero
generator in H1(Pn(R), Z2)). Let λF denote the tautological F-line bundle on Pn(F) as defined above.
Then c1(λC) = −c and w1(λR) = w.

We recall here that H∗(Pn(C), Z) = Z[c]/〈cn+1〉 as a Z-algebra. Likewise, H∗(Pn(R), Z2) = Z2[w]/〈wn+1〉
as a Z2-algebra.

2.2. The splitting principle.

Definition 2.2.1 (Projective bundle). Let π : E → X be a F-vector bundle on a topological space X

of rkFE = n. We define the projective bundle P (E) of E to be a fibre bundle p : P (E) → X on X, with
fibre P(Ex) ' Pn−1(F) (viz. the F-projective space of the F-vector space Ex) over x, and p the obvious
projection mapping this entire fibre to x.
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On P (E), there is also a tautological F-line bundle λE , whose fibre over [vx] ∈ P(Ex) is the F-line
Fvx ⊂ Ex = (p∗E)vx . Thus by definition, we have an exact sequence of bundles on P (E):

0 → λE → p∗E → F → 0

where F is a an F-vector bundle of rkFF = n− 1. Now since X is a nice topological space, so is P (E),
and all continuous vector bundles on it carry Riemannian/Hermitian metrics. Thus, using such a metric
on p∗E, we get that there is a bundle splitting map which is F- linear, and

p∗E ' λE ⊕ F

To summarise, by pulling back the original bundle E of F-rank n to P (E), we have managed to split
off a line bundle λE , and are left with a bundle F of lower rank n− 1. Thus, if we can understand what
p∗ is doing on cohomology, we can define higher Chern (or Stiefel-Whitney) classes by inducting on the
rank, and finally appealing to the Definition 2.1.1 for F-line bundles. This is possible by the:

Theorem 2.2.2 (Leray-Hirsch). Let F = C (resp. R), and let Λ = Z (resp. Z2). Let E be an
F-vector bundle on the topological space X, with p : P (E) → X the corresponding (F-) projective
bundle. Let λE denote the corresponding tautological F-line bundle on P (E) introduced above. Let
c := −c1(λE) ∈ H2(P (E), Z) (resp. w1(λE) ∈ H1(P (E), Z2). Then the ring homomorphism p∗ :
H∗(X, Λ) → H∗(P (E),Λ) is injective, and via this ring homomorphism H∗(P (E),Λ) is a free module
over H∗(X, Λ) with basis 1, c, c2, .., cn−1.

Again, the proof is is similar in spirit to the one sketched for the Thom isomorphism theorem.
One first notes that since the line bundle λE on P (E) restricts to the tautological line bundle on
P(Ex) ' Pn−1(F) by definition, the restriction of c to each fibre P(Ex) gives the cohomology algebra
generator cx ∈ H∗(P(Ex),Λ) for that fibre (by the Proposition 2.1.2 above). Using the fact that E (and
therefore P (E)) is locally trivial, hence a locally a product and the Kunneth formula shows the result
is true locally. Then one again uses Mayer-Vietoris patching. Alternatively, the classes 1, c, .., cn−1 can
be used to give a morphism of the (degenerate) Kunneth spectral sequence with the Leray spectral
sequence for the fibre bundle P (E), and noting that it induces isomorphisms at E2, it must produce an
isomorphism of the limits.

Now we can define the higher Chern and Stiefel-Whitney classes:

Definition 2.2.3 (Chern and Stiefel-Whitney classes). Let E be an F-vector bundle on a topological
space X, and let P (E) be its F-projective bundle. Let the class c be defined as in the statement of the
Leray-Hirsch Theorem 2.2.2 above. Since H∗(P (E),Λ) is free on H∗(X, Λ) with basis 1, c, c2, .., cn−1,
and p∗ is injective, (by Leray-Hirsch) there must be unique elements a1, .., an ∈ H∗(X, Λ) such that:

cn + (p∗(a1) ∪ cn−1) + .... + (p∗(ai) ∪ cn−i) + ... + p∗(an) = 0

When F = C and Λ = Z, then ai ∈ H2i(X, Z), and is called the i-th Chern class of E denoted ci(E).
When F = R, and Λ = Z2, then ai ∈ Hi(X, Z2) and is called the i-th Stiefel-Whitney class of E denoted
wi(E). Finally the class c(E) := 1+c1(E)+..+cn(E) ∈ H∗(X, Z) (resp. w(E) := 1+w1(E)+...wn(E) ∈
H∗(X, Z2) is called the total Chern class (resp. total Steifel-Whitney class) of E.
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Why is this an inductive formula? Say E is complex. The essential point is that in the splitting p∗E =
λE⊕F following Definition 2.2.1 above, we must have c(p∗E) = p∗(c(E)) = c(λE)(c(F )) = (1−c)(c(F )).
Thus cn(F ) is the degree n-homogeneous term of p∗(1 + c1(E) + .. + cn(E))(1 + c + c2 + ...). But F

of C-rank n− 1 must mean that this must be zero, which implies the defining relation in the definition
above. Likewise for real bundles E and Whitney classes.

Proposition 2.2.4. These Chern and Stiefel-Whitney characteristic classes defined above have the
following properties:

(i): (Functoriality) If E is a complex vector bundle on X, and f : Y → X is a continuous map,
then c(f∗E) = f∗(E). Analogously for a real vector bundle E, and total Stiefel-Whitney class.

(ii): If E is a complex (resp. real) vector bundle of complex (resp. real) rank n, then ci(E) = 0
(resp. wi(E) = 0) for i > n. Furthermore cn(E) = e(ER), the Euler class of ER the underlying
real bundle of E. Likewise, if E is real and orientable, then wn(E) = e(E) mod 2.

(iii): (Whitney sum formula) c(E ⊕ F ) = c(E) ∪ c(F ) for complex bundles. Likewise w(E ⊕ F ) =
w(E) ∪ w(F ) for real bundles.

(iv): For the tautological line bundle λ on Pn(C) (resp. Pn(R)), the first Chern class c1(λ) (resp.
w1(λ)) are as in Proposition 2.1.2

Here are some very interesting applications of Stiefel-Whitney classes:

(i): For n = 2k, the real projective space Pn(R) cannot be embedded in R2n−1. Hence the Whitney
embedding theorem that every compact smooth n-manifold embeds in R2n is sharp.

(ii): A compact connected smooth n-manifold is the boundary of an (n + 1)-manifold if and only
if all the finitely many (Stiefel-Whitney) numbers {〈wi1

1 wi2
2 ..win

n , [X]〉 :
∑

ij = n} ⊂ Z2 vanish.
(iii): Every compact connected 3-manifold is parallelisable (i.e. has trivial tangent bundle).

2.3. The Chern Character, Todd Class and Riemann-Roch. Using rational instead of integer
cohomology, one can define certain very important characteristic classes of a complex vector bundle E.

Definition 2.3.1 (Chern character). Let E be a complex vector bundle of rank rkCE = n on a
topological space X. Let ci := ci(E) ∈ H2i(X, Q) denote the (images of) the Chern classes of E

in rational cohomology. Let Sk = Sk(σ1, .., σn) be the k-th Newton Polynomial (i.e. the expansion
of tk1 + ...tkn as a polynomial in the elementary symmetric functions σi(t1, .., tn)). Define the Chern
character of E by the formula:

ch(E) = rkCE +
∞∑

k=0

Sk(c1, .., cn)
k !

∈ H∗(X, Q)

This characteristic class satisfies (a) ch(L) = exp(c1) if rkCL = 1, (b) ch(E ⊕ F ) = ch(E) + ch(F ) and
(c) ch(E ⊗ F ) = ch(E)ch(F ).



9

The Chern character turns out to give a very important isomorphism between the rational complex K-
ring K∗(X)⊗Q and rational cohomology ring H∗(X, Q) (Atiyah-Hirzebruch). An immediate application
is that the only even-dimensional spheres which can admit the structure of an almost complex manifold
(i.e. a complex vector bundle structure on the tangent bundle) are S2 and S6. (S2 is the well-known
complex manifold given as the Riemann sphere. It is not known if any of the many known almost
complex structures of S6 actually arise from a complex manifold structure on it).

Definition 2.3.2. (Todd Class) Let E be a complex vector bundle of rkCE = n on a topological
space X, and let ci denote the Chern classes in H∗(X, Q) as above. Define the k-th Todd Polynomial
Tk(σ1, .., σn) by expressing the k-th degree homogeneous term of

∏n
i=1

(
ti

1−e−ti

)
as a polynomial in the

elementary symmetric functions σi(t1, .., tn). Then the total Todd class of E is defined as:

Td(E) := 1 +
∞∑

k=0

Tk(c1, .., cn) ∈ H∗(X, Q)

It satisfies the following (a) Td(L) =
(

c1(L)

1−e−c1(L)

)
for rkCL = 1 and (b) Td(E ⊕ F ) = Td(E)Td(F )

A cornerstone theorem in algebraic geometry is:

Theorem 2.3.3 (Hirzebruch-Riemann-Roch). Let X be a compact connected complex manifold of
dimension n and let E a holomorphic vector bundle on X. Let O(E) denote the sheaf of holomorphic
sections of E. Then the Arithmetic Euler characteristic or Arithmetic genus is defined by the formula:

χ(X, E) :=
n∑

i=0

(−1)i dimC Hi(X,O(E))

χ(X, E) a priori depends on the holomorphic structures of X and E, but is actually a topological
invariant of X and E. Indeed it can be computed as:

χ(X, E) = 〈Td(τ(X)) ∪ ch(E), [X]〉

where τ(X) is the holomorphic tangent bundle of X.

In the instance of X of complex dimension 1 (i.e. a smooth complex curve or Riemann surface) of
genus g, this formula was proved by Riemann and Roch. It says that if D =

∑l
i=1 nipi is a finite integral

linear combination of points p1, .., pl on X, and d = deg D :=
∑l

i=1 ni, then:

dimC H0 − dimC H1 = d− g + 1

where H0 is the vector space of meromorphic functions f on X satisfying (f) + D ≥ 0 and H1 is a
similarly defined vector space of Abelian differentials (meromorphic 1-forms) ω on X with (ω)−D ≥ 0.
In particular, if d > g − 1, then there are plenty of meromorphic functions on X.


