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THE DIAGONAL AS THE ZERO LOCUS OF A SECTION
Vishwambhar Pati

1. Introduction

1.1. Statement of the Problem. Let M be a compact connected oriented smooth manifold, and let
∆ ⊂ M ×M be the diagonal submanifold.

Definition 1.1.1. Say that M has the property Z if there exists a smooth real vector bundle E of rank
n on M × M and a smooth section s of E such that (i) s is transverse to the 0-section 0E of E and
(ii) ∆ = s−1(0E). If further the bundle E is orientable, say that M has the property Zo. Finally, if
dimR M = 2m, and E can be chosen to be a smooth complex vector bundle of rkCE = m, say that M

has the property Zc.

Question: When does M as above have the property Z (resp. Zo, resp. Zc)?

Remark 1.1.2. Clearly Zo ⇒ Z. Further, if M satisfies Zc, then since E|∆ is forced to be isomorphic
to the normal bundle of ∆ by the transversality condition, and this normal bundle is known to be
isomorphic to the tangent bundle τM . It follows that E a complex vector bundle forces τM to be a
complex complex bundle, so M will necessarily have to be an almost complex manifold. Of course, Zo

and Z will follow from Zc whenever it holds.

Remark 1.1.3. If M has the property Z, then M must carry a bundle H of rank n and a smooth
section σ _| 0H with σ−1(0H) = {p}, for p ∈ M any given point. Indeed set H := i∗F , and the section
σ = i∗s where i : M → M ×M is the inclusion x 7→ (x, p). Then it is easy to check that σ _| 0H and
σ−1(0H) = {p}.

This forces the top Whitney class wn(H) to be 1. If M has Zo and E is orientable, this forces the
Euler characteristic eH of H to be ±1.

In this note we prove the following:

Theorem 1.1.4.

(i): The only spheres with the property Z are S1, S2, S4 and S8. All but the first have Zo.

(ii): No odd-dimensional manifold M has the property Zo. If further H1(M, Z2) = 0, then M does
not have the property Z.

(iii): If dim M = 4 and M is an almost complex manifold, then M has the property Zc (in
particular Zo and Z).

(iv): A compact almost complex manifold M with dimC M = 3 with w2(M) = 0 ( ⇔ mod 2
reduction of c1(M) vanishes ⇔ M is spin) satisfies Zc.

(v): Let M be an almost complex manifold of dimC M = 3. Assume H1(M, Z) = 0 and H2(M, Z) =
Z. Then M satisfies Zc if and only if it is spin.
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(vi): Let M ⊂ PN (C) be a smooth projective variety of dimC M = 3 which is a set-theoretically
complete intersection. Assume H1(X, Z) = 0 (or alternatively assume M is a strict complete
intersection). Then M has the property Zc if and only if M is spin.

(vii): Let M ⊂ Pn(C) be a smooth strict complete intersection of dimC M = 3 obtained as M =
X1∩X2..∩Xn−3 where Xi are smooth hypersurfaces of degree di. Then M has the property Zc

if and only if the number (n+1−
∑n−3

i=1 di) is even. In particular, a smooth degree d hypersurface
in P4(C) has Zc if and only if d is odd. In particular, the smooth quadric hypersurface in P4(C)
does not satisfy Zc.

(viii): For m ≥ 2, the smooth odd-dimensional quadric hypersurface Q2m−1 ⊂ P2m(C) does not
satisfy Zc.

These results will be proved in the next section. Meanwhile we note some examples.

1.2. Some Examples.

Example 1.2.1 (The circle). S1 has the property Z. For let γ denote the Mobius bundle on S1, i.e.
the tautological line bundle with S1 being regarded as P1(R). Then clearly it has a section σ transverse
to 0γ and having a single zero at z = 1 (regarding S1 as unit complex mumbers). Let µ : S1 × S1 → S1

denote the map (z, w) 7→ zw−1, set E := µ∗γ and s to be the pullback section s(z, w) = σ(zw−1). This
clearly does the job.

Since all orientable bundles of rank 1 on S1 are trivial, S1 supports no orientable line bundles H of
e(H) = ±1, so by Remark 1.1.3 S1 does not have Zo. This also follows from (ii) of the Theorem 1.1.4
stated above.

Example 1.2.2 (Products). If two manifolds M and N have the property Z, then so does M ×N . For,
let (E1, s1) and (E2, s2) be the bundle-section pairs on M ×M and N × N respectively, realising the
property Z for M and N . Then the bundle F := E1 ×E2 has the section σ := s1 × s2 being transverse
to 0F , and σ−1(0F ) = ∆M ×∆N . Now take the shuffle diffeo: φ : M ×N ×M ×N → M ×M ×N ×N

which flips the middle two variables, and take E := φ∗F and s := φ∗σ. Analogous considerations apply
for Zo and Zc.

Remark 1.2.3 (Tori). By the preceding examples, Tn := S1×S1..×S1 has the property Z. It has the
property Zo (indeed even Zc) only for even n, as will follow from (ii) of the Theorem 1.1.4, Examples
1.2.6 below and 1.2.2 above. Thus examples of manifolds with the property Z exist in all dimensions.

Example 1.2.4 (Lie Groups). Let G be a compact Lie group, and assume that G supports a rank n

bundle H with a section σ _| 0H and σ−1(0H) = e, the identity element of G. Then define µ : G×G → G

by µ(xy) = xy−1. It is easily checked from the bundle E := µ∗H, and the section s := µ∗σ, that G

satisfies Z. (This is exactly the construction of the Example 1.2.1 above.)

Likewise if H can be chosen orientable, G satisfies Zo. Thus the necessary condition described in the
Remark 1.1.3 above becomes sufficient for Lie groups.
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Example 1.2.5. The space P3(R) has the property Z but not Zo. The rank 3 non-orientable bundle
H = O(1) ⊕ O(1) ⊕ O(1) has a section which vanishes at a single given point. Identifying P3(R) with
the Lie group SO(3) and the given point to be e ∈ SO(3), and appealing to the previous Example 1.2.4
we have Z.

However, it follows from (ii) of the Theorem 1.1.4 stated above that P3(R) does not have property
Zo. In particular, it follows from 1.2.4 above that P3(R) supports no orientable rank 3 bundles of Euler
class ±1. (I am unaware if this fact is independently known).

Example 1.2.6 (Compact Riemann Surfaces). Let M be a compact connected Riemann surface. Then
the diagonal ∆ is an irreducible curve in the complex surface M × M of multiplicity 1, and by the
well-known correspondence between divisors and holomorphic line bundles, is exactly the zero-locus of
a holomorphic complex line bundle L, which comes with a natural section defining this divisor ∆. Thus
M has Zc.

Example 1.2.7 (Complex Projective Line). For P1(C) ' S2, let E := π∗1O(1)⊗ π∗2O(1), where
πi : P1(C)× P1(C) → P1(C) are the coordinate projections . Define the section s := z1w2 − z2w1. It is
easily checked that s and E do the job, and P1(C) = S2 has the property Zc.

Example 1.2.8 (The spheres S4, S8). Define P1(H)l ' S4 as the quotient H2\0 by the left multiplication
of H∗, and likewise P1(H)r as the quotient by the right action. On the former, we have the hyperplane
bundle L1 := O(1)l which consists of linear functionals on the tautological bundle γ1

l on P1(H)l. Since
only right multiplication by a quaternion is a linear with respect to left H-module structure on H,
this bundle has a right “H-vector bundle” structure (It does not have even a left C-vector bundle
structure!). Similarly define L2 := O(1)r on P1(H)r, which has a left H-bundle structure. Then take the
external tensor product E := π∗1L1⊗H π∗2L2, where πi are the coordinate projections on P1(H)l×P1(H)r

(this bundle has no further structure than that of a real rank 4 bundle!), and the section defined by
s := z1w2 − z2w1. Note that the identification of P1(H)l with S4 is by [z1 : z2] 7→ z−1

2 z1, and of P1(H)r

is by [w1 : w2] 7→ w1w
−1
2 . The section above is transverse to 0E , and its zero-locus is ∆.

There is a completely analogous construction for S8, by viewing it as O ∪ {∞}, where O are the
octonions. On the two charts U = S8 \ {0} and V = S8 \ {∞}, one can paste the trivial octonionic
line by the transition function s(u) = u for u ∈ U ∩ V , and thereby get a bundle with a transverse
section vanishing exactly at a point. The remaining details (hinging on the fact that the operation
(u, v) 7→ v−1.u makes sense on the octonions) are omitted.

Example 1.2.9 (Complex projective spaces and Grassmannians). It is known that all complex projec-
tive
spaces and grassmannians have Zc by a construction of Kirillov-Beilinson. (See [Srin], Ch. 5).
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2. Reduction to Homotopy Theory

2.1. Notation and preliminaries. Put some suitable Riemannian metric on M , which induces one
on M ×M as well. Bundle metrics will then result on τM×M , and all its subbundles. Let U be a closed
ε-tubular neighbourhood of ∆ in M×M . Via the tubular neighbourhood theorem, there exists a smooth
diffeomorphism φ : U → Dε(ν) of U with the ε- disc bundle Dε(ν) of the normal bundle ρ : ν → ∆ of
∆ in M ×M . The map r := ρ ◦ φ : U → ∆ is then a strong deformation retraction of U to its core ∆.
Under the diffeo φ, the boundary ∂U of U is mapped diffeomorphically to the ε-sphere bundle Sε(ν).

Hence, under the diffeo φ, the pullback bundle r∗(ν) → U on U is carried over to the pullback bundle
ρ∗(ν) → Dε(ν), where we continue to denote the restricted bundle projection Dε(ν) → ∆ by ρ. Indeed,
there is a bundle diagram:

r∗(ν)
Dφ−→ ρ∗(ν)

ρ ↓ ↓ ρ

U
φ−→ Dε(ν)

(1)

Note that the restricted bundle ρ∗(ν)|Sε(ν) → Sε(ν) has a tautological section s defined by v 7→ v,
which satisfies ‖s(v)‖ = ε for all v ∈ Sε(ν). Thus we have an orthogonal direct sum decomposition of
bundles on Sε(ν):

ρ∗(ν)|Sε(ν) = ξ ⊕ L

where L is trivial line subbundle spanned by s. Note that since ν ' τM is orientable, so is ξ.

It is also well known that ρ : ν → ∆ is the tangent bundle ρ : τ∆ → ∆ of ∆, which in turn is
isomorphic to the tangent bundle ρ : τM → M . Hence, under this identification, ξ is isomorphic to the
quotient bundle ρ∗(τM )/L → Sε(τM ), where L → Sε(τM ) is the trivial tautological bundle spanned by
the tautological section of ρ∗(τM ) over Sε(τM ).

Let F := φ∗(ξ), a rank (n− 1) subbundle of r∗(ν)|∂U . By the above, it is isomorphic to the quotient
rank (n− 1) bundle ρ∗(τM )/L → Sε(τM ) under the above identifications. Note that F is an orientable
bundle on ∂U .

Remark 2.1.1. The restriction of the bundle ξ above to each fibre Sε(νx) of the sphere bundle ρ :
Sε(ν) → M is the tangent bundle τn−1 of Sε(νx). Consequently, the bundle F , when restricted to any
fibre r−1(x) of the fibre bundle r : ∂U → ∆, is isomorphic to τn−1. This is clear, since the fibre of L at a
point v ∈ Sε(νx) is precisely Lv = Rv. Thus ξv = (Rv)⊥ = Tv(Sε(νx)) inside νx. The second statement
follows from the first by the definition of F .

Since the n = 1 case is completely settled by Example 1.2.1, we will assume henceforth that n ≥ 2.

Lemma 2.1.2. Let M , U , ∆, be as above. Set X := (M ×M)\U◦. Then M has the property Z if and
only if the rank (n− 1) bundle F → ∂U defined above is isomorphic to the restriction to ∂U = ∂X of a
smooth rank (n − 1) bundle G on X. Further, if M has the property Zo, the bundle G can be chosen
to be orientable.
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Proof: We first prove the only if part. Suppose there exists a rank n smooth real vector bundle
π : E → M × M , and s a smooth section transverse to the zero-section 0E such that the diagonal
∆ = s−1(0E). The retraction map r : U → ∆ is a strong deformation retraction, so E|U is isomorphic to
r∗(E|∆). Consequently, Er(y) is identified with Ey for all y ∈ U . Furthermore the section s is nowhere
vanishing on X = (M ×M) \ U◦, and hence defines a trivial line sub-bundle Λ of E|X , and a splitting
of bundles on X:

E|X = G⊕ Λ

where G is a rank (n− 1) bundle on X. We claim that G|∂U = G|∂X is iomorphic to F .

The normal bundle ν of s−1(0) = ∆ in M ×M is isomorphic to E|∆ via the derivative Ds, by well-
known results on transversality. Indeed, for each x ∈ ∆, v 7→ Dsx(v) is an isomorphism of νx with Ex

by the transversality hypothesis. Since M is compact, the inverse function theorem then identifies an
ε-tubular neighbourhood U of ∆ as above with an ε-disc bundle Dε(E|∆) of E|∆, via the map s. Also s

maps ∆ diffeomorphically to the zero-section of E|∆.

Consequently there is a bundle diagram:

r∗(ν) Ds−→ π∗(E|∆)
ρ ↓ ↓ π

U
s−→ Dε(E|∆)

(2)

Putting the two diagrams (1) and (2) together, we have an identification of the bundles ρ∗(ν) →
Dε(ν), π∗(E|∆) → Dε(E|∆) and r∗(ν) → U . Under these identifications, the the tautological everwhere
6= 0 sections of the first two bundles defined over their respective sphere bundles Sε(ν) and Sε(E|∆)
correspond to each other, and to an everywhere 6= 0 section σ of the third bundle r∗(ν) → ∂U .

It follows that the line bundle L on Sε(ν) corresponds with the tautologically defined trivial line
subundle of r∗E|∆ → ∂U . This last bundle is isomorphic to E|∂U → ∂U (since r is a strong deformation
retraction), and the tatuological trivial line bundle is mapped isomorphically to Λ|∂U . Hence, the
quotient bundle F defined above is isomorphic to the bundle G|∂U , under the identifications above.

If M had property Zo, and E was chosen to be an orientable bundle realising Zo to being with,
then G is nothing but E|X/ε1, where ε1 is the trivial subundle spanned by s|X which does not vanish
anywhere on X. Thus G will also be orientable. This proves the only if part of the first statement and
the last statement.

For the if part, let G be given on X as in the statement. Construct the bundle E, by taking r∗(ν) on
U , and gluing it to the bundle G⊕ ε1X on X, after ensuring that the decomposition r∗(ν) = F ⊕ φ∗(L)
on ∂U is preserved, viz. the first summand G|∂U is glued to the first summand F|∂U via the given
isomorphism, and the second trivial summand ε1X is glued to the second trivial summand φ∗L|∂U on
∂U by matching the section σ of the trivial bundle φ∗L → ∂U defined above with any everywhere
6= 0 section of ε1X which extends σ to X (An everwhere non-zero smooth function f : ∂X → R always
extends to an everwhere non-zero smooth function g : X → R. For, n ≥ 2 implies ∂X is connected,
so assume w.l.o.g. that f > 0, use Tietze to extend the smooth function log f to X, and exponentiate
the extension to get g). The section σ of r∗(ν) → ∂U above is just the restriction of the tautological
section, also denoted σ, of r∗(ν) → U which is transverse to the zero section. Thus the matched section
s of the whole bundle E vanishes exactly on ∆, with s _| 0E . The lemma follows. 2.
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One would like to have an extension of the result for the property Zc. Assume (in view of Remark
1.1.2) that M is an almost complex manifold of real dimension n = 2m. Then in the notation of the
last section, the normal bundle ν ' τM is a complex vector bundle, and r∗(ν) splits off a complex line
subbundle ε1c defined by the complex span of the tautological section of r∗(ν). Thus we may write:

r∗(ν)|∂U = Fc ⊕ ε1c

where Fc is now a complex vector bundle with rkCFc = m− 1.

Lemma 2.1.3. Let M be an almost complex manifold of dimension n = 2m. Then M has the property
Zc iff the bundle Fc of complex rank m− 1 on ∂X is isomorphic as a complex bundle to the restriction
of a complex vector bundle Gc on X.

Proof: The only if part follows entirely as before, after noting that if the complex vector bundle E

realises property Zc for M , then E|X splits off the trivial complex line subbundle Λc spanned by s,
where s was the chosen section that is everywhere non-zero on X. That is Λc = Λ ⊕ iΛ where Λ is
as in the last lemma. Clearly Gc is a rank m − 1 complex bundle which restricts on ∂X to a bundle
isomorphic to Fc . For the if part, take r∗(ν) = Fc ⊕ ε1c on ∂U = ∂X, where ε1c is the complex span
of the real tautological section s on ∂U . Match up ε1R with its tautological section on ∂X to a real
trivial line bundle ε1X on X with an extended everywhere non-vanishing section on X as in the previous
Lemma 2.1.2. This automatically matches up ε1c with the trivial complex line bundle ε1c,X by a complex
isomorphism, viz by complexification. Also match up Fc with G|∂X via the given complex isomorphism.
The lemma follows. 2.

Corollary 2.1.4 (Compact Riemann surfaces again). Let M be a compact Riemann surface. Then M

has the property Zc.

Proof: We saw this in Example 1.2.6. It also immediately follows from Lemma 2.1.3, since Fc is a
complex vector bundle of rank 0! 2.

2.2. The homotopy problem. With the notation of the preceding Lemma 2.1.2, and as before let
ν ' τM the normal bundle of ∆ in M ×M , U a closed ε-tubular neighbourhood of ∆ in M ×M diffeo
to Dε(ν), X = (M ×M) \ U◦, with ∂X = ∂U diffeomorphic to Sε(ν) (' Sε(τM )). Let F → ∂X be the
(n− 1)-plane bundle introduced before Lemma 2.1.2. Then we have the following:

Proposition 2.2.1. Let f : ∂X → Gn−1(R∞) be the classifying map for the (n − 1)-plane bundle F .
Then M has the property Z iff there is an extension of f (in the homotopy category) to a smooth map
f̃ : X → Gn−1(R∞). This happens iff an inductively defined sequence of obstructions which lie in the
cohomology groups:

Hi+1(M ×M,∆; πi(Gn−1(R∞))

all vanish. (Here Gn−1(R∞) denotes the universal classifying space BO(n − 1) for real (n − 1)-plane
bundles).
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Proof: The first part is clear, by Lemma 2.1.2 and the classification theorem for (n− 1)-plane bundles.

For the second part, obstruction theory tells us that there are inductively defined obstructions in the
cohomology groups:

Hi+1(X, ∂X;πi(Gn−1(R∞))

which vanish iff a continuous extension f̃ : X → Gn−1(R∞) of f exists in the homotopy category. Since
continuous maps are homotopic to sufficiently close smooth approximations on any smooth manifold,
we may assume f̃ is smooth. Since X ∪ U◦ = M × M and ∂X ∪ U◦ = U , these cohomology groups
are isomorphic to Hi+1(M ×M,U ;πi(Gn−1(R∞)) by excision. Since U has ∆ as a strong deformation
retract, these groups are in turn isomorphic to the ones in the statement. 2

Since it isn’t very easy in general to apply the Proposition above directly except in very simple
instances, in the next section we will be using elementary algebraic topology to establish the main result
Theorem 1.1.4.

3. The Main Theorem

3.1. Spheres. The following proposition addresses (i) of the Theorem 1.1.4

Proposition 3.1.1. Sn has the property Z if and only if n = 1, 2, 4, or 8.

Proof: We need to identify the bundle F on ∂U , in order to appeal to the foregoing Lemma 2.1.2. The
normal bundle ν of ∆ ⊂ Sn × Sn is the tangent bundle ρ : τn → Sn, as remarked earlier. The unit
sphere bundle S(τn) is the set of pairs (x, v) ∈ Rn+1×Rn+1 such that v ∈ Tx(Sn) = (Rx)⊥ and | v |= 1.
But this is precisely the Stiefel manifold:

V2(Rn+1) = {(x, v) : (x, v) is an orthonormal 2- frame in Rn+1}

The bundle projection ρ : S(τn) → Sn is just projection into the first factor, and thus we have the
spherical fibre bundle

Sn−1
x

jx→ V2(Rn+1)
ρ→ Sn (3)

where Sn−1
x = ρ−1(x) is the fibre over x.

The tautological section of ρ∗(τn) → V2(Rn+1) is given by (x, v) 7→ v. Thus the bundle
F = ρ∗(τn)/L → V2(Rn+1) defined earlier has the fibre over y = (x, v) given by:

F(x,v) = Tx(Sn)/Rv = Rn+1/γ(x,v)

where γx,v = Rx + Rv ⊂ Rn+1. In other words, γ → V2(Rn+1) is the rank 2 tautological trivial bundle
whose fibre at (x, v) is the subspace spanned by x and v in Rn+1, and F = εn+1/γ, where εn+1 is the
trivial (n + 1)-plane bundle on V2(Rn+1). (Since γ ' ε2, in particular, it follows that F is stably trivial.
Hence all resort to stable characteristic classes is futile, and the Euler class is all that works).

The disc bundle of the normal bundle ν of ∆ in Sn×Sn is just the disc bundle of the tangent bundle
of ∆. Letting the ε-tubular neighbourhood of ∆ be denoted by U as above, we note that the complement
X = (Sn × Sn) \ U◦ is precisely a tubular neighbourhood of the antidiagonal Γ which is the graph of
the antipodal map A : Sn → Sn defined by Ax = −x.
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Now the map 1 × A is an involution of Sn × Sn mapping ∆ diffeomorphically to Γ, and carrying
the ε-tubular neighbourhood U of ∆ to a ε-tubular neighbourhood of Γ. Hence, if we set ε = π, the
length of a semicircle, (1×A) will achieve a diffeomorphic identification of U with X = (Sn×Sn) \U◦.
The common boundary ∂U = ∂X is diffeo to the π-sphere bundle Sπ(τn) = V2(Rn+1). This is the
bundle over ∆ whose fibre over (x, x) ∈ ∆ is the (n− 1) dimensional equatorial sphere cut by the plane
(Rx)⊥. Also X becomes a disc bundle Dπ(νΓ) = Dπ(τn), just like U . It contains the antidiagonal Γ as
a strong deformation retract. Let θ : X → Γ denote the retraction, coming from the bundle projection
νΓ ' τn → Γ. Then, with the identification ∂X = ∂U = V2(Rn+1), the map θ((x, v)) = (x, Ax) ∈ Γ.
That is θ : ∂U = Sπ(τn) → Γ is again the bundle projection. If we identify Γ with Sn via the first
coordinate, then θ is just the map ρ : V2(Rn+1) → Sn.

Because θ is a deformation retraction, every bundle G on X is the θ-pullback of a bundle on Γ,
equivalently a ρ-pullback of a bundle on Sn. Hence it follows, by the Lemma 2.1.2 above, that Sn has
property Z iff the bundle F defined above on V2(Rn+1) is isomorphic to the pullback under ρ of some
bundle on Sn.

Since by (3), ρ◦jx : Sn−1
x → Sn is the constant map to x, it follows that the ρ-pullback of any bundle

G on Sn will be trivial when restricted to a fibre Sn−1
x . Hence, if F is isomorphic to the ρ-pullback of

a bundle on Sn, it follows that F|Sn−1
x

is isomorphic to a trivial bundle on Sn−1
x .

By the Remark 2.1.1 above, F|Sn−1
x

is isomorphic to the tangent bundle τn−1 of Sn−1
x . Hence F will

be a ρ-pullack of a bundle on Sn only if τn−1 is trivial. In particular, only if n− 1 = 0, 1, 3, or 7. That
is, only if n = 1, 2, 4 or 8.

This proves the only if part of the proposition. For the ’if’ part, refer to the Examples 1.2.7 and
1.2.8. Presumably the same thing works for n = 8 (??) and the octonions. 2

3.2. Odd dimensional manifolds. We continue with the proof of (ii) of Theorem 1.1.4. All homologies
and cohomologies hereafter are with Z coefficients unless otherwise stated.

Proposition 3.2.1. Let M be a compact orientable manifold of odd dimension. Then M does not have
the property Zo. If further H1(M, Z2) = 0, then it does not have the property Z.

Proof: Let E be an orientable bundle of odd dimension 2k+1 on M×M , where dim M = 2k+1. Then
the Euler class of H := E|M×{p} must be zero, since H is of odd rank = 2k+1 = dim M (this is because
the automorphism v 7→ −v on H reverses orientation, and hence the sign of E, and top homology of M

is Z, devoid of 2-torsion). On the other hand we remarked in Remark 1.1.3 that H must have euler clas
±1. This is a contradiction.

For the second assertion, note that if H1(M, Z2) = 0, then H1(M, Z2) = 0 and H1(M ×M, Z2) = 0
also. In particular every bundle on M ×M is orientable. Thus if M satisfies Z, it automatically satisfies
Zo. But this contradicts the first statement. 2

Remark 3.2.2. We note from the Example 1.2.5 of P3(R) above that this is a sharp result. That is, if
the H1(M, Z2) = 0 condition is dropped, then it is possible for an odd dimensional M to have property
Z.
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Remark 3.2.3. The part (i) of Theorem 1.1.4 for spheres of odd dimension n ≥ 2 follows from the
Proposition above.

3.3. Complex dimension 2. We now prove (iii) of the Theorem 1.1.4.

Proposition 3.3.1. Let M be an almost complex manifold of dimC M = 2. Then M has the property
Zc (⇒ Zo ⇒ Z).

Proof: We appeal to the Lemma 2.1.3. The bundle Fc on ∂X defined there is a complex line bundle,
and hence it extends to X iff its first Chern class (=Euler class) eFc

∈ H2(∂X) lifts to H2(X). So it is
enough to show that the restriction homomorphism:

H2(X) → H2(∂X)

is surjective. We do this by observing the commutative diagram induced by inclusions:

H2(X) → H2(∂X)
j∗ ↑ ↑ l∗

H2(M ×M) → H2(U)

Note that:

(a): The bottom restriction map is the same as the map H2(M×M) ∆∗

→ H2(M) by deforming U to
its core ∆. But this map is a split surjection because ∆∗f∗ = idH2(M), where f : M ×M → M

is (x, y) 7→ x. Hence the bottom horizontal map is a surjection.

(b): The left vertical map is an isomorphism, since Hi(M×M,X) ' Hi(Dε(ν), Sε(ν)) by excision,
and this vanishes for 0 ≤ i ≤ 3 by the Thom isomorphism (ν ' τM is a bundle of real rank 4).

(c): the right vertical arrow is an isomorphism because of Hi(U, ∂X) = Hi(U, ∂U) = Hi(Dε(ν), Sε(ν)) =
0 for 0 ≤ i ≤ 3 again by the Thom isomorphism.

Hence the top horizontal map is a surjection, and we are done. 2.

3.4. Complex dimension 3. We now proceed with the proof of (iv) of the main Theorem 1.1.4.

Proposition 3.4.1. Let M be an almost complex manifold of complex dimension 3. Assume that the
second Stiefel-Whitney class w2(M) = 0 in H2(M, Z2) (⇔ mod 2 reduction of c1(M) vanishes ⇔ M

has a spin structure). Then M satisfies the property Zc.

Proof: Since the mod 2 reduction of c1(M) = c1(τM ) is 0, it follows that the class c1(M) ∈ H2(M, Z)
is divisible by 2 (from the Bockstein cohomology exact sequence), so there exists a complex line bundle
L on M with 2c1(L) = c1(M).

Since H2(M × M, Z) ∆∗

→ H2(M) is a split surjection, it follows that there is a cohomology class
α ∈ H2(M × M) such that ∆∗α = c1(L). Since complex line bundles are completely classified by c1,
there is a complex line bundle Γ on M ×M whose restriction to the diagonal is L, i.e. ∆∗Γ = L.
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Now we appeal to the Lemma 2.1.3. The bundle Fc of complex rank 2 on the sphere bundle ∂U = ∂X

defined by:

r∗(τM ) = Fc ⊕ ε1c

needs to be extended to a complex rank 2 bundle Gc on X := (M × M) \ U◦ which has boundary
∂U = ∂X. Since the line bundle Γ on M × M is an extension of the line bundle L → ∆, it is an
extension of r∗L → ∂X to M ×M , and a fortiori to X. Thus to extend Fc to X, it is enough to extend
the twisted rank 2 complex bundle F1 := Fc ⊗ r∗L−1 → ∂X to a complex rank 2 bundle G1 → X.
(Then the required bundle Gc → X extending Fc → ∂X will be G1 ⊗ Γ|X).

We claim that c1(F1) = 0. This is because Fc being of rank 2,

c1(F1) = c1(Fc ⊗ r∗L−1) = c1(Fc) + 2c1(r∗L−1) = r∗(c1(M))− 2r∗(c1(L)) = r∗(c1(M)− 2c1(L)) = 0

by the definition of L above and the fact that r∗ν = r∗τM = Fc ⊕ ε1.

Now it is an easy matter to extend F1 to X. Since we have a fibration:

S1 → BSU(2) → BU(2)

the only obstruction to lifting the classifying map f : ∂X → BU(2) of the 2-bundle F1 to BSU(2) is a
solitary obstruction in H2(∂X, π1(S1)) = H2(∂X, Z). By the functoriality of such obstruction, it is f∗y,
where y ∈ H2(BU(2), Z) is the corresponding obstruction for the universal 2-plane complex bundle γ2

on BU(2). Since H2(BU(2), Z) is generated by c1(γ2), this obstruction for F1 is a multiple of c1(F1),
which we have seen to be 0 in the last para.

Consequently, f : ∂X → BU(2) lifts to BSU(2) = BSp1 = P∞(H), and F1 becomes a quaternionic
line bundle. It is well known that the Z-cohomology ring of P∞(H) is the polynomial ring Z[c2], where
c2 ∈ H4(P∞(H)) is the second Chern class of the universal quaternionic line bundle on P∞(H). Also,
since P∞(H) = K(Z, 4), all quaternionic line bundles on any space Y are classified by H4(Y, Z), i.e. by
their 2nd Chern class.

Since F1 above is a quaternionic line bundle, all we need to do is check that the map H4(X, Z) →
H4(∂X, Z) is surjective. Consider the commutative diagram:

H4(X) → H4(∂X)
j∗ ↑ ↑ l∗

H4(M ×M) → H4(U)

Note that:

(a): The bottom restriction map is the same as the map H4(M×M) ∆∗

→ H4(M) by deforming U to
its core ∆. But this map is a split surjection. Hence the bottom horizontal map is a surjection.

(b): The left vertical map is an isomorphism, since Hi(M×M,X) ' Hi(Dε(ν), Sε(ν)) by excision,
and this vanishes for 0 ≤ i ≤ 5 by the Thom isomorphism (ν ' τM is a bundle of real rank 6).

(c): the right vertical arrow is an isomorphism because of Hi(U, ∂X) = Hi(U, ∂U) = Hi(Dε(ν), Sε(ν)) =
0 for 0 ≤ i ≤ 5 again by the Thom isomorphism .
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Thus the restriction H4(X, Z) → H4(∂X, Z) is surjective, and F1 extends to a bundle on X. By
Lemma 2.1.3 we are done. 2.

We now proceed to prove (v) of Theorem 1.1.4. We first need a lemma.

Lemma 3.4.2. Let M be an almost complex manifold with dimC M = 3. Let E be a smooth complex
vector bundle on M of any rank, with Chern classes ci(E) ∈ H2i(M, Z), for 1 ≤ i ≤ 3. Then these
Chern classes satisfy:

c3(E)− c2(E)(c1(M) + c1(E)) = 2mµ, for some m ∈ Z

where µ ∈ H6(M, Z) ' Z is a generator.

Proof: We will need to use the generalised Riemann-Roch Theorem for M , with coefficients in E. Note
first that for E of any rank on M , the Chern character of E is well known to be:

ch(E) = rkC(E) + c1(E) +
(

c1(E)2 − 2c2(E)
2

)
+

(
c1(E)3 − 3c1(E)c2(E) + 3c3(E)

6

)
with no higher terms since dim M = 6. It is also well known that on a smooth complex manifold M of
dimC M = 3 we have the formula for the total Todd class of M :

Td(M) = 1 +
c1(M)

2
+

(
c1(M)2 + c2(M)

12

)
+

c1(M)c2(M)
24

Thus the Todd characteristic class of M with coefficients in E (see also Ch. III §12 of [Hir] for the
definition of the Todd characteristic class) obtained by taking the degree 6 term in Td(M)ch(E) is:

T (M,E) =
[
rkCE

(
c1(M)c2(M)

24

)
+ c1(E)

(
c1(M)2 + c2(M)

12

)
+

(
c1(E)2c1(M)

4

)
+

c1(E)3

6

]
+

[
c3(E)− c2(E)(c1(M) + c1(E))

2

]
(4)

It is known that if M is any almost complex manifold, it has a Spinc reduction. For any smooth
complex vector bundle E on M , the generalised Riemann-Roch Theorem (i.e. the Atiyah-Singer Theorem
applied to the Dirac operator of the elliptic Spinc complex of M twisted by E) implies that T (M,E)
defined above is an integral multiple of the fundamental class µ ∈ H6(M, Z), the integer being the index
of this Dirac operator. For a reference to this result, see Theorem 3.5.5 of §3.5 in [Gil] or Theorem
24.5.4 in Appendix 1 of [Hir].

For a rank k bundle E, c1(E) = c1(∧kE) = c1(∧kE⊕εk−1), and c2(∧kE⊕εk−1) = c3(∧kE⊕εk−1) = 0,
(εk−1 being the trivial rank k − 1 bundle). Thus the first boxed term in equation (4) is equal to
T (M,∧kE ⊕ εk−1), which is an integer multiple of the fundamental class µ, the integer being the index
of the Dirac operator for the elliptic Spinc complex twisted by ∧k(E)⊕ εk−1. Hence the second boxed
term of (4) is also an integer multiple of the fundamental class. That is,

c3(E)− c2(E)(c1(M) + c1(E)) = 2mµ

for some integer m, and the lemma follows. 2

Now we are ready to prove (v) of Theorem 1.1.4.
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Proposition 3.4.3. Let M be an almost complex manifold of dimC M = 3. Assume H1(M, Z) = 0 and
H2(M, Z) = Z. Then if M satisfies Zc, the second Stiefel Whitney class w2(M) = 0. Thus, in view of
Proposition 3.4.1, for such an M the property Zc is equivalent to spinnability.

Proof: Let E be a smooth complex rank 3 bundle on M ×M realising Zc. Let x denote a generator of
H2(M, Z). Since H1(M, Z) = 0, and H2(M, Z) = Zx, we have by the Kunneth formula that H2(M ×
M) = Z(x × 1) ⊕ Z(1 × x) where “×′′ denotes the cohomology cross product. Let us denote the first
Chern class of E by

c1(E) = a1(x× 1) + a2(1× x) ∈ H2(M ×M, Z); a1, a2 ∈ Z

Since E restricted to the diagonal ∆ is isomorphic as a complex vector bundle to the normal bundle ν

of ∆, i.e. τM , it follows that

∆∗(c1(E)) = a1(x.1) + a2(1.x) = (a1 + a2)x = c1(τM )

where ∆ : M → M ×M is the diagonal inclusion. Thus we have:

(a1 + a2)x = c1(M) (5)

We noted in the Remark 1.1.3, that the restriction of E to the slices M ×{p} and {q}×M will have
Euler class ±1 times the generator. Thus the 3rd Chern classes of the rank 3 bundles E1 := E|M×{p}

and E2 := E|{q}×M are both equal to ±µ, where µ is the fundamental class in H6(M, Z). The first
Chern classes of Ei are clearly:

c1(E1) = a1x; c1(E2) = a2x

since 1× x (resp. x× 1) restricts to 0 on the slice M × {p} (resp. {q} ×M).

From the Lemma 3.4.2 applied to E1, and (5) above it follows that:

c2(E1)(c1(M) + c1(E1)) = c2(E1)(2a1 + a2)x = c3(E1) + 2m1µ = (2m1 ± 1)µ; m1 ∈ Z

and similarly

c2(E2)(2a2 + a1)x = (2m2 ± 1)µ; m2 ∈ Z

Denote the image of y ∈ H∗(M, Z) in H∗(M, Z2) by ỹ. Then the above equations imply:

a2[c̃2(E1).x̃] = µ̃ = a1[c̃2(E2).x̃]

Since µ̃ generates H6(M, Z2) = Z2, we have a1 ≡ a2 ≡ 1 mod 2. Thus a1 + a2 ≡ 0 modulo 2.

Thus c1(M) = (a1 + a2)x is an even multiple of x. Since w2(M) is the modulo 2 reduction of c1(M),
it follows that w2(M) = 0. The proposition follows. 2

Now we can prove (vi) of the main Theorem 1.1.4.

Corollary 3.4.4. Let M ⊂ PN (C) be a smooth projective variety of dimC M = 3. Assume that M is a
set-theoretically complete intersection with H1(M, Z) = 0 (or alternatively that M is a strict complete
intersection). Then M has the property Zc if and only if M is spin (i.e. c1(M) is an even multiple of
the hyperplane class in H2(M, Z)).
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Proof: It is known (see Cor. 7.6 on p. 149 of [Har]) that for M as above H1,0(M) = H0,1(M) = 0.
This shows by Hodge decomposition that H1(M, C) = 0. Since H1(M, Z) is a finitely generated free
abelian group, it follows that H1(X, Z) = 0.

The same result cited above shows that H0,2(M) = H2,0(M) = 0, and that H1,1(M) = C. It follows
again that H2(M, C) = C. Since by hypothesis H1(X, Z) = 0, it follows that H2(X, Z) has no torsion,
and is = Z, generated by the hyperplane class. Similarly, for a strict smooth complete intersection M

with dimC M ≥ 3, it is known that H2(M, Z) = Z by a Theorem of Grothendieck and Lefschetz (see
[Har], Cor. 3.2 on p. 179). So our corollary follows from the Propositions 3.4.1 and 3.4.3. 2.

We now prove (vii) of Theorem 1.1.4

Corollary 3.4.5. Let M be a smooth strict complete intersection of dimC = 3 in Pn(C), with M =
X1 ∩ ...∩Xn−3 with Xi smooth hypersurfaces of degree di. Then M has property Zc iff (n + 1−

∑
i di)

is even. In particular, a smooth hypersurface M in P4(C) has the property Zc if and only if it is of odd
degree. In particular, the non-singular quadric in P4(C) does not have the property Zc.

Proof: The previous corollary implies that M has Zc iff M is spin.

It is well known that the first Chern class of the tangent bundle of M is (n + 1 −
∑

i di) times the
hyperplane class (since the normal bundle of M in Pn(C) is the direct sum

∑
iO(di)). Thus c1(M) is

an even multiple of the hyperplane class iff (n + 1 −
∑

i di) is even. Thus M is spin iff this number is
even.

When n = 4, and M is a hypersurface, (5 − d) is even iff d is odd. In particular, for example, the
smooth quadric in P4(C) does not have Zc. 2

Remark 3.4.6. The condition H2(M, Z) = Z cannot be dispensed with in Proposition 3.4.3. For
example, we know that Zc holds for P2(C) and P1(C) (by Example 1.2.9) and hence for M = P2(C)×
P1(C) (by Example 1.2.2). However the first Chern class of M is (3x×1)+(1×2y) ∈ H2(M, Z) = Z⊕Z,
and M is not spin. Thus 3.4.3 does not hold good for M . Whether the vanishing of H1(X, Z) can be
relaxed is not entirely clear.

3.5. Odd-dimensional smooth quadrics. We remark that since the quadrics of dimension 1 and 2
are respectively P1(C) and P1(C)×P1(C), both satisfy Zc. The quadric of dimension 3 does not satisfy
Zc by the Corollary 3.4.5. This last fact generalises to all smooth projective quadric hypersurfaces of
odd complex dimension ≥ 3. We first need some lemmas.

Proposition 3.5.1 (Cohomology of Q2m−1). Let Q2m−1 ⊂ P2m(C) denote the smooth odd-dimensional
quadric hypersurface V (X2

0 + ... + X2
2m), and let m ≥ 2. Then the integral cohomology ring of Q2m−1

is given by:

H∗(Q2m−1, Z) = Z[x, y]/〈xm − 2y, y2〉
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where x := c1(OQ2m−1(1)) is the generator of H2(Q2m−1, Z), and y is the generator of H2m(Q2m−1, Z).
In particular:

H2k+1(Q2m−1, Z) = 0 for all k

H2k(Q2m−1, Z) = Zxk for all 0 ≤ k ≤ m− 1

= Zxk−my for all m ≤ k ≤ 2m− 1

Proof: We first note that there is an inclusion:

j : Pm−1(C) ↪→ Q2m−1

where Pm−1(C) is the linear subspace of P2m(C) defined by:

Pm−1(C) = {[x0 : x1 : ... : x2m] ∈ P2m(C) : x0 + ix1 = x2 + ix3 = ... = x2m−2 + ix2m−1 = x2m = 0}

If we let i : Q2m−1 ↪→ P2m(C) denote the natural inclusion we have the composite inclusion:

i ◦ j : Pm−1(C) ↪→ P2m(C)

which is the inclusion of a linear projective subspace in P2m(C). Therefore, if we let H := c1(OP2m(C)(1)),
x := c1(OQ2m−1(1)) = i∗H and h := c1(OPm−1(C)(1)) = j∗x = j∗i∗H denote the respective hyperplane
classes, we have that the composite homomorphism:

Hr(P2m(C), Z) i∗→ Hr(Q2m−1, Z)
j∗→ Hr(Pm−1(C), Z)

is an isomorphism for 0 ≤ r ≤ 2m − 2, since it is induced by the linear inclusion i ◦ j. It follows that
Hr(Q2m−1, Z) = 0 for r odd and 0 ≤ r ≤ 2m − 2. Furthermore, for r = 2k, and 0 ≤ k ≤ m − 1,
the extreme left cohomology is ZHk, and the extreme right one is Zhk. Thus j∗ and i∗ are both
isomorphisms for 0 ≤ r = 2k ≤ 2m− 2 and H2k(Q2m−1, Z) = Zxk for 0 ≤ k ≤ m− 1.

Again since i ◦ j is a linear inclusion, the homology map given by the composite:

Hr(Pm−1(C), Z)
j∗→ Hr(Q2m−1, Z) i∗→ Hr(P2m(C), Z)

is an isomorphism for 0 ≤ r ≤ 2m− 2. Again by the same reasoning as given above for cohomology, it
follows that Hr(Q2m−1, Z) = 0 for 0 ≤ r ≤ 2m− 2 and r odd. Thus by Poincare duality on Q2m−1, we
have Hi(Q2m−1, Z) = 0 for all odd i, 0 ≤ i ≤ 4m − 2. Again, by the above, j∗ : H2k(Pm−1(C), Z) →
H2k(Q2m−1, Z) is an isomorphism of infinite cyclic groups for 0 ≤ k ≤ m− 1.

Setting Di to be the Poincare duality isomorphisms for Pm−1(C) and Q2m−1 respectively, it follows
by the preceding para that the composite:

H2k(Pm−1(C), Z) D1→ H2m−2−2k(Pm−1(C), Z)
j∗→ H2m−2−2k(Q2m−1, Z)

D−1
2→ H2m+2k(Q2m−1, Z)

is an isomorphism for 0 ≤ k ≤ m− 1. This composite map is the integral cohomology Gysin homomor-
phism denoted j!, so, setting k = 0, we find that H2m(Q2m−1, Z) is a cyclic group generated by y = j!1.
Also j! is a H∗(Q2m−1, Z)-module homomorphism, so H2m+2k(Q2m−1, Z) is a cyclic group generated by
j!(hk) = xkj!1 = xky for all 0 ≤ k ≤ m− 1.

Now we need only determine the algebra relations. Since H4m(Q2m−1, Z) = 0, it follows that y2 = 0.
Furthermore, since Q2m−1 is a degree 2 hypersurface in P2m(C), we have that 〈x2m−1, [Q]〉 = 2, where
[Q] ∈ H4m−2(Q2m−1, Z) is the fundamental homology class of Q2m−1. Thus 〈xm.xm−1, [Q]〉 = 2.
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Since by Poincare duality the generators y of H2m and xm−1 of H2m−2 are dually paired, we have
〈y.xm−1, [Q]〉 = 1. Thus xm = 2y and the proposition is proved. 2.

Corollary 3.5.2 (mod 2 cohomology). The cohomology ring H∗(Q2m−1, Z2) (where m ≥ 2) is given
by:

H∗(Q2m−1, Z2) = Z2[ξ, η]/〈ξm, η2〉

where ξ (resp. η) is the mod 2 reduction of x (resp. y) of the last proposition. Alternatively, ξ =
w2(OQ2m−1(1)), the second Steifel-Whitney class of the canonical bundle on Q2m−1 considered as a real
2-plane bundle, and η = j!1, where j! : H∗(Pm−1(C), Z2) → H∗+2m(Q2m−1, Z2) is the Z2-cohomology
Gysin homormorphism. In particular :

H2k+1(Q2m−1, Z2) = 0 for all k

H2k(Q2m−1, Z2) = Z2ξ
k for all 0 ≤ k ≤ m− 1

= Z2ξ
k−mη for all m ≤ k ≤ 2m− 1

Proof:. Everything follows immediately from the last proposition. It is known that for a complex
vector bundle, the total Stiefel-Whitney class is the mod 2 reduction of the total Chern class (see
[Mil-S], Problem 14-B on p. 171). Hence ξ = w2(OQ2m−1(1)). 2.

Lemma 3.5.3 (Steenrod squares). Let m ≥ 2. Then the second Steenrod squaring operation Sq2 on
H∗(Q2m−1, Z2) is determined by:

Sq2(ξ) = ξ2

Sq2(η) = (m− 1) ξη (mod 2)

where ξ and η are the algebra generators of Corollary 3.5.2 above.

Proof: Since Sqix = x2 for x ∈ Hi (see [Mil-S], part (3) on p. 90), and ξ ∈ H2(Q2m−1, Z2), it follows
that Sq2(ξ) = ξ2.

For the second formula, one notes that the Gysin homomorphism j! used above is well known to be
the composite:

Hi(Pm−1(C), Z2)
φ→ Hi+2m(D(ν), S(ν); Z2)

(l∗)−1

→ Hi+2m(Q2m−1, Q2m−1\Pm−1; Z2) → Hi+2m(Q2m−1, Z2)

where ν is the real rank 2m normal bundle of Pm−1(C) in Q2m−1, D(ν) its disc bundle, S(ν) its sphere
bundle, φ the Z2 Thom isomorphism for ν, (l∗)−1 is an excision isomorphism, and the last arrow is
restriction. For brevity’s sake, denote the composite of the last two maps by α. Then η = j!1 =
α(φ(1)) = α(Uν) where Uν ∈ H2m(D(ν), S(ν); Z2) is the Z2 Thom class of ν.

Since α is the composite of maps induced by restriction (and the inverse of a restriction), the functorial
operation Sq2 commutes with α (see (2). p. 91 op cit). Thus

Sq2(η) = Sq2(α(Uν)) = α(Sq2Uν)

So now it remains to determine Sq2Uν . By Thom’s identity for Stiefel-Whitney classes (p.91, op cit),
we have φ(wi(E)) = SqiUE for any real bundle E, so Sq2Uν = φ(w2(ν)). Now since the normal bundle
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of Q2m−1 in P2m(C) is OQ2m−1(2), and the normal bundle of the linear subspace Pm−1(C) in P2m(C) is
the sum of m + 1 copies of OPm−1(C)(1), it follows that :

ν ⊕OPm−1(C)(2) =
[
OPm−1(C)(1)

]m+1

Thus c1(ν) = (m + 1)h− 2h = (m− 1)h, where h is the hyperplane class of Pm−1(C).

Since w2(ν) is the mod 2 reduction of c1(ν), it follows that Sq2(Uν) = φ(w2(ν)) = (m− 1)φ(h) mod
2. Thus

Sq2(η) = α(Sq2Uν) = (m− 1)α(φ(h)) mod 2

= (m− 1)j!(h) = (m− 1)ξ.j!(1) = (m− 1)ξη mod 2

since j∗ξ = h mod 2 and j! is a H∗(Q2m−1, Z2)-module homomorphism. This proves the lemma. 2

Corollary 3.5.4. In the setting of above, the Steenrod square Sq2 on the generator of H4m−4(Q2m−1, Z2)
is given by:

Sq2(ξm−2η) = ξm−1η

Proof: By the derivational identity for Steenrod squares Sqk(a.b) =
∑

i+j=k Sqi(a)Sqj(b) (see (4), p.
91, op cit), and the fact that Sq1 acts as 0 on H∗(Q2m−1, Z2) (since it lands in odd degree cohomologies
which are 0), we have by Lemma 3.5.3 above that:

Sq2(ξm−2η) = Sq2(ξm−2)η + ξm−2Sq2(η)

= (m− 2)ξm−3Sq2(ξ)η + ξm−2.ξη

= (m− 2)ξm−3ξ2η + (m− 1)ξm−1η mod 2

= (2m− 3)ξm−1η mod 2

= ξm−1η

which proves the corollary. 2

Proposition 3.5.5. Let E be a continuous complex vector bundle of any rank on Q2m−1 (where m ≥ 2).
In terms of the generators of H2, H4m−4 and H4m−2 determined in Proposition 3.5.1, define the Chern
numbers cj ∈ Z by:

c2m−1(E) = c2m−1(xm−1y); c2m−2(E) = c2m−2(xm−2y); c1(E) = c1.x

Then:

c2m−1 = c2m−2(c1 + 1) mod 2

Proof: Since for a complex bundle E, the Stiefel-Whitney class w2j(E) is the mod 2 reduction of cj(E)
(and odd Stiefel-Whitney classes vanish) as remarked above, what we have by definition is:

w4m−2(E) = c2m−1ξ
m−1η; w4m−4(E) = c2m−2.ξ

m−2η; w2(E) = c1ξ all mod 2



17

where ξ and η are the mod 2 reductions of x and y respectively, as in Corollary 3.5.2. Hence, by Wu’s
formula for Stiefel-Whitney classes of a real bundle (see Problem 8-B on p. 94, op cit):

Sq2wn = w2wn + (2− n)w1wn+1 +
(2− n)(2− n− 1)

2!
w0wn+2

For a complex vector bundle E, w1(E) = 0 and applying the formula above for n = 4m− 4 we have:

Sq2(w4m−4(E)) = w2(E)w4m−4(E) +
(2− 4m + 4)(2− 4m + 3)

2
w4m−2(E) mod 2

= w2(E)w4m−4(E) + (1− 2m)(1− 4m)w4m−2(E) mod 2

= w2(E)w4m−4(E) + w4m−2(E)

Hence substituting from the first paragraph, and using the Corollary 3.5.4 we have:

Sq2(c2m−2.ξ
m−2η) = (c1ξ).(c2m−2ξ

m−2η) + c2m−1ξ
m−1η mod 2

c2m−2(ξm−1η) = (c1c2m−2 + c2m−1)ξm−1η mod 2

which implies the proposition. 2.

We can now prove (viii) of the main theorem.

Proposition 3.5.6. Let m ≥ 2. Then the smooth quadric hypersurface Q2m−1 ⊂ P2m(C) does not
possess the property Zc.

Proof: The proof proceeds exactly as in the proof of 3.4.3. First note that since the normal bundle of
Q2m−1 in P2m(C) is O(2), the first Chern class of Q2m−1 is c1(τQ2m−1) = (2m + 1)x− 2x = (2m− 1)x.
Thus w2(τQ2m−1) = ξ ∈ H2(Q2m−1, Z2).

Now let E be a complex vector bundle of complex rank 2m − 1 on Q2m−1 × Q2m−1 realising the
property Zc. Let its first Chern class be c1(E) = a1(x× 1) + a2(1×x) ∈ H2(Q2m−1×Q2m−1, Z). Then
since Zc implies that ∆∗(E) ' τQ2m−1 , we have ∆∗(c1(E)) = (a1 + a2)x = c1(τQ2m−1) = (2m− 1)x, so
that a1 + a2 ≡ 1 mod 2.

On the other hand, we find that the restrictions Ei, i = 1, 2 of E to the horizontal and vertical
slices Q2m−1×{p} and {q}×Q2m−1 respectively must have top Chern number c2m−1 ≡ 1 mod 2. This
implies, by the Proposition 3.5.5 that the first Chern numbers c1 of Ei are both even. That is a1 and
a2 are both ≡ 0 mod 2. This contradicts the last paragraph. The proposition follows. 2.

Remark 3.5.7. For the case of m = 2, that smooth complex vector bundles on Q3 ⊂ P4(C) satisfy the
above mod 2 identity for Chern numbers (and hence Zc fails for Q3) follows from Corollary 3.4.5.

Remark 3.5.8. It is not clear what happens for quadrics of even complex dimension. We note that
Q2 = P1(C)× P1(C) and Q4 = G2(C4) both satisfy Zc by Example 1.2.9 and 1.2.2.
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