Homeomorphisms and the homology of non-orientable surfaces

Siddhartha Gadgil and Dishant Pancholi

Indian Statistical Institute, Bangalore Centre
8th Mile Mysore Road-560 059, India

HOMEOMORPHISMS AND THE HOMOLOGY OF NON-ORIENTABLE SURFACES

SIDDHARTHA GADGIL AND DISHANT PANCHOLI

Abstract

We show that, for a closed non-orientable surface F, an automorphism of $H_{1}(F, \mathbb{Z})$ is induced by a homeomorphism of F if and only if it preserves the ($\bmod 2$) intersection pairing. We shall also prove the corresponding result for punctured surfaces.

1. Introduction

Let F be a closed, non-orientable surface. A homeomorphism $f: F \rightarrow F$ induces an automorphism on homology $f_{*}: H_{1}(F, \mathbb{Z}) \rightarrow H_{1}(F, \mathbb{Z})$. Further, any automorphism $\varphi: H_{1}(F, \mathbb{Z}) \rightarrow H_{1}(F, \mathbb{Z})$ in turn induces an automorphism with $\mathbb{Z} / 2 \mathbb{Z}$-coefficients $\bar{\varphi}: H_{1}(F, \mathbb{Z} / 2 \mathbb{Z}) \rightarrow H_{1}(F, \mathbb{Z} / 2 \mathbb{Z})$. If $\varphi=f_{*}$ for a homeomorphism f, then $\bar{\varphi}$ also preserves the $(\bmod 2)$ intersection pairing on homology.

Our main result is that, for an automorphism $\varphi: H_{1}(F, \mathbb{Z}) \rightarrow H_{1}(F, \mathbb{Z})$, if the induced automorphism $\bar{\varphi}: H_{1}(F, \mathbb{Z} / 2 \mathbb{Z}) \rightarrow H_{1}(F, \mathbb{Z} / 2 \mathbb{Z})$ preserves the $(\bmod 2)$ intersection pairing, then φ is induced by a homeomorphism of F.

Theorem 1.1. Let $\varphi: H_{1}(F, \mathbb{Z}) \rightarrow H_{1}(F, \mathbb{Z})$ be an automorphism. If the induced automorphism $\bar{\varphi}: H_{1}(F, \mathbb{Z} / 2 \mathbb{Z}) \rightarrow H_{1}(F, \mathbb{Z} / 2 \mathbb{Z})$ preserves the (mod 2) intersection pairing, then φ is induced by a homeomorphism of F.

We have a natural homomorphism $\operatorname{Aut}\left(H_{1}(F, \mathbb{Z})\right) \rightarrow \operatorname{Aut}\left(H_{1}(F, \mathbb{Z} / 2 \mathbb{Z})\right)$. Let \mathcal{K} denote the kernel of this homomorphism, so that we have an exact sequence

$$
1 \rightarrow \mathcal{K} \rightarrow \operatorname{Aut}\left(H_{1}(F, \mathbb{Z})\right) \rightarrow \operatorname{Aut}\left(H_{1}(F, \mathbb{Z} / 2 \mathbb{Z})\right) \rightarrow 1
$$

Observe that elements of \mathcal{K} automatically preserve the intersection pairing. We shall show that every element of \mathcal{K} is induced by a homeomorphism of F. Further, we shall show that an element of $\operatorname{Aut}\left(H_{1}(F, \mathbb{Z} / 2 \mathbb{Z})\right)$ is induced by a homeomorphism of f if and only if it preserves the intersection pairing. Theorem 1.1 follows immediately from these results.

Theorem 1.2. Suppose $\varphi: H_{1}(F, \mathbb{Z}) \rightarrow H_{1}(F, \mathbb{Z})$ is an automorphism which induces the identity on $H_{1}(F, \mathbb{Z} / 2 \mathbb{Z})$. Then φ is induced by a homeomorphism of F.
Theorem 1.3. Let F_{1} and F_{2} be closed, non-orientable surfaces. Suppose that $\psi: H_{1}\left(F_{1}, \mathbb{Z} / 2 \mathbb{Z}\right) \rightarrow$ $H_{1}\left(F_{2}, \mathbb{Z} / 2 \mathbb{Z}\right)$ is an isomorphism which preserves the intersection pairing. Then ψ is induced by a homeomorphism $f: F_{1} \rightarrow F_{2}$.

We also consider the case of a compact non-orientable surface F with boundary. In this case an automorphism of $H_{1}(F, \mathbb{Z})$ induced by a homeomorphism of F permutes (up to sign) the elements representing the boundary components. We shall show that all automorophisms of $H_{1}(F, \mathbb{Z})$ which satisfy this additional condition are induced by homeomorphisms.

[^0]Acknowledgements. We would like to thank Shreedhar Inamdar for helpful conversations.

2. Preliminaries

Let F be a closed, non-orientable surface with $\chi(F)=2-n$ and let \hat{F} be obtained from F by deleting the interior of a disc. Then F is the connected sum of n projective planes \mathcal{P}_{i} and \hat{F} is the δ-connected sum of n corresponding Möbius bands \mathcal{M}_{i}. Let γ_{i} denote the central circle of \mathcal{M}_{i} and let $\alpha=\left[\gamma_{i}\right] \in H_{1}(\hat{F}, \mathbb{Z})$ be the corresponding elements in homology. Then $H_{1}(\hat{F}, \mathbb{Z}) \cong \mathbb{Z}^{n}$ with basis α_{i} and $H_{1}(F, \mathbb{Z})$ is the quotient $H_{1}(\hat{F}, \mathbb{Z}) /\left\langle 2 \Sigma_{i} \alpha_{i}\right\rangle$.

We shall need the following elementary algebraic lemma.
Lemma 2.1. Any automorphism $\varphi: H_{1}(F, \mathbb{Z}) \rightarrow H_{1}(F, \mathbb{Z})$ lifts to an automorphism $\tilde{\varphi}: H_{1}(\hat{F}, \mathbb{Z}) \rightarrow$ $H_{1}(\hat{F}, \mathbb{Z})$ such that $\varphi\left(\sum_{i} \alpha_{i}\right)=\sum_{i} \alpha_{i}$.
Proof. Consider the basis of $H_{1}(\hat{F}, \mathbb{Z})$ given by $e_{1}=\alpha_{1}, \ldots, e_{n-1}=\alpha_{n-1}, e_{n}=\alpha_{1}+\cdots+\alpha_{n}$ and let [e_{j}] be the corresponding generators of $H_{1}(F, \mathbb{Z})$. Observe that $\left[e_{n}\right]$ is the unique element of order 2 in $H_{1}(F, \mathbb{Z})$, and hence $\varphi\left(\left[e_{n}\right]\right)=\left[e_{n}\right]$. Thus, we can define $\tilde{\varphi}\left(e_{n}\right)=e_{n}$. For $1 \leq j \leq n-1$, pick an arbitrary lift h_{j} of $\varphi\left(e_{j}\right)$ and set $\tilde{\varphi}\left(e_{j}\right)=h_{j}$.

Observe that $H_{1}(\hat{F}, \mathbb{Z}) /\left\langle e_{n}\right\rangle \cong H_{1}(F, \mathbb{Z}) /\left\langle\left[e_{n}\right]\right\rangle$. Further, as $\tilde{\varphi}\left(e_{n}\right)=e_{n}$ we have an induced map on $H_{1}(\hat{F}, \mathbb{Z}) /\left\langle e_{n}\right\rangle$ which agrees with the quotient map induced by φ on $H_{1}(F, \mathbb{Z}) /\left\langle\left[e_{n}\right]\right\rangle$ (which exists as $\left.\varphi\left(\left[e_{n}\right]\right)=\left[e_{n}\right]\right)$ under the natural identification of these groups. As φ is an isomorphism, so is the induced quotient map on $H_{1}(F, \mathbb{Z}) /\left\langle\left[e_{n}\right]\right\rangle$, and hence the map induced by $\tilde{\varphi}$ on $H_{1}(\hat{F}, \mathbb{Z}) /\left\langle e_{n}\right\rangle$.

Thus, $\tilde{\varphi}$ induces an isomorphism on the quotient $H_{1}(\hat{F}, \mathbb{Z}) /\left\langle e_{n}\right\rangle$ as well as the kernel $\left\langle e_{n}\right\rangle$ of the quotient map. By the five lemma, $\tilde{\varphi}$ is an isomorphism.

Henceforth, given an automorphism φ as above, we shall assume that a lift has been chosen as in the lemma. Observe that a homeomorphism of \hat{F} induces a homeomorphism of F. Hence it suffices to construct a homeomorphism of \hat{F} inducing $\tilde{\varphi}$. Note that the intersection pairing is preserved by $\tilde{\varphi}$ as it only depends on the induced map on homology with $\mathbb{Z} / 2 \mathbb{Z}$-coefficients.

3. Automorphisms in \mathcal{K}

In this section we prove Theorem 1.2. Let $\varphi: H_{1}(F, \mathbb{Z}) \rightarrow H_{1}(F, \mathbb{Z})$ be as in the hypothesis. As in Lemma 2.1, we can lift φ to an automorphism of $H_{1}(\hat{F}, \mathbb{Z})$ fixing $\sum_{i} \alpha_{i}$. We shall denote this lift also by φ. We shall construct a homeomorphism of \hat{F} inducing this automorphism.

Our strategy is to use elementary automorphisms $e_{i j}, 1 \leq i, j \leq n$, which are induced by homeomorphisms $g_{i j}$. Observe that, for $1 \leq i, j \leq n$, the automorphism φ is induced by a homeomorphism if and only if $e_{i j} \circ \varphi$ is induced by a homeomorphism (as $e_{i j}$ is induced by a homeomorphism). Thus we can replace φ with $e_{i j} \circ \varphi$. We call this an elementary move. For φ preserving the intersection pairing, we shall find a sequence of elementary moves such that on performing these moves we obtain the identity automorphism, which is obviously induced by a homeomorphism (namely the identity). This will prove the result.

Lemma 3.1. There are homeomorphisms $g_{i j}$ of \hat{F} so that if $e_{i j}$ is the induced automorphisms on \hat{F}, then $e_{i j}\left(\alpha_{i}\right)=\alpha_{i}+2 \alpha_{j}, e_{i j}\left(\alpha_{j}\right)=-\alpha_{j}$ and $e_{i j}\left(\alpha_{k}\right)=\alpha_{k}$ for $k \neq i, j$.

Proof. We shall use cross-cap slides [3][4] of the surface F. Namely, suppose α is an orientation reversing simple closed curve on a surface S^{\prime} and D is a small disc centered around a point on α. Let S be the surface obtained by replacing D by a Möbius band. Consider a homeomorphism f^{\prime} of S^{\prime} which is the

Figure 1. Cross-cap slide
identity outside a neighbourhood of α and which is obtained by dragging D once around α so that D is mapped to itself. By construction this extends to a homeomorphism f of S, which we call a cross-cap slide. In figure 1 , the $\operatorname{arc} A$ in the Möbius band \mathcal{M} on the left hand side is mapped to the arc A^{\prime} in the Möbius band \mathcal{M}^{\prime} on the right hand side and the homeomorphism is the identity in a neighbourhood of the boundary.

We define $g_{i j}$ as the cross-cap slide of \mathcal{M}_{j} around the curve γ_{i}. Note that the Möbius band \mathcal{M}_{j} is mapped to itself, but, as γ_{i} is orientation reversing, the map on the Möbius band takes α_{j} to $-\alpha_{j}$. Further for any k different from i and j, the cross-cap slide fixes γ_{j}, hence α_{j}. Finally, in Figure 1 (where we regard \mathcal{M} as a neighbourhood of α_{j}), if B is a curve in the boundary of \mathcal{M} joining the endpoints of A, then $[A \cup B]=\alpha_{i}$ and $\left[A^{\prime} \cup B\right]=g_{i j}\left(\alpha_{i}\right)$. It is easy to see that $[A \cup B]-\left[A^{\prime} \cup A\right]=\left[A \cup A^{\prime}\right]$ is homologous to the boundary $2 \alpha_{j}$ of the cross-cap. Thus, $e_{i j}\left(\alpha_{i}\right)=\alpha_{i}+2 \alpha_{j}$.

Lemma 3.2. There exits a sequence of elementary moves $e_{i j}$ taking φ to the identity.
Proof. Let φ be represented by a matrix $A=\left(a_{i j}\right)$ with respect to the basis α_{i}. Then $A \equiv I(\bmod 2)$. As φ fixes $\sum_{i} \alpha_{i}$, for every $i \sum_{j} a_{i j}=1$. Observe that on performing the elementay move $e_{i j}$, the i th column $A_{* i}$ of A is replaced by $A_{* i}+2 A_{* j}$, the j th column is replaced by $-A_{* j}$ and the other columns of A are unchanged.

We first use the elementary moves $e_{i j}$ to reduce the first row $A_{1 *}$ to $[1,0,0, \ldots, 0]$. To do this, we define a complexity $C_{1}(A)$ of A as $\left|a_{11}\right|+\left|a_{12}\right|+\ldots .+\left|a_{1 n}\right|$.

Observe that if $a_{1 k}$ and $a_{1 l}$ are both non-zero, have different signs and $\left|a_{1 k}\right|>\left|a_{1 l}\right|, e_{k l}$ reduces the complexity $C_{1}(A)$. As a_{11} is odd and $a_{1 j}$ is even for $j>1$, we know that $a_{11} \neq a_{1 j}$ for every $j>1$. Further, as $\sum_{j} a_{1 j}=1$, unless a_{11} is 1 and $a_{1 j}=0$ for $j \neq 1$, there exists a $j>1$ such that a_{11} and $a_{1 j}$ are of opposite signs (and both non-zero). Thus we can reduce complexity by performing an elementary operation. By iterating this finitely many times, we reduce the first row to $[1,0,0, \ldots, 0]$.

Next, suppose $i>1$ and the rows $A_{1 *}, A_{2 *}, \ldots, A_{(i-1) *}$ are the unit vectors $e_{1}, e_{2}, \ldots, e_{(i-1) *}$. We shall transform the i th row to $[0,0, \ldots, 1,0, \ldots, 0]$ without changing the earlier rows.

First we shall transform the row $A_{i *}$ to a row of the form $[*, *, \ldots, 1,0, \ldots, 0]$ (i.e., with the first $i-1$ entries arbitrary) by performing elementary moves $e_{i j}$. To do this, we define a complexity $C_{i}(A)=$ $\sum_{j}\left|a_{i j}\right|, j \geq i$.

Observe that, for $k \geq i$, the elementary operation $e_{1 k}$ changes the sign of $a_{i k}$, does not alter $a_{m k}$ for $m \neq k, m \geq i$ and does not change first $i-1$ rows. By such operations we can ensure that $a_{i i}>0$ and $a_{i j}<0$ for $j>i$ without changing the complexity.

As before, $a_{i i} \neq a_{i j}$ for $j>i$ (as $a_{i i}$ is odd and $a_{i j}$ is even) and (using operations $e_{1 k}$ if necessary) $a_{i i}$ and $a_{i j}$ have different signs. Hence, unless $a_{i j}=0$ for $j>i$ we can reduce the complexity using
either $e_{i j}$ or $e_{j i}$, without altering the first i rows. Thus we can reduce $A_{i *}$ to a vector of the form $[*, \ldots, *, m, 0, \ldots, 0]$.

Now A is a block lower triangular matrix with $a_{i i}$ as a diagonal entry. As A is invertible it follows that $m=a_{i i}= \pm 1$.

We define another complexity $C_{i}^{\prime}(A)=\sum_{i \leq j}\left|a_{i j}\right|$. As $\sum_{j} a_{i j}=1$ and $a_{i i}= \pm 1$, unless $A_{i *}$ is a unit vector we can find as before an operation $e_{j i}, j<i$, which reduces this complexity (without changing the first ($i-1$) rows). Hence after finitely many steps the i th row is reduced to a unit vector. By applying these moves for $i=2,3, \ldots, n$, we are done.

4. Automorphisms of $H_{1}(F, \mathbb{Z} / 2 \mathbb{Z})$

We now prove Theorem 1.3. We shall proceed by induction on n. In the case when $n=1$ the result is obvious. We henceforth assume that n is greater than 1 .

We first make some observations. For a surface S, any element α of $H_{1}(S, \mathbb{Z} / 2 \mathbb{Z})$ can be represented by a simple closed curve. The curve α is orientation reversing if and only if $\alpha \cdot \alpha=1$. The surface is orientation reversing if and only if there exist $\alpha \in H_{1}(S, \mathbb{Z} / 2 \mathbb{Z})$ with $\alpha . \alpha=1$.

As before, let F_{1} be the connected sum of $\mathcal{P}_{1}, \mathcal{P}_{2}, \ldots ., \mathcal{P}_{n}$, where \mathcal{P}_{i} denotes a projective plane and \mathcal{M}_{i} denotes the corresponding Möbius band. Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ and $\gamma_{1}, \ldots, \gamma_{n}$ be as before.

Let ψ be as in the hypothesis. Let $\beta_{i}=\psi\left(\alpha_{i}\right)$ and let C be a simple close curve that represents β_{1}. As $\beta_{1} \cdot \beta_{1}=\alpha_{1} \cdot \alpha_{1}=1, C$ is orientation reversing (as is γ_{1}). Hence regular neighbourhoods of C and γ_{1} are Möbius bands.

Let $\hat{F}_{1}^{\prime}=F_{1}-\operatorname{int}\left(\mathcal{N}\left(\gamma_{1}\right)\right)$ and $\hat{F}_{2}^{\prime}=F_{2}-\operatorname{int}(\mathcal{N}(C))$. Let $F_{1}^{\prime}=\hat{F}_{1}^{\prime} \cup D^{2}$ and $F_{2}^{\prime}=\hat{F}_{2}^{\prime} \cup D^{2}$ be closed surfaces obtained by capping off \hat{F}_{i}.

Observe that surfaces F_{1}^{\prime} is non orientable as $n \geq 2$ and γ_{2} is an orientation reversing curve on it. Now since ψ preserves the interstion paring it takes orthonormal basis of the $H_{1}\left(F_{1}, \mathbb{Z} / 2 \mathbb{Z}\right)$ to orthonormal basis of $H_{1}\left(F_{2}, \mathbb{Z} / 2 \mathbb{Z}\right)$. It follows that $\beta_{j} \cdot \beta_{j}=1$ for every j. Further, by a Mayer-Vietoris argument, $H_{1}\left(F_{i}, \mathbb{Z} / 2 \mathbb{Z}\right)=\mathbb{Z} / 2 \mathbb{Z} \oplus H_{1}\left(F_{i}^{\prime}, \mathbb{Z} / 2 \mathbb{Z}\right)$, with the decomposition being orthogonal and the component $\mathbb{Z} / 2 \mathbb{Z}$ in $H_{1}\left(F_{1}, \mathbb{Z} / 2 \mathbb{Z}\right)$ (respectively $\left.H_{1}\left(F_{2}, \mathbb{Z} / 2 \mathbb{Z}\right)\right)$ spanned by α_{1} (respectively β_{1}). As ψ preserves the intersection pairing, it follows that ψ induces an isomorphism $\psi: H_{1}\left(F_{1}, \mathbb{Z} / 2 \mathbb{Z}\right) \rightarrow H_{1}\left(F_{2}, \mathbb{Z} / 2 \mathbb{Z}\right)$.

Hence if C_{2} is a curve in F_{2}^{\prime} representing β_{2} in $H_{1}\left(F_{2}, \mathbb{Z} / 2 \mathbb{Z}\right)$, then C_{2} is orientation reversing and hence F_{2}^{\prime} is non-orientable. Also, we have seen that the map ψ induces an isomorphism from $H_{1}\left(F_{1}^{\prime}, \mathbb{Z} / 2 \mathbb{Z}\right)$ to $H_{1}\left(F_{2}^{\prime}, \mathbb{Z} / 2 \mathbb{Z}\right)$. By the induction hypothesis such a map is induced by a homoeomorphism $f^{\prime}: F_{1}^{\prime} \rightarrow F_{2}^{\prime}$.

Note that F_{1} (respectively F_{2}) is obtained from F_{1}^{\prime} (respectively F_{2}^{\prime}) by deleting the interior of a disc D_{1} (respectively D_{2}) and gluing in $\mathcal{N}\left(\gamma_{1}\right)$ (respectively $\mathcal{N}(C)$). We can modify f^{\prime} so that $f^{\prime}\left(D_{1}\right)=D_{2}$. On $F_{1}-\operatorname{int}\left(D_{1}\right)$ we define $f=f^{\prime}$. This restricts to a homeomorphism mapping $\partial \mathcal{N}\left(\gamma_{1}\right)$ to $\partial \mathcal{N}(C)$, which extends to a homeomorphism mapping $\mathcal{N}\left(\gamma_{1}\right)$ to $\mathcal{N}(C)$. As $\left.\right|_{\mathcal{N}\left(\gamma_{1}\right)}: \mathcal{N}\left(\gamma_{1}\right) \rightarrow \mathcal{N}(C)$ is a homeomorphism, it maps the generator α_{1} of $H_{1}\left(\mathcal{N}\left(\gamma_{1}\right), \mathbb{Z}\right)=\mathbb{Z}$ to a generator $\pm \beta$ of $H_{1}(\mathcal{N}(C), \mathbb{Z})=\mathbb{Z}$. Thus with $\bmod 2$ coefficients, $f_{*}=\varphi$ as required.

5. An algebraic corollary

We shall deduce from Theorem 1.1 and a theorem of Lickorish [3] a purely algebraic corollary. While this has a straightforward algebraic proof (and is presumably well known), it may still be of interest to see its relation to topology.

Let $V=(\mathbb{Z} / 2 \mathbb{Z})^{n}$ be a vector space over $\mathbb{Z} / 2 \mathbb{Z}$ and let $\left\{e_{j}\right\}$ be the standard basis of V. Consider the standard inner product $\left\langle\left(x_{i}\right),\left(y_{i}\right)\right\rangle=\sum_{i} x_{i} y_{i}$. Let \mathcal{O} be the group of automorphisms of V that preserve the inner product. We shall show that \mathcal{O} is generated by certain involutions.

Namely, let $1 \leq i_{1}<i_{2}, \ldots, i_{2 k} \leq n$ be $2 k$ integers between 1 and n. We define an element $R=$ $R\left(i_{1}, \ldots, i_{2 k}\right)$ be the transformation defined by

$$
\begin{gathered}
R\left(e_{i_{j}}\right)=e_{i_{1}}+\cdots+e_{i_{j-1}}+e_{i_{j+1}} \ldots e_{i_{2 k}} \\
R\left(e_{j}\right)=e_{j}, j \neq i_{1}, i_{2}, \ldots i_{2 k}
\end{gathered}
$$

Theorem 5.1. The group \mathcal{O} is generated by the involutions $R\left(i_{1}, \ldots, i_{2 k}\right)$.
Proof. We identify V with $H_{1}(F, \mathbb{Z} / 2 \mathbb{Z})$ for a non-orientable surface F and identify the basis elements e_{i} with α_{i}. Under this identification, the bilinear pairing on V corresponds to the intersection pairing. We shall see that the transformations $R\left(i_{1}, \ldots, i_{2 k}\right)$ correspond to the action of Dehn twists on $H_{1}(F, \mathbb{Z} / 2 \mathbb{Z})$, where we identify the generators e_{i} with α_{i}. First note that any element γ of $H_{1}(F, \mathbb{Z} / 2 \mathbb{Z})$ can be expressed as $\gamma=\alpha_{i_{1}}+\cdots+\alpha_{i_{m}}$. Observe that a simple closed curve C representing γ is orientation preserving if and only if $\gamma \cdot \gamma=0$, which is equivalent to m being even.

Now let C be an orientation preserving curve on F and consider the Dehn twist τ about C. Let $\gamma=[C] \in H_{1}(F, \mathbb{Z} / 2 \mathbb{Z})$ be the element represented by C. By the above, we can express γ as $\gamma=$ $\alpha_{i_{1}}+\cdots+\alpha_{i_{2 k}}$. If α is another element of $H_{1}(F, \mathbb{Z} / 2 \mathbb{Z})$ and $\alpha \cdot \gamma$ is the (mod 2$)$ intersection number, then (with mod 2 coefficients) $\tau_{*}(\alpha)=\alpha+\gamma$. It is easy to see that $\tau_{*}=R\left(i_{1}, \ldots, i_{2 k}\right)$. Note that $\tau_{*}^{2}(\alpha)=\alpha+2 \gamma=\alpha$, hence $\tau_{*}=R\left(i_{1}, \ldots, i_{2 k}\right)$ is an involution as claimed.

Now, by Theorem 1.3, any element $\phi \in \mathcal{O}$ is induced by a homeomorphism f of F. Further, by a theorem of Lickorish [3], f is homotopic to a composition of Dehn twists and cross-cap slides. We have seen that Dehn twists induce the automorphisms $\tau_{*}=R\left(i_{1}, \ldots, i_{2 k}\right)$ on V. It is easy to see that cross-cap slides induce the identity on $H_{1}(F, \mathbb{Z} / 2 \mathbb{Z})$. Thus ϕ is a composition of elements of the form $\tau_{*}=R\left(i_{1}, \ldots, i_{2 k}\right)$ as claimed.

Remark 5.2. We can alternatively deduce Theorem 1.3 from Theorem 5.1 as the generators of \mathcal{O} can be represented by homeomorphisms (namely Dehn twists).

6. Punctured surfaces

Let F be a compact non-orientable surface with m boundary components and let $\beta_{j} \in H_{1}(F, \mathbb{Z})$, $1 \leq j \leq m$, be elements representing the boundary curves. A homeomorphism $f: F \rightarrow F$ induces an automorphism $\varphi=f_{*}$ of $H_{1}(F, \mathbb{Z})$. Furthemore, as boundary compoments of F are mapped to boundary components by f (possibly reversing orientations), for some permutation σ of $\{1, \ldots, m\}$ and some constants $\epsilon_{j}= \pm 1, \varphi\left(\beta_{j}\right)=\epsilon_{j} \beta_{\sigma(j)}$, for all $j, 1 \leq j \leq m$.

We show that conversely any automorphism φ that preserves the (mod 2) intersection pairing and takes boundary components to boundary components is induced by a homeomorphism.

Theorem 6.1. Let F be a compact non-orientable surface with m boundary components and let φ be an automorphism of $H_{1}(F, \mathbb{Z} / 2 \mathbb{Z})$ that preserves the (mod 2) intersection pairing. Suppose for some permutation σ of $\{1, \ldots, m\}$ and some constants $\epsilon_{j}= \pm 1$, we have $\varphi\left(\beta_{j}\right)=\epsilon_{j} \beta_{\sigma(j)}$, for all $1 \leq j \leq m$. Then φ is induced by a homeomorphism of F.

Proof. Let \bar{F} be obtained from F by attaching discs to all the boundary components. Then we can assume that F has been obtained from \bar{F} by deleting the interiors of m discs $D_{1}, \ldots D_{m}$, all of which
are contained in a disc $E \subset \bar{F}$. Further we can assume that the central curves $\gamma_{i}, 1 \leq i \leq n$ in a decomposition of \bar{F} into projective planes are disjoint from E, as are all the Dehn twists and cross cap slides we perform on \bar{F} in the proof of Theorem 1.1. Hence the Dehn twists and cross cap slides we perform give homeomorphisms of F which are the identity on the boundary components.

Let $\alpha_{i}=\left[\gamma_{i}\right]$ and let $\bar{\alpha}_{i}$ be the images of these elements in $H_{1}(\bar{F}, \mathbb{Z})$. By choosing appropriate orientaions, we get that $H_{1}(F, \mathbb{Z})$ is generated by the elements α_{i} and β_{j} with the relation

$$
2 \sum_{i} \alpha_{i}=\sum_{j} \beta_{j}
$$

Note that as $H_{1}(\bar{F}, \mathbb{Z})=H_{1}(F, \mathbb{Z}) /\left\langle\beta_{j}\right\rangle$, it follows by the hypothesis that φ induces an automorpism $\bar{\varphi}$ of $H_{1}(\bar{F}, \mathbb{Z})$. By Theorem 1.1 (and its proof), this is induced by a composition of Dehn twists and cross cap slides, hence a homeomorphism $g: F \rightarrow F$. By composing φ by g_{*}^{-1}, we can assume that $\bar{\varphi}$ is the identity.

Similarly, we can use homeomorphisms supported in E (which do not change any α_{i}) to reduce to the case when the permutation σ is the identity, i.e. $\varphi\left(\beta_{j}\right)=\epsilon_{j} \beta_{j}$. As $\bar{\varphi}\left(\bar{\alpha}_{j}\right)=\bar{\alpha}_{j}$, we get $\varphi\left(\alpha_{i}\right)=$ $\alpha_{i}+\sum_{j} c_{i j} \beta_{j}$ for some integers $c_{i j}$. We define the complexity of φ to be $C(\varphi)=\sum_{i, j}\left|c_{i j}\right|$.

If φ is not the identity, we shall reduce the complexity of φ using homeomorphisms called boundary slides [2] similar to cross cap slides.

Lemma 6.2. There are homeomorphisms $h_{i j}$ of F such that the induced automorphism of $H_{1}(F, \mathbb{Z})$ takes α_{i} to $\alpha_{i}-\beta_{j}$, maps β_{j} to $-\beta_{j}$ and fixes all other α 's and β 's.

Proof. We shall use boundary slides [2] of the surface F. Namely, suppose α is an orientation reversing simple closed curve on a surface S^{\prime} and D is a small disc centered around a point on α. Let S be the surface obtained by deleting the interior of D. Consider a homeomorphism of S^{\prime} which is the identity outside a neighbourhood of α and which is obtained by dragging D once around α so that D is mapped to itself. By construction this extends to a homeomorphism of S, which we call a boundary slide.

As in the case of cross-cap slides, the automorphism of $H_{1}(F, \mathbb{Z})$ induced by the boundary slide of the boundary component corresponding to β_{j} along the simple closed curve $\gamma_{i}\left(\right.$ representing $\left.\alpha_{i}\right)$ is as in the statement of the lemma.

Now suppose φ is not the identity. Observe that as φ is a homomorphism, $2 \sum_{i} \varphi\left(\alpha_{i}\right)=\sum_{j} \varphi\left(\beta_{j}\right)$. $\operatorname{Using} \varphi\left(\alpha_{i}\right)=\alpha_{i}+\sum_{j} c_{i j} \beta_{j}, \varphi\left(\beta_{j}\right)=\epsilon_{j} \beta_{j}$ and $2 \sum_{i} \alpha_{i}=\sum_{j} \beta_{j}$, we see that $\sum_{j} c_{i j} \beta_{j}=\left(\epsilon_{j}-1\right) \beta_{j}$. As the elements $\beta_{j}, 1 \leq j \leq n$ are independent, it follows that for each $j, \sum_{i} c_{i j}=\epsilon_{j}-1$.

We now consider two cases. Firstly, if some $\epsilon_{j}=-1$, then observe that postcomposing with $h_{i j}$ takes $\varphi\left(\alpha_{i}\right)$ to $\varphi\left(\alpha_{i}\right)-\varphi\left(\beta_{j}\right)=\varphi\left(\alpha_{i}\right)+\beta_{j}$. Hence $c_{i j}$ is changed to $c_{i j}+1$ (and no other $c_{k l}$ is changed). In particular, if $c_{i j}<0$, the complexity is reduced. But as $\sum_{i} c_{i j}=\epsilon_{j}-1=-2$, we must have some $c_{i j}<0$, and hence a move reducing complexity.

Suppose now that each β_{j} is 1 . Then as $\sum_{i} c_{i j}=\epsilon_{j}-1=0$, either each $c_{i j}=0$, in which case we are done, or some $c_{i j}>0$. Observe that postcomposing with $h_{i j}$ takes $\varphi\left(\alpha_{i}\right)$ to $\varphi\left(\alpha_{i}\right)-\varphi\left(\beta_{j}\right)=\varphi\left(\alpha_{i}\right)-\beta_{j}$. Hence $c_{i j}$ is changed to $c_{i j}-1$ (and no other $c_{k l}$ is changed), and hence the complexity is reduced. Thus in finitely many steps, we reduce to the case where φ is the identity.

References

1. Birman, Joan S and Chillingworth, D. R. J. On the homotopy group of a non-orientable surface Math. Proc. Cambridge Philos. Soc 136(1972),437-448.
2. Korkmaz, M. Mapping class groups of nonorientable surfaces Geometriae Dedicata 89(2002), 109-133.
3. Lickorish, W. B. R. Homeomorphisms of non-orientable two-manifold Math. Proc. Cambridge Philos. Soc. 59(1963), 307-317.
4. Lickorish, W. B. R. Homeomorphisms of non-orientable two-manifold Math. Proc. Cambridge Philos. Soc. 61(1965), 61-64.

Stat Math Unit,, Indian Statistical Institute,, Bangalore 560059, India
E-mail address: gadgil@isibang.ac.in

School of Mathematics,, Tata Institute of Fundamental Research, Mumbai 400005, India
E-mail address: dishant@math.tifr.res.in

[^0]: Date: February 25, 2005.
 1991 Mathematics Subject Classification. Primary 57N05.
 Key words and phrases. Non-orientable surfaces, Dehn twist, Mapping class groups, Crosscap slide.

