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HOMEOMORPHISMS AND THE HOMOLOGY OF NON-ORIENTABLE

SURFACES

SIDDHARTHA GADGIL AND DISHANT PANCHOLI

Abstract. We show that, for a closed non-orientable surface F , an automorphism of H1(F, Z) is

induced by a homeomorphism of F if and only if it preserves the (mod 2) intersection pairing. We

shall also prove the corresponding result for punctured surfaces.

1. Introduction

Let F be a closed, non-orientable surface. A homeomorphism f : F → F induces an automorphism

on homology f∗ : H1(F,Z) → H1(F,Z). Further, any automorphism ϕ : H1(F,Z) → H1(F,Z) in turn

induces an automorphism with Z/2Z-coefficients ϕ̄ : H1(F,Z/2Z) → H1(F,Z/2Z). If ϕ = f∗ for a

homeomorphism f , then ϕ̄ also preserves the (mod 2) intersection pairing on homology.

Our main result is that, for an automorphism ϕ : H1(F,Z) → H1(F,Z), if the induced automorphism

ϕ̄ : H1(F,Z/2Z) → H1(F,Z/2Z) preserves the (mod 2) intersection pairing, then ϕ is induced by a

homeomorphism of F .

Theorem 1.1. Let ϕ : H1(F,Z) → H1(F,Z) be an automorphism. If the induced automorphism

ϕ̄ : H1(F,Z/2Z) → H1(F,Z/2Z) preserves the (mod 2) intersection pairing, then ϕ is induced by a

homeomorphism of F .

We have a natural homomorphism Aut(H1(F,Z)) → Aut(H1(F,Z/2Z)). Let K denote the kernel of

this homomorphism, so that we have an exact sequence

1 → K → Aut(H1(F,Z)) → Aut(H1(F,Z/2Z)) → 1

Observe that elements of K automatically preserve the intersection pairing. We shall show that

every element of K is induced by a homeomorphism of F . Further, we shall show that an element

of Aut(H1(F,Z/2Z)) is induced by a homeomorphism of f if and only if it preserves the intersection

pairing. Theorem 1.1 follows immediately from these results.

Theorem 1.2. Suppose ϕ : H1(F,Z) → H1(F,Z) is an automorphism which induces the identity on

H1(F,Z/2Z). Then ϕ is induced by a homeomorphism of F .

Theorem 1.3. Let F1 and F2 be closed, non-orientable surfaces. Suppose that ψ : H1(F1,Z/2Z) →

H1(F2,Z/2Z) is an isomorphism which preserves the intersection pairing. Then ψ is induced by a

homeomorphism f : F1 → F2.

We also consider the case of a compact non-orientable surface F with boundary. In this case an

automorphism of H1(F,Z) induced by a homeomorphism of F permutes (up to sign) the elements

representing the boundary components. We shall show that all automorophisms of H1(F,Z) which

satisfy this additional condition are induced by homeomorphisms.
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2. Preliminaries

Let F be a closed, non-orientable surface with χ(F ) = 2 − n and let F̂ be obtained from F by

deleting the interior of a disc. Then F is the connected sum of n projective planes Pi and F̂ is the

δ-connected sum of n corresponding Möbius bands Mi. Let γi denote the central circle of Mi and let

α = [γi] ∈ H1(F̂ ,Z) be the corresponding elements in homology. Then H1(F̂ ,Z) ∼= Z
n with basis αi

and H1(F,Z) is the quotient H1(F̂ ,Z)/〈2Σiαi〉.

We shall need the following elementary algebraic lemma.

Lemma 2.1. Any automorphism ϕ : H1(F,Z) → H1(F,Z) lifts to an automorphism ϕ̃ : H1(F̂ ,Z) →

H1(F̂ ,Z) such that ϕ(
∑

i αi) =
∑

i αi.

Proof. Consider the basis of H1(F̂ ,Z) given by e1 = α1,. . . , en−1 = αn−1, en = α1 + · · · + αn and let

[ej ] be the corresponding generators of H1(F,Z). Observe that [en] is the unique element of order 2

in H1(F,Z), and hence ϕ([en]) = [en]. Thus, we can define ϕ̃(en) = en. For 1 ≤ j ≤ n − 1, pick an

arbitrary lift hj of ϕ(ej) and set ϕ̃(ej) = hj .

Observe that H1(F̂ ,Z)/〈en〉 ∼= H1(F,Z)/〈[en]〉. Further, as ϕ̃(en) = en we have an induced map

on H1(F̂ ,Z)/〈en〉 which agrees with the quotient map induced by ϕ on H1(F,Z)/〈[en]〉 (which exists

as ϕ([en]) = [en]) under the natural identification of these groups. As ϕ is an isomorphism, so is the

induced quotient map on H1(F,Z)/〈[en]〉, and hence the map induced by ϕ̃ on H1(F̂ ,Z)/〈en〉.

Thus, ϕ̃ induces an isomorphism on the quotient H1(F̂ ,Z)/〈en〉 as well as the kernel 〈en〉 of the

quotient map. By the five lemma, ϕ̃ is an isomorphism.

�

Henceforth, given an automorphism ϕ as above, we shall assume that a lift has been chosen as in

the lemma. Observe that a homeomorphism of F̂ induces a homeomorphism of F . Hence it suffices to

construct a homeomorphism of F̂ inducing ϕ̃. Note that the intersection pairing is preserved by ϕ̃ as it

only depends on the induced map on homology with Z/2Z-coefficients.

3. Automorphisms in K

In this section we prove Theorem 1.2. Let ϕ : H1(F,Z) → H1(F,Z) be as in the hypothesis. As in

Lemma 2.1, we can lift ϕ to an automorphism of H1(F̂ ,Z) fixing
∑

i αi. We shall denote this lift also

by ϕ. We shall construct a homeomorphism of F̂ inducing this automorphism.

Our strategy is to use elementary automorphisms eij , 1 ≤ i, j ≤ n, which are induced by homeomor-

phisms gij . Observe that, for 1 ≤ i, j ≤ n, the automorphism ϕ is induced by a homeomorphism if and

only if eij ◦ ϕ is induced by a homeomorphism (as eij is induced by a homeomorphism). Thus we can

replace ϕ with eij ◦ ϕ. We call this an elementary move. For ϕ preserving the intersection pairing, we

shall find a sequence of elementary moves such that on performing these moves we obtain the identity

automorphism, which is obviously induced by a homeomorphism (namely the identity). This will prove

the result.

Lemma 3.1. There are homeomorphisms gij of F̂ so that if eij is the induced automorphisms on F̂ ,

then eij(αi) = αi + 2αj , eij(αj) = −αj and eij(αk) = αk for k 6= i, j.

Proof. We shall use cross-cap slides [3][4] of the surface F . Namely, suppose α is an orientation reversing

simple closed curve on a surface S ′ and D is a small disc centered around a point on α. Let S be the

surface obtained by replacing D by a Möbius band. Consider a homeomorphism f ′ of S′ which is the
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Figure 1. Cross-cap slide

identity outside a neighbourhood of α and which is obtained by dragging D once around α so that D is

mapped to itself. By construction this extends to a homeomorphism f of S, which we call a cross-cap

slide. In figure 1, the arc A in the Möbius band M on the left hand side is mapped to the arc A′ in the

Möbius band M′ on the right hand side and the homeomorphism is the identity in a neighbourhood of

the boundary.

We define gij as the cross-cap slide of Mj around the curve γi. Note that the Möbius band Mj

is mapped to itself, but, as γi is orientation reversing, the map on the Möbius band takes αj to −αj .

Further for any k different from i and j, the cross-cap slide fixes γj , hence αj . Finally, in Figure 1 (where

we regard M as a neighbourhood of αj), if B is a curve in the boundary of M joining the endpoints

of A, then [A ∪ B] = αi and [A′ ∪ B] = gij(αi). It is easy to see that [A ∪ B] − [A′ ∪ A] = [A ∪ A′] is

homologous to the boundary 2αj of the cross-cap. Thus, eij(αi) = αi + 2αj .

�

Lemma 3.2. There exits a sequence of elementary moves eij taking ϕ to the identity.

Proof. Let ϕ be represented by a matrix A = (aij) with respect to the basis αi. Then A ≡ I(mod 2).

As ϕ fixes
∑

i αi, for every i
∑

j aij = 1. Observe that on performing the elementay move eij , the ith

column A∗i of A is replaced by A∗i + 2A∗j , the jth column is replaced by −A∗j and the other columns

of A are unchanged.

We first use the elementary moves eij to reduce the first row A1∗ to [1, 0, 0, ..., 0]. To do this, we

define a complexity C1(A) of A as |a11| + |a12| + ....+ |a1n|.

Observe that if a1k and a1l are both non-zero, have different signs and |a1k| > |a1l|, ekl reduces the

complexity C1(A). As a11 is odd and a1j is even for j > 1, we know that a11 6= a1j for every j > 1.

Further, as
∑

j a1j = 1, unless a11 is 1 and a1j = 0 for j 6= 1, there exists a j > 1 such that a11 and a1j

are of opposite signs (and both non-zero). Thus we can reduce complexity by performing an elementary

operation. By iterating this finitely many times, we reduce the first row to [1, 0, 0, . . . , 0].

Next, suppose i > 1 and the rows A1∗, A2∗,. . . , A(i−1)∗ are the unit vectors e1, e2,. . . , e(i−1)∗. We

shall transform the ith row to [0, 0, . . . , 1, 0, . . . , 0] without changing the earlier rows.

First we shall transform the row Ai∗ to a row of the form [∗, ∗, . . . , 1, 0, . . . , 0] (i.e., with the first

i−1 entries arbitrary) by performing elementary moves eij . To do this, we define a complexity Ci(A) =∑
j |aij |, j ≥ i.

Observe that, for k ≥ i, the elementary operation e1k changes the sign of aik, does not alter amk for

m 6= k,m ≥ i and does not change first i− 1 rows. By such operations we can ensure that aii > 0 and

aij < 0 for j > i without changing the complexity.

As before, aii 6= aij for j > i (as aii is odd and aij is even) and (using operations e1k if necessary)

aii and aij have different signs. Hence, unless aij = 0 for j > i we can reduce the complexity using



4 SIDDHARTHA GADGIL AND DISHANT PANCHOLI

either eij or eji, without altering the first i rows. Thus we can reduce Ai∗ to a vector of the form

[∗, . . . , ∗,m, 0, . . . , 0].

Now A is a block lower triangular matrix with aii as a diagonal entry. As A is invertible it follows

that m = aii = ±1.

We define another complexity C ′
i(A) =

∑
i≤j |aij |. As

∑
j aij = 1 and aii = ±1, unless Ai∗ is a unit

vector we can find as before an operation eji, j < i, which reduces this complexity (without changing the

first (i− 1) rows). Hence after finitely many steps the ith row is reduced to a unit vector. By applying

these moves for i = 2, 3, . . . , n, we are done.

�

4. Automorphisms of H1(F,Z/2Z)

We now prove Theorem 1.3. We shall proceed by induction on n. In the case when n = 1 the result

is obvious. We henceforth assume that n is greater than 1.

We first make some observations. For a surface S, any element α of H1(S,Z/2Z) can be represented

by a simple closed curve. The curve α is orientation reversing if and only if α · α = 1. The surface is

orientation reversing if and only if there exist α ∈ H1(S,Z/2Z) with α.α = 1.

As before, let F1 be the connected sum of P1,P2, ....,Pn, where Pi denotes a projective plane and

Mi denotes the corresponding Möbius band. Let α1, α2, ..., αn and γ1,. . . ,γn be as before.

Let ψ be as in the hypothesis. Let βi = ψ(αi) and let C be a simple close curve that represents β1.

As β1 · β1 = α1 · α1 = 1, C is orientation reversing (as is γ1). Hence regular neighbourhoods of C and

γ1 are Möbius bands.

Let F̂ ′
1 = F1 − int(N (γ1)) and F̂ ′

2 = F2 − int(N (C)). Let F ′
1 = F̂ ′

1

⋃
D2 and F ′

2 = F̂ ′
2

⋃
D2 be closed

surfaces obtained by capping off F̂i.

Observe that surfaces F
′

1 is non orientable as n ≥ 2 and γ2 is an orientation reversing curve on it. Now

since ψ preserves the interstion paring it takes orthonormal basis of the H1(F1,Z/2Z) to orthonormal

basis of H1(F2,Z/2Z). It follows that βj · βj = 1 for every j. Further, by a Mayer-Vietoris argument,

H1(Fi,Z/2Z) = Z/2Z ⊕ H1(F
′
i ,Z/2Z), with the decomposition being orthogonal and the component

Z/2Z in H1(F1,Z/2Z) (respectively H1(F2,Z/2Z)) spanned by α1 (respectively β1). As ψ preserves the

intersection pairing, it follows that ψ induces an isomorphism ψ : H1(F1,Z/2Z) → H1(F2,Z/2Z).

Hence if C2 is a curve in F ′
2 representing β2 inH1(F2,Z/2Z), then C2 is orientation reversing and hence

F ′
2 is non-orientable. Also, we have seen that the map ψ induces an isomorphism from H1(F

′

1,Z/2Z) to

H1(F
′

2,Z/2Z). By the induction hypothesis such a map is induced by a homoeomorphism f ′ : F ′
1 → F ′

2.

Note that F1 (respectively F2) is obtained from F ′
1 (respectively F ′

2) by deleting the interior of

a disc D1 (respectively D2) and gluing in N (γ1) (respectively N (C)). We can modify f ′ so that

f ′(D1) = D2. On F1−int(D1) we define f = f ′. This restricts to a homeomorphism mapping ∂N (γ1) to

∂N (C), which extends to a homeomorphism mapping N (γ1) to N (C). As f |N (γ1) : N (γ1) → N (C) is a

homeomorphism, it maps the generator α1 of H1(N (γ1),Z) = Z to a generator ±β of H1(N (C),Z) = Z.

Thus with mod 2 coefficients, f∗ = ϕ as required. �

5. An algebraic corollary

We shall deduce from Theorem 1.1 and a theorem of Lickorish [3] a purely algebraic corollary. While

this has a straightforward algebraic proof (and is presumably well known), it may still be of interest to

see its relation to topology.
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Let V = (Z/2Z)n be a vector space over Z/2Z and let {ej} be the standard basis of V . Consider the

standard inner product 〈(xi), (yi)〉 =
∑

i xiyi. Let O be the group of automorphisms of V that preserve

the inner product. We shall show that O is generated by certain involutions.

Namely, let 1 ≤ i1 < i2, . . . , i2k ≤ n be 2k integers between 1 and n. We define an element R =

R(i1, . . . , i2k) be the transformation defined by

R(eij
) = ei1 + · · · + eij−1

+ eij+1
. . . ei2k

R(ej) = ej , j 6= i1, i2, . . . i2k

.

Theorem 5.1. The group O is generated by the involutions R(i1, . . . , i2k).

Proof. We identify V with H1(F,Z/2Z) for a non-orientable surface F and identify the basis elements ei

with αi. Under this identification, the bilinear pairing on V corresponds to the intersection pairing. We

shall see that the transformations R(i1, . . . , i2k) correspond to the action of Dehn twists on H1(F,Z/2Z),

where we identify the generators ei with αi. First note that any element γ of H1(F,Z/2Z) can be

expressed as γ = αi1 + · · · + αim
. Observe that a simple closed curve C representing γ is orientation

preserving if and only if γ · γ = 0, which is equivalent to m being even.

Now let C be an orientation preserving curve on F and consider the Dehn twist τ about C. Let

γ = [C] ∈ H1(F,Z/2Z) be the element represented by C. By the above, we can express γ as γ =

αi1 + · · · + αi2k
. If α is another element of H1(F,Z/2Z) and α · γ is the (mod 2) intersection number,

then (with mod 2 coefficients) τ∗(α) = α + γ. It is easy to see that τ∗ = R(i1, . . . , i2k). Note that

τ2
∗ (α) = α+ 2γ = α, hence τ∗ = R(i1, . . . , i2k) is an involution as claimed.

Now, by Theorem 1.3, any element φ ∈ O is induced by a homeomorphism f of F . Further, by

a theorem of Lickorish [3], f is homotopic to a composition of Dehn twists and cross-cap slides. We

have seen that Dehn twists induce the automorphisms τ∗ = R(i1, . . . , i2k) on V . It is easy to see that

cross-cap slides induce the identity on H1(F,Z/2Z). Thus φ is a composition of elements of the form

τ∗ = R(i1, . . . , i2k) as claimed. �

Remark 5.2. We can alternatively deduce Theorem 1.3 from Theorem 5.1 as the generators of O can be

represented by homeomorphisms (namely Dehn twists).

6. Punctured surfaces

Let F be a compact non-orientable surface with m boundary components and let βj ∈ H1(F,Z),

1 ≤ j ≤ m, be elements representing the boundary curves. A homeomorphism f : F → F induces

an automorphism ϕ = f∗ of H1(F,Z). Furthemore, as boundary compoments of F are mapped to

boundary components by f (possibly reversing orientations), for some permutation σ of {1, . . . ,m} and

some constants εj = ±1, ϕ(βj) = εjβσ(j), for all j, 1 ≤ j ≤ m.

We show that conversely any automorphism ϕ that preserves the (mod 2) intersection pairing and

takes boundary components to boundary components is induced by a homeomorphism.

Theorem 6.1. Let F be a compact non-orientable surface with m boundary components and let ϕ be

an automorphism of H1(F,Z/2Z) that preserves the (mod 2) intersection pairing. Suppose for some

permutation σ of {1, . . . ,m} and some constants εj = ±1, we have ϕ(βj) = εjβσ(j), for all 1 ≤ j ≤ m.

Then ϕ is induced by a homeomorphism of F .

Proof. Let F̄ be obtained from F by attaching discs to all the boundary components. Then we can

assume that F has been obtained from F̄ by deleting the interiors of m discs D1,. . .Dm, all of which
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are contained in a disc E ⊂ F̄ . Further we can assume that the central curves γi, 1 ≤ i ≤ n in a

decomposition of F̄ into projective planes are disjoint from E, as are all the Dehn twists and cross cap

slides we perform on F̄ in the proof of Theorem 1.1. Hence the Dehn twists and cross cap slides we

perform give homeomorphisms of F which are the identity on the boundary components.

Let αi = [γi] and let ᾱi be the images of these elements in H1(F̄ ,Z). By choosing appropriate

orientaions, we get that H1(F,Z) is generated by the elements αi and βj with the relation

2
∑

i

αi =
∑

j

βj

Note that as H1(F̄ ,Z) = H1(F,Z)/〈βj〉, it follows by the hypothesis that ϕ induces an automorpism

ϕ̄ of H1(F̄ ,Z). By Theorem 1.1 (and its proof), this is induced by a composition of Dehn twists and

cross cap slides, hence a homeomorphism g : F → F . By composing ϕ by g−1
∗ , we can assume that ϕ̄ is

the identity.

Similarly, we can use homeomorphisms supported in E (which do not change any αi) to reduce to

the case when the permutation σ is the identity, i.e. ϕ(βj) = εjβj . As ϕ̄(ᾱj) = ᾱj , we get ϕ(αi) =

αi +
∑

j cijβj for some integers cij . We define the complexity of ϕ to be C(ϕ) =
∑

i,j |cij |.

If ϕ is not the identity, we shall reduce the complexity of ϕ using homeomorphisms called boundary

slides [2] similar to cross cap slides.

Lemma 6.2. There are homeomorphisms hij of F such that the induced automorphism of H1(F,Z)

takes αi to αi − βj , maps βj to −βj and fixes all other α’s and β’s.

Proof. We shall use boundary slides [2] of the surface F . Namely, suppose α is an orientation reversing

simple closed curve on a surface S ′ and D is a small disc centered around a point on α. Let S be the

surface obtained by deleting the interior of D. Consider a homeomorphism of S ′ which is the identity

outside a neighbourhood of α and which is obtained by dragging D once around α so that D is mapped

to itself. By construction this extends to a homeomorphism of S, which we call a boundary slide.

As in the case of cross-cap slides, the automorphism of H1(F,Z) induced by the boundary slide of

the boundary component corresponding to βj along the simple closed curve γi (representing αi) is as in

the statement of the lemma. �

Now suppose ϕ is not the identity. Observe that as ϕ is a homomorphism, 2
∑

i ϕ(αi) =
∑

j ϕ(βj).

Using ϕ(αi) = αi +
∑

j cijβj , ϕ(βj) = εjβj and 2
∑

i αi =
∑

j βj , we see that
∑

j cijβj = (εj − 1)βj . As

the elements βj , 1 ≤ j ≤ n are independent, it follows that for each j,
∑

i cij = εj − 1.

We now consider two cases. Firstly, if some εj = −1, then observe that postcomposing with hij takes

ϕ(αi) to ϕ(αi) − ϕ(βj) = ϕ(αi) + βj . Hence cij is changed to cij + 1 (and no other ckl is changed).

In particular, if cij < 0, the complexity is reduced. But as
∑

i cij = εj − 1 = −2, we must have some

cij < 0, and hence a move reducing complexity.

Suppose now that each βj is 1. Then as
∑

i cij = εj − 1 = 0, either each cij = 0, in which case we are

done, or some cij > 0. Observe that postcomposing with hij takes ϕ(αi) to ϕ(αi)−ϕ(βj ) = ϕ(αi)−βj .

Hence cij is changed to cij −1 (and no other ckl is changed), and hence the complexity is reduced. Thus

in finitely many steps, we reduce to the case where ϕ is the identity.

�
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