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Abstract

We first study the growth properties of p-adic Lie groups and its connection

with p-adic Lie groups of type R and prove that a non-type R p-adic Lie group has

compact neighbourhoods of identity having exponential growth. This is applied to

prove the growth dichotomy for a large class of p-adic Lie groups which includes

p-adic algebraic groups. We next study p-adic Lie groups that admit recurrent

random walks and prove the natural growth conjecture connecting growth and the

existence of recurrent random walks, precisely we show that a p-adic Lie group

admits a recurrent random walk if and only if it has polynomial growth of degree

at most two. We prove this conjecture for some other classes of groups also.

We also prove the Choquet-Deny Theorem for compactly generated p-adic Lie

groups of polynomial growth and also show that polynomial growth is necessary

and sufficient for the validity of the Choquet-Deny for all spread-out probabilities

on Zariski-connected p-adic algebraic groups. Counter example is also given to

show that certain assumptions made in the main results can not be relaxed.
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1 Introduction and Preliminaries

Let G be a locally compact group with a left-invariant Haar measure m. For a subset E

in G and n ≥ 1, let En = {x1x2 · · ·xn | xi ∈ E for all i} and E−1 = {x−1 | x ∈ E}.

Let P(G) be the space of all regular Borel probability measures on G. We first fix the

following notations. Let x ∈ G and µ, λ ∈ P(G). Then

(i) δx denotes measure concentrated at the point x,
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(ii) µ ∗ λ as well as µλ denotes the convolution of µ and λ,

(iii) xµ and µx denote δx ∗ µ and µ ∗ δx respectively and

(iv) for any n ≥ 1, µn denotes the n-th convolution power of µ.

For µ ∈ P(G), µ̌ ∈ P(G) is defined to be µ̌(E) = µ(E−1) for any Borel subset E of G.

We say that a measure µ ∈ P(G) is symmetric if µ̌ = µ.

1.1 Growth and various classes of groups

It is a well-acknowledged fact that growth properties of groups play a vital role in analysis

and probability (see [11], [15], [32] and [34]). We first introduce different notions of

growth.

Definition 1.1 A compact neighborhood V of e in a locally compact group G is said

to generate G if G = ∪∞
n=1V

n. A locally compact group is called compactly generated if

it is generated by a compact neighborhood of e.

Definition 1.2 We say that a compactly generated group with a left-invariant Haar

measure m has polynomial growth if there exists an integer k ≥ 1 such that for each

compact neighborhood V of e, there exists a constant c > 0 so that m(V n) ≤ cnk for all

n ≥ 1. We say that a locally compact group G has polynomial growth if every compactly

generated open subgroup of G has polynomial growth.

Definition 1.3 A compact neighborhood V of e in a locally compact group G with a

left-invariant Haar measure m is said to have exponential growth if there exist constants

c > 0 and a > 1 such that m(V n) > can for all n ≥ 1 and we say that G has exponential

growth if every compact neighborhood of e has exponential growth.

The structure of compactly generated groups of polynomial growth is well-studied

in [10], [11], [15]-[21] and the references therein: see also Chapter 6 of [23]. Growth of

general class of groups, especially non-compactly generated groups is less developed.

In this article we consider p-adic Lie groups. Let Qp be the field of p-adic numbers

and | · | be denote the p-adic absolute value. Let G be a p-adic Lie group with Lie algebra

G: see [29] for generalities on p-adic Lie groups. Let Ad be the adjoint representation

of a p-adic Lie group G in its Lie algebra G. It is known that there are many p-adic

Lie groups which are not compactly generated, in fact, the additive group Qp of p-adic

numbers is not compactly generated.
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It can be easily seen that the additive group Qp has growth zero as any compact

subset is contained in a compact group. Consider the multiplicative group Q∗
p of non-

zero elements in Qp. Then the map x 7→ (|x|, x
|x|

) defines an isomorphism of Q∗
p onto

Z × {x ∈ Qp | |x| = 1}. Since {x ∈ Qp | |x| = 1} is a compact group, Q∗
p has growth of

degree one.

Any countable group can be easily seen to be a p-adic Lie group. This motivates the

following definition.

Definition 1.4 A p-adic Lie group G is called Ad-regular if the kernel of the adjoint

representation, Ker (Ad) is the center of G.

It is a fact that Zariski-connected p-adic algebraic groups such as GL(n,Qp) are Ad-

regular p-adic Lie groups. Recall that a locally compact group G is called p-adic algebraic

group if G is the group of Qp-points of an algebraic group defined over Qp: see [4] and

[6] for details on algebraic groups. The following class of groups plays a crucial role in

understanding the growth of p-adic Lie groups.

Definition 1.5 We say that a p-adic Lie group is of type R if the eigenvalues of Ad (g)

are of absolute value one for any g ∈ G.

Type R p-adic Lie groups are studied in [24] and this class was shown to coincide with

many other classes (see also [7] and [14]). In [24], it is shown that compactly generated

p-adic algebraic group has polynomial growth if and only if it is of type R. Here we study

the growth of general p-adic Lie groups and prove that a type R p-adic Lie group with

Ad (G) closed has polynomial growth if and only if the kernel of adjoint representation

has polynomial growth and a p-adic Lie group of polynomial growth is type R. As a

consequence we get that a p-adic algebraic group G has either polynomial growth or has

a compact neighborhood of identity in G having exponential growth according to G is

of type R or not. This growth dichotomy is known to be valid for connected groups (see

[18]) but there are discrete groups of intermediate growth (see [9]). So, it is interesting

to see growth dichotomy for p-adic algebraic groups.

We now describe a class of groups which will be needed in the sequel.

Definition 1.6 A locally compact group G is called pro-discrete if there exists a basis

at e consisting of compact open normal subgroups and G is called sigma-pro-discrete if

every compactly generated closed subgroup of G is pro-discrete.

We now produce p-adic Lie groups that are sigma-pro-discrete which will be needed

in the sequel.

Proposition 1.1 Let G be a p-adic Lie group of type R. Then G is sigma-pro-discrete.
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Proof Suppose G is a p-adic Lie group of type R. Let H be a compactly generated

closed subgroup of G. By Corollary to Theorem 1, Section 9, Chapter V of [29], H is

also a p-adic Lie group. Now by Theorem 1 of [24], G is non-contracting, hence H is

non-contracting. Again by Theorem 1 of [24], H is of type R. Then by Theorem 1 of

[24] and by Theorem 5.2 of [14], H is pro-discrete. Thus, G is sigma-pro-discrete.

1.2 Recurrence of random walks

We next consider the recurrence of random walks defined on p-adic Lie groups. A left

random walk on a locally compact group G starting at a point g ∈ G is defined to be

Y0 = g and Xn = YnYn−1 · · ·Y2Y1Y0, n ≥ 0

where (Yn)n≥1 is a sequence of independent and identically distributed random variables

with common law µ and the sequence (Xn)n≥0 is called the (left) random walk on G

defined by µ starting at g ∈ G. When g = e, we say that (Xn) is a random walk on G

defined by µ. We first recall the following notions.

Definition 1.7 Let µ be a probability measure on G. We say that µ is adapted if the

closed subgroup generated by the support of µ is G.

Definition 1.8 A random walk (Xn) defined by an adapted probability measure µ ∈

P(G) is said to be recurrent if
∑

n≥0

P [Xn ∈ U ] = ∞

for every neighborhood U of e in G and a locally compact group G is called recurrent if

there exists an adapted probability measure µ ∈ P(G) such that random walk defined

by µ is recurrent.

For basic results in recurrent random walks on groups and its significance see [13],

[27] and [31]. In [8], R. M. Dudley proved that an abelian group is recurrent if and only

if it is of rank at most two. Guivarc’h and Keane formulated a conjecture for general

locally compact groups which resembles Dudley’s result and their precise conjecture is

that a locally compact group is recurrent if and only if it has polynomial growth of degree

at most two, that is, for every compact neighborhood K of identity in G there exists a

constant a such that m(Kn) ≤ an2 for all n ≥ 1 (see [12]). An affirmative answer to this

conjecture for connected Lie groups is given in [13]: see also [2] and [3].

In [19], Kesten questioned whether a countable group admitting a recurrent random

walk can have non-exponential growth and Varapoulous answered this question (see [32])

which proves Guivarch-Keane conjecture for finitely generated groups.
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In Section 3 the afore-discussed Guivarc’h-Keane’s growth conjecture is solved for

groups whose compactly generated open subgroups admit compact open normal sub-

groups. We apply this to prove the growth conjecture for p-adic Lie groups. We also

show that growth conjecture is valid for groups of polynomial growth whose connected

component of identity is compact.

1.3 The Choquet-Deny Theorem

We next consider the Choquet-Deny Theorem.

Definition 1.9 For µ ∈ P(G), a bounded continuous function f on G is called µ-

harmonic if

µ ∗ f(x) =

∫
f(g−1x)dµ(g) = f(x)

for all x ∈ G.

We are interested in studying measures that do not admit non-constant bounded

continuous harmonic functions. This type of result is known as the Choquet-Deny The-

orem and we say that the Choquet-Deny Theorem is valid for a measure µ ∈ P(G) if µ

does not admit non-constant continuous bounded harmonic functions and we say that

the Choquet-Deny Theorem is valid for a group G if the Choquet-Deny Theorem is valid

for any adapted probability measure on G: see [17] and the references therein for results

on the Choquet-Deny Theorem for various classes of locally compact groups. In Section

4 we prove the Choquet-Deny Theorem for compactly generated p-adic Lie groups of

polynomial growth and also show that polynomial growth is necessary and sufficient for

the validity of the Choquet-Deny Theorem for all spread-out probability measures on

Zariski-connected p-adic algebraic groups: a measure µ on a locally compact group G

with a left-invariant Haar measure m is called spread-out if there exists n ≥ 1 such that

µn is not singular with respect to m.

2 Type R and growth

In this section we explore the relation between growth properties of p-adic Lie groups and

the eigenvalues of the adjoint representation of the group, that is we study the relation

between growth and type R.

Theorem 2.1 Let G be a p-adic Lie group.
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(1) Suppose G is of type R and Ad (G) is closed. Then G has polynomial growth if

and only if ker(Ad) has polynomial growth. In particular, if G is of type R such

that Ad (G) is closed and G is Ad-regular, then G has polynomial growth.

(2) Suppose G is not of type R. Then there exists a compact neighborhood of e having

exponential growth.

(3) Suppose G is not of type R and G is compactly generated. Then any generating

compact neighborhood of e has exponential growth.

(4) In particular, any p-adic Lie group of polynomial growth is of type R.

Remark 2.1 Since totally disconnected groups have compact open subgroups, no totally

disconnected group can have exponential growth and so we consider the exponential

growth of particular compact neighborhoods.

Proof Let G be a p-adic Lie group and Z be the kernel of the adjoint representation

of G. Suppose Ad (G) is closed and G is of type R. Let V be a compact symmetric

neighborhood of e. Let G0 be the group generated by V and Z. Then G0 is an open

subgroup of G and hence the adjoint representation of G0 is the restriction of the adjoint

representation of G to G0. This implies that G0 is also a p-adic Lie group of type R.

Since Ad (G) is closed and Ad (G0) is an open subgroup of Ad (G), Ad (G0) is also

closed. Since Z ⊂ G0, Ad (G0) ' G0/Z which is compactly generated. It follows from

Theorem 1 of [24] and Theorem 1 of [22], that Ad (G0) is compact. Now the result

follows from Theorem 1.4 of [11] (see also Theorem 3.4 of [15]). This proves (1).

Suppose G is not of type R. By Theorem 1 of [24], there exist x and g0 in G such

that x−ng0x
n → e as n→ ∞ and g0 6= e. Let α denote the inner automorphism defined

by x. Let C(α) = {g ∈ G | αn(g) → e as n → ∞}, C(α−1) = {g ∈ G | α−n(g) →

e as n → ∞} and M(α) = {g ∈ G | (αn(g))n∈Z is relatively compact }. Then by

Theorem 3.5 of [33], we have

(i) C(α), C(α−1) and M(α) are closed subgroups,

(ii) M(α) normalizes C(α) and C(α−1) and

(iii) the product map C(α) ×M(α) × C(α−1) → G is a homeomorphism onto an open

subset of G.

Now by (i) and Proposition 2.1 of [33], the restriction of α to C(α) and the restriction

of α−1 to C(α−1) are compactly contracting. By 3.1 and 3.2 of [30] there exist a com-

pact open subgroup K1 of C(α−1) and a compact open subgroup K2 of C(α) such that
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α−n(K1) ↓ e and αn(K2) ↓ e as n → ∞. Let K3 be a compact open subgroup of M

normalized by x. By (iii) we get that K1K2K3 is a compact neighborhood of e in G.

Take K = K1K2K3 ∪ {x, x−1}. Then for any n ≥ 1,

K2n+2 ⊃ (xn)(K1K2)(x
−n)(K2K3)

= (xnK1x
−n)(xnK2x

−n)K2K3

= αn(K1)α
n(K2)K2K3

= αn(K1)K2K3

because K2 ⊃ αn(K2).

Now by 3.1 of [30] αn−1(K1) is normal in αn(K1) for all n ≥ 1. Let a = |α(K1)/K1|,

the number of elements in the quotient group α(K1)/K1. Then a = |αn(K1)/α
n−1(K1)|

for any n ≥ 1. Since g0 6= e ∈ C(α−1), C(α−1) is a non-trivial unipotent group (see

Theorem 3.5 (ii) of [33]) and hence K1 is non-trivial. Since α−n(K1) ↓ e as n → ∞,

a > 1.

Suppose for some elements g and h in C(α−1) and for some i ≥ 0, gαi(K1)K2K3 ∩

hαi(K1)K2K3 6= ∅, then αi(K1)h
−1gαi(K1) ∩ K2K3K2 6= ∅. Since MC(α) ∩ C(α−1) =

(e) by (iii), we get that e ∈ αi(K1)h
−1gαi(K1) and hence gαi(K1) = hαi(K1). This

implies that for n ≥ 1, m(αn(K1)K2K3) = am(αn−1(K1)K2K3) and hence m(K2n+2) ≥

anm(K1K2K3) = anm(K). Now by taking c = m(K) > 0, we get that m(K2n+2) > can.

This shows that K has exponential growth. Thus proving (2).

Suppose G is not of type R and V is a compact neighborhood of e generating G. Let

K be as in (2). Then since K ⊂ G = ∪n≥1V
n, K ⊂ V i for some i ≥ 1. This implies that

for any n ≥ 1, Kn ⊂ V ni. Thus, V also has exponential growth. This proves (3).

Let G be a p-adic Lie group of polynomial growth. Suppose G is not of type R. Then

by (2) there exists a compact neighborhood V of e in G such that m(V n) ≥ c1a
n for all

n ≥ 1 where c1 > 0 and a > 1. Since G has polynomial growth, there exist c2 > 0 and an

integer k ≥ 0 such that m(V n) ≤ c2n
k for all n ≥ 1. This implies that the sequence ( an

nk )

is bounded. This is a contradiction to a > 1. Thus, any p-adic Lie group of polynomial

growth is of type R.

Remark 2.2 Theorem 2.1 says that any p-adic Lie group of polynomial growth should

be of type R. This may also be proved in the following way. For any x ∈ G, let K be a

compact symmetric neighborhood of e containing x, then the group generated by K, say

H, is an open subgroup of G and hence H also has polynomial growth. Now by Theorem

2 of [20], H has a compact open normal subgroup. In particular, there exists a compact

open subgroup in G normalized by x. This shows that G is of type R (see Theorem 1

of [24]). (In general, we may prove in an exactly similar way that totally disconnected

groups of polynomial growth are uniscalar in the sense of [14]).
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Remark 2.3 The following example shows that the afore-mentioned result, that is (4)

of Theorem 2.1 is in sharp contrast to the real Lie group situation. Let T be the two-

dimensional torus and α be an automorphism of T given by the 2 × 2 integer matrix
(

3 5

1 2

)
.

Then there exists an eigenvalue of α of absolute value strictly less than one. This implies

that for a proper connected subgroup D of T , αn(x) → e as n→ ∞ for all x ∈ D. This

shows that the semi-direct product of Z and T , say G, where the Z-action on T is given

by α is not of type R but G is a real Lie group of polynomial growth because G has a

compact normal subgroup T such that G/T ' Z. It may also be pointed out that here

- in contrast to the p-adic situation - the contractible parts C(α) and C(α−1) are not

closed.

We now prove a dichotomy result on growth of p-adic Lie groups.

Corollary 2.1 Let G be a p-adic Lie group.

(i) If G is Ad-regular and Ad (G) is closed, then G has polynomial growth or there are

compact neighborhoods of e having exponential growth according to G is of type R

or not.

(ii) If G is a p-adic algebraic group, then the conclusion of (i) holds. In case G is

a p-adic algebraic group of polynomial growth, G is a compact extension of its

nilradical and the degree of growth is the dimension of the maximal split torus in

its nilradical.

Proof Suppose G is Ad-regular and Ad (G) is closed. Then (i) follows from Theorem

2.1.

We now prove (ii). Suppose G is a Zariski-connected algebraic group. Then G is

Ad-regular and Ad (G) is closed. So, first part of (ii) follows from (i). Suppose G has

polynomial growth. Then by Theorem 2.1, G is of type R, hence by Theorem 2 of [24],

G is a compact split extension of its nilradical. This implies that the degree of growth

of G is equal to the degree of growth of its nilradical. So we may assume that G is a

nilpotent group. Then G has a subgroup of the form TsU where Ts is the maximal split

torus in G and U is the unipotent radical of G such that G/TsU is compact (see 10.6,

Chapter III of [4]). So, the degree of growth of G is same as the degree of growth of TsU .

Now any compact neighborhood V of e in TsU is contained in a subgroup of the form

TsK for some compact subgroup K of U . So, the growth of V is equal to the growth of

V ∩ Ts. It is easy to see that Ts ' M × Zk where M is a compact group and k is the
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dimension of Ts (in fact, M = {x ∈ Qp | |x| = 1}k). Thus, the degree of growth is equal

to the dimension of the maximal split torus.

Suppose G is any p-adic algebraic group. Let G0 be the Zariski-connected component

of e in G. Then G/G0 is finite. So, G has polynomial growth if and only if G0 has

polynomial growth (see Theorem 1.4 of [10] or Theorem 3.4 of [15]) and G is of type R

if and only if G0 is of type R (see Theorem 1 of [24]). Now, the result follows from the

previous case.

3 Recurrent groups

In this section we study recurrent groups for certain class of totally disconnected groups

which includes p-adic Lie groups and we prove Guivarc’h-Keane conjecture for totally

disconnected groups of polynomial growth and p-adic Lie groups. We first prove results

on finiteness of second moment.

Definition 3.1 Let G be a compactly generated group. A probability measure µ on G

is said to have finite second moment if for a generating compact neighborhood V of e,

M2(µ) =
∑

n≥1

n2µ(V n \ V n−1) <∞.

Suppose G is a compactly generated group and K is a compact symmetric neighbor-

hood of e generating G. Then define

φK(x) = inf{n | x ∈ Kn}

for any x ∈ G. Then φK is a non-negative Borel function on G such that for x, y ∈ G,

φK(xy) ≤ φK(x)+φK(y), that is, φK is subadditive on G. It is easy to see that a measure

µ ∈ P(G) has finite second moment if and only if
∫
φK(x)2dµ(x) <∞ for some compact

symmetric generating neighborhood K of e.

We first make the following observations.

Lemma 3.1 If µ is a probability measure on a compactly generated group G with compact

support, then µ has finite second moment.

Proof Let K be a compact symmetric neighborhood of identity generating G. Then

φK is bounded on compact subsets of G. Thus,
∫
φK(x)2dµ(x) < ∞ for any µ with

compact support.

It may also be easily seen that for a compactly generated group G admitting compact

open normal subgroups, a measure µ ∈ P(G) has finite second moment if and only if
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for any compact open normal subgroup K of G, the projection of µ onto G/K has finite

second moment.

It follows easily from the result on finitely generated groups that Guivarc’h-Keane

conjecture is valid for compactly generated groups admitting compact open normal sub-

groups. It is a well-know fact that totally disconnected locally compact groups have a

basis of compact open subgroups at identity. We now prove Guivarc’h-Keane conjecture

in case a compact open normal subgroup exists for every compactly generated open sub-

group (our proof makes use of some of the ideas of [8]). The following non-degeneracy

condition is useful for recurrence of random walks.

Definition 3.2 A measure µ ∈ P(G) is called irreducible in G if G = ∪n≥0Sn, that is,

the closed subsemigroup generated by S is G where S is the support of µ.

It may be easily seen that irreducible measures are adapted and any symmetric

adapted measure is irreducbile.

Proposition 3.1 Let G be a locally compact σ-compact group in which every compactly

generated open subgroup of G admits compact open normal subgroups. Then G is a

recurrent group if and only if G has polynomial growth of degree at most two.

Proof Since G is a locally compact σ-compact group, there exists a compact normal

subgroup K of G such that G/K is second countable. Now, any compactly generated

open subgroup of G/K lifts to a compactly generated open subgroup of G and hence any

compactly generated subgroup of G/K also admits compact open normal subgroups. It

may be easily seen that G has polynomial growth of degree at most two if and only if

G/K has polynomial growth of degree at most two and G is recurrent if and only if G/K

is recurrent. Thus, we may assume that G is second countable.

Suppose G has polynomial growth of degree at most two. Let V be a compact

symmetric neighborhood of e in G. Let G1 be the subgroup generated by V . Then G1 is

a compactly generated open subgroup of G, hence G1 is of polynomial growth of degree

at most two. Now, G1 has a compact open normal subgroup K. This implies that G1/K

is a finitely generated group of polynomial growth of degree at most two. Let λ be a

symmetric irreducible probability measure on G1/K supported on a finite generating set.

Then by Lemma 3.1, λ has finite second moment. Since λ is symmetric and irreducible,

by Proposition 3.24 of [34], λ is recurrent.

Let µ1 be the K-biinvariant measure on G1 such that the projection µ1 onto G1/K is

λ. This implies that µ1 is also irreducible, symmetric and recurrent. If G is compactly

generated, then we have a recurrent random walk on G by taking V to be a generating

compact neighborhood of e in G. So, we may assume that G is not compactly generated.
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Since G/G1 is countable, there exists a sequence (an) of points in G such that with

a1 = e, if Gm is the subgroup generated by a1, a2, · · · , am and G1, then am+1 6∈ Gm and

G = ∪m≥1Gm.

For a given sequence (qm)m>1 with 0 < qm < 1 and Π∞
m=2(1−qm) converges, we define

inductively measures µm in P(Gm) by

µm = (1 − qm)µm−1 +
1

2
qm[δam

+ δa−1
m

]

for m > 1. Let Sm be the support of µm for any m ≥ 1. Then it is easy to see that

Sm = Sm−1 ∪ {am, a
−1

m }

for all m > 1. This implies since µ1 is irreducible in G1 and has compact support, that

µm is irreducible in Gm and has compact support for all m > 1. Since µ1 symmetric, it

can be easily seen that µm is also symmetric for all m > 1.

We now claim that each µm is recurrent, in fact we claim that each µm has finite

second moment in Gm. By our choice of µ1 and µm for m > 1, µ1 is recurrent and

µm is an irreducible symmetric measure supported on a generating compact symmetric

neighborhood of e in Gm. This implies by Lemma 3.1, that µm has finite second moment

in Gm for all m > 1. For m > 1, Gm has compact open normal subgroups, let Km be a

compact open normal subgroup in Gm and µ′
m denote the projection of µm onto Gm/Km.

This implies that the irreducible symmetric measure µ′
m has finite second moment. Thus,

by Proposition 3.24 of [34], µ′
m is recurrent and hence µm is recurrent for all m > 1.

We now define a measure µ on G by defining it on compact subsets of G. Let E

be any compact subset of G. Since G is the increasing union of open subgroups (Gm),

E ⊂ Gm for some m > 0. Define

µ(E) = Πi>m(1 − qi)µm(E).

Suppose E is contained in Gm and Gn for m > n ≥ 1. Then µm(E) = (1−qm)µm−1(E) =

(1 − qm)(1 − qm−1)µm−2(E) = · · · = Πn<i≤m(1 − qi)µn(E). This implies that Πi>m(1 −

qi)µm(E) = Πi>n(1 − qi)µn(E). Thus, µ(E) is well-defined. Let 0 < ε < 1 be given.

Since Π(1 − qi) converges, there exists a m such that

Πi≥m+1(1 − qi) >
√

(1 − ε).

Since µm is a probability measure on the metric space Gm, µm is tight and hence there

exists a compact subset B of Gm such that

µm(B) >
√

(1 − ε).
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Then

µ(B) = Πi≥m+1(1 − qi)µm(B) > 1 − ε.

This implies that µ is a probability measure on G. Since the support of µm is contained

in the support of µ for all m ≥ 1, µ is adapted on G. We now choose the sequence

(qm) so that µ becomes recurrent. We first fix a sequence (rn) such that 0 < rn < 1

and Πi≥1(1 − ri) converges. Recall that K is a compact open subgroup contained in

G1 ⊂ Gm for all m ≥ 1. Since µ1 generates a recurrent random walk on G1, we can

choose a number N1 and a sequence of numbers (A1,j) such that

0 < A1,j < 1 and Πj≥1(1 − A1,j)
N1

N1∑

k=1

µk
1(K) > 1

and set q2 = min{r1, A1,1}. Now, µ2 is fixed and µ2 induces a recurrent random walk on

G2, so we can choose a number N2 and a sequence of numbers (A2,j) such that

0 < A2,j < 1 and Πj≥1(1 − A2,j)
N2

N2∑

k=N1+1

µk
2(K) > 1

and set q3 = min{r2, A1,2, A2,2}. We now define qm inductively. Suppose qm is chosen as

in the above process we now choose qm+1. Since µm generates a recurrent random walk

on Gm, we can choose a number Nm and a sequence of numbers (Am,j) such that

0 < Am,j < 1 and Πj≥1(1 − Am,j)
Nm

Nm∑

k=Nm−1+1

µk
m(K) > 1

and set qm+1 = min{rm−1, A1,m, A2,m, · · · , Am,m}. Since 0 < qm ≤ rm−1 < 1 for all m > 1,

Πi≥m(1 − ri) ≤ Πi>m(1 − qi) for any m ≥ 1. Since Πi≥1(1 − ri) converges, Πi≥2(1 − qi)

converges.

We now claim that µ is recurrent. We first claim for any n ≥ 1, by induction on

k, that for all k ≥ 1, µk(B) ≥ Πi>n(1 − qi)
kµk

n(B) for any Borel subset B contained in

Gn. Let n ≥ 1 be fixed. For k = 1, it follows from the definition of µ that µ(B) =

Πi>n(1− qi)µn(B) for any Borel subset B contained in Gn. Suppose for any Borel subset

B contained in Gn, µk(B) ≥ Πi>n(1 − qi)
kµk

n(B) for some k ≥ 1. Then for any Borel

subset B contained in Gn,

µk+1(B) =
∫
µk(gB)dµ(g)

=
∫

Gn
µk(gB)dµ(g) +

∫
G\Gn

µk(gB)dµ(g)

≥
∫

Πi>n(1 − qi)
kµk

n(gB)Πi>n(1 − qi)dµn(g)

= Πi>n(1 − qi)
k+1µk+1

n (B)

12



and hence for any n ≥ 1 and for any Borel subset B contained in Gn

µk(B) ≥ Πi>n(1 − qi)
kµk

n(B)

for all k ≥ 1. Recall that K ⊂ Gn for all n ≥ 1, we now get by taking N0 = 0 that

∑
k≥1

µk(K) =
∑

n≥1

∑Nn

k=Nn−1+1
µk(K)

≥
∑

n≥1

∑Nn

k=Nn−1+1
Πi>n(1 − qi)

kµk
n(K)

≥
∑

n≥1

∑Nn

k=Nn−1+1
Πi≥1(1 − An,i)

Nnµk
n(K) = ∞

since each of the term in the first sum is strictly greater than 1. This shows that µ is

recurrent.

Conversely, suppose G is a recurrent group. Let V be a compact symmetric neigh-

borhood of e in G. Let H be the subgroup generated by V . Since H is open in G, H

is also recurrent. By assumption, H has a compact open normal subgroup K. Since H

is recurrent, H/K is also recurrent. This implies that by Theorem 3.24 of [34], H/K

has polynomial growth of degree at most two. Let V ′ = V K. Since V ⊂ V ′ and the

restriction of the Haar measure of G to H is a Haar measure on H, there exists a constant

c > 0 such that m(V n) ≤ m(V ′n) ≤ cn2 for all n ≥ 1. This proves that G has polynomial

growth of degree at most two.

Corollary 3.1 Suppose a locally compact σ-compact group G has polynomial growth and

the connected component of identity in G is compact. Then G is a recurrent group if and

only if the degree of growth is at most two.

Proof Suppose G has polynomial growth and the connected component of identity in G

is compact. We first prove that every compactly generated open subgroup of G admits

compact open normal subgroups. Let H be a compactly generated open subgroup of

G. Let H0 be the connected component of identity in H. Then H0 is also compact,

hence H/H0 has polynomial growth. This implies by Theorem 1 of [20] that H/H0 has

a compact open normal subgroup. Since H0 is compact, H itself has a compact open

normal subgroup. Now the result follows from Proposition 3.1.

We now prove the Guivarc’h-Keane conjecture for p-adic Lie groups.

Lemma 3.2 Let G be a recurrent p-adic Lie group. For any continuous automorphism α

of G, let C(α) = {g ∈ G | αn(g) → e as n→ ∞}. Suppose α is an inner automorphism

of G and the elements of C(α) and C(α−1) commute with each other. Then C(α) = (e).

Proof Let M(α) = {h ∈ G1 | (αn(h))n∈Z is relatively compact }. Then M(α)∩C(α)

and M(α) ∩ C(α−1) are trivial and C(α)M(α)C(α−1) is an open subset of G (see [33]).
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By assumption, elements of C(α) and C(α−1) commute with each other and hence

N(C(α−1)) contains C(α) as well as M(α). Thus, C(α)M(α)C(α−1) is an open sub-

group of G and C(α−1) is a normal subgroup of C(α)M(α)C(α−1). Since G is recur-

rent, the open subgroup C(α)M(α)C(α−1) is also recurrent and hence C(α)M(α) '

C(α)M(α)C(α−1)/C(α−1) is also recurrent. This implies by [5] that C(α)M(α) is uni-

modular. Let m be a biinvariant Haar measure on C(α)M(α). Then by 3.1 and 3.2 of

[30], there exists a compact open subgroup K1 in C(α) such that αn(K1) ↓ e and α(K1) is

normal inK1. Let K2 be a compact open subgroup inM(α) such that α(K2) = K2. Since

α is an inner automorphism, m(K1K2) = m(α(K1K2)) = m(α(K1)K2) = am(K1K2) be-

cause for g and h in K1, gα(K1)K2 ∩ hα(K1)K2 6= ∅ implies gα(K1) = hα(K1) where

a−1 = |K1/α(K1)|, the number of elements in the quotient group K1/α(K1). Since

0 < m(K1K2) <∞, we have a = 1 which implies K1 = (e) and hence C(α) = (e).

Lemma 3.3 Let G be a p-adic Lie group. Suppose Ad (G) is a p-adic Lie group of type

R. Then G is also of type R.

Proof Suppose Ad (G) is of type R. Let α be an inner automorphism of G and

C(α) = {g ∈ G | αn(g) → e as n → ∞} be the contractible part of α. Then by

assumption, Ad (C(α)) is trivial for any inner automorphism α of G. Since C(α) and

C(α−1) are unipotent algebraic groups, elements of C(α) and C(α−1) commute with each

other for any inner automorphism of G. By Lemma 3.2, we get that C(α) is trivial for

any inner automorphism of G. Thus, G is of type R.

Proposition 3.2 Let G be a p-adic Lie group. Then G is recurrent implies G is of type

R.

Proof We first assume that G is a linear group, that is, G is a closed subgroup of

GL(V ) for some finite-dimensional vector space V . Suppose G is recurrent. Then by

5.23 of [27], G is an amenable subgroup of GL(V ). By Corollary 2 of [25], there exists

a closed subgroup H of GL(V ) and a closed solvable normal subgroup S of H such

that H/S is a compact group and G ⊂ H. For any x ∈ G, let C(x) = {h ∈ G |

xnhx−n → e as n → ∞}. Let S1 = [S, S] and Sk = [Sk−1, Sk−1] for all k > 1. For

each k ≥ 1, let φk:G → H/Sk be the restriction of the canonical projection and let Gk

be the closure of φk(G). Then each Gk is recurrent. For any x ∈ G, let Ck(x) = {g ∈

Gk | φk(x)
ngφk(x)

−n → e as n → ∞} for k ≥ 1. We now claim by induction that

Ck(x) is trivial for all k ≥ 1 and all x ∈ G. Since H/S is compact and Ck(x) is an

unipotent p-adic algebraic group, we get that Ck(x) ⊂ S/Sk for all k ≥ 1 and all x ∈ G

(see Proposition 1.2 of [26]). Since H/S is compact and S/S1 is abelian, we get that

Ck(x) ⊂ S1/Sk for all k ≥ 1 and all x ∈ G. In particular, we get that C1(x) is trivial for
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all x ∈ G. Suppose for some i ≥ 1, Ci(x) is trivial for all x ∈ G. Let ψ:H/Si+1 → H/Si

be the canonical projection onto H/Si. It can be easily seen that ψ(Ci+1(x)) ⊂ Ci(x) for

all x ∈ G. Thus, Ci+1(x) ⊂ Si/Si+1 for all x ∈ G. Since Si/Si+1 is abelian, elements of

Ci+1(x) and Ci+1(x
−1) commute with each other for any x ∈ G. Since Gi+1 is recurrent,

by Lemma 3.2, Ci+1(x) is trivial for all x ∈ G. It follows by induction that Ck(x) is

trivial for all k ≥ 1 and all x ∈ G. Since S is solvable, Sj is trivial for some j ≥ 1 and

hence C(x) = Cj(x) is trivial for all x ∈ G. Thus, G is of type R.

Let G be any recurrent p-adic Lie group. Then Ad (G) is also recurrent. Then the

closure of Ad (G) is also a recurrent group. Thus, by the previous case, closure of Ad (G)

is of type R and hence Ad (G) is also of type R. Now by Lemma 3.3, G is of type R.

Theorem 3.1 Let G be a p-adic Lie group. Then G is a recurrent group if and only if

G is of polynomial growth of degree at most two.

Proof Suppose G is a p-adic Lie group having polynomial growth of degree at most

two. Then by Theorem 2.1 G is of type R. Thus, by Propositions 1.1 and 3.1, we get

that G is a recurrent group.

Suppose G is a recurrent group. Then by Proposition 3.2, G is of type R. Thus, by

Propositions 1.1 and 3.1, we get that G is of polynomial growth of degree at most two.

4 The Choquet-Deny Theorem

In this section we study the Choquet-Deny Theorem for p-adic Lie groups of polynomial

growth. We first recall that a locally compact group G is called FC−-nilpotent, if there

exists a series (e) = Gn ⊂ Gn−1 ⊂ · · · ⊂ G1 ⊂ G0 = G of closed normal subgroups of G

such that {x−1gxGi+1 | x ∈ G} is relatively compact in Gi/Gi+1 for all g ∈ Gi and for

all i.

It may be easily seen from the results in [17] that the Choquet-Deny Theorem is valid

for spread-out adapted probabilities on FC−-nilpotent groups. Here we prove that the

Choquet-Deny Theorem is valid for any adapted probability on compactly generated p-

adic Lie group of polynomial growth (or equivalently FC−-nilpotent groups by Theorem

1 of [21]).

Theorem 4.1 Let G be a p-adic Lie group and µ be an adapted probability measure on

G. Then if G is a compactly generated group of polynomial growth, then any continuous

bounded µ-harmonic function on G is constant.

Proof Suppose G is a compactly generated group of polynomial growth. Then by

Theorem 2.1, G is of type R. By Theorem 1.1, G is pro-discrete, hence G has a basis
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(Ki) of compact open normal subgroups of G. For i ≥ 1, let mi be the normalized

Haar measure on Ki and for any continuous bounded function f on G, let fi(xKi) =∫
f(xk)dmi(k) for any x ∈ G. Then for i ≥ 1, fi is a continuous bounded function

on G/Ki. Let µi be the projection of µ onto G/Ki for i ≥ 1. Then µi is an adapted

probability measure on G/Ki for i ≥ 1. If f is µ-harmonic, it may be easily seen that

fi is µi-harmonic on G/Ki for i ≥ 1. For i ≥ 1, G/Ki is a finitely generated group of

polynomial growth and hence fi is is constant on G/Ki (see [17]). Thus, any bounded

continuous µ-harmonic function is constant on the cosets of Ki for i ≥ 1.

Let f be a continuous bounded µ-harmonic function on G. Suppose f is not constant

on G. Then we may assume that for some x ∈ G, f(x)−f(e) > 0. Since g 7→ f(xg)−f(g)

is a continuous function on G, there exists a j ≥ 1 such that f(xk) > f(k) for all k ∈ Kj.

But we have
∫
f(xk)dmj(k) =

∫
f(k)dmj(k). This is a contradiction. Thus, f is constant

on G.

We now produce a class of groups on which the Choquet-Deny Theorem fails for

certain measures which may be compared with Corollary 3.15 of [17].

Lemma 4.1 Suppose S is a Zariski-connected algebraic group such that S = TU where

T is a split torus and U be a unipotent normal subgroup. Then S/U1 is of type R implies

S is of type R where U1 = [U, U ].

Proof Let U1 = [U, U ]. Suppose S/U1 is of type R. Let U0 = U and Uk = [U, Uk−1] for

k ≥ 1. Let m ≥ 1 be such that Um = (e) but Um−1 6= (e). Then each Uk is a normal

subgroup of S. The proof is based on induction on m. Suppose m = 1. Then there is

nothing to prove. Suppose m > 1. Let U ′ = U/Um−1. Then by induction, S ′ = TU ′ is

of type R. Therefore, aua−1u−1 ∈ Um−1 for all a ∈ T and u ∈ U . Now since Um−1 is

contained in the center of U , for any a ∈ T , u 7→ aua−1u−1 is a homomorphism of U into

Um−1. Since Um−1 is abelian and Um−1 ⊂ U1, we have aua−1u−1 = e for all a ∈ T and

for all u ∈ Um−1. Also the T action on U/Um−1 is also trivial. Since T is a split torus,

T centralizes U . This implies that S is also of type R.

Lemma 4.2 Let G be a Zariski-connected p-adic algebraic group. Suppose G is not of

type R. Then there exists an open subsemigroup Gs of G such that

(i) G = Gs ∪G
−1
s and

(ii) any probability measure µ on G with support contained in Gs admits non-constant

continuous bounded µ-harmonic functions.

Proof Let G be a Zariski-connected algebraic group. Suppose G is not amenable. Then

every adapted probability measure on G admits non-constant harmonic functions (see
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Corollary 43 of [1] or Proposition 1.9 of [28]): note that in [28] probability measures that

do not admit non-constant continuous bounded harmonic functions are called ergodic.

So, we may assume that G is amenable. Then reductive Levi subgroup of G is a compact

extension of a torus in G. This implies that there exists a unipotent normal subgroup U

of G, a split torus T in G and a compact algebraic subgroup K of G such that G = KTU

and K centralizes T (see 11.23, Chapter IV of [4]). Let S = TU . Then G/S is compact.

Suppose G is not of type R. Then S is not of type R. Let U1 = [U, U ]. Then by

Lemma 4.1, S/U1 is also not of type R. We now consider the action ofG on U/U1 induced

by the conjugacy action, that is, g(vU1) = gvg−1U1 for all v ∈ U . Since S/U1 is not of

type R there exists a g0 ∈ T such that C(g0) = {v ∈ U/U1 | gn
0 (v) → e as n → ∞}

is non-trivial. Since T is in the center of KT , we get that C(g0) is invariant under the

conjugacy action ofKT . SinceKT is a Zariski-connected reductive algebraic group, there

exists a subspace V1 of U/U1 which is invariant under KT such that U/U1 = C(g0)⊕ V1

(see Theorem 4(a), Chapter IV of [6]). Let U2 be an unipotent normal subgroup of U

(of G) such that U2/U1 = V1. Then C(g0) = U/U2. Since S is not of type R, C(g0) is a

non-trivial vector space on which G acts by automorphisms.

Since T is a split torus, C(g0) has a basis {e1, · · · , em} consisting of eigenvectors of

elements in T . Now for any 1 ≤ i ≤ m, let χi:T → Qp \ (0) be such that g(ei) = χi(g)ei

for all g ∈ T . Let i be such that χi is non-trivial and let V = {v ∈ C(g0) | g(v) =

χi(g)v for all g ∈ T}. Since K centralizes T , V is invariant under K, hence V is

G-invariant. As in the previous paragraph V has a G-invariant complement. Thus,

V = U/U3 for some unipotent normal subgroup U3 of G (and hence of U).

Let v0 = g0U3 ∈ S/U3. Then for any g ∈ G, there exists a g1 ∈ KT and g2 ∈ U such

that g = g2g1. Then

g(v0)v
−1

0 = gg0g
−1g−1

0 U3 = g2g1g0g
−1

1 g−1

2 g−1

0 U3 = g2g0g
−1

2 g−1

0 U3 ∈ U/U3 = V

for all g ∈ G. Now, define the following G-action on V , for g ∈ G, g · v is defined to be

g · v = g(vv0)v
−1

0

for all v ∈ V . It may be easily seen that (g, v) → g · v is a well-defined action of G on U

by homeomorphisms, in fact by rational morphisms.

Now for v ∈ V , gn
0 · v = gn

0 (v) → e as n → ∞. Let x0 ∈ U \ U3 and let w0 =

x0g0x
−1

0 g−1

0 U3 ∈ V . Then w0 is a non-trivial element in V . Also for g ∈ KT and v ∈ U ,

g · vU3 = gvg−1gg0g
−1g−1

0 U3 = gvg−1U3

because KT centralizes T . Thus, the KT -action on V is linear. Let || · || be a p-adic

norm on V . Since K is compact and the action of K on V is linear we may assume that
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|| · || is invariant under K. Let j ∈ Z be such that w0 6∈ M = {v ∈ V | ||v|| ≤ pj}.

Then M is a compact open K-invariant subgroup of V . Now for any g ∈ T and any

v ∈ U , g · vU3 = g(v)U3 = χi(g)vU3. This implies that for g ∈ T , either g or g−1 fixes M

according to |χi(g)| ≤ 1 or |χi(g)| ≥ 1. Let Gs = {g ∈ G | g ·M ⊂ M}. Then Gs is an

open subsemigroup in G containing K and U . Also for g ∈ T either g ∈ Gs or g−1 ∈ Gs.

Thus, G = Gs ∪G
−1
s .

Let µ be any probability measure on G with support contained in Gs. Let

ρn =
1

n

n∑

i=1

µi ∗ δe

be a measure in P(V ) for any n ≥ 1. Then ρn(M) = 1 for all n ≥ 1. This implies since

M is compact that (ρn) is relatively compact in P(V ). Let ρ ∈ P(V ) be a limit point of

(ρn). Then µ ∗ ρ = ρ.

Let φ:V → [0, 1] be such that φ(g) = 1 for all g ∈ M and φ(g) = 0 for all g 6∈ M .

Then φ is a continuous function with compact support. Now, let

ψ(g) =

∫
φ(g · v)dρ(v) =

∫

M

φ(g · v)dρ(v)

for any g ∈ G. Then ψ is a continuous bounded µ-harmonic function on G. For any

g ∈ Gs,

ψ(g) =

∫

M

φ(g · v)dρ(v) = 1

and for any v ∈ V ,

x0 · v = x0(v)(x0g0x
−1

0 g−1

0 U3) = vw0

because x0 ∈ U . This implies that for v ∈ M , φ(x0 · v) = φ(vw0) = 0 and hence

ψ(x0) = 0. Thus, ψ is a non-constant continuous bounded µ-harmonic function on G.

Theorem 4.2 Let G be a Zariski-connected p-adic algebraic group. Then the following

are equivalent:

(1) G has polynomial growth;

(2) for any adapted spread-out probability measure µ on G, continuous bounded µ-

harmonic functions are constant.

Proof Let G be a Zariski-connected p-adic algebraic group. Suppose G has polynomial

growth. Then by Corollary 2.1 (ii), G is a compact extension of a nilpotent group. This

implies that G is FC−-nilpotent. Then it may be easily seen from the results in [17] that

the Choquet-Deny Theorem is valid for any spread-out probability on G. Thus, proving

(1) implies (2).
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Suppose G does not have polynomial growth, by Corollary 2.1 of (i), G is not of type

R. By Lemma 4.2, there exists an open subsemigroup Gs of G satisfying conditions (i)

and (ii) of Lemma 4.2. Let µ ∈ P(G) be such that µ is absolutely continuous and the

support of µ is all of Gs. Then by (i) µ is spread-out and adapted and by (ii) µ admits

non-constant continuous bounded µ-harmonic functions. This proves (2) implies (1).

5 Remarks on exponential boundedness

We would like to make few remarks regarding p-adic analogue of results in [16].

Definition 5.1 A locally compact group G with a left-invariant Haar measure m is

called exponentially bounded if limm(V n)
1

n = 1 for any compact neighborhood V of e in

G.

By Theorem I.1 of [11], for any compact neighborhood V of e in G, limm(V n)
1

n

exists and limm(V n)
1

n ≥ 1 and hence a locally compact group G is either exponentially

bounded or G has compact neighborhoods of e having exponential growth. It can be eas-

ily seen that any group of polynomial growth is exponentially bounded but the converse

need not be true (see [9]).

It is shown in [16] that every open subsemigroup of an exponentially bounded locally

compact group is amenable and the converse is true for connected groups (see Theorem

3.2 of [16]). Here, we prove the p-adic analogue of this result and the equivalence of

translate property and exponential boundedness within the class of amenable groups.

Definition 5.2 A locally compact group G is said to have translate property if for every

Borel subset A ⊂ G with m(A) 6= 0 and every f ∈ L1(G) with compact support the

condition that
∫

A
f(xg)dm(x) > 0 for all g ∈ G implies

∫
f(x)dm(x) > 0.

Theorem 5.1 Let G be a p-adic algebraic group. Then we have the following:

(i) G is exponentially bounded if and only if every open subsemigroup of G is amenable;

(ii) an amenable G has translate property if and only if it is exponentially bounded.

Proof Let G be a p-adic algebraic group. Suppose G is exponentially bounded. Then

by Theorem 1.2 of [16], every open subsemigroup of G is amenable. Conversely, suppose

G is not exponentially bounded. Then there exists a neighborhood of e in G having

exponential growth. This implies by Corollary 2.1 that G is not of type R. Let G0

be the Zariski-connected component of e in G. Then G/G0 is finite, hence G0 is also

not of type R. By Lemma 4.2, there exists a open subsemigroup Gs of G0 such that
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G0 = Gs ∪ G−1
s and any measure µ ∈ P(G0) with µ(Gs) = 1 admits a non-constant

continuous bounded µ-harmonic function. This shows that Gs generates G0 and Gs does

not support any probability measure in P(G0) for which the Choquet-Deny Theorem is

valid. It may be easily seen that Gs is σ-compact. Thus, by Theorem 2.4 of [16], Gs is

not amenable. Since G0 is open in G, Gs is an open non-amenable subsemigroup of G.

This proves (i).

It can easily be seen that (ii) follows from Theorem 4.1 of [16] and (i).

6 Counter example

We now give examples to show that the conditions in Theorem 2.1 (1) and in Theorem

4.2 for p-adic Lie groups cannot be removed. It is easy to see that countable groups

are not Ad-regular p-adic Lie groups but they are type R. It is known that a finitely

generated group has polynomial growth if and only if it has a nilpotent subgroup of finite

index (see Gromov’s Theorem [10]). So the condition Ad-regular can not be removed.

Now let F be a free (non-abelian) group on two generators and U be a non-commutative

unipotent algebraic group such that

(i) F -acts on U faithfully by automorphisms,

(ii) F -action on U has bounded orbits and

(iii) the F -action on the center of U is trivial.

Let G be the semi-direct product of F and U . Then G is a p-adic Lie group of type

R. Suppose for g ∈ G, Ad (g) is trivial. Let g = au for a ∈ F and u ∈ U . Then

Ad (a) = Ad (u−1). Since F is contained in a compact group, it may be easily shown

that Ad (u) is trivial and hence Ad (a) is also trivial. Since U is an unipotent group, u

is in the center of U . Since the K-action on U is faithful, a = e. Thus, the center of U

contains the kernel of the adjoint representation of G. Since F -acts trivially on the center

of U , the center of U is contained in the center of G. Thus, the kernel of the adjoint

representation of G is the center of G. This shows that G is Ad-regular. It may be easily

seen that Ad (G) is not closed. It is well known that F is not amenable and hence F

does not have polynomial growth. Since G/U ' F , G also does not have polynomial

growth. Also, since F has adapted probability measures that admit continuous bounded

harmonic functions, the condition that G has polynomial growth can not be removed for

the validity of the Choquet-Deny Theorem for p-adic Lie groups.
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Let us consider the following p-adic Heisenberg group. Let U be the unipotent group

of (n+ 2) × (n+ 2)-unipotent matrices given by




1 x1 · · · xn x

0 1 · · · 0 y1

· · · · · · ·

· · · · · · ·

0 0 · · · 1 yn

0 0 · · · 0 1




where xi, yi and x are all in Qp for all i ≥ 1. Then the group of automorphisms of U is

given by

{

(
A 0

c det(A)

)
| A ∈ GL(2n,Qp) and c ∈ Q2n

p }

where c denotes a map from Q2n
p → Qp. Let F be a free (non-abelian) group on two

generators contained in a compact subgroup of SL(2n,Qp). F may be choosen as the

group generated by the matrices




1 0 · · · 0 1

0 1 · · · 0 0

· · · · · · ·

· · · · · · ·

· · · · · · ·

0 0 · · · 1 0

0 0 · · · 0 1




and 


1 0 · · · 0 0

0 1 · · · 0 0

· · · · · · ·

· · · · · · ·

· · · · · · ·

0 0 · · · 1 0

1 0 · · · 0 1




.

We now treat F as a subgroup of automorphisms of U by identifying α ∈ F with the

automorphism (
α 0

0 1

)

of U . Then F acts on U faithfully by automorphisms and the action of F on the center

of U is trivial. Thus, we have provided U and F satisfying the requirements (i), (ii) and

(iii).
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(2003), 271–278.

[23] A. L. T. Paterson, Amenability, Mathematical Surveys and Monographs, 29, American Math-

ematical Society, Providence, RI, 1988.

[24] C. R. E. Raja, On classes of p-adic Lie groups, New York J. Math. 5 (1999), 101–105.

[25] C. R. E. Raja, Ergodic amenable actions of algebraic groups, Glasgow Math. J. 46 (2004)

97-100.

[26] M. Ratner, Raghunathan’s conjectures for Cartesian products of real and p-adic Lie groups,

Duke Math. J. 77 (1995), 275–382.

[27] D. Revuz, Markov chains. North-Holland Mathematical Library, Vol. 11. North-Holland Pub-

lishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975.

[28] J. M. Rosenblatt, Ergodic and mixing random walks on locally compact groups, Math. Ann.

257 (1981), 31-42.

[29] J. P. Serre, Lie algebras and Lie groups, 1964 lectures given at Harvard University, Lecture

Notes in Mathematics, 1500. Springer-Verlag, Berlin, 1992.

[30] E. Siebert, Contractive automorphisms on locally compact groups, Math. Z. 191 (1986), 73–90.

[31] F. Spitzer, Principles of random walks, 2nd edition, Graduate Texts in Mathematics, 34,

Springer-Verlag, New York-Heidelberg, 1976.

23
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