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These notes are intended to be an introduction to the Representation theory
of Lie algebras. The subject is very rich and there are good books available e.g.
[Hu2], [FH], [GW] to which we refer most of the time. The interested reader is
advised to refer to these books. In what follows I assume familiarity with Lie
algebras specially Cartan decomposition of a semisimple Lie algebra.



CHAPTER 1

Representations and Weyl’s Theorem

Here we give definition of Lie algebra and its representation. In this connec-
tion we also mention the Weyl’s theorem concerning finite dimensional repre-
sentations.

Definition 1. A Lie algebra L is a vector space over a field F together with
a binary operation

[, ] : L × L → L,

called the Lie bracket, which satisfies the following properties:
1. Bilinearity: For a, b ∈ F and x, y, z ∈ L

[ax + by, z] = a[x, z] + b[y, z], [z, ax + by] = a[z, x] + b[z, y],

2. For all x ∈ L we have [x, x] = 0,
3. Jacobi identity: [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ L.

Note that the first and second properties together imply

[x, y] = −[y, x]

for all x, y ∈ L (anti-symmetry). Conversely, the antisymmetry property implies
property 2 above as long as F is not of characteristic 2. Also note that the mul-
tiplication represented by the Lie bracket is not in general associative, that is,
[[x,y],z] need not equal [x,[y,z]].

Let L be a Semisimple Lie algebra over F (an algebraically closed field of
characteristic 0). A vector space V (of infinite dimension unless stated other-
wise) over F is called a representation (or an L-module) if we have a Lie al-
gebra homomorphism L → gl(V ). An L-module V is called irreducible if it
has no proper submodule, i.e., no submodule other than 0 and L itself. A rep-
resentation V is called completely reducible if V is a direct sum of irreducible
L-submodules or equivalently each L-submodule has a direct complement.

The ad Representation : For a Lie algebra L the map ad : L → gl(L) defined
by ad(x)(y) = [x, y] is a representation of L. In the case L is semisimple we
have a maximal toral subalgebra H contained in L. Since H consists of com-
muting semisimple elements it gives rise to a decomposition of L, called Cartan
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2 1. REPRESENTATIONS AND WEYL’S THEOREM

decomposition, i.e.,
L = H

⊕⊕

α∈Φ

Lα

where Φ ⊂ H∗ is a root system and Lα = {x ∈ L | h.x = α(h)x ∀h ∈ H} a root
space corresponding to the root α. We will explicitly write down the roots in the
case of classical Lie algebras later.

Representations of sl(2) : In the next chapter we will write down represen-
tations of sl(2).

Contragradient Representation : Let V be an L-module. Then V ∗ is the
dual or contragradient representation given by (x.f)(v) = −f(x.v) for x ∈ L, f ∈

V ∗, v ∈ V .
Tensor Product of Representations : Let V and W be L-modules. The Lie

algebra L acts on V ⊗ W by A.(v ⊗ w) = Av ⊗ w + v ⊗ Aw.
The finite dimensional representations can be broken in smaller representa-

tions for a semisimple Lie algebra.

Theorem 1.0.1 (Weyl’s Theorem). Let V be a nonzero finite dimensional repre-
sentation of a semisimple Lie algebra L. Then V is completely reducible.

It need not be true for infinite dimensional representation. For example the
representation Z(λ) of sl(2) considered in the section 2.2 when λ + 1 is a non-
negative integer.



CHAPTER 2

Representations of sl(2)

We begin with the simplest example of Lie algebra. It turns out that this
example gives the general idea of the subject. The Lie Algebra

sl(2) =

{(

a b

c d

)

∈ M2(F ) | a + d = 0

}

is a special linear algebra of dimension 3. The bracket operation is induced from
matrix multiplication and is given by [A,B] = AB − BA for A,B ∈ sl(2). We
choose a basis of sl(2) as follows:

{

x =

(

0 1

0 0

)

, y =

(

0 0

1 0

)

, h

(

1 0

0 −1

)}

which satisfies [h, x] = 2x, [h, y] = −2y, [x, y] = h. In this chapter we describe all
finite dimensional irreducible representations of this Lie algebra and give some
infinite dimensional ones.

2.1. Classification of sl(2)-modules

Let V be an sl(2)-module, i.e., we have a Lie algebra homomorphism

φ : sl(2) → gl(V ).

As h is semisimple we get a decomposition of V as follows:

V =
⊕

µ∈F

Vµ

where Vµ = {v ∈ V | h.v = µv}. Whenever Vµ 6= 0 we call µ a weight and Vµ a
weight space. How does x and y act on weight spaces? Let v ∈ Vµ. Then

xv ∈ Vµ+2, yv ∈ Vµ−2.

Since V is finite dimensional there exists Vλ such that Vλ+2 = 0. For such λ, any
nonzero vector in Vλ will be called a maximal vector of weight λ.

Let V be an irreducible sl(2)-module. Let v0 ∈ Vλ be a maximal vector; set
v−1 = 0, vi = 1

i!
yiv0. Then for i ≥ 0,

hvi = (λ − 2i)vi, yvi = (i + 1)vi+1, xvi = (λ − i + 1)vi−1.
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4 2. REPRESENTATIONS OF sl(2)

Theorem 2.1.1. With notation as above, we get the description of irreducible sl(2)-
module as follows:

(a) relative to h, V is the direct sum of weight spaces Vµ, µ = m,m−2, . . . ,−(m−

2),−m, where m + 1 = dim(V ) and dim(Vµ) = 1 for each µ.
(b) V has (up to nonzero scalar multiples) a unique maximal vector, whose weight

(called the highest weight of V ) is m.
(c) The action of sl(2) on V is given explicitly by the above formulas, if the ba-

sis is chosen in the prescribed fashion. In particular, there exists at most one
irreducible sl(2)-module of each possible dimension m + 1,m ≥ 0.

The theorem can be summarised in the matrix form as

x =















0 m 0 . . . 0

0 0 m − 1 . . . 0
...

...
0 0 0 . . . 1

0 0 0 . . . 0















, y =















0 0 0 . . . 0

1 0 . . . 0

0 2 0 0
...

...
0 0 0 m 0















and

h















m

m − 2
. . .

−m + 2

−m















.

This information can be also put in picture.

m m−2 m−4
v v v vx

0 0

m m−1 1

1 2 m

. . . .

−m−(m−2)m−4m−2m

v
m−1

y

x

y

h

−m−m+2
0 1 2 m

y

x

h hh h

y

x

In the view of Weyl’s theorem we can describe all finite dimensional repre-
sentations by taking direct sum of the irreducible ones described above.

Theorem 2.1.2. Let V be any (finite dimensional) sl(2)-module. Then the eigenval-
ues of h on V are integers, and each occurs along with its negative (an equal number of
times). Moreover, in any decomposition of V into direct sum of irreducible submodules,
the number of summands is precisely dim(V0) + dim(V1).

We describe these representations in another way. Take the standard repre-
sentation of sl(2) on V , a 2-dimensional vector space with basis X,Y . Then sl(2)
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acts on V ⊗ V by A.(v ⊗ w) = Av ⊗ w + v ⊗ Aw. Moreover it acts on Sym2(V )

which has a basis {X2, XY, Y 2}. A simple calculation shows that this is the
3-dimensional irreducible representation obtained above. In general Symn(V )

with basis {Xn, Xn−1Y, . . . , XY n−1, Y n} is the n+1 dimensional irreducible rep-
resentation of sl(2). Notice that, in this case one representation (the standard
one) generates all other finite dimensional irreducible representations.

2.2. More Representations of sl(2)

We give a method to construct some representations (a priori infinite dimen-
sional) of sl(2) and it turns out that this gives all finite dimension ones. In Chap-
ter 4 we will see that this method is part of the general theory for any semisimple
Lie algebra.

In what follows for every λ ∈ F we associate an irreducible representation
V (λ) (possibly of infinite dimension) and classify among them the finite dimen-
sional ones depending on λ. Let Z(λ) be a vector space with countable basis
{v0, v1, v2, . . .}. Define the action of sl(2) by formulas: hvi = (λ − 2i)vi, yvi =

(i + 1)vi+1, xvi = (λ − i + 1)vi−1. Then,

(a) The space Z(λ) is an sl(2)-module and every proper submodule con-
tains at least one maximal vector.

(b) Z(λ) is an irreducible representation if and only if λ+1 is not a nonneg-
ative integer.

(c) For r a nonnegative integer define a map φ : Z(µ) → Z(λ) by vi 7→ vi+r

where µ = λ − 2r. Then φ is an injective sl(2)-module homomorphism.
In case λ + 1 = r the Im(φ) and V (λ) = Z(λ)/Im(φ) are irreducible
whereas Z(λ) is not.

To prove part (b) if λ + 1 = r is a nonnegative integer then xvr = 0 and the
subspace generated by {vr, vr+1, . . .} is an sl(2)-submodule of Z(λ) and hence it’s
not irreducible. Conversely suppose λ + 1 is not a nonnegative integer. Let v ∈

Z(λ) be a nonzero vector. Let v = asvs + · · · + arvr with as, ar 6= 0. Let W be the
subspace of Z(λ) generated by v under the action of sl(2), i.e., sl(2)-submodule
generated by v. By applying h repeatedly on v we can assume vs ∈ W . And
applying y repeatedly we see vi ∈ W for all i ≥ s. Look at xvs = (λ − s + 1)vs−1.
Since λ + 1 is not a nonnegative integer xvs ∈ W implies vs−1 ∈ W . Applying
this argument repeatedly we get v0 ∈ W hence W = V .

Proposition 2.2.1. V (λ) is finite dimensional if and only if λ is a nonnegative
integer.
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Observe that we have associated an irreducible module V (λ) to every ele-
ment λ ∈ H∗ where H is an one dimensional space generated by h and moreover
we categorise finite dimensional ones.

2.3. Weyl Group Action on the Weights

Let L be a Linear Lie algebra, i.e., L ⊂ gl(V ). For x ∈ L suppose ad(x) is
nilpotent, say (ad(x))k = 0. We can define

exp(ad(x)) = 1 + ad(x) + · · · + (ad(x))k−1/(k − 1)!

and exp(ad(x)) is an automorphism of L. In fact,

exp(ad(x))(y) = (exp(x))y(exp(x))−1.

To prove this note that ad(x) = λx + ρ−x. These automorphisms are called inner
automorphism and form a normal subgroup of Aut(L).

In case of L = sl(2) with basis {x, y, h} we define

σ = exp(ad(x))exp(ad(−y))exp(ad(x))

an element of Aut(L). This automorphism is same as (in view of above) con-
jugation by s = exp(x)exp(−y)exp(x) on L. One can calculate and see that

s =

(

0 1

−1 0

)

and σ(x) = −y, σ(y) = −x and σ(h) = −h (i.e., shs−1 = −h).

Now let us consider V an irreducible representation of highest weight m

of L = sl(2). Suppose m ≥ 1 so that the map φ : L → gl(V ) is injective. Then
exp(φ(x)) and exp(φ(y)) are automorphisms of V . Let τ = exp(φ(x))exp(φ(−y))exp(φ(x)).
Since the map φ is injective the action of τ on φ(h) is same as the action s on h in
previous paragraph, i.e., τφ(h)τ−1 = −φ(h). Let Vm−2i be a weight space. Then
τ(Vm−2i) ⊂ V−(m−2i).

Proposition 2.3.1. There exist an automorphism τ of V which maps positive weights
to negative weights and vice-versa.



CHAPTER 3

Root Space Decomposition

In this section we take another example of representations namely ad repre-
sentation of a Lie algebra. We fix a semisimple Lie algebra L with a maximal
toral subalgebra (or Cartan subalgebra) H . We have ad : L → gl(L). Since H

consists of commuting semisimple elements of L we obtain a following decom-
position (called Cartan decomposition) of L:

L = H
⊕⊕

α∈Φ

Lα

where Φ is a root system and Lα a root space corresponding to the root α. Here
we give description of this representation for the classical lie algebras.

3.1. Special Linear Algebra Al, l ≥ 1

Let V be a vector space of dimension l + 1. The Lie Algebra sl(V ) or sl(l + 1)

is
sl(l + 1) = {A ∈ Ml+1(F ) | tr(A) = 0}

called a special linear algebra.
A Basis and Dimension:

B = {ei,j(i 6= j, 1 ≤ i, j ≤ l + 1), hi = ei,i − ei+1,i+1}(1 ≤ i ≤ l)

is a basis and it has dimension l2 + 2l.
Bracket Operation: [x, y] = xy − yx for x, y ∈ sl(l + 1).
A Maximal Toral Subalgebra:

H =





























a1 0 · · · 0

0 a2 · · · 0
...

...
0 . . . 0 al+1











| a1 + · · · al+1 = 0



















.

Notation: For h ∈ H write h =
∑l+1

i=1 aiei,i and εi ∈ H∗ is given by εi(h) = ai.
Cartan Decomposition:

sl(l + 1) = H
⊕⊕

i>j

(F.ei,j

⊕

F.ej,i)

7



8 3. ROOT SPACE DECOMPOSITION

Root Vectors and Roots:

root vectors roots
ei,j (i 6= j, 1 ≤ i, j ≤ l + 1) εi − εj

check the calculation: ad(h)(ei,j) = [h, ei,j ] = (ai − aj)ei,j = (εi − εj)(h)ei,j

using ei,jek,l = δjkei,l.
A base and the Weyl group: The set of roots {εi − εi+1 (1 ≤ i ≤ l)} is a base and
the Weyl group is the symmetric group Sl+1.

3.2. Orthogonal Algebra (odd dimension) Bl, l ≥ 2

Let V be a vector space of dimension 2l + 1 with a symmetric bilinear form.
We denote a vector in V by x = (x0, x1, . . . , xi, . . . , xl, xl+1, . . . , xl+i, . . . , x2l). Let

s =





1 0 0

0 0 Il

0 Il 0





be the matrix of the bilinear form. The Lie Algebra o(V ) or o(2l + 1) is

o(2l + 1) = {x ∈ M2l+1(F ) | txs = −sx}

called orthogonal algebra. In fact x ∈ o(2l + 1) looks like

x =





0 b1 b2

−tb2 m n = −tn

−tb1 p = −tp −tm



 .

Dimension: 2l2 + l.
Bracket Operation: [x, y] = xy − yx for x, y ∈ 0(2l + 1).
A Maximal Toral Subalgebra:

H =































































































0

a1

a2

. . .
al

−a1

−a2

. . .
−al































































































.

Notation: For h ∈ H write h =
∑l

i=1 aiei,i −
∑l

i=1 aiel+i,l+i and εi ∈ H∗ is given
by εi(h) = ai.
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Root Vectors and Roots:

root vectors roots
Xi,0 = ei,0 − e0,l+i (1 ≤ i ≤ l) εi

Xl+i,0 = el+i,0 − e0,i (1 ≤ i ≤ l) −εi

Xi,j = ei,j − el+j,l+i (i 6= j, 1 ≤ i, j ≤ l) εi − εj

Yi,j = ei,l+j − ej,l+i (1 ≤ i < j ≤ l) εi + εj

Zi,j = el+i,j − el+j,i (1 ≤ i < j ≤ l) −(εi + εj)

check the calculations: ad(h) acts as in the following diagram:





−εi εi

εi εi − εj εi + εj

−εi −(εi + εj) −(εi − εj)





A base and the Weyl group: The set of roots {εi − εi+1 (1 ≤ i ≤ l − 1), εl} is a
base and the Weyl group is (Z/2Z)l

o Sl.

3.3. Symplectic Algebra Cl, l ≥ 3

Let V be a vector space of dimension 2l with a skew-symmetric bilinear form.
We denote a vector in V by x = (x1, . . . , xi, . . . , xl, xl+1, . . . , xl+i, . . . , x2l). Let

s =

(

0 Il

−Il 0

)

be the matrix of the form. The Lie Algebra sp(V ) or sp(2l) is

sp(2l) = {x ∈ M2l(F ) | txs = −sx}

called symplectic algebra. In fact x ∈ sp(2l) looks like

x =

(

m n = tn

p = tp −tm

)

.

Dimension: 2l2 + l.
Bracket Operation: [x, y] = xy − yx for x, y ∈ sp(2l).
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A Maximal Toral Subalgebra:

H =



















































































a1

a2

. . .
al

−a1

−a2

. . .
−al



















































































.

Notation: For h ∈ H write h =
∑l

i=1 aiei,i −
∑l

i=1 aiel+i,l+i and εi ∈ H∗ is given
by εi(h) = ai.
Root Vectors and Roots:

root vector root
Xi,j = ei,j − el+j,l+i (i 6= j, 1 ≤ i, j ≤ l) εi − εj

Yi,j = ei,l+j − ej,l+i (1 ≤ i < j ≤ l) εi + εj

Zi,j = el+i,j − el+j,i (1 ≤ i < j ≤ l) −(εi + εj)

Yi,i = ei,l+i (1 ≤ i ≤ l) 2εi

Zi,i = el+i,i (1 ≤ i ≤ l) −2εi

A base and the Weyl group: The set of roots {εi − εi+1 (1 ≤ i ≤ l − 1), 2εl} is a
base and the Weyl group is (Z/2Z)l

o Sl.

3.4. Orthogonal Algebra (even dimension) Dl, l ≥ 4

Let V be a vector space of dimension 2l with a symmetric bilinear form. We
denote a vector in V by x = (x1, . . . , xi, . . . , xl, xl+1, . . . , xl+i, . . . , x2l). Let

s =

(

0 Il

Il 0

)

be the matrix of the bilinear form. The Lie Algebra o(V ) or o(2l) is

o(2l) = {x ∈ M2l(F ) | txs = −sx}

called orthogonal algebra. In fact x ∈ o(2l) looks like

x =

(

m n = −tn

p = −tp −tm

)

.

Dimension: 2l2 − l.
Bracket Operation: [x, y] = xy − yx for x, y ∈ o(2l).
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A Maximal Toral Subalgebra:

H =



















































































a1

a2

. . .
al

−a1

−a2

. . .
−al



















































































.

Notation: For h ∈ H write h =
∑l

i=1 aiei,i −
∑l

i=1 aiel+i,l+i and εi ∈ H∗ is given
by εi(h) = ai.
Root Vectors and Roots:

root vector root
Xi,j = ei,j − el+j,l+i (i 6= j, 1 ≤ i, j ≤ l) εi − εj

Yi,j = ei,l+j − ej,l+i (1 ≤ i < j ≤ l) εi + εj

Zi,j = el+i,j − el+j,i (1 ≤ i < j ≤ l) −(εi + εj)

A base and the Weyl group: The set of roots {εi − εi+1 (1 ≤ i ≤ l − 1), εl−1 + εl}

is a base and the Weyl group is (Z/2Z)l−1
o Sl.





CHAPTER 4

Representation Theory

Keeping in the mind the two examples i.e., the representation theory of sl(2)

and the ad representation of a semisimple Lie algebra we develop the represen-
tation theory in general. For a semisimple Lie algebra we ask following ques-
tions:

(a) Classify all representations (finite or infinite dimensional) of L. In case
of finite dimensional, in view of Weyl’s theorem, it is enough to classify
the irreducible ones.

(b) For a given representation what are the weights appearing in the repre-
sentation?

4.1. Universal Enveloping Algebra

Let L be a Lie algebra over field F . Any associative algebra A can be made
into Lie algebra by operation [x, y] = xy − yx for x, y ∈ A. Roughly speaking, to
a Lie algebra L we will associate an associative algebra U(L) which contains L

and the Lie algebra operation on L becomes usual bracket operation in U(L).

Definition 2. An associative algebra U(L) with a map i : L → U(L) which
is a Lie algebra homomorphism (i.e. i([x, y]) = i(x)i(y) − i(y)i(x)) is called uni-
versal enveloping algebra if it satisfies following universal property: for any
associative algebra A if we have a Lie algebra map φ : L → A then there exists
an algebra homomorphism φ̃ : U(L) → A such that φ = φ̃i.

Now we prove the existence and uniqueness of this algebra. Let T (L) be the
tensor algebra of L. Consider the ideal J generated by elements [x, y]− (x⊗ y −

y ⊗ x) in T (L) for x, y ∈ L. Define

U(L) =
T (L)

J

and the map i : L → U(L) by sending elements of x to in the 1st component
of the tensor algebra. Then U(L) is the required universal enveloping algebra.
Note that if L is Abelian then U(L) is the symmetric algebra.

13



14 4. REPRESENTATION THEORY

Theorem 4.1.1 (Poincare-Birkhoff-Witt). Let L be of countable dimension with
{x1, x2, . . .}, a basis. Then {1, xi1xi2 · · · xim | m ∈ Z

+, i1 ≤ i2 ≤ . . . ≤ im} is a basis
of U(L).

The map i in the definition of U(L) is injective and hence L can be identified
with its image. Also if H is a subalgebra with basis {h1, h2, . . .} and extend
this basis to that of L, say, {h1, h2, . . . , x1, x2, . . .} then the map U(H) → U(L) is
injective and in fact, U(L) is free U(H)-module with basis {1, xi1xi2 · · · xim}.

4.2. Abstract Theory of Weights

Let Φ be a root system in an Euclidean space E with Weyl group W . Let

Λ = {λ ∈ E | 〈λ, α〉 ∈ Z, ∀α ∈ Φ}

where 〈λ, α〉 = 2 (λ,α)
α,α

. Then Λ is a lattice (abelian subgroup containing a basis of
E) called weight lattice and elements are called weights. Note that Λ contains
Φ. Let Λr be the lattice generated by Φ, called root lattice. Fix a base ∆ ⊂ Φ.
This is equivalent to defining an order (>) on E and in turn on Λ. An element
λ ∈ Λ is called dominant if 〈λ, α〉 ≥ 0 ∀α ∈ ∆ and strongly dominant if 〈λ, α〉 >

0 ∀α ∈ ∆. We denote by Λ+ the set of dominant weights.
Let ∆ = {α1, . . . , αl} then the vectors 2 αi

(αi,αi)
also form a basis. Let λ1, . . . , λl

be the dual basis, i.e., 2
(λi,αj)

(αj ,αj)
= δij . Note that λi are dominant weights called

fundamental dominant weights. Every element λ ∈ E can be written as λ =
∑

miλi where mi = 〈λ, αi〉. Then Λ = Zλ1 ⊕ · · · ⊕ Zλl and Λ+ = Z≥0λ1 ⊕ · · · ⊕

Z≥0λl.
α 2

α 1

λ
1

λ 2

A2

The finite group Λ/Λr is called the fundamental group of Φ.
The Weyl group leaves Λ invariant (note that σi(λj) = λj − δijαi).

Proposition 4.2.1. Each weight is conjugate under W to one and only one domi-
nant weight. If λ is dominant, then σ(λ) < λ for all σ ∈ W . Moreover for λ ∈ Λ+ the
number of dominant weights µ < λ is finite.
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4.3. Weights and Maximal Vectors

Notation: L semisimple Lie algebra (over algebraically closed field F of
characteristic 0) of rank l, H a maximal toral subalgebra of L, Φ the root sys-
tem, Φ+ a positive root system and ∆ = {α1, . . . , αl} corresponding base, W the
Weyl group.

Let V be a finite dimensional L-module. We can decompose V with respect
to H and have V = ⊕λ∈H∗Vλ where Vλ = {v ∈ V | hv = λ(h)v ∀h ∈ H}. But if V

is of infinite dimension Vλ still makes sense (though there need not be a direct
sum decomposition of V ) and is called weight space if it is non-trivial and λ a
weight.

Proposition 4.3.1. Let V be an L-module (need not be of finite dimension). Then
(a) Lα maps Vλ into Vλ+α (λ ∈ H∗, α ∈ Φ).
(b) The sum V ′ =

∑

λ∈H∗ Vλ is direct, and V ′ is an L-submodule of V .
(c) If V is finite dimensional then V = V ′.

PROOF. Let x ∈ Lα, v ∈ Vλ and h ∈ H . Then h.x.v = x.h.v + [h, x].v =

λ(h)x.v + α(h)x.v = (λ(h) + α(h))x.v, i.e., LαVλ ⊂ Vλ+α.
From Part (a) it is clear that V ′ is an L-submodule. Let v ∈ Vλ ∩ Vµ for

λ 6= µ ∈ H∗. There exist h ∈ H such that λ(h) 6= µ(h). Then h.v = λ(h)v = µ(h)v

implies v = 0.
If dimension of V is finite it is direct sum of weight spaces. ¤

Exercise: Do exercise 1 and 2 from [Hu2] section 20.

4.4. Construction of L-modules

A maximal vector of weight λ in an L-module V is a vector 0 6= v+ ∈ Vλ such
that Lα.v+ = 0 ∀α ∈ ∆ (equivalently ∀α ∈ Φ+). In case V is finite dimensional
the Boral subalgebra B(∆) = H ⊕ ⊕α∈Φ+Lα has a common eigenvector (thanks
to Lie’s theorem) which is a maximal vector.

Since V is an L-module it is also an U(L) module. Fix v+ a maximal vector
of weight λ and denote V = U(L).v+. These are called standard cyclic modules
of highest weight λ. We will first study structure of such modules. Recall the
notation xα ∈ Lα, yα ∈ L−α and hα = [xα, yα] for α ∈ Φ+.

Theorem 4.4.1. With notation as above, let Φ+ = {β1, . . . , βm}, Then,
(a) V is spanned by the vectors yi1

β1
· · · yim

βm
.v+ for ij ∈ Z; in particular V is direct

sum of its weight spaces with weights of the form µ = λ −
∑l

j=1 kjαj .
(b) For each µ ∈ H∗, Vµ is finite dimensional and dim(Vλ) = 1. Moreover, each

submodule of V is direct sum of its weight spaces.
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(c) V is an indecomposable L-module with a unique maximal proper submodule
and the corresponding unique irreducible quotient module. Every homomor-
phic image of V is also standard cyclic of weight λ.

PROOF. See [Hu2] section 20.2. ¤

In addition suppose V was irreducible. Then v+ is the unique maximal vec-
tor in V upto scalar multiples.

Now we explicitly construct irreducible standard cyclic modules of highest
weight λ which may be of infinite dimension. It is unique up to isomorphism.

Theorem 4.4.2. Let V,W be standard cyclic modules of highest weight λ. If both
are irreducible then they are isomorphic.

Next we construct a cyclic L-module of highest weight λ for any λ ∈ H ∗.
Construction 1: Let Dλ = F.v+ be a one dimensional vector space. We define

an action of B = B(∆) = H ⊕α∈Φ+ Lα on Dλ by h.v+ = λ(h)v+ and xα.v+ = 0.
Hence Dλ is an U(B)-module. Consider

Z(λ) = U(L) ⊗U(B) Dλ

an U(L) module. Then Z(λ) is standard cyclic of weight λ. Since U(L) is free
U(B) module the element 1 ⊗ v+ is non zero and generates Z(λ).

Construction 2: Consider the left ideal I(λ) in U(L) generated by {xα, α ∈

Φ+} and {hα−λ(hα), α ∈ Φ}. By the construction of Dλ we get a map U(L)/I(λ) →

Z(λ) which maps 1 7→ 1 ⊗ v+. Using PBW basis we can show that this map is
isomorphism.

The modules Z(λ) are called Verma modules after D.-N. Verma. Let Y (λ) be
the maximal proper submodule of Z(λ). We consider V (λ) = Z(λ)/Y (λ).

Theorem 4.4.3. For any λ ∈ H∗, V (λ) is an irreducible standard cyclic modules
of weight λ.

4.5. All finite dimensional Representations

Theorem 4.5.1. Every finite dimensional irreducible L-module V is isomorphic to
V (λ) for some λ ∈ H∗. Moreover λ(hi) is a nonnegative integer for all 1 ≤ i ≤ l and
any weight µ takes integer values on hi.

An element λ ∈ H∗ such that λ(hi) ∈ Z is called integral and if all λ(hi)

are nonnegative integers then it is called dominant integral. Then the set Λ

of integral linear functions on H is a lattice containing root lattice. The set of
dominant integral linear functions is denoted as Λ+.
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Theorem 4.5.2. If λ ∈ Λ+ then the irreducible L-module V (λ) is finite dimen-
sional and its set of weights Π(λ) is permuted by the Weyl group W , with dim(Vµ) =

dim(Vσµ) for σ ∈ W .

Hence the map λ 7→ V (λ) induces a one-one correspondence between Λ+

and the isomorphism classes of finite dimensional irreducible L-modules. To
prove the theorem we will first prove several lemmas.

Lemma 4.5.3. The following identities hold in U(L), for k ≥ 0, 1 ≤ i, j ≤ l :
a. [xj, y

k+1
i ] = 0 when i 6= j;

b. [hj, y
k+1
i ] = −(k + 1)αi(hj)y

k+1
i ;

c. [xi, y
k+1
i ] = −(k + 1)yk

i (k.1 − hj).

PROOF. First one follows from the fact that αi − αj is not a root for i 6= j.
Others follow by induction. ¤

We fix some notation for the proof. We denote the representation V (λ) by V

and write φ : L → gl(V ). We fix a maximal vector v+ of V of weight λ and set
mi = λ(hi), 1 ≤ i ≤ l. Note that mi are nonnegative integers by hypothesis. We
also denote the set of weights appearing in V by Π(λ).

Lemma 4.5.4. The representation V is sum of finite dimensional Si-modules for all
i where Si is a copy of sl(2) generated by xi, yi and hi in L.

PROOF. Let V ′ be sum of all Si-submodules of V for all i. First of all V ′ is
nonzero. Check following:

(1) ymi+1
i .v+ = 0.

(2) The subspace spanned by {v+, yi.v
+, . . . , ymi

i .v+} is a finite dimensional
Si-module.

(3) For any non-zero finite dimensional submodule W of V the space spanned
by xαW for α ∈ Φ is finite dimensional and Si-stable.

Since V is irreducible we get V = V ′. ¤

Lemma 4.5.5. The elements φ(xi) and φ(yi) are locally nilpotent endomorphisms
on V .

PROOF. Let v ∈ V . Then v is contained in finite dimensional submodule
from previous Lemma. ¤

Lemma 4.5.6. If µ is any weight of V then there exist an automorphism si of V

such that si(Vµ) = Vσiµ where σi is the reflection relative to αi (which generate the
Weyl group W ).
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PROOF. We consider the automorphism si = expφ(xi)expφ(−yi)expφ(xi). Then
si(Vµ) = Vσiµ where σi is reflection with respect to αi. ¤

Lemma 4.5.7. The set Π(λ) is stable under W and dim(Vµ) = dim(Vσµ). Moreover
Π(λ) is finite.

PROOF. From previous lemma it is clear that the set Π(λ) is stable under W .
And finiteness follows from Proposition 4.2.1. ¤

PROOF OF THEOREM 4.5.2. ¤



CHAPTER 5

Some Representation of Classical Lie Algebras

Here we give a lots of example. Mainly for classical Lie algebras we describe
the fundamental representations. To get any irreducible representation we take
their tensor products.

Proposition 5.0.8. Let V = V (λ) and W = V (µ) with λ, µ ∈ Λ+. Then the
weights of V ⊗ W is Π(V ⊗ W ) = {ν + ν ′ | ν ∈ Π(λ), ν ′ ∈ Π(µ)} and

dim(V ⊗ W )ν+ν′ =
∑

π+π′=ν+ν′

dim Vπ. dim Wπ′ .

In particular, λ + µ occurs with multiplicity one, so V (µ + λ) occurs exactly once as a
direct summand of V ⊗ W .

Let λ1, . . . , λl be the fundamental dominant weights. Let λ = a1λ1 + · · · +

alλl ∈ Λ+, i.e., ai ≥ 0 integers. Then V (λ) is a direct summand in V (λ1)
⊗a1 ⊗

· · · ⊗ V (λl)
⊗al . Hence knowing fundamental representation will yield any finite

dimensional representation.

5.1. Fundamental Representations of sl(n)

Consider the vector space F n with natural action of g = sl(n). We fix the
notation as h = {diag(a1, . . . , an) | a1 + · · · + an = 0} and n for strictly upper
triangular matrices and b = h + n. We consider the vector space V = ∧r

C
n. For

a fixed basis {e1, . . . , en} of F n we have {ei1 ∧ · · · ∧ eir | 1 ≤ i1 < . . . < ir ≤ n} a
basis of V . We define the action of x ∈ sl(n) on V by

x.ei1 ∧ · · · ∧ eir = xei1 ∧ · · · ∧ eir + · · · + ei1 ∧ · · · ∧ xeir .

We note that h ∈ h acts as follows:

h.ei1 ∧ · · · ∧ eir = (ai1 + · · · + air)ei1 ∧ · · · ∧ eir = (εi1 + · · · + εir)(h)ei1 ∧ · · · ∧ eir .

Hence the possible weights of the representation are {εi1 + · · · + εir | 1 ≤ i1 <

. . . < ir ≤ n}. And the highest weight (with respect to fixed base as done in
previous section) is ε1 + · · · + εr.

For a base ∆ = {ε1 − ε2, . . . , εn−1 − εn} of the root system we get the funda-
mental dominant weights as {λ1 = ε1, λ2 = ε1 + ε2, . . . , λn−1 = ε1 + · · · + εn−1}.

19
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Theorem 5.1.1. The representation V = ∧r
C

n for r = 1, . . . , n − 1 is irreducible
representation of g = sl(n) corresponding to fundamental weights ε1 + · · · + εr.

Example (sl(3)) : For V1 = ∧1
C

3 a basis is given by {e1, e2, e3} and the weights
are {ε1, ε2, ε3} where ε1 is the highest weight. Notice that ε2 = ε1 − (ε1 − ε2) and
ε3 = ε1 − (ε1 − ε2) − (ε2 − ε3).

For V2 = ∧2
C

3 a basis is given by {e1 ∧ e2, e1 ∧ e3, e2 ∧ e3} and the weights are
{ε1 + ε2, ε1 + ε3, ε2 + ε3} where ε1 + ε2 is the highest weight. We can again write
that ε1 + ε3 = (ε1 + ε2) − (ε2 − ε3) and ε2 + ε3 = (ε1 + ε2) − (ε1 − ε2) − (ε2 − ε3).

5.2. Fundamental Representations of so(n)

Let L = so(n) and σ1 be the defining representation of L on F n. Let us denote
the representation of L on the rth exterior power ∧rF n by σr.

Theorem 5.2.1. Let n = 2l + 1 ≥ 3 be odd. For 1 ≤ r ≤ l the representation
(σr,∧

rF n) is an irreducible representation of so(n) with highest weight ε1 + · · · + εr.

Theorem 5.2.2. Let n = 2l ≥ 4 be even.
(1) For 1 ≤ r ≤ l−1 the representation (σr,∧

rF n) is an irreducible representation
of so(n) with highest weight ε1 + · · · + εr.

(2) For r = l the space ∧lF n is direct sum of two irreducible representations of
highest weights ε1 + · · ·+εl (corresponding to weight vector e1∧· · ·∧el−1∧el)
and ε1 + · · ·+ εl−1 ∧ el (corresponding to weight vector e1 ∧ · · · ∧ el−1 ∧ e−l).
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