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Lecture 4: Theorems of Engel and Lie

Exercise 1 A Lie algebra g is solvable if and only if it has a sequence of Lie
subalgebras
g=g0D0g O D=0,

such that each g;y1 is an ideal in g; and g;/@iv+1 is abelian.

Exercise 2 Let i be an ideal of g. Then g is solvable if and only if b and
g/b are solvable.

Exercise 3 If by, by are solvable ideals of g, so is b1 + bs.

These results don’t hold for nilpotent Lie algebras:

Example 4 Let g be the non-abelian two dimensional Lie algebra. It has a
basis { X, Y} such that [X,Y] = X. Now, let h = FX and j = FY. Then b is
an ideal and b, g/h are nilpotent because they are one dimensional. However
g is not nilpotent: g* = FX Vi > 0.

Similarly, b and j are nilpotent but g = h +j is not. O
However, there is the following result.

Exercise 5 If g/Z(g) is nilpotent, so is g. (Hint: (g/Z(g))' = ¢'/Z(g).)
Exercise 6 A Lie algebra g is solvable or nilpotent iff ad(g) is so.

Exercise 7 FEvery Lie algebra g has a unique mazimal solvable ideal.

Definition 8 The unique maximal solvable ideal of the Lie algebra g is called
its radical and is denoted Rad(g).



Definition 9 If Rad(g) = 0, g is called semisimple.
A semisimple Lie algebra must have zero center, hence its adjoint represen-
tation is injective.

Simple Lie algebras are semisimple. So is the 0 algebra.

Exercise 10 For any Lie algebra g, g/Rad(g) is semisimple.

Let us turn to nilpotent Lie algebras. The condition g" = 0 means that for
any Xi,..., X411 € g we have

[Xl,[XQ,... [XnaXn—l—l] H = O, or ad(Xl)ad(Xg)ad(Xn) =0
In particular: ad(X)” =0 VX € g.

Definition 11 If ad(X) is nilpotent, we say X is ad-nilpotent.

We have just observed that if g is nilpotent, then each element of g is ad-
nilpotent. Amazingly, the converse is also true.

Theorem 12 Let g C gl(V) be a linear Lie algebra, V # 0. If each X € g
is nilpotent, then v € V' such that v # 0 and Xv =0VX € g.

Proof. We proceed by induction on dim(g). When dim(g) = 0, the result is
easy. Now consider an arbitrary g satisfying the hypotheses of the theorem.

We first show g has an ideal h of codimension one. Choose h to be any
maximal proper subalgebra of g. For any H € h, ad(H) preserves b, hence
we can define

ad:b—glg/h),  ad(H)(X +b) = ad(H)X +b.

Since each ad(H) is nilpotent, so is each ad(H). Applying the induction
hypothesis to ad(h), we find a non-zero Y + b such that ad(H)(Y +bh) = b
for every H € h. Then Y ¢ h and ad(H)Y € b for each H € b.

This shows h + FY is a subalgebra, properly containing f. Hence we must
have g = h + FY. So h has codimension one, and is also an ideal.

Now apply the induction hypothesis to h: Jv € V', v # 0, such that Hv = 0
for every H € h. Let

W={veV:Hv=0VH € h}.



Also, fix Y ¢ b: then g = h + FY. We have to find a non-zero v € W such
that Yv = 0. For any w € W and H € b,

HYw=[H,Yjw+YHw =0,

and so Yw € W. Therefore Y acts on W. Since the action must be nilpotent,
there is a non-zero v € W such that Yv = 0. ]

Corollary 13 Let g C gl(V) be a linear Lie algebra. If each X € g is
nilpotent, then there is a basis of V' such that each member of g is represented
by a strictly upper triangular matrix.

Corollary 14 (Engel’s Theorem) Let g be a Lie algebra such that each
element is ad-nilpotent. Then g is nilpotent.

In fact, the entire family of results 12-14 is generally grouped under the name
of Engel’s Theorem.

Exercise 15 Let g be a nilpotent Lie algebra and by a non-zero ideal in g.
Then h N Z(g) # 0.

Now we shall start exploring the structure of Lie algebras via eigenvectors
and eigenvalues, hence:

We assume that the underlying field F is algebraically closed.

We have seen that prime characteristic creates various exceptions to general
patterns, and so we also assume that char(F) = 0.

Example 16 Let g be the non-abelian two dimensional Lie algebra, with
basis {X,Y} such that [X,Y] = X. Then it is solvable: g = [g,g] = FX,
g =g, gM] = 0. Consider its adjoint representation:

01
ad(X) = ( 00 )
-1 0
ad(Y) = ( 00 )
Hence for a general element 7' = a X + bY € g,

ad(aX +bY) = ( B 8)



Clearly, there is no non-zero vector Z such that ad(7")Z = 0 for every T' € g.
However X is atleast a common eigenvector for each ad(7T):

ad(aX +bY)X = —bX.
0

Theorem 17 Let g C gl(V) be a solvable Lie algebra. If V. # 0 then it
contains a common eigenvector for all the elements of g.

Proof. We proceed by induction on dim(g), broadly following the scheme used
for Engel’s Theorem. If dim(g) = 0, the claim is trivial.

For a general g we first locate an ideal of codimension one. Since g is solvable,
[g,9] # g. Hence we can choose some vector subspace ¢ C g such that it has
codimension one and contains [g, g]. But then,

[€,0] C[g,0] CE
hence & is an ideal.

By the induction hypothesis, there is a common eigenvector v € V' for each
element of &:
Kv=X\K)v, VKEect

It is easy to see that A : € — [ is linear. Now define:
W={weV:Kw=XNK)w, VK €t}

Since v € W, W is a non-zero subspace of V. We shall show g preserves V.
Let X € g and w € W. Then for any K € ¢,

KXw =K, X]w+ XKw = MN[K, X])w + MNK)Xw.

To show Xw € W we have to prove that A([K,X]) = 0. Let w € W be
non-zero and consider the sequence {w, Xw, X?w...}. Let n be largest such
that

W, ={w, Xw,..., X "w}

is linearly independent. We have:
KX'w = KXX"lw
= [K,X| X" 'w+ XKX"
= MK, X)X w + MNEK) X w.



Hence the action of K on W, is given by an upper triangular matrix whose
diagonal entries are all A(K). Applying this to the action of [K, X], we
find that its trace is Tr[K, X]|w, = (n + 1)A([K, X]). By our choice of
n, we also have XW,, C W, and so [K, X]|w, = [K|w,, X|w,]. But then
Tr [K, X]|w, =0, and so A([K, X]) = 0 (Since char(F) = 0).

So we have shown that g preserves W. Let g = €+FZ. Since [ is algebraically
closed, Z has an eigenvector v € W. Then v is clearly a common eigenvector
for g. O

Corollary 18 (Lie’s Theorem) Let g C gl(V') be a solvable Lie algebra.
Then V' has a basis such that the matriz of each X € g is upper triangular.

Proof. Proceed by induction on n = dim(V'). The n = 0 case is trivial.
Assume n > 0. We have a common eigenvector v for the g action on V. Let

Vi = V/Fv. Define 7 : g — gl(V3) by
m(X)(w + Fv) = Xw + Fo.

Since 7(g) is solvable, by the induction hypothesis, there is a basis {v; +
Fo,...,v, + Fv} of V; such that each 7(g) is upper triangular. Then

{v,v1,...,0,}
is a basis of V' which makes g upper triangular. 0

Exercise 19 Let g be solvable and m : g — gl(V) a representation of g.
Then V' has a basis in which each w(X) is upper triangular.

Exercise 20 Let g be solvable. Then there are ideals b; of g such that
O=hChiChaC---Ch,=g, and dim(h;) =1.

Exercise 21 Let g be solvable. Then ad(X) is nilpotent for each X € [g, g].

Exercise 22 A Lie algebra g is solvable if and only if g, g] is nilpotent.

Exercise 23 The sum of two nilpotent ideals is nilpotent. Hence each g has
a mazximal nilpotent ideal.

Exercise 24 Let X,Y € L(V) commute. Let their Jordan decompositions
be Xs+ X, and Y;+Y,, respectively. Then the Jordan decomposition of X +Y
is (Xs +Y5) + (X, +Y5).



Exercise 25 Show the previous result can fail if X,Y do not commute.

Exercise 26 Let g C gl(V) be solvable. Show that Tr(XY) = 0 for all
X €lg,g] andY € g.

Exercise 27 Let char(F) = 2 and let g C gl(2,F) be the span of

() (50

Show g is a solvable Lie algebra but its elements have no common eigenvector
in F2.

Exercise 28 Let g be as in the previous exercise. Consider the vector space
direct sum b = g ® F? and define a bracket on it by

Xez,Yoy =[XY]a(Xy—Yrz)
Show that § is a solvable Lie algebra but [b, h] is not nilpotent.

Exercise 29 If g is a real Lie algebra, its complexification s the complex
vector space gc = gRrC, with bracket defined by [ X @w, Y ®z] = [X,Y]®wz.
Verify gc is a Lie algebra over C.

Exercise 30 Let g be a real Lie algebra. Show it is solvable if and only if
dc 18.

Exercise 31 If g is a solvable real Lie algebra, then [g,g| is nilpotent.



