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Lecture 3
Inner Automorphisms, Solvable and Nilpotent Lie Algebras

Definition 1 The center of g is defined by

Z(g) = {X ∈ g : [X, Y ] = 0 ∀Y ∈ g} = ker(ad).

Z(g) is an ideal of g. If Z(g) = g, then g is abelian. If Z(g) = {0}, then ad
is one-one and so g is isomorphic to the linear Lie algebra ad(g).

Definition 2 A Lie algebra g is called simple if it has no ideals except it-
self and 0, and [g, g] 6= 0. (The last requirement exactly excludes the one-
dimensional Lie algebra!)

For example, sl(2, F) is simple if char(F) 6= 2.

A simple Lie algebra must have zero center and hence the adjoint represen-
tation makes it isomorphic to a linear Lie algebra.

Definition 3 An automorphism of g is an isomorphism with itself. The
collection of all automorphisms of g is denoted Aut(g).

Example 4 Let g = gl(V ) or sl(V ). Let A ∈ L(V ) be invertible. Then the
map X 7→ AXA−1 is an automorphism of g. �

Until further notice, assume char(F) = 0.

Suppose X ∈ L(V ) is nilpotent: XM = 0. Then we can define its exponential:

exp(X) =
N−1∑
n=0

1

n!
Xn.

Note that exp(X) ∈ L(V ).
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Exercise 5 Suppose X, Y ∈ L(V ) are nilpotent and commute. Then

exp(X + Y ) = exp(X) exp(Y ).

In particular, exp(X) has inverse exp(−X).

Suppose X ∈ gl(V ) is nilpotent: XM = 0. Let l(X) denote left multiplication
by X and r(X) denote right multiplication by X. Then l(X) and r(X) are
commuting nilpotent maps. In fact l(X)M = r(X)M = 0. Also, ad(X) =
l(X)− r(X). Therefore

ad(X)2M = (l(X)− r(X))2M =
2M∑
n=0

2MCn l(X)nr(X)2M−n = 0.

Thus ad(X) is nilpotent. So we can define exp(ad(X)) : g → g and it is a
linear isomorphism. In fact,

exp(ad(X))Y = exp(l(X)− r(X))Y = exp(l(X)) exp(−r(X))Y

= exp(l(X))Y exp(−X) = exp(X)Y exp(−X)

It is easy to see from this that exp(ad(X)) ∈ Aut(gl(V )).

More generally, suppose D is a nilpotent derivation of g. Then exp(D) is
defined and is a linear isomorphism of g. If DM = 0, we calculate:

[exp(D)X, exp(D)Y ] =
[ M∑

k=0

Dk

k!
X,

M∑
l=0

Dl

l!
Y

]
=

M∑
k=0

M∑
l=0

[
Dk

k!
X,

Dl

l!
Y

]
=

2M∑
n=0

n∑
i=0

[
Di

i!
X,

Dn−i

(n− i)!
Y

]
=

2M∑
n=0

1

n!

n∑
i=0

nCi[D
iX,Dn−iY

]
=

2M∑
n=0

1

n!
Dn[X, Y ] (Leibniz Rule)

= exp(D)[X, Y ]

Thus, exp(D) ∈ Aut(g). In particular, if X ∈ g such that ad(X) is nilpotent,
then exp(ad(X)) ∈ Aut(g).



3

Definition 6 Int(g) denotes the subgroup of Aut(g) generated by automor-
phisms of the form exp(ad(X)), where X ∈ g and ad(X) is nilpotent. Mem-
bers of Int(g) are called inner automorphisms.

Exercise 7 Int(g) is a normal subgroup of Aut(g): If ϕ ∈ Aut(g) and X ∈ g

then ϕ exp(ad(X))ϕ−1 = exp(ad(ϕX))

We now remove the assumption that char(F) = 0.

So far, we have developed the basic theory of Lie algebras without any restric-
tion on their dimension (though our examples have been finite dimensional).
From here on, we shall assume the Lie algebras to be finite dimensional
(though certain infinite dimensional ones will temporarily appear later in
this Workshop). And if g ⊂ gl(V ) is linear, we assume V is finite dimen-
sional.

We shall now start exploring the structure of a Lie algebra via its ideals. On
the one extreme, we have simple Lie algebras such as sl(2, F) which have no
non-trivial ideals. On the other, are the abelian ones in which every subspace
is an ideal. In between are the algebras in the following example.

Example 8 Consider t = t(n, F). Its commutator ideal is [t, t] = n(n, F),
which is non-trivial. Every superspace of n(n, F) is clearly an ideal in t.
However, d(n, F) is not an ideal.

Now let us consider n = n(n, F). Its commutator ideal is

n1 := [n, n] =




0 0 ∗ ∗
. . . . . . ∗

. . . 0
0 0


 .

Moreover, n1 is also an ideal of t: [n1, t] = n1. We can repeat these calcula-
tions using matrices where the non-zero entries keep shifting more and more
towards the top-right corner. �

To bring order to these observations, we set up two series of nested ideals:

1. Derived Series: Define g(0) = g, g(1) = [g, g], g(2) = [g(1), g(1)], . . . , and
in general g(i+1) = [g(i), g(i)].

2. Lower (or Descending) Central Series: Define g0 = g, g1 = [g, g],
g2 = [g, g1], . . . , and in general gi+1 = [g, gi].
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Exercise 9 Prove that each g(i), gi is an ideal in g. (Hence each series is
descending.)

Exercise 10 Let h be an ideal in g. Show that each h(i), hi is an ideal in g.

Definition 11 A Lie algebra g is solvable if g(i) = 0 for some i. It is nilpotent
if gi = 0 for some i.

Clearly gi ⊃ g(i) and so nilpotent Lie algebras are also solvable.

Exercise 12 Show t(n, F) is solvable but not nilpotent. On the other hand,
n(n, F) is nilpotent.

Exercise 13 If g is solvable or nilpotent, then so is every subalgebra or
homomorphic image of g.

Exercise 14 Let char(F) = 0. Consider sl(2, F) with the standard basis
(X,Y, H). Consider the inner automorphism defined by

σ = exp(adX) exp(−adY ) exp(adX).

Show that σ has the following action:

H 7→ −H, X 7→ −Y, Y 7→ −X.

Further, σ is the same as conjugating by

s =

(
0 1

−1 0

)
.

Exercise 15 If dim(g) = 3, g is either simple or solvable.

Exercise 16 If g is nilpotent and non-zero then Z(g) 6= 0.

Exercise 17 The Lie algebra g is semisimple iff it has no non-zero abelian
ideals.

Exercise 18 If char(F) = 2 then sl(2, F) is nilpotent.


