On the isomorphism problem for Coxeter groups and related topics

Koji Nuida (AIST, Japan)

Groups and Geometries @Bangalore, Dec. 18 & 20, 2012

Contents of This Talk

A survey of results on the isomorphism problem for Coxeter groups

- "forgotten" subject until about 15 years ago
- active subject in recent years

Some relevant results on "group theory on Coxeter groups"

• finitely or non-finitely generated cases

Outline

イロン イヨン イヨン イヨン

æ

Preliminaries

イロン イヨン イヨン イヨン

æ

Isomorphism Problem

Given presentations of two mathematical objects in a class, "decide" whether these are isomorphic or not

• Here we do not concern computability, especially when studying infinite presentations

Isomorphism Problem for Groups

- General groups (of finite presentations): Uncomputable
- Finitely generated abelian groups: Textbook
- Free groups
- ...
- Coxeter groups

イロン イヨン イヨン イヨン

Coxeter Groups

۲

W is a <u>Coxeter group</u> ((W, S) is a <u>Coxeter system</u>) $\stackrel{\text{def}}{\iff}$

Koji Nuida (AIST, Japan) On the isomorphism problem for Coxeter groups 7/68

イロン イヨン イヨン イヨン

Coxeter Groups

W is a <u>Coxeter group</u> ((W, S) is a <u>Coxeter system</u>) $\stackrel{\text{def}}{\iff}$

• Generators: $s \in S$ (possibly $|S| = \infty$)

۲

イロン イヨン イヨン イヨン

Coxeter Groups

W is a <u>Coxeter group</u> ((W, S) is a <u>Coxeter system</u>) $\stackrel{\text{def}}{\iff}$

- Generators: $s \in S$ (possibly $|S| = \infty$)
- Fundamental relations:

۲

イロン イヨン イヨン イヨン

Coxeter Groups

W is a <u>Coxeter group</u> ((W, S) is a <u>Coxeter system</u>) $\stackrel{\text{def}}{\iff}$

- Generators: $s \in S$ (possibly $|S| = \infty$)
- Fundamental relations:

•
$$s^2 = 1 \ (\forall s \in S)$$

イロン イヨン イヨン イヨン

Coxeter Groups

W is a Coxeter group ((W, S) is a Coxeter system)

- Generators: $s \in S$ (possibly $|S| = \infty$)
- Fundamental relations:

•
$$s^2 = 1 \ (\forall s \in S)$$

• $(st)^{m(s,t)} = 1 \ (\forall s \neq t \in S)$, where

•
$$2 \le m(s,t) = m(t,s) \le \infty$$

• relations with $m(s,t) = \infty$ are ignored

Such a presentation is expressed by a Coxeter graph

det ₩

イロン イヨン イヨン イヨン

Examples

 $W = D_m = W(I_2(m)) \text{ (symmetry group of regular } m\text{-gon})$ • $S = \{s, t\}, m(s, t) = m \text{ with } 3 \le m < \infty$

イロト イヨト イヨト イヨト

Examples

$$W = D_{\infty} = W(\widetilde{A}_1) \text{ (infinite dihedral group)}$$

• $S = \{s, t\}, m(s, t) = \infty$

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

Examples

*s*1

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Examples

 $W = \text{limit of } S_2 \hookrightarrow S_3 \hookrightarrow S_4 \hookrightarrow \cdots$ (Here we call it $W(A_\infty)$)

<ロ> (日) (日) (日) (日) (日)

æ

Examples

$$W =$$
limit of $S_2 \hookrightarrow S_3 \hookrightarrow S_4 \hookrightarrow \cdots$
(Here we call it $W(A_\infty)$)

There are another embeddings $S_2 \hookrightarrow S_3 \hookrightarrow S_4 \hookrightarrow \cdots$ (Here we call the limit $W(A_{\infty,\infty})$)

$$\cdots - \bigcirc - \bigcirc - \bigcirc - \bigcirc - \bigcirc - \cdots$$

イロト イヨト イヨト イヨト

æ

Examples

$$W = PGL(2, \mathbb{Z}) = GL(2, \mathbb{Z}) / \{\pm 1\}$$

• $S = \{s_1, s_2, s_3\} = \{\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\}$
• $m(s_1, s_2) = \infty, \ m(s_1, s_3) = 2, \ m(s_2, s_3) = 3$

Э.

Direct/Free Product Decompositions

If $S = S_1 \cup S_2$ (disjoint) and

- $m(s_1, s_2) = 2 \ (\forall s_1 \in S_1, s_2 \in S_2)$, then $W = \langle S_1 \rangle \times \langle S_2 \rangle$;
- $m(s_1,s_2) = \infty \; (\forall s_1 \in S_1, s_2 \in S_2)$, then $W = \langle S_1
 angle * \langle S_2
 angle$

・ 同 ト ・ ヨ ト ・ ヨ ト

The Problem

・ロン ・回 と ・ ヨン ・ ヨン

æ

Isomorphism Problem for Coxeter Groups

Problem Given two Coxeter graphs Γ_1, Γ_2 , decide whether $W(\Gamma_1) \simeq W(\Gamma_2)$ (as abstract groups) or not

イロン 不同と 不同と 不同と

Isomorphism Problem for Coxeter Groups

Problem Given two Coxeter graphs Γ_1, Γ_2 , decide whether $W(\Gamma_1) \simeq W(\Gamma_2)$ (as abstract groups) or not

or: Given a Coxeter group W, determine the possible Coxeter generating sets S for W (or the types of (W, S))

Rigid Coxeter Groups

$W(\Gamma)$ is <u>rigid</u> $\stackrel{\text{def}}{\longleftrightarrow} W(\Gamma') \simeq W(\Gamma)$ implies $\Gamma' \simeq \Gamma$

イロン イヨン イヨン イヨン

Rigid Coxeter Groups

$W(\Gamma)$ is <u>rigid</u> $\stackrel{\text{def}}{\iff} W(\Gamma') \simeq W(\Gamma)$ implies $\Gamma' \simeq \Gamma$

W is <u>strongly rigid</u> $\stackrel{\text{def}}{\iff}$ all Coxeter generating sets for W are conjugate with each other

イロン イヨン イヨン イヨン

Rigid Coxeter Groups

$$W(\Gamma)$$
 is rigid $\stackrel{\text{def}}{\iff} W(\Gamma') \simeq W(\Gamma)$ implies $\Gamma' \simeq \Gamma$

W is <u>strongly rigid</u> $\stackrel{\text{def}}{\iff}$ all Coxeter generating sets for W are conjugate with each other <u>Notes:</u>

- strongly rigid \Rightarrow rigid
- difference of two properties pprox outer automorphisms of W

"Folklore" Non-Rigid Example

イロン イヨン イヨン イヨン

æ

Non-Rigid Examples (Finite Cases)

These are only non-rigid finite irreducible Coxeter groups

イロン イヨン イヨン イヨン

"Krull-Remak-Schmidt-like" Property

Write $\mathit{W} = \mathit{W}_{\mathrm{fin}} imes \mathit{W}_{\mathrm{inf}}$, where

- $W_{\rm fin}$: Product of finite irreducible components
- W_{inf} : Product of other components

<u>Fact</u> [N. 2006] The subset W_{fin} is uniquely determined by W, independent of S (**possibly when** $|S| = \infty$)

K. Nuida, On the direct indecomposability of infinite irreducible Coxeter groups and the isomorphism problem of Coxeter groups, Comm. Algebra 34(7) (2006) pp.2559–2595

"Krull-Remak-Schmidt-like" Property

Fact If W is infinite and irreducible, then W is directly indecomposable (as an abstract group)

۲

・ロト ・回ト ・ヨト

"Krull-Remak-Schmidt-like" Property

Fact If W is infinite and irreducible, then W is directly indecomposable (as an abstract group)

• [Paris 2004 (preprint)] for $|S| < \infty$

۲

• extended in [Paris 2007] to finite index subgroups of W

"Krull-Remak-Schmidt-like" Property

Fact If W is infinite and irreducible, then W is directly indecomposable (as an abstract group)

- [Paris 2004 (preprint)] for $|S| < \infty$
 - extended in [Paris 2007] to finite index subgroups of W
- [N. 2006] for general cases

"Krull-Remak-Schmidt-like" Property

Fact If W is infinite and irreducible, then W is directly indecomposable (as an abstract group)

- [Paris 2004 (preprint)] for $|S| < \infty$
 - extended in [Paris 2007] to finite index subgroups of ${\it W}$
- [N. 2006] for general cases

(<u>Note:</u> [Mihalik–Ratcliffe–Tschantz 2005 (preprint)] showed "free product decomposition" version of the fact)

L. Paris, Irreducible Coxeter groups, Int. J. Algebra Comput. 17(3) (2007) 427-447

M. Mihalik, J. Ratcliffe, S. Tschantz, On the isomorphism problem for finitely generated Coxeter groups. I: Basic matching, arXiv:math.GR/0501075v1 (2005)

"Krull-Remak-Schmidt-like" Property

Tool in [Paris 2004]: <u>Essential elements</u> in W

۹

イロト イヨト イヨト イヨト

æ

"Krull-Remak-Schmidt-like" Property

Tool in [Paris 2004]: <u>Essential elements</u> in W

- $\stackrel{\text{def}}{\longleftrightarrow}$ not contained in any parabolic $H \subsetneq W$
- ۲

"Krull-Remak-Schmidt-like" Property

Tool in [Paris 2004]: <u>Essential elements</u> in W

- $\stackrel{\text{def}}{\longleftrightarrow}$ not contained in any parabolic $H \subsetneq W$
- cannot be used when $|S| = \infty$ (there are no essential elements!)

"Krull-Remak-Schmidt-like" Property

Tool in [Paris 2004]: <u>Essential elements</u> in W

- $\stackrel{\text{def}}{\longleftrightarrow}$ not contained in any parabolic $H \subsetneq W$
- cannot be used when $|S| = \infty$ (there are no essential elements!)

Tool in [N. 2006]: centralizers of normal subgroups generated by involutions in ${\it W}$

1

・ロン ・回と ・ヨン ・ヨン

"Krull-Remak-Schmidt-like" Property

Tool in [Paris 2004]: <u>Essential elements</u> in W

- $\stackrel{\text{def}}{\longleftrightarrow}$ not contained in any parabolic $H \subsetneq W$
- cannot be used when $|S| = \infty$ (there are no essential elements!)

Tool in [N. 2006]: centralizers of normal subgroups generated by involutions in ${\it W}$

• If $W = H_1 \times H_2$, then H_j are generated by involutions

2
"Krull-Remak-Schmidt-like" Property

Tool in [Paris 2004]: <u>Essential elements</u> in W

3

- $\stackrel{\text{def}}{\longleftrightarrow}$ not contained in any parabolic $H \subsetneq W$
- cannot be used when $|S| = \infty$ (there are no essential elements!)

Tool in [N. 2006]: centralizers of normal subgroups generated by involutions in ${\it W}$

- **(**) If $W = H_1 \times H_2$, then H_j are generated by involutions
- **Example 2** Key Fact If $H \leq W$ is generated by involutions, then its centralizer $Z_W(H)$ is either W or "too small"

・ロン ・回 と ・ ヨ と ・ ヨ と

"Krull-Remak-Schmidt-like" Property

Tool in [Paris 2004]: <u>Essential elements</u> in W

- $\stackrel{\text{def}}{\longleftrightarrow}$ not contained in any parabolic $H \subsetneq W$
- cannot be used when $|S| = \infty$ (there are no essential elements!)

Tool in [N. 2006]: centralizers of normal subgroups generated by involutions in ${\it W}$

- **(**) If $W = H_1 \times H_2$, then H_j are generated by involutions
- **2** Key Fact If $H \leq W$ is generated by involutions, then its centralizer $Z_W(H)$ is either W or "too small"
- Since $H_j \subset Z_W(H_{3-j})$, at least one of H_j should be W

"Krull-Remak-Schmidt-like" Property

<u>Theorem</u> [N. 2006] (informal) Any $f: W \xrightarrow{\sim} W'$ is "approximately decomposed" into

- isomorphisms between infinite irreducible components of ${\cal W}$ and ${\cal W}',$ and
- an isomorphism $W_{\mathrm{fin}} \xrightarrow{\sim} W'_{\mathrm{fin}}$

Hence the isomorphism problem (including the case $|S| = \infty$) is "essentially" reduced to infinite irreducible cases

・ロン ・回 と ・ ヨ と ・ ヨ と

A Natural Question

[Cohen 1991] Is the isomorphism problem for **irreducible**, **finite-rank** Coxeter groups trivial?

I.e., does $W(\Gamma) \simeq W(\Gamma')$, with Γ, Γ' finite and connected, imply $\Gamma \simeq \Gamma'$?

 A. M. Cohen, Coxeter groups and three related topics, in: *Generators and Relations in Groups and Geometries* (A. Barlotti et al., eds.), NATO ASI Series, Kluwer Acad. Publ. (1991) pp.235–278

・ロン ・回と ・ヨン・

A Counterexample

B. Mühlherr, On isomorphisms between Coxeter groups, Des. Codes Cryptogr. 21 (2000) p.189

イロト イヨト イヨト イヨト

3

Rigidity and Reflections

$w \in W$ is a <u>reflection</u> $\stackrel{\text{def}}{\iff}$ conjugate to an $s \in S$

イロト イヨト イヨト イヨト

æ

Rigidity and Reflections

 $w \in W$ is a <u>reflection</u> $\stackrel{\text{def}}{\longleftrightarrow}$ conjugate to an $s \in S$ \iff in the standard geometric representation of W, w acts as a reflection w.r.t. a hyperplane $\operatorname{Ref}(W) = \operatorname{Ref}_{S}(W) := \{s^{w} := wsw^{-1} \mid s \in S, w \in W\}$: set of

reflections

Rigidity and Reflections

 $W(\Gamma)$ is <u>reflection rigid</u> $\stackrel{\text{def}}{\iff} f \colon W(\Gamma') \xrightarrow{\sim} W(\Gamma)$ and $f(\operatorname{Ref}(W(\Gamma'))) = \operatorname{Ref}(W(\Gamma))$ implies $\Gamma' \simeq \Gamma$

イロト イヨト イヨト イヨト

2

Rigidity and Reflections

 $W(\Gamma)$ is <u>reflection rigid</u> $\stackrel{\text{def}}{\iff} f \colon W(\Gamma') \xrightarrow{\sim} W(\Gamma)$ and $f(\operatorname{Ref}(W(\Gamma'))) = \operatorname{Ref}(W(\Gamma))$ implies $\Gamma' \simeq \Gamma$

W is <u>strongly reflection rigid</u> $\stackrel{\text{def}}{\longleftrightarrow}$ all Coxeter generating sets for *W* defining the same set of reflections are conjugate with each other

 $\begin{array}{ccc} \text{strongly rigid} & \Rightarrow & \text{rigid} \\ \hline \textbf{Note:} & & \Downarrow & & \Downarrow \\ & & & & & \downarrow \\ & & & & \text{strongly reflection rigid} & \Rightarrow & \text{reflection rigid} \end{array}$

・ロン ・回と ・ヨン ・ヨン

Rigidity and Reflections

Rigidity and strong reflection rigidity are incomparable

- $D_6 = W(I_2(6))$ is strongly reflection rigid, but not rigid
- $D_5 = W(I_2(5))$ is rigid, but not strongly reflection rigid

[Brady-McCammond-Mühlherr-Neumann 2002]

N. Brady, J. P. McCammond, B. Mühlherr, W. D. Neumann, Rigidity of Coxeter groups and Artin groups, *Geom. Dedicata* **94** (2002) pp.91–109

・ロン ・回 と ・ ヨ と ・ ヨ と

Rigidity and Reflections

W is <u>reflection independent</u> $\stackrel{\text{def}}{\longleftrightarrow} \operatorname{Ref}_{\mathcal{S}}(W)$ is uniquely determined by W (independent of S)

(人間) (人) (人) (人)

Rigidity and Reflections

 $\begin{array}{l} W \text{ is } \underline{reflection independent} \\ by W (independent of S) \end{array} \stackrel{\text{def}}{\longrightarrow} \operatorname{Ref}_{\mathcal{S}}(W) \text{ is uniquely determined} \\ \underline{\text{Note:}} (strongly) \text{ reflection rigid } \& \text{ reflection independent} \Rightarrow \\ (strongly) \text{ rigid} \end{array}$

Rigidity and Reflections

W is <u>reflection independent</u> $\stackrel{\text{def}}{\longleftrightarrow} \operatorname{Ref}_{\mathcal{S}}(W)$ is uniquely determined by *W* (independent of *S*)

<u>Note:</u> (strongly) reflection rigid & reflection independent \Rightarrow (strongly) rigid

Intuitively, the isomorphism problem can be divided into two parts

- Given W, how "far" from being reflection independent?
- Given W, how "far" from being reflection rigid?

・ロト ・回ト ・ヨト ・ヨト

Rigidity and Reflections

[Bahls–Mihalik 2005] ($|S| < \infty$) Reflection independent & <u>even</u> ($\stackrel{\text{def}}{\longleftrightarrow} m(s, t)$ is not odd ($\forall s \neq t$)) \Rightarrow rigid

イロン イヨン イヨン イヨン

2

Rigidity and Reflections

[Bahls–Mihalik 2005] ($|S| < \infty$) Reflection independent & <u>even</u> ($\stackrel{\text{def}}{\longleftrightarrow} m(s, t)$ is not odd ($\forall s \neq t$)) \Rightarrow rigid

Counterexample for non-even case: Mühlherr's example

 [Bahls 2003] W is reflection independent if ¬∃s, t s.t., m(s, t) ≡ 2 (mod 4)

P. Bahls, M. Mihalik, Reflection independence in even Coxeter groups, Geom. Dedicata 110 (2005) pp.63–80
 P. Bahls, A new class of rigid Coxeter groups, Int. J. Algebra Comput. 13(1) (2003) pp.87–94

소리가 소문가 소문가 소문가

Finite Rank Cases $(|S| < \infty)$

イロン 不同と 不同と 不同と

æ

Strongly Rigidity: Geometric Arguments

[Charney–Davis 2000] W is strongly rigid if W is capable of acting effectively, properly and cocompactly on some contractible manifold

- Affine Weyl groups
- Cocompact hyperbolic reflection groups
- ...

Tool: **complex, cohomology, CAT(0) space, etc.** (Detail omitted (due to lack of my geometric knowledge ...))

R. Charney, M. Davis, When is a Coxeter system determined by its Coxeter group?, J. London Math. Soc. (2) 61 (2000) pp.441–461

Strongly Rigidity: Geometric Arguments

State-of-the-art result in this direction: <u>Theorem</u> [Caprace–Przytycki 2011] "Bipolar" Coxeter groups are strongly rigid, where

۲

Strongly Rigidity: Geometric Arguments

State-of-the-art result in this direction: <u>Theorem</u> [Caprace–Przytycki 2011] "Bipolar" Coxeter groups are strongly rigid, where

 (W, S) is <u>bipolar</u> ^{def} in the Cayley graph X of (W, S), ∀s ∈ S, any tubular neighbourhood of the s-invariant wall separates X into exactly two connected components

۲

- 4 同 6 4 日 6 4 日 6

Strongly Rigidity: Geometric Arguments

State-of-the-art result in this direction: <u>Theorem</u> [Caprace–Przytycki 2011] "Bipolar" Coxeter groups are strongly rigid, where

- (W, S) is bipolar ^{def}/_→ in the Cayley graph X of (W, S), ∀s ∈ S, any tubular neighbourhood of the s-invariant wall separates X into exactly two connected components
- Precise definition and Coxeter graph characterization for bipolar Coxeter groups are also given

P.-E. Caprace, P. Przytycki, Bipolar Coxeter groups, J. Algebra 338 (2011) pp.35-55

イロン イヨン イヨン イヨン

Strongly Rigidity: Geometric Arguments

Bipolar Coxeter groups include the following cases

۲

Strongly Rigidity: Geometric Arguments

Bipolar Coxeter groups include the following cases

• [Charney–Davis 2000]

٥

Strongly Rigidity: Geometric Arguments

Bipolar Coxeter groups include the following cases

- [Charney–Davis 2000]
- virtual Poincaré duality groups

۲

Strongly Rigidity: Geometric Arguments

Bipolar Coxeter groups include the following cases

- [Charney–Davis 2000]
- virtual Poincaré duality groups
- infinite irreducible 2-spherical (def/def m(s, t) < ∞ (∀s, t)) [Franzsen-Howlett-Mühlherr 2006; Caprace-Mühlherr 2007]
 a subclass appeared in [Kaul 2002]

W. N. Franzsen, R. B. Howlett, B. Mühlherr, Reflections in abstract Coxeter groups, Comment. Math. Helv. 81 (2006) pp.665–697

P.-E. Caprace, B. Mühlherr, Reflection rigidity of 2-spherical Coxeter groups, *Proc. London Math. Soc.* (3) 94 (2007) pp.520–542

A. Kaul, A class of rigid Coxeter groups, J. London Math. Soc. (2) 66 (2002) pp.592-604

イロン イヨン イヨン イヨン

Maximal Finite Subgroups

 $H \le W$ is standard parabolic $\stackrel{\text{def}}{\iff} H = W_I := \langle I \rangle$ for some $I \subset S$ $H \le W$ is parabolic $\stackrel{\text{def}}{\iff}$ conjugate to some W_I

- 4 回 ト 4 ヨ ト 4 ヨ ト

Maximal Finite Subgroups

 $H \leq W$ is <u>standard parabolic</u> $\stackrel{\text{def}}{\longleftrightarrow} H = W_I := \langle I \rangle$ for some $I \subset S$ $H \leq W$ is <u>parabolic</u> $\stackrel{\text{def}}{\longleftrightarrow}$ conjugate to some W_I Facts:

۲

Maximal Finite Subgroups

 $H \le W$ is <u>standard parabolic</u> $\stackrel{\text{def}}{\longleftrightarrow} H = W_I := \langle I \rangle$ for some $I \subset S$ $H \le W$ is <u>parabolic</u> $\stackrel{\text{def}}{\longleftrightarrow}$ conjugate to some W_I

Facts:

• Any finite intersection of parabolic subgroups is parabolic

٩

Maximal Finite Subgroups

 $H \le W$ is <u>standard parabolic</u> $\stackrel{\text{def}}{\iff} H = W_I := \langle I \rangle$ for some $I \subset S$ $H \le W$ is <u>parabolic</u> $\stackrel{\text{def}}{\iff}$ conjugate to some W_I

Facts:

- Any finite intersection of parabolic subgroups is parabolic
- Any finite $H \le W$ is contained in a maximal finite $G \le W$, which is parabolic

۲

Maximal Finite Subgroups

 $H \le W$ is <u>standard parabolic</u> $\stackrel{\text{def}}{\iff} H = W_I := \langle I \rangle$ for some $I \subset S$ $H \le W$ is <u>parabolic</u> $\stackrel{\text{def}}{\iff}$ conjugate to some W_I

Facts:

- Any finite intersection of parabolic subgroups is parabolic
- Any finite $H \le W$ is contained in a maximal finite $G \le W$, which is parabolic
- Any maximal finite standard parabolic subgroup is a maximal finite subgroup

Maximal Finite Subgroups

Application: A strategy to show that $f: W \xrightarrow{\sim} W'$ maps $s \in S$ into $\operatorname{Ref}(W')$

1

イロト イヨト イヨト イヨト

æ

Maximal Finite Subgroups

Application: A strategy to show that $f: W \xrightarrow{\sim} W'$ maps $s \in S$ into $\operatorname{Ref}(W')$

Find a finite number of I_j ⊂ S s.t. W_{Ij} are maximal finite standard parabolic and ∩_j I_j = {s}

2

Maximal Finite Subgroups

Application: A strategy to show that $f: W \xrightarrow{\sim} W'$ maps $s \in S$ into $\operatorname{Ref}(W')$

Find a finite number of I_j ⊂ S s.t. W_{Ij} are maximal finite standard parabolic and ∩_j I_j = {s}

② $\langle s \rangle = \bigcap_{j} W_{l_{j}}$ is the intersection of maximal finite subgroups ③

Maximal Finite Subgroups

4

Application: A strategy to show that $f: W \xrightarrow{\sim} W'$ maps $s \in S$ into $\operatorname{Ref}(W')$

Find a finite number of I_j ⊂ S s.t. W_{Ij} are maximal finite standard parabolic and ∩_j I_j = {s}

⟨s⟩ = ∩_j W_{lj} is the intersection of maximal finite subgroups
 so is ⟨f(s)⟩ = ∩_j f(W_{lj})

Maximal Finite Subgroups

Application: A strategy to show that $f: W \xrightarrow{\sim} W'$ maps $s \in S$ into $\operatorname{Ref}(W')$

- Find a finite number of I_j ⊂ S s.t. W_{Ij} are maximal finite standard parabolic and ∩_j I_j = {s}
- ⟨s⟩ = ∩_j W_{lj} is the intersection of maximal finite subgroups
 so is ⟨f(s)⟩ = ∩_j f(W_{lj})
- each $f(W_{l_j})$ is parabolic, so is $\langle f(s) \rangle$

Maximal Finite Subgroups

Application: A strategy to show that $f: W \xrightarrow{\sim} W'$ maps $s \in S$ into $\operatorname{Ref}(W')$

- Find a finite number of I_j ⊂ S s.t. W_{Ij} are maximal finite standard parabolic and ∩_j I_j = {s}
- (s) = ∩_j W_{lj} is the intersection of maximal finite subgroups
 so is ⟨f(s)⟩ = ∩_j f(W_{lj})
- each $f(W_{I_i})$ is parabolic, so is $\langle f(s) \rangle$
- **(**) hence f(s) is conjugate to some $s' \in S'$, i.e., $f(s) \in \operatorname{Ref}(W')$

소리가 소문가 소문가 소문가

Maximal Finite Subgroups

Some results using maximal finite subgroups:

- [Radcliffe 2001] W is **rigid** if W is <u>right-angled</u> ($\stackrel{\text{def}}{\longleftrightarrow} m(s,t) \in \{2,\infty\} (\forall s \neq t)$)
- [Hosaka 2006] generalized to a wider class

D. G. Radcliffe, Unique presentation of Coxeter groups and related groups, Ph.D. thesis, Univ. Wisconsin-Milwaukee (2001)

T. Hosaka, A class of rigid Coxeter groups, Houston J. Math. 32(4) (2006) pp.1029-1036

イロン イヨン イヨン イヨン
Maximal Finite Subgroups

Notes:

- Radcliffe mentioned (without proof) that the rank may be infinite
- [Radcliffe 2003] extended to graph products of directly indecomposable groups
- [Castella 2006] gave a new proof, with structural result on $\operatorname{Aut}(W)$
- D. G. Radcliffe, Rigidity of graph products of groups, Algebraic & Geom. Top. 3 (2003) pp.1079-1088
- A. Castella, Sur les automorphismes et la rigidité des groupes de Coxeter à angles droits, *J. Algebra* **301** (2006) pp.642–669

Maximal Finite Subgroups

The above strategy to show $f(s) \in \operatorname{Ref}(W')$ can be enhanced

Maximal Finite Subgroups

The above strategy to show $f(s) \in \text{Ref}(W')$ can be enhanced by using maximal finite subgroups, instead of maximal finite standard parabolic subgroups

• $FC(w) := \bigcap \{H \mid w \in H \le W \text{ maximal finite}\}\$ (*finite continuation* of $w \in W$)

۲

Maximal Finite Subgroups

The above strategy to show $f(s) \in \text{Ref}(W')$ can be enhanced by using maximal finite subgroups, instead of maximal finite standard parabolic subgroups

- $FC(w) := \bigcap \{H \mid w \in H \le W \text{ maximal finite}\}\$ (*finite continuation* of $w \in W$)
- FC(s) is determined for every $s \in S$ [Franzsen et al. 2006]
- ۲

Maximal Finite Subgroups

The above strategy to show $f(s) \in \text{Ref}(W')$ can be enhanced by using maximal finite subgroups, instead of maximal finite standard parabolic subgroups

- $FC(w) := \bigcap \{H \mid w \in H \le W \text{ maximal finite}\}\$ (*finite continuation* of $w \in W$)
- FC(s) is determined for every $s \in S$ [Franzsen et al. 2006]
- Example: For infinite irreducible 2-spherical (W, S), $\overline{FC}(s) = \langle s \rangle$ for every $s \in S$

Maximal Finite Subgroups

The above strategy to show $f(s) \in \text{Ref}(W')$ can be enhanced by using maximal finite subgroups, instead of maximal finite standard parabolic subgroups

- FC(w) := ∩{H | w ∈ H ≤ W maximal finite}
 (*finite continuation* of w ∈ W)
- FC(s) is determined for every $s \in S$ [Franzsen et al. 2006]
- **Example:** For infinite irreducible 2-spherical (W, S), $\overline{FC(s)} = \langle s \rangle$ for every $s \in S$
 - hence \Rightarrow *W* is **reflection independent**
 - ۲

소리가 소문가 소문가 소문가

Maximal Finite Subgroups

The above strategy to show $f(s) \in \text{Ref}(W')$ can be enhanced by using maximal finite subgroups, instead of maximal finite standard parabolic subgroups

- $FC(w) := \bigcap \{H \mid w \in H \le W \text{ maximal finite}\}\$ (*finite continuation* of $w \in W$)
- FC(s) is determined for every $s \in S$ [Franzsen et al. 2006]
- **Example:** For infinite irreducible 2-spherical (W, S), $\overline{FC}(s) = \langle s \rangle$ for every $s \in S$
 - hence \Rightarrow *W* is **reflection independent**
 - [Caprace-Mühlherr 2007] *W* is strongly reflection rigid, hence strongly rigid

(日) (部) (注) (注) (言)

Relations with Even Orders

[Radcliffe 2001] W is rigid if $m(s, t) \in \{2, \infty\} \cup 4\mathbb{Z} \ (\forall s \neq t)$ • Tool: projection to abelianization of W[Brady et al. 2002] $W(\Gamma)$ is reflection rigid if it is even

D. G. Radcliffe, Unique presentation of Coxeter groups and related groups, Ph.D. thesis, Univ. Wisconsin-Milwaukee (2001)

Relations with Even Orders

[Bahls-Mihalik 2005] gave characterizations of

- reflection independent cases among even Coxeter systems
- even Coxeter systems having other non-even generating set

(4月) (4日) (4日)

Relations with Even Orders

[Bahls-Mihalik 2005] gave characterizations of

- reflection independent cases among even Coxeter systems
- even Coxeter systems having other non-even generating set

[Mihalik 2007] gave an algorithm to determine possible types of generating sets for W, when W is even

• Hence the isomorphism problem is solved for even Coxeter systems

M. Mihalik, The even isomorphism theorem for Coxeter groups, Trans. AMS 359(9) (2007) pp.4297-4324

イロン イヨン イヨン イヨン

Diagram Twisting

Recall the example in [Mühlherr 2000]

Diagram Twisting

[Brady et al. 2002] generalized as "diagram twisting" to generate non-reflection-rigid examples

イロン イヨン イヨン イヨン

Diagram Twisting

[Brady et al. 2002] generalized as "diagram twisting" to generate non-reflection-rigid examples

Let $U, V \subset S$ be disjoint subsets with the conditions:

- W_V is finite, with longest element $w = w_V$
- if $s_1 \in S \setminus (U \cup V)$ is adjacent to V, then $m(s_1, s_2) = \infty$ $(\forall s_2 \in U)$

Diagram Twisting

[Brady et al. 2002] generalized as "diagram twisting" to generate non-reflection-rigid examples

Let $U, V \subset S$ be disjoint subsets with the conditions:

- W_V is finite, with longest element $w = w_V$
- if $s_1 \in S \setminus (U \cup V)$ is adjacent to V, then $m(s_1, s_2) = \infty$ $(\forall s_2 \in U)$

Then (W, S') is a Coxeter system with Coxeter graph Γ' , where

- $S' := (S \setminus U) \cup U^w \subset \operatorname{Ref}_S(W), \ U^w := \{u^w \mid u \in U\}$
- Γ' is obtained from Γ by replacing each edge $U \ni u v \in V$ with an edge from $u^w \in U^w$ to $v^w \in V$

(ロ) (同) (E) (E) (E)

Diagram Twisting

・ロト ・回ト ・ヨト ・ヨト

æ

Diagram Twisting

Conjecture [Brady et al. 2002] Coxeter systems are "**reflection rigid up to diagram twistings**",

i.e., if $\operatorname{Ref}_{\mathcal{S}}(W) = \operatorname{Ref}_{\mathcal{S}'}(W)$, then $\Gamma(W, S)$ is converted to $\Gamma(W, S')$ by consecutive diagram twistings

Diagram Twisting

Positive results on the conjecture:

۲

イロン イヨン イヨン イヨン

æ

Diagram Twisting

Positive results on the conjecture:

• They proved the conjecture when the <u>presentation graph</u> (i.e., $s, t \in S$ are joined when $m(s, t) < \infty$) is a tree

۲

- 4 同 6 4 日 6 4 日 6

Diagram Twisting

Positive results on the conjecture:

- They proved the conjecture when the <u>presentation graph</u> (i.e., $s, t \in S$ are joined when $m(s, t) < \infty$) is a tree
- [Mühlherr–Weidmann 2002] proved the conjecture for <u>skew-angled</u> cases ($\stackrel{\text{def}}{\iff} m(s,t) \ge 3 \; (\forall s,t)$)

Diagram Twisting

Positive results on the conjecture:

- They proved the conjecture when the <u>presentation graph</u> (i.e., $s, t \in S$ are joined when $m(s, t) < \infty$) is a tree
- [Mühlherr–Weidmann 2002] proved the conjecture for skew-angled cases ($\stackrel{\text{def}}{\iff} m(s,t) \ge 3 \ (\forall s,t)$)
 - They also characterized reflection independent skew-angled cases, and gave a sufficient condition for strongly rigid skew-angled cases

B. Mühlherr, R. Weidmann, Rigidity of skew-angled Coxeter groups, Adv. Geom. 2 (2002) pp.391-415

Diagram Twisting

But there is a counterexample! [Ratcliffe–Tschantz 2008]

by another kind of transformation, called "5-edge angle deformation"

J. G. Ratcliffe, S. T. Tschantz, Chordal Coxeter groups, Geom. Dedicata 136 (2008) pp.57-77

Some More Solved Cases

(W, S) is <u>chordal</u> $\stackrel{\text{def}}{\iff}$ every cycle of length ≥ 4 in the presentation graph of (W, S) has a shortcutting edge

- 4 同 6 4 日 6 4 日 6

Some More Solved Cases

(W, S) is <u>chordal</u> $\stackrel{\text{def}}{\iff}$ every cycle of length ≥ 4 in the presentation graph of (W, S) has a shortcutting edge

Results by [Ratcliffe–Tschantz 2008]

- The chordal property is independent of the choice of S
- An algorithm to decide whether or not two Chordal W(Γ), W(Γ') are isomorphic; hence the isomorphism problem is solved for chordal cases

・ロン ・回と ・ヨン・

Some More Solved Cases

(W,S) is *twist-rigid* $\stackrel{\text{def}}{\iff}$ it admits no diagram twists

イロン イヨン イヨン イヨン

2

Some More Solved Cases

(W, S) is *twist-rigid* $\stackrel{\text{def}}{\iff}$ it admits no diagram twists

Results by [Caprace-Przytycki 2010]

- The twist-rigidity is independent of the choice of S
- An algorithm to output all possible Γ' with W(Γ') ≃ W(Γ) from given twist-rigid W(Γ); hence the isomorphism problem is solved for twist-rigid cases

P.-E. Caprace, P. Przytycki, Twist-rigid Coxeter groups, Geom. Topology 14 (2010) pp.2243-2275

Reduction to Reflection-Preserving Cases

[Hosaka 2005] studied <u>2-dimensional</u> (W, S) ($\stackrel{\text{def}}{\iff} |W_l| = \infty$ for every $l \subset S$ with |l| > 2)

• \Leftrightarrow the **Davis–Vinberg complex** $\Sigma(W, S)$ has dimension ≤ 2

Reduction to Reflection-Preserving Cases

[Hosaka 2005] studied <u>2-dimensional</u> (W, S) ($\stackrel{\text{def}}{\iff} |W_l| = \infty$ for every $l \subset S$ with |l| > 2)

• \Leftrightarrow the Davis–Vinberg complex $\Sigma(W, S)$ has dimension ≤ 2 <u>Theorem</u> If (W, S) and (W, S') are 2-dimensional, then (W, S)can be converted to (W, S'') s.t. $\Gamma(W, S) \simeq \Gamma(W, S'')$ and $\operatorname{Ref}_{S'}(W) = \operatorname{Ref}_{S''}(W)$

• Hence the isomorphism problem for 2-dimensional (*W*, *S*) is reduced to "reflection-preserving" cases

T. Hosaka, Coxeter systems with two-dimensional Davis-Vinberg complexes, J. Pure Appl. Algebra 197 (2005)

pp.159-170

Reduction to Reflection-Preserving Cases

Results on general cases by [Howlett–Mühlherr 2004 (preprint)]; cf. [Mühlherr 2006]

Reduction to Reflection-Preserving Cases

Results on general cases by [Howlett–Mühlherr 2004 (preprint)]; cf. [Mühlherr 2006]

- $s \in S$ is a *pseudo-transposition* $\stackrel{\text{def}}{\longleftrightarrow} s \in \exists J \subset S \text{ s.t.}$
 - for each $t \in S \setminus J$, either $m(s,t) = \infty$ or $t \in Z_W(J)$
 - either $\Gamma_J = \Gamma|_J = \Gamma(I_2(4k + 2))$, or $\Gamma_J = \Gamma(B_{2k+1})$ and s is the end vertex of Γ_J adjacent to the 4-edge

R. B. Howlett, B. Mühlherr, Isomorphisms of Coxeter groups which do not preserve reflections, preprint (2004)
B. Mühlherr, The isomorphism problem for Coxeter groups, in: *The Coxeter legacy* (C. Davis, E. W. Ellers, eds.),
AMS (2006) pp.1–15

Reduction to Reflection-Preserving Cases

Recall the following relations:

・ロン ・回と ・ヨン ・ヨン

Reduction to Reflection-Preserving Cases

Then the pseudo-transposition can be removed by "locally" applying the relations $W(I_2(4k+2)) \simeq W(A_1 \times I_2(2k+1))$ and $W(B_{2k+1}) \times W(A_1 \times D_{2k+1})$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Reduction to Reflection-Preserving Cases

Then the pseudo-transposition can be removed by "locally" applying the relations $W(I_2(4k+2)) \simeq W(A_1 \times I_2(2k+1))$ and $W(B_{2k+1}) \times W(A_1 \times D_{2k+1})$

Iterating the process, we can convert (W, S) into (W, S') having no pseudo-transpositions (called <u>reduced</u> Coxeter system)

Reduction to Reflection-Preserving Cases

<u>Theorem</u> For a reduced (W, S), there is a finite $\Sigma \leq Aut(W)$ (determined by using finite continuations) s.t.

- 4 同 6 4 日 6 4 日 6

Reduction to Reflection-Preserving Cases

<u>Theorem</u> For a reduced (W, S), there is a finite $\Sigma \leq \operatorname{Aut}(W)$ (determined by using finite continuations) s.t. if (W', S') is reduced and $f: W \xrightarrow{\sim} W'$, then $f(\sigma(S)) \subset \operatorname{Ref}_{S'}(W')$ for some $\sigma \in \Sigma$

Reduction to Reflection-Preserving Cases

<u>Theorem</u> For a reduced (W, S), there is a finite $\Sigma \leq \operatorname{Aut}(W)$ (determined by using finite continuations) s.t. if (W', S') is reduced and $f: W \xrightarrow{\sim} W'$, then $f(\sigma(S)) \subset \operatorname{Ref}_{S'}(W')$ for some $\sigma \in \Sigma$

Hence the isomorphism problem is reduced to "reflection-preserving" cases: Given $W(\Gamma)$ and $W(\Gamma')$,

- first convert them into reduced $W(\Gamma_*)$ and $W(\Gamma'_*)$
- ② then for all (finitely many) $\sigma \in \Sigma$, decide whether or not $\exists \varphi : \sigma(W(\Gamma_*)) \xrightarrow{\sim} W(\Gamma'_*)$ with $\varphi(\operatorname{Ref}(\sigma(W(\Gamma_*)))) = \operatorname{Ref}(W(\Gamma'_*))$

소리가 소문가 소문가 소문가

Further Reduction

<u>Theorem</u> [Marquis–Mühlherr 2008] The isomorphism problem is reduced to the following problem: Given (W, S), find all $S' \subset \operatorname{Ref}_{S}(W)$ s.t. (W, S') is a Coxeter system and S' is sharp-angled w.r.t. S

•
$$S'$$
 is sharp-angled w.r.t. $S \Leftrightarrow def$ for all $s, t \in S$ with $m(s, t) < \infty, \{s, t\}$ is conjugate to a subset of S'

<u>Note</u>: This is used by [Caprace–Przytycki 2010] to give the complete solution for twist-rigid cases

T. Marquis, B. Mühlherr, Angle-deformations in Coxeter groups, Algebraic & Geom. Top. 8 (2008) pp.2175–2208

・ロン ・回 と ・ ヨ と ・ ヨ と
Arbitrary Rank Cases

イロト イヨト イヨト イヨト

æ

When $|S| = \infty$

Several key properties in finite rank cases do not hold when $|{\cal S}|=\infty!$

۲

・ロン ・回と ・ヨン・

æ

When $|\mathcal{S}| = \infty$

Several key properties in finite rank cases do not hold when $|S| = \infty!$

• Maximal finite (standard parabolic) subgroups do not necessarily exist

۲

イロト イヨト イヨト イヨト

When $|\mathcal{S}| = \infty$

Several key properties in finite rank cases do not hold when $|S| = \infty!$

- Maximal finite (standard parabolic) subgroups do not necessarily exist
- Finite continuation is not well-defined in general

۲

イロト イヨト イヨト イヨト

When $|\mathcal{S}| = \infty$

Several key properties in finite rank cases do not hold when $|\mathcal{S}|=\infty!$

- Maximal finite (standard parabolic) subgroups do not necessarily exist
- Finite continuation is not well-defined in general
- The intersection of infinitely many parabolic subgroups is not necessarily parabolic

イロト イポト イヨト イヨト

Centralizers and Reflection Independence

[N. 2007] An alternative strategy to show that $f: W \xrightarrow{\sim} W'$ maps $s \in S$ into $\operatorname{Ref}(W')$

1

・ロト ・回ト ・ヨト

Centralizers and Reflection Independence

[N. 2007] An alternative strategy to show that $f: W \xrightarrow{\sim} W'$ maps $s \in S$ into $\operatorname{Ref}(W')$

We may assume WLOG that f(s) is the central longest element of a finite W'_J, J ⊂ S'

2

イロト イポト イヨト イヨト

Centralizers and Reflection Independence

[N. 2007] An alternative strategy to show that $f: W \xrightarrow{\sim} W'$ maps $s \in S$ into $\operatorname{Ref}(W')$

- We may assume WLOG that f(s) is the central longest element of a finite W'_J, J ⊂ S'
- $I \text{ induces } Z_W(s) \xrightarrow{\sim} Z_{W'}(f(s)) = N_{W'}(W'_J)$

3

イロト イポト イヨト イヨト

Centralizers and Reflection Independence

[N. 2007] An alternative strategy to show that $f: W \xrightarrow{\sim} W'$ maps $s \in S$ into $\operatorname{Ref}(W')$

- We may assume WLOG that f(s) is the central longest element of a finite W'_J, J ⊂ S'
- $I \text{ induces } Z_W(s) \xrightarrow{\sim} Z_{W'}(f(s)) = N_{W'}(W'_J)$

4

3 This implies $f(\langle s \rangle \times (W^{\perp s})_{fin}) ⊃ W'_J$, where $W^{\perp s}$ is the subgroup generated by reflections orthogonal to s

Koji Nuida (AIST, Japan) On the isomorphism problem for Coxeter groups 57/68

- 4 同 6 4 日 6 4 日 6

Centralizers and Reflection Independence

[N. 2007] An alternative strategy to show that $f: W \xrightarrow{\sim} W'$ maps $s \in S$ into $\operatorname{Ref}(W')$

- We may assume WLOG that f(s) is the central longest element of a finite W'_J, J ⊂ S'
- $I f induces Z_W(s) \xrightarrow{\sim} Z_{W'}(f(s)) = N_{W'}(W'_J)$
- Solution This implies f(⟨s⟩ × (W^{⊥s})_{fin}) ⊃ W'_J, where W^{⊥s} is the subgroup generated by reflections orthogonal to s
- If $(W^{\perp s})_{\text{fin}} = 1$, then |J| = 1, i.e., $f(s) \in \operatorname{Ref}(W')$

• The same conclusion holds when $(W^{\perp s})_{\mathrm{fin}} = \langle s^w
angle$, $w \in W$

K. Nuida, Almost central involutions in split extensions of Coxeter groups by graph automorphisms, J. Group Theory 10 (2) (2007) pp.139–166

イロト イポト イヨト イヨト

Centralizers and Reflection Independence

Theorem [N. 2006 (preprint)]

۲

- 4 同 6 4 日 6 4 日 6

Centralizers and Reflection Independence

<u>Theorem</u> [N. 2006 (preprint)] • $(W^{\perp s})_{\text{fin}}$ is completely determined

(4月) イヨト イヨト

Centralizers and Reflection Independence

Theorem [N. 2006 (preprint)]

۲

- $(W^{\perp s})_{\mathrm{fin}}$ is completely determined
 - Intuitively, $(W^{\perp s})_{\mathrm{fin}} = 1$ in "generic" cases

Centralizers and Reflection Independence

Theorem [N. 2006 (preprint)]

- $(W^{\perp s})_{\mathrm{fin}}$ is completely determined
 - Intuitively, $(W^{\perp s})_{\mathrm{fin}} = 1$ in "generic" cases
- In particular, *W* is **reflection independent** for the following cases:

۲

- 4 回 5 - 4 回 5 - 4 回 5

Centralizers and Reflection Independence

Theorem [N. 2006 (preprint)]

- $(\mathcal{W}^{\perp s})_{\mathrm{fin}}$ is completely determined
 - Intuitively, $(W^{\perp s})_{\mathrm{fin}} = 1$ in "generic" cases
- In particular, *W* is **reflection independent** for the following cases:
 - Infinite irreducible 2-spherical

۲

- 4 同 6 4 日 6 4 日 6

Centralizers and Reflection Independence

Theorem [N. 2006 (preprint)]

- $(W^{\perp s})_{\mathrm{fin}}$ is completely determined
 - Intuitively, $(W^{\perp s})_{\mathrm{fin}} = 1$ in "generic" cases
- In particular, *W* is **reflection independent** for the following cases:
 - Infinite irreducible 2-spherical
 - All reflections in W are conjugate

K. Nuida, Centralizers of reflections and reflection-independence of Coxeter groups, arXiv:math/0602165v1 (2006)

イロト イポト イヨト イヨト

Centralizers and Reflection Independence

<u>Note:</u> $W(A_{\infty}) \simeq W(A_{\infty,\infty})$, i.e., infinite irreducible 2-spherical (W, S) is not necessarily reflection rigid when $|S| = \infty$

- W(A_∞) is the group of permutations on N fixing all but finitely many letters
- W(A_{∞,∞}) is the group of permutations on Z fixing all but finitely many letters
- A bijection $\mathbb{N} \simeq \mathbb{Z}$ induces the desired $W(A_{\infty}) \xrightarrow{\sim} W(A_{\infty,\infty})$

イロト 不得 とくき とくき とうき

On Finite Continuation

Key properties in finite rank cases for using FC(w):

- Any finite intersection of parabolic subgroups is parabolic
- Any finite $H \le W$ is contained in a maximal finite $G \le W$, which is parabolic
- Any maximal finite standard parabolic subgroup is a maximal finite subgroup

How to generalize these properties to infinite rank cases?

イロト イポト イヨト イヨト

On Finite Continuation

[N. 2012] introduced the notion of "locally parabolic subgroup"

・ロ・ ・ 日・ ・ 日・ ・ 日・

æ

On Finite Continuation

- [N. 2012] introduced the notion of "locally parabolic subgroup"
 - *S*(*G*): Canonical Coxeter generating set of a reflection subgroup *G*
 - *S*(*G*) consists of reflections w.r.t. "indecomposable positive roots of *G*"

۲

- 4 回 ト 4 ヨ ト 4 ヨ ト

On Finite Continuation

- [N. 2012] introduced the notion of "locally parabolic subgroup"
 - *S*(*G*): Canonical Coxeter generating set of a reflection subgroup *G*
 - *S*(*G*) consists of reflections w.r.t. "indecomposable positive roots of *G*"
 - $G \le W$ is *locally parabolic* \iff G is a reflection subgroup, and any finite subset of S(G) is conjugate to a subset of S

・ 同 ト ・ ヨ ト ・ ヨ ト

On Finite Continuation

- [N. 2012] introduced the notion of "locally parabolic subgroup"
 - *S*(*G*): Canonical Coxeter generating set of a reflection subgroup *G*
 - *S*(*G*) consists of reflections w.r.t. "indecomposable positive roots of *G*"
- G ≤ W is locally parabolic and any finite subset of S(G) is conjugate to a subset of S Note: When |S| < ∞, locally parabolic subgroups and parabolic subgroups coincide

K. Nuida, Locally parabolic subgroups in Coxeter groups of arbitrary ranks, J. Algebra 350 (2012) pp.207–217

소리가 소문가 소문가 소문가

On Finite Continuation

Facts:

۲

イロン イヨン イヨン イヨン

æ

On Finite Continuation

Facts:

• The intersection of an **arbitrary** family of locally parabolic subgroups is locally parabolic, hence *locally parabolic closure* is well-defined

۲

イロト イポト イヨト イヨト

2

On Finite Continuation

Facts:

- The intersection of an **arbitrary** family of locally parabolic subgroups is locally parabolic, hence *locally parabolic closure* is well-defined
- When $|S| < \infty$, the locally parabolic closure coincides with the parabolic closure

٩

- 4 同 6 4 日 6 4 日 6

On Finite Continuation

Facts:

- The intersection of an **arbitrary** family of locally parabolic subgroups is locally parabolic, hence *locally parabolic closure* is well-defined
- When $|S| < \infty$, the locally parabolic closure coincides with the parabolic closure
- Any locally finite subgroup of *W* is contained in a maximal locally finite subgroup of *W*, which is locally parabolic

イロト イポト イヨト イヨト

On Finite Continuation

Note: (for intersection of parabolic subgroups)

Let G be s.t. $S(G) = \{s_1s_2s_1, s_3s_4s_3, s_5s_6s_5, \dots\}$

۲

・ 回 と く ヨ と く ヨ と

2

On Finite Continuation

Note: (for intersection of parabolic subgroups)

Let G be s.t. $S(G) = \{s_1s_2s_1, s_3s_4s_3, s_5s_6s_5, \dots\}$

• G is locally parabolic, but not parabolic Let $G_i := \langle S(G) \cup \{s_{2i+1}, s_{2i+2}, s_{2i+3}, \dots\} \rangle \ (1 \le i \in \mathbb{Z})$

(日) (日) (日)

On Finite Continuation

Note: (for intersection of parabolic subgroups)

Let G be s.t. $S(G) = \{s_1s_2s_1, s_3s_4s_3, s_5s_6s_5, \dots\}$ • G is locally parabolic, but not parabolic Let $G_i := \langle S(G) \cup \{s_{2i+1}, s_{2i+2}, s_{2i+3}, \dots\} \rangle$ $(1 \le i \in \mathbb{Z})$ • Each G_i is parabolic and $G_1 \supseteq G_2 \supseteq G_3 \supseteq \cdots$

・ 同 ト ・ ヨ ト ・ ヨ ト

On Finite Continuation

Note: (for intersection of parabolic subgroups)

Let G be s.t. $S(G) = \{s_1s_2s_1, s_3s_4s_3, s_5s_6s_5, \dots\}$ • G is locally parabolic, but not parabolic Let $G_i := \langle S(G) \cup \{s_{2i+1}, s_{2i+2}, s_{2i+3}, \dots\} \rangle$ $(1 \le i \in \mathbb{Z})$ • Each G_i is parabolic and $G_1 \supseteq G_2 \supseteq G_3 \supseteq \cdots$ • $\bigcap_{i=1}^{\infty} G_i = G$

・ 同 ト ・ ヨ ト ・ ヨ ト

On Finite Continuation

Note: (for intersection of parabolic subgroups)

Let G be s.t. $S(G) = \{s_1s_2s_1, s_3s_4s_3, s_5s_6s_5, \dots\}$

- G is locally parabolic, but not parabolic
- Let $G_i := \langle S(G) \cup \{s_{2i+1}, s_{2i+2}, s_{2i+3}, \dots\} \rangle \ (1 \le i \in \mathbb{Z})$
 - Each G_i is parabolic and $G_1 \supseteq G_2 \supseteq G_3 \supseteq \cdots$

•
$$\bigcap_{i=1}^{\infty} G_i = G$$

• Hence $\bigcap_i G_i$ is not parabolic, though G_i are parabolic

イロト イポト イラト イラト 一日

On Finite Continuation

<u>Note:</u> The locally parabolic closure is not equal to the parabolic closure in general

イロン イ部ン イヨン イヨン 三日

On Finite Continuation

<u>Note:</u> The locally parabolic closure is not equal to the parabolic closure in general

Let G be s.t. $S(G) = \{u_i := w_i s_i w_i^{-1}\}_{i=1}^{\infty}, w_i := s_1 s_2 \cdots s_i s_{i+1}$

• *G* is locally parabolic, hence the locally parabolic closure of *G* is *G* itself

۲

- 4 周 ト 4 日 ト 4 日 ト - 日

On Finite Continuation

<u>Note:</u> The locally parabolic closure is not equal to the parabolic closure in general

Let G be s.t. $S(G) = \{u_i := w_i s_i w_i^{-1}\}_{i=1}^{\infty}, w_i := s_1 s_2 \cdots s_i s_{i+1}$

- *G* is locally parabolic, hence the locally parabolic closure of *G* is *G* itself
- The parabolic closure of G is W
- ۲

- 本部 ト イヨ ト - - ヨ

On Finite Continuation

<u>Note:</u> The locally parabolic closure is not equal to the parabolic closure in general

Let G be s.t. $S(G) = \{u_i := w_i s_i w_i^{-1}\}_{i=1}^{\infty}, w_i := s_1 s_2 \cdots s_i s_{i+1}$

- *G* is locally parabolic, hence the locally parabolic closure of *G* is *G* itself
- The parabolic closure of G is W
- $s_1 \notin G$, hence $G \neq W$

(4月) (4日) (4日) 日

On Finite Continuation

[Mühlherr–N. (preprint)] introduced <u>locally finite continuation</u> of $X \subset W$; LFC(X) := $\bigcap \{H \mid X \subset H \leq W \text{ maximal locally finite} \}$

<ロ> (日) (日) (日) (日) (日)
On Finite Continuation

[Mühlherr–N. (preprint)] introduced <u>locally finite continuation</u> of $X \subset W$; LFC(X) := $\bigcap \{H \mid X \subset H \leq W \text{ maximal locally finite} \}$

Theorem For any reflection r, LFC(r) is completely determined
LFC(r) is a parabolic subgroup for any reflection r

B. Mühlherr, K. Nuida, Reflection independent Coxeter groups of arbitrary ranks, in preparation

On Finite Continuation

We can also define <u>reduced</u> Coxeter systems (W, S) for arbitrary rank cases ($\stackrel{\text{def}}{\longleftrightarrow}$ having no "exceptional" $s \in S$)

۲

On Finite Continuation

We can also define <u>reduced</u> Coxeter systems (W, S) for arbitrary rank cases ($\stackrel{\text{def}}{\longleftrightarrow}$ having no "exceptional" $s \in S$)

• An "exceptional" generator can be removed by some "local transformation"

۲

On Finite Continuation

We can also define <u>reduced</u> Coxeter systems (W, S) for arbitrary rank cases ($\stackrel{\text{def}}{\longleftrightarrow}$ having no "exceptional" $s \in S$)

- An "exceptional" generator can be removed by some "local transformation"
- Any (*W*, *S*) can be transformed into reduced one (by "simultaneously performing infinitely many local transformations")

۲

On Finite Continuation

We can also define <u>reduced</u> Coxeter systems (W, S) for arbitrary rank cases ($\stackrel{\text{def}}{\longleftrightarrow}$ having no "exceptional" $s \in S$)

- An "exceptional" generator can be removed by some "local transformation"
- Any (*W*, *S*) can be transformed into reduced one (by "simultaneously performing infinitely many local transformations")
- Hence the isomorphism problem is reduced to the class of reduced Coxeter systems

On Finite Continuation

۲

イロン イヨン イヨン イヨン

æ

On Finite Continuation

Theorem

• Characterization of reduced (*W*, *S*) which is reflection independent among reduced Coxeter systems (by using locally finite continuations)

۲

- 4 回 ト 4 ヨ ト 4 ヨ ト

On Finite Continuation

Theorem

- Characterization of reduced (*W*, *S*) which is reflection independent among reduced Coxeter systems (by using locally finite continuations)
- (W, S) is reflection independent, if infinite irreducible and 2-spherical, or all reflections are conjugate

۲

(4月) イヨト イヨト

On Finite Continuation

Theorem

- Characterization of reduced (*W*, *S*) which is reflection independent among reduced Coxeter systems (by using locally finite continuations)
- (W, S) is reflection independent, if infinite irreducible and 2-spherical, or all reflections are conjugate
- Characterization of reflection independent 2-dimensional Coxeter systems
 - including skew-angled cases and cases with tree presentation graphs

Conclusion

Isomorphism problem for Coxeter groups of finite ranks

- has been solved in some special cases
- has been reduced to reflection-preserving cases in general
 - We have two kinds of "elementary transformations"; are these enough?

Isomorphism problem for Coxeter groups of infinite ranks

- has been "almost" reduced to reflection-preserving cases
 - A new transformation: $W(A_{\infty}) \simeq W(A_{\infty,\infty})$
 - How to proceed? Geometry? Combinatorics?