The archaeology of unipotent radicals

David I. Stewart¹

¹New College University of Oxford

December 19, 2012

David I. Stewart The archaeology of unipotent radicals

・ロト ・ 理 ト ・ ヨ ト ・

3

Theorem (Liebeck–Seitz, 96)

(Paraphrased) For a simple root system X and exceptional group G defined over $k = \overline{k}$ with char k = p, let N(X, G) be defined by the following table:

	$G = E_8$	E_7	E_6	F_4	G_2
$X = A_1$	7	7	5	3	3
A ₂	5	5	3	3	
<i>B</i> ₂	5	3	3	2	
G ₂	7	7	3	2	
A_3	2	2	2		
B_3	2	2	2	2	
C_3	3	2	2	2	
B_4, C_4, D_4	2	2	2		

Then if p > N(X, G) any closed, connected simple subgroup H of G with root system X is G-cr.

Theorem (S, 2012)

For a simple root system X and exceptional group G defined over $k = \overline{k}$ with char k = p, let $\mathcal{N}(X, G)$ be a set of prime numbers defined by the following table:

	$G = E_8$	E_7	E_6	F_4	G_2
$X = A_1$	< 7	≤ 7	≤ 5	\leq 3	<u></u> 32
A ₂	532	532	32	3 ⁄2	
<i>B</i> ₂	5,32	<i>3</i> 2	<i>,</i> 32	2	
G ₂	7 /532	7,5,32	<i>,</i> 32	2	
A_3	2	,2	2		
B_3	2	2	2	2	
C_3	3,2	,2	2	,2	
B_4	2	2	2		
C_4, D_4	2	2	2		

Then all closed, connected subgroups H of G with root system X are G-cr, if and only if $p \notin \mathcal{N}(X, G)$.

Answers

The connected, reductive subgroups of G_2

Theorem (S, 07)

Let X denote a closed, connected semisimple subgroup of $G = G_2(K)$ where G is defined over an algebraically closed field K of characteristic p > 0. Then up to conjugacy in G, $(X, p, V_7 \downarrow X)$ is precisely one entry in the following table where $V_7 \downarrow X$ denotes the restriction of the seven-dimensional Weyl module $W_G(\lambda_1)$ to X.

H^2 for SL_2

Theorem (S, 09)

Let $V = L(r)^{[d]}$ be any Frobenius twist (possibly trivial) of the irreducible *G*-module L(r) with highest weight *r* where *r* is one of

2p
2
$$p^2 - 2p - 2 (p > 2)$$

2 $p - 2 + (2p - 2)p^e (e > 1)$

Then $H^2(G, V) = K$. For all other irreducible G-modules V, $H^2(G, V) = 0$.

(Similar information is known for $G = SL_3$; [S, 09].)

イロン 不良 とくほう 不良 とうほ

and F_4 , rank at least 2

Theorem (S, 09)

Let X be a closed, connected, simple subgroup of $G = F_4(K)$ of rank at least 2. Suppose X is non-G-cr. Then p = 2 or 3 and X is in a subsystem subgroup of G. Moreover X is conjugate to precisely one of the nine subgroups in the table below,

X of type	р	Description
A ₂	<i>p</i> = 3	$X \le B_4 \le GL_9$ via $V_9 \downarrow X = (10, 01)$
A_2	<i>p</i> = 3	$X \leq A_2 ilde{A}_2$ by $(V_3,V_3) \downarrow X = (10,10)$
<i>B</i> ₂	<i>p</i> = 2	$X \leq D_3$
B_2	<i>p</i> = 2	$X \leq ilde{D}_3$
B_2	<i>p</i> = 2	$X \leq B_2 B_2$ by $(V_5, V_5) \downarrow X = (10, 10)$
G ₂	<i>p</i> = 2	$X \leq D_4$
G ₂	<i>p</i> = 2	$X \leq ilde{D}_4$
B_3	<i>p</i> = 2	$X \leq D_4$
B_3	<i>p</i> = 2	$X \leq ilde{D}_4.$

Answers

$A_1s, p = 3$

Let X be a closed, connected subgroup of type A_1 . Suppose X is non-G-cr. Then p = 2 or 3.

If p = 3, then X is conjugate to just one of the following subgroups:

2)
$$X \hookrightarrow C_3$$
 by $V_6 \downarrow X = T(3)$;

$$\ \, {\mathfrak S} \ \, X \hookrightarrow B_4 \ \, {\mathsf {by}} \ \, V_9 \downarrow X = T(4)^{[r]} + 2^{[s]}, \, rs = 0;$$

$$\ \, {\bf 3} \ \, X \hookrightarrow {\cal A}_2 \tilde{\cal A}_2 \ \, {\rm by} \ \, (V_3,\,\tilde{V}_3) \downarrow X = (2,\tilde{2});$$

5
$$X \hookrightarrow A_1C_3$$
 by $(1^{[r]}, T(3)^{[s]}), rs = 0$; or

() *X* in a one-dimensional variety $\Omega \cong \mathbb{A}^1(K) \setminus \{0\}$ parameterising subgroups of type A_1 in no maximal reductive subgroup of G. These subgroups are described explicitly by generators.

< 回 > < 回 > < 回 > -

*A*₂s, *p* = 2

If p = 2 then X is conjugate to just one of the following subgroups:

$$\ \, \bullet X \hookrightarrow A_2 \text{ or } \tilde{A}_2 \text{ by } V_3 \downarrow X = W(2);$$

- $\ \, {\bf 3} \ \, X \hookrightarrow A_3 \text{ or } \tilde{A}_3 \text{ by } V_4 \downarrow X = T(2);$

$$\ \, {\bf 3} \ \, X \hookrightarrow {\cal A}_1^4 \ \, {\rm or} \ \, {\tilde {\cal A}}_1^4 \ \, {\rm by} \ \, x \mapsto (x,x,x,x);$$

- **⑤** *X* \hookrightarrow *A*₂ \tilde{A}_2 by (*V*₃, *V*₃) ↓ *X* = (2/0, 0/2) or (2/0, 2/0).
- X, not one of the above, in a 2-dimensional variety parameterising subgroups of type A₁ in a B₄ or C₄ subsystem subgroup of G, explicitly known;
- X in a 2-dimensional variety parameterising subgroups of type A₁ not in any reductive maximal subgroup of G, explicitly described by generators.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Corollaries

Corollary (S, 09; Amende, 05)

All conjugacy classes of simple subgroups of F_4 are known.

Corollary (S, 10)

Let X be a connected, closed, simple subgroup of $G = F_4(K)$. Then X is generated by short root elements if and only if exactly one of the following holds;

① X is a subsystem subgroup of type B_4 , C_4 (p = 2), D_4 (p > 2), \tilde{D}_4 (p = 2), A_3 (p > 2), \tilde{A}_3 (p = 2), B_3 , C_3 , \tilde{A}_2 , B_2 or \tilde{A}_1 ;

- 2 p = 2 and X is non-G-cr, conjugate to the one of subgroups $A_1 \hookrightarrow \tilde{A}_2$ by $V_3 \downarrow X = W(2)$, $B_2 \leq \tilde{D}_3$, $B_3 \leq \tilde{D}_4$ or $G_2 \leq \tilde{D}_4$.
- p > 2 and X is a subgroup of type A₁ in a subsystem subgroup of type A₁² corresponding to long roots projecting non-trivially to each factor.

ヘロア 人間 アメヨア 人口 ア

э

Corollaries

Corollary (S, 09; Amende, 05)

All conjugacy classes of simple subgroups of F_4 are known.

Corollary (S, 10)

Let X be a connected, closed, simple subgroup of $G = F_4(K)$. Then X is generated by short root elements if and only if exactly one of the following holds;

- X is a subsystem subgroup of type B_4 , C_4 (p = 2), D_4 (p > 2), \tilde{D}_4 (p = 2), A_3 (p > 2), \tilde{A}_3 (p = 2), B_3 , C_3 , \tilde{A}_2 , B_2 or \tilde{A}_1 ;
- 2 p = 2 and X is non-G-cr, conjugate to the one of subgroups $A_1 \hookrightarrow \tilde{A}_2$ by $V_3 \downarrow X = W(2)$, $B_2 \leq \tilde{D}_3$, $B_3 \leq \tilde{D}_4$ or $G_2 \leq \tilde{D}_4$.
- p > 2 and X is a subgroup of type A₁ in a subsystem subgroup of type A₁² corresponding to long roots projecting non-trivially to each factor.

ヘロン ヘアン ヘビン ヘビン

ъ

Somewhat eccentric corollary

Corollary (S, 10)

The following statements are equivalent:

- All closed subgroups of F₄(K) of type A₁ are contained in closed subgroups of type A₁²;
- 2 The characteristic p of K is 2 or 5.

ヘロト ヘアト ヘビト ヘビト

э