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Abstract

In this mini-course, we will describe explicit constructions of some of the exceptional
algebraic groups over arbitrary fields. These groups occur in Geometry, Representation
theory, Number theory and so on. The constructions decribed use some natural represen-
tations of these groups. We take for granted basic notions from the theoryof algebraic
groups. These notes are far from being complete, are meant to provide an outline of the
subject. These have been compiled from some standard texts. The list of references is
not exhaustive, but contains the essential texts and papers for the material covered. The
reader should watch out for mistakes in the notes, which may have crept in silently.

1 Quadratic, Hermitian and Symplectic forms

Basic references for this section are [L], [J-1], [J-2] and [L-1]. For generalities on algebraic
groups, we refer to the books [H], [B] and [S-1]. Letk be a field of characteristic not2. Let
V be a finite dimensional vector space overk. LetB : V ×V → k be a map. IfB is bilinear,
we callB s symmetric form if B(x, y) = B(y, x) for all x, y ∈ V . We callB alternating
or symplectic if B(x, y) = −B(y, x). If k has an automorphism of order2, written as
a 7→ ā, we callB a hermitian form if B is linear in the first variable andsesquilinear in
the second, i.e.B(x, ay) = āB(x, y) for all x, y ∈ V , moreover,B(x, y) = B(y, x) for all
x, y ∈ V . A mapQ : V → k is a quadratic form on V if there is a symmetric bilinear
form B on V such thatQ(v) = B(v, v) for all v ∈ V . It is easy to see that the assignment
q 7→ Bq : (v, w) 7→ 1

2
(q(v + w) − q(v) − q(w)) is a bijective correspondence between

quadratic forms and symmetric bilinear forms onV . LetB : V × V → k be a symmetric,
alternating or hermitian form. We callB nondegenerate ifB(x, y) = 0 for all y implies
x = 0. We call the pair(V,B) a quadratic, symplectic or hermitian (or unitary) space ifB
is nondegenerate and is respectively symmetric, alternating or hermitian form onV . If B is
symmetric and nonzero, then there exists an orthogonal basis forB. With respect to such a
basis, the matrix ofB is diagonal. This fact is stated as any nonzero symmetric bilinear form
can be diagonalized. A quadratic form onV is calleduniversal if it attains all values from
k. We define a quadratic formQ to beisotropic if it has a nontrivial zero inV , anisotropic
otherwise. Any nontrivial zerov of Q is called anisotropic vector. A subspace which
contains only isotropic vectors forQ is called atotally isotropic subspace. The dimension
of a maximal totally isotropic subspace is independent of the subspace and is called theWitt
index of V . The following theorem reveals the structure of a quadraticspace.

Theorem 1.1. (Witt-decomposition) Let (V,Q) be a quadratic space. ThenQ admits an
orthogonal decompositionQ = rH ⊥ Qan, wherer is the Witt-index ofQ andQan is
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anisotropic,H denotes thehyperbolic planeH((x, y)) = x2− y2. The anisotropic partQan

ofQ is determined up to an isometry.

If B is a hermitian form, one again has an othogonal basis. IfB is a nondegenerate alter-
nating form, the dimension ofV is necessarily even, further, all alternating nondegenerate
forms of a given dimension overk are equivalent (see Lang-Chapter XV, Section 8), see also
the book by L. C. Grove, Classical Groups and Geometric Algebra. An isometry of a non-
degenerate bilinear formB onV is an elementg ∈ GL(V ) such thatB(gv, gw) = B(v, w)
for all v, w ∈ V . An isometry is necessarily bijective, sinceV is finite dimensional. A
similitude of B is an elementg ∈ GL(V ) such thatB(gv, gw) = σ(g)B(v, w) for all
v, w ∈ V and a fixedσ(g) ∈ k∗, called thefactor of similitude of g. The (algebraic) group
of isometries is denoted byO(V,B),Sp(V,B) or U(V,B) respectively, according asB is
symmetric, alternating or hermitian, and are called theorthogonal, symplecticor theuni-
tary group of(V,B). LetB be a bilinear form onV . For any basis{e1, · · · , en} of V , we
have the matrix associated toB, namely,(B(ei, ej)). The determinant of this matrix is called
thediscriminant of B, it is determined up to a square ink.

Clifford algebra and the Spin group : Let (V,Q) be a quadratic space (i.e.Q is a nonde-
generate quadratic form onV ). ThenSO(Q) = O(V,Q) ∩ SL(V ) is a connected algebrac
group defined overk. This group has a two fold covering, denoted bySpin(V,Q). The
Clifford algebra of Q is a pair(C, f) whereC is an associativek-algebra (k need not be
algebraically closed in this discussion) with unity1 andf : V → C is ak-linear map with
f(x)2 = Q(x).1 for all x ∈ V , satisfying the followinguniversal property: for any pair
(D, g), whereD is an associative algebra overk with 1 andg : V → D is ak-linear map
such thatg(x)2 = Q(x).1 for all x ∈ V , there exists a uniquek-algebra homomorphism
g̃ : C → D such that̃g ◦ f = g. The Clifford algebraC(V,Q) exists and is unique upto
k-isomorphism. Clearlyf(V ) generatesC as an algebra. One shows easily thatf is injec-
tive. If e1, · · · , en form a basis ofV , the productsei1 · · · eim , 1 ≤ i1 < i2 < · · · < im ≤ n
together with1 form a basis forC(V,Q), henceDim[C(V,Q)] = 2n. If n is even,C is a
simple algebra with centerk. If n is odd,C has a2 dimensional center overk. In this case,
C is either simple or a direct sum of two simple algebras. LetC+ = C+(V,Q) be theeven
Clifford algebra of (V,Q), i.e., the subalgebra ofC generated by products of even number
of vectors inV . HenceDim(C+) = 2n−1. Whenn is even, it can be shown thatC+(Q) is
seperable with centerZ either a quadratic field extension ofk or the split quadratic algebra
k × k. In the first caseC+ is simple while in the second it is direct sum of two simple alge-
bras. Ifn is odd,C+ is always central simple (defined below).
If we defineη : C → C by η(ei1 · · · eir) = eireir−1

· · · ei1 on the generatorsei1 · · · eir (1 ≤
i1 < i2 < · · · < ir ≤ n; 1 ≤ r ≤ n) andη(1) = 1, we get a well defined involution
(antiautomorphism or period2) of C, called thestandard involution. TheClifford group
Γ(V,Q) is the subgroup of the group of units inC(V,Q) consisting of elementst of C(V,Q)
such thattvt−1 ∈ V for all v ∈ V . We callΓ+(V,Q) = C+ ∩ Γ(V,Q) theeven Clifford
group. If t ∈ Γ+(V,Q), sayt = v1v2 · · · v2r, thenN(t) = tη(t) = ΠQ(vi) ∈ k.1 andN is
a homomorphism fromΓ+ to k∗. The groupSpin(Q) is defined as the kernel ofN . We can
now define, for any extensionL/k,

Spin(Q)(L) = {e ∈ C+
L |tVLt

−1 = VL, tη(t) = 1}.
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The groupSpin(Q) defined above is a connected algebraic group defined overk, called the
Spin group ofQ andSpin(Q)(k) = Spin(Q). For anyt ∈ Spin(Q)(L), the automorphism
v 7→ tvt−1 of VL belongs toSO(Q)(L). This gives us a mapχ : Spin(Q) → SO(Q) which
is ak-homomorphism of algebraic groups, called thevector representation), is surjective
with kernel {±1}. The reduced orthogonal group of Q is, by definition,O′(V,Q) =
χ(Spin(Q). For anyg ∈ SO(Q), there existsf ∈ Γ+ such thatχ(f) = g andf is unique
up to a factor ink∗. Hence the cosetσ(g) = N(f)k∗2 in k∗/k∗2 is determined byg. We call
σ(g) thespinor norm of g. If we write g = Sv1 · · ·Sv2r , vi ∈ V, Q(vi) 6= 0, then it follows
thatσ(g) = N(f)k∗2 = ΠQ(vi)k

∗2. We will often need a theorem of Witt on extension of
isometries, we state it below.

Theorem 1.2. (Witt’s Extension Theorem) : Let (Vi, Qi), 1 ≤ i ≤ 2 be a nondegener-
ate quadratic space and assume thatQ1 andQ2 are isometric. Then every isometry of a
subspace ofV1 onto a subspace ofV2 extends to an isometry ofV1 ontoV2.

Corollary 1.1. (Witt’s Cancellation Theorem) Let(V,Q) and(V ′Q′) be isometric quadratic
spaces,V = W1 ⊥ W2, V ′ = W ′

1 ⊥ W ′
2. Assume(W1, Q1) is isometric to(W ′

1, Q
′
1) with

restrictions of the ambient forms. ThenW2 is isometric toW ′
2.

Pfister forms : This is a special class of quadratic forms having mulptiplicative properties
(see T. Y. Lam). Anr-fold Pfister form is a quadratic form(x21 − a1x

2
2) ⊗ (x23 − a2x

2
4) ⊗

· · ·⊗ (x2r −arx
2
r+1), i.e. a tensor product of the norm forms of quadratic extensions ofk. We

denote this form by〈〈a1, a1, · · · , ar〉〉. So〈〈a〉〉 = x21 − ax22. It can be shown that a Pfister
formQ is either of maximal Witt index (i.e.Q = rH for a suitabler) or is anisotropic over
k, i.e. has no nontrivial zeros overk. Pfister forms are closely tied up with algebraic groups
as we will soon see.

2 Octonion algebras andG2

Recall thatG2 is the root system of smallest rank among the five exceptionalroot systems.
Groups of typeG2 (i.e. twisted forms of the split groupG2) over a fieldk are intimately con-
nected with certain nonassociative algebras, calledoctonion algebrasor Cayley algebras
overk. We begin this section with some preliminaries needed to describe these algebras. The
material in this section and the next has been largely compiled from the texts by Springer
and Veldkamp [SV] and Jacobson [J-3].

Let k denote a fixed base field. Acentral simple algebraof degreen overk is ak-algebra
A such thatA ⊗ ks ≃ Mn(ks), whereks denotes a fixed separable closure ofk andMn(k)
is the algebra of matrices of sizen× n with entries ink. We also refer toMn(k) as thesplit
central simple algebraof degreen overk. We can regard central simple algebras overk
as twisted forms of the split matrix algebra overk. Central simple algebras are equipped
with twsited versions of the determinant and trace maps, called respectively thereduced
norm andreduced trace. It follows that for central simple algebraA over k andx ∈ A,
its reduced normNA(x) and its reduced traceTA(x) both belong tok. It also can be shown
thatNA(xy) = NA(x)NA(y) andTA(x + y) = TA(x) + TA(y) for all x, y ∈ A andTA is a
linear form onA. Degree2 central simple algebras are calledquaternion algebras, these are
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general versions of the well knownHamilton’s quaternion algebra overR. The reduced
norm map on quaternion algebras is a nondegenerate quadratic form and is multiplicative.
A k-algebraC (not necessarilyy associative) with an identity element, with a nondegenerate
quadratic formQ that is multiplicative (called thenorm), is called acomposition algebra.
Over a fieldk ( char(k) 6= 2), a composition algebraC is, up to ak-isomorphism, one of the
four possibilities:k with Q(x) = x2, C = K a quadratićetale algebra withQ = NK/k, C a
quaternion algebraA with Q = NA, C an octonion algebra withQ its norm. The following
will be used in the sequel:

Theorem 2.1. (Skolem-Noether Theorem)LetA be a central simple algebra over a field
k. Then every automorphism ofA is given by an inner conjugation, i.e. is of the form
x 7→ yxy−1 for a fixedy ∈ A.

The dimension of a composition algebra is1, 2, 4 or 8. A composition algebra is de-
termined by its norm up to isomorphism. Octonion algebras are 8 dimensional composi-
tion algebras. Let〈, 〉 denote the bilinear form corresponding toQ on a composition al-
gebraC. The mapx 7→ x = 〈x, e〉 − x, wheree is the identity element inC, satisfies
xx = xx = Q(x), xy = y x for all x, y ∈ C. Moreover,x+ y = x + y andx = x for
all x ∈ C. We call this map thecanonical involution or theconjugation on C. Clearly
T (x) = x+ x ∈ k.e andQ(x).e = xx. We callT (x) the trace of x. The following is easily
checked:

Theorem 2.2. Let C be a composition algebra anda ∈ C. Thena satisfies the Cayley-
Hamilton equationX2 − T (a)X +Q(a) = 0.

Let C be a composition algebra andD a composition subalgebra. The formQ|D being
nondegenerate, we can writeC = D⊕D⊥ with D⊥ nondegenerate. IfD 6= C, then there is
a ∈ D⊥ with Q(a) 6= 0. We then have

Theorem 2.3. Let C,D and a be as above. AssumeD 6= C. ThenS = D ⊕ Da is a
composition subalgebra ofC withDim(S) = 2Dim(D). The formulae below describe the
product, norm and the conjugation onS

(x+ ya)(x′ + y′a) = (xx′ + νy′y) + (y′x+ yx′)a,

NS(x+ ya) = ND(x)− νND(y), x+ ya = x− ya, (x, y, x′, y′ ∈ D),

whereν = −Q(a) andNS andND denote the norms onS andD respectively. Conversely,
if D is a composition algebra with normN andµ ∈ k∗, on the vector spaceC = D ⊕ D
define a product by

(x, y)(x′, y′) = (xx′ + µy′y, y′x+ yx′), (x, x′, y, y′ ∈ D)

and a quadratic formQ by

Q((x, y)) = N(x)− µN(y).

If D is associative thenC is a composition algebra.C is associative if and only ifD is
commutative and associative.
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The following consequence is immediate:

Corollary 2.1. The norm form of a composition algebra is a Pfister form.

The construction described in the above theorem is calleddoubling. The process of dou-
bling stops at dimension8 and one obtains an octonion algebra. In other words, all octonion
algebras can be obtained by doubling quaternion algebras. If the norm form of a composition
algebra is anisotropic, i.e., has no nontrivial zeros, thenevery nonzero element has a multi-
plicative inverse, in which case we call such a composition algebra adivision algebra. Since
the norm form is either anisotropic or is hyperbolic (since it is a Pfister form), it follows that
a composition algebra is eithersplit (i.e. its norm has maximal Witt index) or is a division
algebra.

Definition. LetC be a composition algebra with normN andλ, µ ∈ k∗. A special(λ, µ)-
pair is an ordered pair(a, b) with a, b ∈ C such that

〈a, e〉 = 〈b, e〉 = 〈a, b〉 = 0, N(a) = λ, N(b) = µ.

A special(1, 1)-pair is called aspecial pair.

We have

Lemma 2.1. Every special(λ, µ)-pair a, b is contained in a unique quaternion subalgebra,
with basis{e, a, b, ab} and every quaternion algebra contains(λ, µ)-special pairs for suit-
able parameters. In particular, existence of such a pair implies that the ambient composition
algebra is a quaternion or an octonion algebra.

The following consequence of Witt’s theorem is immediate:

Corollary 2.2. LetC be a composition algebra overk, λ, µ ∈ k∗ and (a, b) and (a′, b′) be
two special(λ, µ)-pairs inC. Then there exists an automorphismφ of C such thatφ(a) =
a′, φ(b) = b′.

Octonion algebras : We now collect some facts specific to octonion algebras. One can
construct the split octonion algebra by doubling the split quaternion algebra, i.e. by doubling
M2(k), or by doubling a quaternion division algebra withµ = 1, since this ensures the
norm form is isotropic. We now give another model of the splitoctonion algebra, called the

algebra of Zorn’s vector matrices. LetZorn(k) =

(
k k3

k3 k

)
. We fix the non-degenerate

symmetric bilinear form〈, 〉 onk3, given by

〈x, y〉 =
3∑

i=1

xiyi, x = (x1, x2, x3), y = (y1, y2, y3) ∈ k3.

Fix an exterior product× onk3 defined by

〈x× y, z〉 = det(x, y, z), (x, y, z ∈ k3).
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Define a productZorn(k)× Zorn(k) → Zorn(k) by
( (

a x
x′ a′

)
,

(
b y
y′ b′

) )
7→

(
ab+ 〈x, y′〉 ay + b′x+ x′ × y′

bx′ + a′y′ + x× y a′b′ + 〈x′, y〉

)
.

With this multiplication,Zorn(k) is a (non-associative) k-algebra which admits

(
1 0
0 1

)

as the multiplicative identity element. The norm form is given byN(

(
a x
x′ a′

)
) = aa′ −

〈x, x′〉. This is called theZorn algebra of vector matrices and is isomorphic to the split
octonion algebra overk. We can now list all the split composition algebras:

Proposition 2.1. The split composition algebras overk, up to isomorphism, are the split
qudratic algebrak × k, the matrix algebraM2(k) and the Zorn algebra of vector matrices
Zorn(k).

The group of automorphisms of an octonion algebra :Let C be an octonion algebra
over k andG = Aut(C) be the group of allk-linear algebra automorphisms ofC. Any
automorphism ofC preserves the normN of C, hence is a subgroup of the orthogonal group
O(N) of isometries ofN . LetK = k be an algebraic closure ofk andCK = K ⊗k C. Let
G = Aut(CK). ThenG is a linear algebraic group andG = G(k). We need to describe the
subgroup ofGwhose elements leave a quaternion subalgebra invariant. LetC be an octonion
algebra andD ⊂ C be a quaternion subalgebra. Letφ ∈ G be such thatφ(D) = D. Then,
sinceφ preserves the norm onC, we haveφ(D⊥) = D⊥. We can writeD⊥ = Da for some
fixed a ∈ D⊥ with N(a) 6= 0. Then by Theorem 2.3,C = D ⊕ Da and we have, for
x, y ∈ D,

φ(x+ ya) = φ(x) + φ(y)φ(a),

whereφ(x), φ(y) ∈ D andφ(a) ∈ D⊥. Note thatφ(y)φ(a) ∈ D⊥ = Da. Define maps
u, v : D → D by u(x) = φ(x) andφ(y)φ(a) = v(y)a for x, y ∈ D. Thus

φ(x+ ya) = u(x) + v(y)a (x, y ∈ D).

It is immediate thatu = φ|D is an automorphism ofD andv is orthogonal for the norm on
D. It follows that

v(xy) = v(x)u(y), (x, y ∈ D).

Let v(e) = p, thenN(p) = 1. We have,

v(y) = pu(y) (y ∈ D).

Hence we have
φ(x+ ya) = u(x) + (pu(y))a (x, y ∈ D).

By the Skolem-Noether theorem, there existsc ∈ D with N(c) 6= 0 such thatu(x) =
cxc−1 (x ∈ D). Hence

φ(x+ ya) = cxc−1 + (pcyc−1)a (x, y ∈ D).

Let us denote this automorphism byφc,p. Conversely, for anyp ∈ D with N(p) = 1 and any
c ∈ D with N(c) 6= 0, the above formula defines an automorphism leavingD invariant. We
summarise this below
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Proposition 2.2. LetC be an octonion algebra overk andD a quaternion subalgebra. Then
the groupAut(C,D) of atomorphisms ofC leavingD invariant is given by

Aut(C,D) = {φc,p|c ∈ D,N(c) 6= 0, p ∈ D, N(p) = 1}.

Corollary 2.3. The groupGD = Aut(C/D) of automorphisms fixingD pointwise can be
identified with the group of norm1 elements ofD. LetGD denote the algebraic group of
K-automorphisms ofCK that fixDK pointwise. ThenGD is a closed subgroup ofG and
GD(k) = GD. The group of norm1 elements inDK is isomorphic toSL2 = SL(2, K).
HenceGD is a three dimensional connected algebraic group defined over k.

We note thatG is a subgroup of the stabilizer ofe in O(N). HenceG leavese⊥ in CK

invariant. LetN1 denote the restriction ofN to e⊥ in C. LetH denote the stabilizer ofe in
SO(N). Then we have

Proposition 2.3. The restriction map

Res : H → SO(N1), g 7→ g|e⊥,

is an isomorphism of algebraic groups, defined overk. In particular, we have an induced
isomorphismH = H(k) → SO(N1).

The proof follows essentially from Witt’s theorem. We are now ready to compute the dimen-
sion ofG.

Theorem 2.4. The groupG of automorphism ofCK is a connected algebraic group of di-
mension14.

Proof. Let X denote the set of special pairs inCK . ThenX 6= ∅ sinceK is algebraically
closed. Using Witt’s theorem we see that there is a linear isometry fixinge and mapping one
special pair to another. It follows thatH acts transitively onX. Let (a, b), a, b ∈ DK be a
fixed special pair. Then the stabilizerS of (a, b) in H is isomorphic toSO(N2), whereN2 is
the restriction ofN to (Ke⊕Ka⊕Kb)⊥. Hence we have

dim(X) = dim(H/S) = dim(SO(N1))−dim(SO(N2)) =
1

2
(7.6)−

1

2
(5.4) = 21−10 = 11.

By Corollary 2.2,G acts transitively onX. We now note that{e, a, b, ab} is a basis ofDK .
Hence the stabilizer of(a, b) in G is preciselyGD, the algebraic group of automorphisms of
CK whose elements fixDK pointwise. Thereforedim(X) = 11 = dim(G) − dim(GD).
Hence

dim(G) = 11 + dim(GD) = 11 + 3 = 14.

NowX is irreducible sinceSO(N1) is irreducible. AlsoGD is connected. This implies that
G is connected.

Proposition 2.4. The rank of the groupG of automorphism ofCK , C an octonion algebra
overk, is 2.
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To prove this, we construct an explicit maximal torus inG and show it has the correct
dimension.

A maximal torus of G : We have seen that the (split) octonion algebraCK can be viewed as
DK⊕DKawithDK the algebra of2×2 matrices overK, withN((x, y)) = det(x)−det(y).
Let, for t ∈ K∗, ct denote the2× 2 diagonal matrixdiag(t, t−1). We then have

Lemma 2.2. The groupT of all automorphisms ofCK given by

tλ,µ : x+ ya 7→ cλxcλ
−1 + (cµycλ

−1)a (x, y ∈ DK),

with λ, µ ∈ K∗, is a2-dimensional torus inG. The centralizer ofT in G is T and henceT
is a maximal torus inG.

Proof. We work with the basis{(eij, 0), (0, eij), 1 ≤ i, j ≤ 2} of CK , whereeij is the2× 2
matrix with (i, j)-entry equal to1 and other entries0. With this, one has the matrix oftλ,µ is

tλ,µ = diag(1, λ2, λ−2, 1, λ−1µ, λµ, λ−1µ−1, λµ−1).

It then follows (by a reparametrization) thatT is a2-dimensional torus. Ift ∈ G centralizes
T, thent leaves invariant the eigenspaces of alltλ,µ. If λ, µ are chosen to ensure thattλ,µ has
seven distinct eigenvalues, then its eigenspaces are

K(e11, 0) +K(e22, 0), K(e12, 0), K(e21, 0), K(0, eij), 1 ≤ i, j ≤ 2.

Hencet must leaveDK stable and thereforet(x+ ya) = cxc−1 + (pcyc−1)a, (x, y ∈ DK),
wherec, p ∈ DK , det(c) 6= 0, det(p) = 1. Further analysis of the action on the eigenspaces
shows thatc = cα for someα ∈ K∗ andp is diagonal. Hencet = tα,β for suitableα, β ∈
K∗.

Corollary 2.4. The center ofG is trivial.

Proof. Let t belong to the center ofG. Then by the above lemma,t ∈ T. Hencet = tλ,µ
for suitable parameters. Alsot commutes with all automorphisms ofCK that leaveDK

invariant, hence it must commute with all inner automorphisms ofDK = M2(K). Hence
λ2 = 1 andt|DK = 1. This holds for all quaternion subalgebras and any element of CK

imbeds in a quaternion subalgebra (this can be shown using doubling), hencet = 1.

Corollary 2.5. G is reductive and|Φ(G)| = 12.

Proof. Grant for the moment the fact thatG is reductive. We have shown dimension ofG is
14 andrank(G) = 2. Hence|Φ(G)| = 14 − 2 = 12. For reductivity ofG, we will prove
a general lemma that will be needed later for similar purpose. The proof now follows from
the results below.

Lemma 2.3. LetV be a finite dimensional vector space andG a nontrivial connected alge-
braic subgroup ofGL(V ). Assume thatG acts irreducibly onV . ThenG is reductive.
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Proof. LetU denote the unipotent radical ofG and let

V0 = {v ∈ V |Uv = v} = V U,

the subspace of fixed vectors ofU in V . Then, sinceU is unipotent,V0 6= 0. If v ∈ V0 and
g ∈ G, then for anyu ∈ U we have, using normality ofU in G,

u(gv) = g(g−1ug)(v) = gu′(v) = gv,

whereu′ = g−1ug. HenceV0 is G-stable. SinceV is irreducible forG, it follows that
U = {1}.

Theorem 2.5. Let C be a composition algebra overk. Then the only invariant (nonzero)
subspaces ofCK for Aut(CK) areKe ande⊥.

Proof. WhenC is two dimensional, the assertion is trivial. So assumeC is a quaternion
algebra, so we may assumeCK =M2(K). By the Skolem-Noether theorem, every automor-
phism ofM2(K) is inner. Now letV be an invariant subspace ofCK and chooset ∈M2(K)
a diagonal invertible matrix with distinct eigenvalues. Then by direct computation, we see
that the eigenspaces of the inner automorphismInt(t) areKe11 + Ke22 andKe12, Ke21.
HenceV is spanned by vectors of the formae11 + be22, ce12, de21, a, b, c, d ∈ K. Now we
argue as follows. Ife12 ∈ V , then for anyα ∈ K,

(
1 0
α 1

)
e12

(
1 0
−α 1

)
=

(
−α 1
−α2 α

)

belongs toV . Thereforee21 ∈ V ande11−e22 ∈ V . This impliese⊥ ⊂ V . If ae11+be22 ∈ V
for some0 6= a 6= b, then one can show similarly thate12, e21 ∈ V . Therefore if neither
of e12 ande21 belong toV thenV = Ke. This settles the proof for quaternion algebras.
Let nowC be an octonion algebra andV be an inavriant subspace ofCK for Aut(CK).
Let Q1 be a quaternion subalgebra ofCK and letV1 = V ∩ Q1. We have seen that every
automorphism ofQ1 extends to an automorphism ofCK . HenceV1 is an invariant subspace
ofQ1 forAut(Q1). ThereforeV1 = 0, Ke, e⊥∩Q1 orQ1. LetQ2, V2 be defined similarly for
another quaternion subalgebra ofCK . ButAut(CK) acts transitively on the set of quaternion
subalgebras. Hence there isφ ∈ Aut(CK) such thatφ(Q1) = Q2. Thenφ(V1) = V2 and
henceV2 = 0, Ke, e⊥ ∩Q2 orQ2 according to the respective case forV1. But every element
of CK is contained in some quaternion subalgebra, henceV = 0, Ke, e⊥ orCK .

Corollary 2.6. G = Aut(CK) has a faithful irreducible representation (overK).

Proof. The seven dimensional representation ofG in e⊥ ⊂ CK is faithful and irreducible.

We can now prove

Theorem 2.6. The algebraic groupG = Aut(CK), for C an octonion algebra overk, is a
connected simple algebraic group of typeG2.
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Proof. We have proved already thatG is connected, reductive of rank2 and has dimension
14. Since the center ofG is trivial, it follows thatG is in fact semisimple. We have also
|Φ(G)| = 12. Since the only the only reducible root system of rank2 has4 elements
(namely,A1 × A1), it follows thatΦ(G) is irreducible. Now the list of irreducible root
systems of rank2 pins it down to typeG2.

Remark : One can show moreover thatG = Aut(CK) is defined overk for any octonion
algebra (or composition algebra)C overk. It can be shown using Galois cohomology that
all groups of typeG2 defined overk occur as above.

3 Albert algebras: E6, E7 and F4

In this section we will describe an algebra whose automorphisms give a group of typeF4

defined overk and all such groups arise this way. We will then construct some groups of
typeE6 andE7 from such algerbas. We will assume now characteristic ofk is different
from 2 and3. These are assumptions for the sake of simplicity of exposition, there are valid
constructions over arbitrary characteristics.

Let k be a base field with characteristics other than2, 3. LetC be a composition algebra
overk. Let x 7→ x denote the canonical involution onC. Let γ1, γ2, γ3 ∈ k∗ be fixed and
define onM3(C), the (non-associative) algebra of3 × 3 matrices with entries fromC, an
involution X 7→ X∗ = Γ−1X

t
Γ, whereΓ = diag(γ1, γ2, γ3) andX denotes the matrix

obtained fromX by applying the involutionx 7→ x (onC) to each entry andX t denotes the
transpose ofX. LetH3(C,Γ) denote the set of∗-hermitian matrices, i.e.H3(C,Γ) = {X ∈
M3(C)|X

∗ = X}. Then anyX ∈ H3(C,Γ) has the form

X =




ξ1 c3 γ−1
1 γ3c2

γ−1
2 γ1c3 ξ2 c1
c2 γ−1

3 γ2c1 ξ3




whereξi ∈ k and ci ∈ C for 1 ≤ i ≤ 3. Define a product onH3(C,Γ) by XY =
1
2
(X.Y + Y.X), whereX.Y denotes the usual matrix product. This is a commutative and

non-associative multiplication with the3× 3 identity matrixe as multiplicative identity. On
A = H3(C,Γ), we have atrace map,T (X) = ξ1 + ξ2 + ξ3, which defines a quadratic form
Q onA

Q(X) =
1

2
T (X2) =

1

2
(ξ21 + ξ22 + ξ23) + γ−1

3 γ2N(c1) + γ−1
1 γ3N(c2) + γ−1

2 γ1N(c3)

for the coordinates ofX as above. The bilinear form〈, 〉 associated toQ is nondegenerate
andassociative, i.e.,

〈XY,Z〉 = 〈X, Y Z〉, (X, Y, Z ∈ A).

We callA = H3(C,Γ), for C an octonion algebra, areduced Albert algebra. A k-algebra
A is called anAlbert algebra if for some field extensionL of k,A⊗kL ≃ H3(C,Γ) overL,
for some octonion algebraC overL and a diagonal invertible matrixΓ ∈ M3(L). Just like
the usual matrix algebra, we have aCayley-Hamilton equation that elements ofH3(C,Γ)
satisfy:
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Proposition 3.1. Every elementX ∈ H3(C,Γ), C a composition algebra, satisfies a cubic
equation

X3 − 〈X, e〉X2 − (Q(X)−
1

2
〈X, e〉2)X − det(X)e = 0,

wheredet is a cubic form onH3(C,Γ). (In factdet(X) is the determinant ofX computed
as usual with brackets put carefully).

The cubic polynomial thatX above satisfies is called itscharacteristic polynomial. In
terms of coordinates ofX, one has

det(X) = ξ1ξ2ξ3 − γ−1
3 γ2ξ1N(c1)− γ−1

1 γ3ξ2N(c2)− γ−1
2 γ1ξ3N(c3) +N(c1c2, c3),

whereN(, ) denotes the bilinearization ofN onC. The cubic formdet determines asym-
metric trilinear form 〈 , , 〉 with 〈X,X,X〉 = det(X). It can be shown that for any Albert
algebraA there is a cubic formN on A, called itsnorm form , there is a linear formT
onA, called itstrace form (which in turn defines a quadratic formQ onA) and that every
element ofA satisfies its characteristic equation just as in the case of reduced Albert algebras.

The cross product onA : We define a product× onA as follows: forX, Y ∈ A, we define
X × Y to be the (unique) element such that

〈X × Y, Z〉 = 3〈X, Y, Z〉 (Z ∈ A),

where the bilinear form on the left hand is the trace bilinearform onA. It follows by direct
computation thatX(X×X) = det(X)e. From this, the above discussion and the proposition
above we have

Corollary 3.1. LetA be an Albert algebra overk. Thenx ∈ A is invertible if and only if
det(x) 6= 0.

Corollary 3.2. Every automorphism ofA preserves the cubic formdet, the trace formT and
the quadratic formQ.

Idempotents inA : An elementu ∈ A = H3(C,Γ) is anidempotent if u2 = u. We have

Lemma 3.1. If u 6= 0, e is an idempotent inA thendet(u) = 0 andQ(u) = 1
2

or Q(u) = 1.
If A contains an idempotent6= 0, e then it contains an idempotentu withQ(u) = 1

2
.

We will call idempotentsu with Q(u) = 1
2

asprimitive idempotents. It is straight forward
that primitive idempotents cannot be decomposed as a sum of two orthogonal idempotents.

Automorphisms fixing a primitive idempotent : Let A = H3(C,Γ) be a reduced Albert
algebra. SinceA contains idempotents6= 0, e, there is a primitive idempotentu ∈ A by the
lemma above. Let us fix this idempotent for what follows. define

E = (ke⊕ ku)⊥ = {x ∈ A|〈x, e〉 = 〈x, u〉 = 0}.

One checks easily that the restriction of the (trace) quadratic formQ(x) = 1
2
T (x2) to ke⊕ku

is nondegenerate, henceQ is nondegenerate onE as well. Now, forx ∈ E we have

〈ux, e〉 = T ((ux)e) = T (ux) = 〈u, x〉 = 0, 〈ux, u〉 = 〈xu, u〉 = 〈x, u2〉 = 〈x, u〉 = 0,

whereT denotes the trace form onA. Hence we can definet : E → E by t(x) = ux. We
then have
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Lemma 3.2. t is symmetric with respect to〈, 〉, i.e., 〈t(x), y〉 = 〈x, t(y)〉 for all x, y ∈ E,
andt2 = 1

2
t. MoreoverE = E0 ⊕ E1, whereEi = {x ∈ E|t(x) = i

2
x}.

Proof. The symmetry oft follows from that of〈, 〉. By somewhat tedious computations, one
can show that forx ∈ E we have2u(ux) = ux. Hencet2 = 1

2
t follows.

The subspacesE0 andE1 are respectively called thezero spaceand thehalf spaceof u.
It can be shown easily thatQ is nondegenerate on these spaces. Givenu = u1 a primitive
idempotent, we can imbedu in a reducing set of primitive idempotents{u1, u2, u3}, i.e.,
u1 + u2 + u3 = 1 anduiuj = 0 for i 6= j. In the case whenui, 1 ≤ i ≤ 3, are the diagonal
idempotents inA, we have

E1 = A12 ⊕ A13, E0 = A0 ∩ (ku2 ⊕ ku3 ⊕ A23) = k(u2 − u3)⊕ A23,

A23 =
{



0 0 0
0 0 c1
0 γ−1

3 γ2c1 0


 |c1 ∈ C

}
,

A12, A13 have similar descriptions andA0 denotes the subspace ofA consisting of trace zero
elements. Hencedim(E0) = dim(ku2 ⊕ ku3 ⊕ A23 − 1 = 10− 1 = 9 anddim(E1) = 16.
LetGu denote the algebraic subgroup ofG = Aut(AK) leavingu fixed. ThenGu is defined
overk andGu(k) = Aut(A)u. Any automorphisms of A fixing u stabilizes the zero and
the half spaces ofu. Sinces is orthogonal (forQ), it induces orthogonal transformations
t : E0 → E0 andv : E1 → E1. It then follows from the fact thats is an automorphism ofA
that

v(xy) = t(x)v(y), (x ∈ E0, y ∈ E1).

We have

Proposition 3.2. For every rotationt of E0, there exists a similitude (forQ) v of E1 such
that

v(xy) = t(x)v(y), (x ∈ E0, y ∈ E1).

If t = sa1sa2 · · · sa2r for someai ∈ E0, then one may take forv

v(y) = a1(a2(· · · (a2ry) · · · )) (y ∈ E1).

For any rotationt of E0, the similarityv of E1 such that the above holds is unique up to
multiplication by a nonzero scalar. The square class of the similitude factor ofv equals the
spinor norm oft, i.e. n(v) = σ(t). In addition, if t is an orthogonal transformation ofE0

which is not a rotation, then there does not exist any similitudev such thatv(xy) = t(x)v(y)
for x ∈ E0, y ∈ E1.

Proof. See [SV].

Theorem 3.1.LetA be a reduced Albert algebra as above overk, u be a primitive idempo-
tent andE0 andE1 be the zero and the half spaces foru in A. The restriction map

Res|E0 : s 7→ s|E0 (s ∈ Aut(A)u)

is a homomorphism ofAut(Au) onto the reduced orthogonal groupO′(E0, Q) with kernel
of order2.
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Proof. Let s ∈ Aut(A)u. Thens stabilizesE0 andE1 and induces orthogonal transforma-
tions t on E0 andv on E1, with v(xy) = t(x)v(y) for x ∈ E0, y ∈ E1. By the above
proposition,t is a rotation. Sincev is orthogonal, we haven(v) = 1 = σ(t). Hence we have
a homomorphism

ResE0
: Aut(A)u → O′(E0, Q), s 7→ s|E0.

It can be shown that this homomorphism is surjective with kernel of order2.

Theorem 3.2.Gu is isomorphic toSpin(E0, Q).

Proof. The groupSpin(E0, Q) is the subgroup of the even Clifford groupΓ+(E0, Q) con-
sisting of elementss = a1a2 · · · a2r with ai ∈ E0 andQ(ai) = 1. Defineψ : Spin(E0, Q) →
Gu byψ(s) to be the linear map fromAK to itself which fixesu, e, stabilizesE0 andE1 and
such thatψ(s)|E0 = sa1sa2 · · · sa2r and

ψ(s)|E1(y) = a1(a2(· · · (a2ry) · · · )) (y ∈ E1).

Thenψ is the required isomorphism of algebraic groups.

Now we are ready to explore the automorphism group of an Albert algebra as an algebraic
group.

Automorphism group of an Albert algebra : Let A be an Albert algebra overk. Let
G = Aut(AK). We need

Proposition 3.3. Let A be an Albert algebra overk and G = Aut(AK). ThenG acts
transitively on the set of all primitive idempotents ofAK .

Theorem 3.3.G is a connected simple algebraic group defined overk and of typeF4.

Proof. To compute the dimension ofG and to proveG is connected, we adopt an approach
similar to the case ofG2. We look for an irreducible varietyV on whichG acts transitively
and such that the stabilizer at a fixed point is a connected group whose dimension can be
computed. LetV be the set of all primitive idempotents inAK . It is clear that this is a closed
subset ofAK . It can be shown thatV is irreducible anddim(V) = 16. If u ∈ G, then we
have seen that the stabilizerGu is isomorphic to the Spin group of a9-dimensional quadratic
form, hencedim(Gu) = 1

2
9.8 = 36. Thereforedim(G/Gu) = dim(V) = 16 and hence

dim(G) = 36 + 16 = 52 and it follows from irreducibility ofV and thatGu is connected
thatG is connected. We have, by a direct computation, for a fixed primitive idempotent
u ∈ AK , e⊥ = K(e − 3u) ⊕ E0 ⊕ E1. SinceG leavesQ invariant,G stabilizesW = e⊥.
We calim thatW is a faithful irreducible representation ofG, which in turn (by Lemma 2.3)
would imply thatG is reductive. ClearlyGu leavesK(e − 3u), E0 andE1 stable. We have
seen thatGu acts onE0 via rotations, hence this representation is irreducible for Gu. The
representation onE1 of Gu is thespin representationof Spin(E0, Q), which is irreducible.
HenceW is the sum of three inequivalent irreducible representations ofGu. By transitivity
of G onV and the fact that anyG-invariant subspace ofW is alsoGu invariant, it follows
thatW is irreducible forG. Faithfulness is immediate. We next show that the center ofG is
trivial. Let g be a central element inG. Theng induces onW a scalar multiplication byα
for someα ∈ K∗. But g restricted toE0 is a rotation, henceα = 1 (recalldim(E0) = 9).
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HenceG is semisimple. Now we showG is simple. We can write (since center ofG is
trivial) G = G1 × G2 × · · · × Gr with eachGi simple andGi centralizesGj for i 6= j.
SinceG is semisimple,Gi ∩Πj 6=iGj = {1}. Letπi denote the projection ofG ontoGi. We
haveπi(Gu) 6= {1} for somei, sayπ1(Gu) 6= {1}. SinceGu has finite center and is simple
modulo center, of dimension36, we havedim(π1(Gu)) = 36. Thereforedim(G1) ≥ 36.
But dim(G) = 52, it follows that πi(Gu) = {1} for i > 1. HenceGu ⊂ G1. Since
Gi, i 6= 1 centralizeG1, they also centralizeGu. For anyg ∈ G that normalizesGu, g(u)
is fixed byGu andg(u) is an idempotent. ButGu fixes no other idempotent thanu, hence
g(u) = u and hence the normalizerN(Gu) = Gu. SinceGi’s normalize (in fact centralize)
Gu, we haveGi ⊂ Gu ⊂ G1 for i > 1. Hencer = 1 andG is simple. ThatG is of
typeF4 follows by observing that any classical type simple group has dimension of the form
m(m − 1) or 1

2
m(m − 1) for suitablem. The number52 is not of this form and the only

exceptional group of this dimension isF4.

Remark : Just as the case ofG2, all groups of typeF4 arise as algebraic groups of automor-
phisms of Albert algebras. The proof of this fact uses Galoiscohomology.

The group of isometries of determinant on an Albert algebra :LetA be an albert algebra
overk. We now wish to study the algebraic groupH of linear transformations ofAK that
leave the cubic formdet on AK fixed. This will shown to be connected of typeE6. Let
t : A→ A be an invertible linear map. Definẽt : A→ A by

〈t(x), t̃(y)〉 = 〈x, y〉 (x, y ∈ A).

So t̃ is thecontragradient of t with respect to the trace bilinear form onA. It follows that

˜̃t = t, s̃t = s̃t̃ (s, t ∈ GL(A)).

We have

Proposition 3.4. Let A be a reduced Albert algebra andH be the group of all invertible
linear endomorphisms ofA leavingdet fixed. Then fort ∈ GL(A), t ∈ H if and only if

t(x)× t(y) = t̃(x× y) (x, y ∈ A).

Moreover, ift ∈ H thent̃ ∈ H and the mapt 7→ t̃ is an outer automorphism ofH of order
2.

We also need to know the orbits of the action ofH onA.

Proposition 3.5. LetA be a reduced Albert algebra anda, b ∈ A with det(a) = det(b) 6= 0.
Then there existst ∈ H with t(a) = b if and only if the (nondegenerate) bilinear forms
det(a)−1〈x, y, a〉 anddet(b)−1〈x, y, b〉 are equivalent.

We also need

Proposition 3.6. LetA be an Albert algebra overk. Let t ∈ GL(A). Thent ∈ Aut(A) if
and only ift(e) = e andt ∈ H. In other words,Aut(A) is the stabilizer subgroup ofe in H.
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Theorem 3.4.H is a connected (almost) simple, simply connected algebraicgroup of type
E6 defined overk.

Proof. Observe thatdim(AK) = 27. One knows thatdet is an irreducible polynomial.
HenceW = {x ∈ AK |det(x) = 1} is an irreducible variety of dimension26. By definition,
H acts onW. Since over an algebraically closed field any two nondegenerate symmetric
bilinear forms of same dimension are equivalent, it followsfrom Proposition 3.5 thatH acts
transitively onAK . By the Proposition 3.6, the stabilizerHe of e in H is G = Aut(AK),
which is connected of dimension52. Hence

dim(W) = 26 = dim(H/He) = dim(H)− dim(He) = dim(H)− 52.

Therefore,dim(H) = 78. We have seen thatHe action onAK has only irreducible subspaces
Ke ande⊥. It is evident thatH leaves neither of these subspaces invariant. HenceAK is a
faithful irreducible representation ofH. By an earlier lemma,H is reductive. Any central
elementα must be a scalar (by Schur’s lemma) and it follows thatα3 = 1. Hence the center
of H has order3 and soH is semisimple. One shows with an argument similar to theF4

case thatH is in fact (almost) simple. The dimension ofH combined with the simplicity
allowsB6, C6 orE6 as possible root system types forH. We have shown thatH has an outer
automorphism (see Proposition 3.4). Hence we rule out typesB6, C6 and henceH is of type
E6. The center ofH has order3 implies thatH is simply connected.

Groups of typeE7 : LetA be an Albert algebra overk. Let

M = A⊕ A⊕ k ⊕ k.

Thendim(M) = 56. Define aquartic form f onM as follows:

f((x, y, α, β)) = T (x#y#)− αN(x)− βN(y)−
1

4
(T (xy)− αβ)2,

wherex# = x×x, T (x) is the trace ofx andN(x) is the norm ofx. Thenf is a homogeneous
polynomial function of degree4 onM , defined overk. Under the natural action ofGL(M)
onM we have

Theorem 3.5. The connected component (of identity) of the stabilizer off in GL(M) is
simply connected of typeE7, defined overk.

Proof. See Springer’s paper [S-2] for a proof.

4 Tits’ constructions of Albert algebras :

To make our exposition complete, we include Tits’ constructions of Albert algebras. Tits
gave two (rational) constructions of Albert algebras over an arbitrary field and showed that
any Albert algebra arises from these constructions. These constructions put Albert algebras
in a somewhat more uniform setting. We now describe these constructions.

The first construction : Let k be a base field as fixed before. LetD be a central simple
(associative) algebra overk of degree3. We will denote byD+ the (special Jordan) algebra
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structure onD, with multiplicationx · y = 1
2
(xy + yx), x, y ∈ D. Let µ ∈ k∗ be a scalar.

LetND andTD respectively denote the reduced norm and reduced trace mapsonD. To this
data, one associates an Albert algebraJ(D,µ) as follows:

J(D,µ) = D0 ⊕D1 ⊕D2,

whereDi, i = 0, 1, 2, is a copy of D. For the multiplication onJ(D,µ), we need more
notation. Fora, b ∈ D define

a · b =
1

2
(ab+ ba), a× b = 2a · b− TD(a)b− TD(b)a+ (TD(a)TD(b)− TD(a · b))

andã = 1
2
(TD(a)− a). The multiplication onJ(D,µ) is given by the formula :

(a0, a1, a2)(b0, b1, b2)

= (a0 · b0 + ã1b2 + b̃2a2, ã0b1 + b̃0a1 + (2µ)−1a2 × b2, a2b̃0 + b2ã0 +
1

2
µa1 × b1).

It is known thatJ(D,µ) is an Albert algebra overk (see [KMRT] or [SV] for more details).
Further,J(D,µ) is adivision algebra if and only ifµ is not a reduced norm fromD. Clearly
D+ is a subalgebra ofJ(D,µ). LetA be an Albert algebra overk and letD+ ⊂ A for some
degree3 central simple algebraD. Then there existsµ ∈ k∗ such thatA ≃ J(D,µ).
Trace and Norm maps : LetA = J(D,µ) be as defined above. The traceT and the norm
N onA are given by the formulae:

T (x, y, z) = TD(x), N(x, y, z) = ND(x) + µND(y) + µ−1ND(z)− TD(xyz).

From this, one gets an expression for thetrace bilinear form onA, defined by,T (x, y) =
T (xy), x, y ∈ A. Therefore, one has, forx = (x0, x1, x2), y = (y0, y1, y2),

T (x, y) = TD(x0y0) + TD(x1y2) + TD(x2y1).

One knows that an Albert algebraA is a division algebra if and only if its norm form is
anisotropic overk (see [SV],[J-3]).
The adjoint map : Let A = J(D,µ). One defines the adjoint map onA as follows. Let
x = (x0, x1, x2). We define

x# = (x#0 − x1x2, µ
−1x#2 − x0x1, µx

#
1 − x2x0),

where, fory ∈ D, 2y# = y × y describes the usual adjoint map onD. One can prove that
xx# = x#x = N(x) for all x ∈ A (see [J-3], [KMRT] for details).

The second construction :Let K/k be a quadratic extension and let(B, τ) be a central
simpleK-algebra of degree3 overK with a unitary involutionτ overK/k. Let u ∈ B∗

be such thatτ(u) = u andNB(u) = µµ for someµ ∈ K∗, here bar denotes the nontrivial
k-automorphism ofK andNB is the reduced norm map onB. Let H(B, τ) be the special
Jordan algebra structure on thek-vector subspace ofB of τ -symmetric elements inB, with
multiplication as inB+. Let J(B, τ, u, µ) = H(B, τ) ⊕ B. With the notation introduced
above, we define a multiplication onJ(B, τ, u, µ) by

(a0, a)(b0, b) = (a0 · b0 + ãuτ(b) + b̃uτ(a), ã0b+ b̃0a+ µ(τ(a)× τ(b))u−1).
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ThenJ(B, τ, u, µ) is an Albert algebra overk and is a division algebra if and only ifµ is not
a reduced norm fromB. ClearlyH(B, τ) is a subalgebra ofJ(B, τ, u, µ). It is known that
if H(B, τ) is a subalgebra of an Albert algebraA overk, then there are suitable parameters
u ∈ B∗ andµ ∈ K∗, whereK is the centre ofB, such thatA ≃ J(B, τ, u, µ) (see [J-3],
[KMRT]).
Trace and Norm maps :LetA = J(B, τ, u, µ) be an Albert algebra arising from the second
construction. The traceT and the normN onJ(B, τ, u, µ) are given by the formulae:

T (b0, b) = TB(b0), N(b0, b) = NB(b0) + µNB(b) + µNB(τ(b))− TB(b0buτ(b)).

From this, one gets an expression for the trace bilinear formon J(B, τ, u, µ), defined by
T (x, y) = T (xy), x, y ∈ A. Therefore, we have, forx = (a0, a), y = (b0, b),

T (x, y) = TB(a0b0) + TB(auτ(b)) + TB(buτ(a)).

The Albert algebraA = J(B, τ, u, µ) is a division algebra if and only if the norm form is
anisotropic overk.
The adjoint map : Let A = J(B, τ, u, µ) andx = (a0, a). In this case, the adjoint map is
given by

x# = (a#0 − auτ(a), µτ(a)#u−1 − a0a),

where fory ∈ B, 2y# = y × y as defined above. One hasN(x) = xx# = x#x for all
x ∈ A.

Remarks : It is known that all Albert algebras arise from the two constructions (see [KMRT])
and these constructions are not mutually exclusive: there are Albert algebras of mixed type
and others are of pure type. Note that ifA is a pure first construction Albert division algebra
then every9 dimensional subalgebra ofA must necessarily be of the formD+ for a degree3
central division algebraD overk. There is a cohomological characterization of pure second
construction Albert algebras. An Albert algebraA is a pure second construction if and only
if f3(A) 6= 0 (see [KMRT], 40.5). However, such a characterization for pure first construc-
tion Albert algebras does not seem to be available in the literature. It is well known that any
cubic subfield of an Albert division algebra reduces it, i.e., if L ⊂ A is a cubic subfield,
whereA is a division algebra overk, thenA ⊗ L is reduced overL. Moreover, whenA is
a first construction, every cubic subfield is a splitting fieldfor A (see [PR-1]). It is known
that an Albert division algebraA over k remains division (in particular,Aut(A) remains
anisotropic) over any extension ofk of degree coprime to3 (see [KMRT])

The structure group of Albert algebras : Recall that every Albert algebra comes equipped
with a cubic formN , called the norm. The isometries ofN form thek-rational points of
a simply connectedk-algebraic group of typeE6. This group contains the algebraic group
Aut(A) of automorphisms ofA. The group of similitudes ofN is called thestructure
group of A and we denote it byStr(A). This coincides with the group ofk-rational points
of a strict innerk-form of E6, which we denote byStr(A). Let a ∈ A andRa denote the
right multiplication bya acting onA. We letUa = 2R2

a − Ra2 . ThenUa ∈ Str(A) for
all invertible a ∈ A. The (normal) subgroup generated byUa, a invertible, is called the
Inner structure group of A and denoted byInstr(A), this also is the group ofk-points of
a certain algebraic groupInstr(A). The groupAut(A) ∩ Instr(A) is called the group of
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inner automorphisms of A. Finally, recall that a norm isometry is an automorphism if and
only if it fixes the identity element ofA (see Proposition 3.6).

Moufang Hexagons of type27/F andE8 : We reproduce below some of the material from
[TH], suited for this exposition. LetA be an Albert division algebra overk with norm map
N and trace mapT . LetU1, U3, U5 be three groups isomorphic to the additive group(A,+)
and letU2, U4, U6 be three groups isomorphic to the additive group(k,+). Letxi denote the
isomorphism of(A,+) or (k,+) with Ui. We define a groupU+, generated by theUi subject
to the commutation relations as follows (see [TW] 8.13):

[U1, U2] = [U2, U3] = [U3, U4] = [U4, U5] = [U5, U6] = 1,

[U2, U4] = [U4, U6] = 1,

[U1, U4] = [U2, U5] = [U3, U6] = 1,

[x1(a), x3(b)] = x2(T (a, b)),

[x3(a), x5(b)] = x4(T (a, b)),

[x1(a), x5(b)] = x2(−T (a
#, b))x3(a× b)x4(T (a, b

#)),

[x2(t), x6(u)] = x4(tu),

[x1(a), x6(t)] = x2(−tN(a))x3(ta
#)x4(t

2N(a))x5(−ta),

for all a, b ∈ A and allt, u ∈ k. Here,[x, y] denotes the commutatorxyx−1y−1 and[Ui, Uj ] =
1 meansUi centralizesUj. We construct a (bipartite) graphΓ from this data as follows: Let
φ be a map from{1, 2, · · · , 6} to the set of subgroups ofU+ defined by :

φ(i) = U[1,i], 1 ≤ i ≤ 3, φ(i) = U[i−3,3], 4 ≤ i ≤ 6,

where
U[i,j] =< Ui, Ui+1, · · · , Uj >, i ≤ j < i+ n; U[i,j] = 1 otherwise.

Let the vertex set ofΓ be defined by

V (Γ) = {(i, φ(i)g)|1 ≤ i ≤ 6, g ∈ U+},

whereφ(i)g is the right coset ofφ(i) containingg. The edge set ofΓ is defined by

E(Γ) = {((i, R), (j, S))| |i− j| = 1, R ∩ S 6= ∅},

here|i−j| is computed modulo6. This gives a graphΓ = (V (Γ), E(Γ)), which is completely
determined (up to isomorphism) by the7-tuple (U+, U1, · · · , U6). We call the subgroups
Ui, 1 ≤ i ≤ 6 the root groups of Γ. The graphΓ is the Tits building associated to thek-
algebraic group of typeE8 (with indexE78

8,2, see [T] for the index notation) with anisotropic
kernel the strict innerk-form of E6 corresponding to the structure group ofA. This graph
is called aMoufang hexagonof type27/F , whereF = k if A is a first construction and
a Moufang hexagon of typeK/k if K/k is a separable quadratic extension ofk andA is
a second constructionJ(B, σ, u, µ) Albert division algebra,B a degree3 central division
algebra with a unitary involutionσ overK/k .
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LetG be the group of type preserving automorphisms ofΓ and letG† denote the subgroup
of G generated by the root groupsUi, 1 ≤ i ≤ 6 of Γ (see [TW] for definition). Then, by
(37.8, [TW]),

G/G† ≃ H/H†,

whereH is the pointwise stabilizer inG of a12-circuit in Γ andH† = G† ∩H.
In (37.41, [TW]) is proved that there is a canonical homomorphism fromH to Aut(k).

LetH0 be the kernel of this map. ThenH† ⊂ H0. LetG0 be the subgroup ofG containing
G† such that

G0/G
† = H0/H

†.

ThenG0 is the group ofk-rational pointsG(k) for an algebraic group defined overk of types
E8 (and Tits indexE78

8,2 ). Following the notations in [TW], letX1 denote the structure group

ofA (Str(A) in our notation) and letX†
1 be the subgroup ofX1 generated by theU -operators

Ua, a ∈ A∗ and the the scalar multiplicationsx 7→ tx, t ∈ k∗ (note thatX†
1 = C.Instr(A)

in our notation). Then it is shown in (37.41, [TW]) that

H0/H
† ≃ X1/X

†
1.

By ([TW], 42.3.6), the root groups ofΓ are precisely the groupsUα(k), whereα is a (nondi-
visible) root corresponding to a maximal splitk-torusS in G andUα is the unipotentk-group
corresponding toα. Also,

G(k)/U(k) = G0/G
† = H0/H

† ≃ X1/X
†
1 = Str(A)/C.Instr(A),

whereU(k) denotes the subgroup ofG(k) = G0 generated by thek-rational points of the
unipotent radicals of parabolick-subgroups ofG. TheKneser-Tits problem is to determine
if the quotientG(k)/U(k) is trivial. The Tits-Weiss conjectureasserts that the quotient
G0/G

† ≃ Str(A)/C.Instr(A) is trivial. The conjecture is open in its full generality.

Invariants of Albert algebras : Let k be as before. Letks denote the separable closure of
k and letΓ = Gal(ks/k). Let for anyΓ-moduleM , Hn(k,M) denote thenth cohomology
group with coefficients inM (see [J-2]). Thecup product

∪ : H i(Γ,M1)×Hj(Γ,M2) → H i+j(Γ,M1 ⊗Z M2)

is a bilinear map satisfyingci ∪ cj = (−1)ijcj ∪ ci. ConsiderZ/2Z with trivial Γ action.
Then

H1(k, µ2) ≃ H1(k,Z/2Z) ≃ k∗/k∗2.

Let J be an Albert algebra overk with other notation as before. There exists a 3-fold
Pfister formφ3 and a 5-fold Pfister formφ5 overk such that

Q ⊥ φ3 ≃< 2, 2, 2 >⊥ φ5

overk (cf. [S]). Further, this property characterizesφ3 andφ5 up to isometry. For ann-fold
Pfister formφn =<< a1, a2, · · · , an >>=< 1,−a1 > ⊗ · · · ⊗ < 1,−an >, one has the
Arason invariant A(φn) ∈ Hn(k,Z/2Z) given by

A(φn) = (−a1) ∪ (−a2) · · · ∪ (−an),
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where, fora ∈ k∗, (a) denotes the class ofa in H1(k,Z/2Z). The mod 2 invariants forJ
are defined as

f3(J) = A(φ3), f5(J) = A(φ5).

If J = H3(C,Γ) thenf3(J) = A(nC) andf5(J) = A(< 1, γ−1
1 γ2 > ⊗ < 1, γ−1

2 γ3 > ⊗nC),
wherenC is the norm on the Cayley algebraC, which is known to be a 3-fold Pfister form.
Rost ([R]) attached an invariant mod 3 toJ , denoted byg3(J), which is defined as follows.
If J = J(B, σ, u, µ) for some central simple algebraB of degree 3 over a quadratic filed
extensionK of k, with an involution of second kind, then define

g3(J) = −CorK/k([B] ∪ [µ]) ∈ H3(k,Z/3Z),

and ifJ = J(A, ν) for a central simple algebraA of degree 3 overk, then define

g3(J) = ([A] ∪ [ν]) ∈ H3(k,Z/3Z).

These are independent of the expression ofJ as a first or a second Tits’ construction (cf. [R],
[PR-2]). Rost showed ([R]) thatJ is a division algebra if and only ifg3(J) 6= 0. Further,g3
is compatible with base change. One of the questions on Albert algebras that is of central
interest is if the isomorphism class of an Albert algebra is determined by its invariants. It
is also of importance to find relations among the invariants and compute the image of the
invariant mapJ 7→ (f3(J), f5(J), g3(J)).

Acknowledgement : I thank my student Miss Neha Hooda for her comments and sugges-
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