Exceptional Groups

Maneesh Thakur

Abstract

In this mini-course, we will describe explicit constructions of some of thegtional

algebraic groups over arbitrary fields. These groups occur in GegriRpresentation
theory, Number theory and so on. The constructions decribed use stunalmepresen-
tations of these groups. We take for granted basic notions from the théalgebraic

groups. These notes are far from being complete, are meant to provalglme of the

subject. These have been compiled from some standard texts. The ligrehees is
not exhaustive, but contains the essential texts and papers for théainadeered. The
reader should watch out for mistakes in the notes, which may have crelgtritlys

1 Quadratic, Hermitian and Symplectic forms

Basic references for this section are [L], [J-1], [J-2] an€l]L For generalities on algebraic
groups, we refer to the books [H], [B] and [S-1]. Lebe a field of characteristic nat Let
V' be a finite dimensional vector space oketet B : V x V — k be a map. IfB is bilinear,
we call B s symmetric form if B(z,y) = B(y,z) for all x,y € V. We call B alternating
or symplecticif B(z,y) = —B(y,z). If k has an automorphism of order written as
a — a, we call B ahermitian form if B is linear in the first variable anslesquilinearin
the second, i.eB(z, ay) = aB(x,y) for all z,y € V, moreover,B(z,y) = B(y,x) for all
x,y € V. AmapQ : V — kis aquadratic form on V' if there is a symmetric bilinear
form B onV such that)(v) = B(v,v) forallv € V. Itis easy to see that the assignment
q — By : (v,w) — i(q(v + w) — g(v) — g(w)) is a bijective correspondence between
guadratic forms and symmetric bilinear forms@nLet B : V x V — k be a symmetric,
alternating or hermitian form. We cal® nondegenerate iB(x,y) = 0 for all y implies

x = 0. We call the pairV, B) a quadratic, symplectic or hermitian (or unitary) spacs if
is nondegenerate and is respectively symmetric, altergpati hermitian form orV. If B is
symmetric and nonzero, then there exists an orthogonad barsB. With respect to such a
basis, the matrix oB is diagonal. This fact is stated as any nonzero symmetiiodait form
can be diagonalized. A quadratic form bnis calleduniversal if it attains all values from
k. We define a quadratic fori®) to beisotropic if it has a nontrivial zero i/, anisotropic
otherwise. Any nontrivial zer@ of () is called anisotropic vector. A subspace which
contains only isotropic vectors f@p is called atotally isotropic subspace The dimension
of a maximal totally isotropic subspace is independenteftlbspace and is called Matt
index of V. The following theorem reveals the structure of a quadsiace.

Theorem 1.1. (Witt-decomposition) Let (V, Q)) be a quadratic space. Thep admits an
orthogonal decompositio) = rH L Q,,, wherer is the Witt-index of) and @, is
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anisotropic,H denotes théyperbolic plane H((x,y)) = z* — y?. The anisotropic par€),,,
of Q) is determined up to an isometry.

If B is a hermitian form, one again has an othogonal basiB. iff a nondegenerate alter-
nating form, the dimension df is necessarily even, further, all alternating nondegdaera
forms of a given dimension ovérare equivalent (see Lang-Chapter XV, Section 8), see also
the book by L. C. Grove, Classical Groups and Geometric AlgeAreisometry of a non-
degenerate bilinear for® on V' is an elemeny € GL(V') such thatB(gv, gw) = B(v,w)
for all v,w € V. An isometry is necessarily bijective, singéeis finite dimensional. A
similitude of B is an elemeny € GL(V) such thatB(gv, gw) = o(g)B(v,w) for all
v,w € V and a fixedr(g) € k*, called thefactor of similitude of g. The (algebraic) group
of isometries is denoted b®(V, B), Sp(V, B) or U(V, B) respectively, according a8 is
symmetric, alternating or hermitian, and are calleddh@ogonal, symplectic or the uni-
tary group of(V, B). Let B be a bilinear form or//. For any basiqe,,--- ,e,} of V, we
have the matrix associated &) namely,(B(e;, e;)). The determinant of this matrix is called
thediscriminant of B, it is determined up to a squarein

Clifford algebra and the Spin group : Let (V, Q) be a quadratic space (i.€). is a nonde-
generate quadratic form dn). ThenSO(Q) = O(V, Q) N SL(V) is a connected algebrac
group defined ovek. This group has a two fold covering, denoted $yin(V, Q). The
Clifford algebra of @ is a pair(C, f) whereC' is an associativé-algebra ¢ need not be
algebraically closed in this discussion) with unitand f : V' — C'is ak-linear map with
f(z)? = Q(x).1 for all z € V, satisfying the followinguniversal property: for any pair
(D, g), whereD is an associative algebra ovemwith 1 andg : V' — D is ak-linear map
such thaty(z)? = Q(z).1 for all x € V, there exists a unique-algebra homomorphism
g : C — D such thatj o f = g. The Clifford algebraC'(V, Q) exists and is unique upto
k-isomorphism. Clearly (V') generate€’ as an algebra. One shows easily tfias injec-
tive. If e;,--- , e, form a basis of/, the products;, ---¢; , 1 < i3 <ig < -+ <@, <n
together withl form a basis foilC'(V, @)), henceDim[C(V. Q)] = 2™. If niis even,C'is a
simple algebra with centdr. If n is odd,C has & dimensional center ovér. In this case,
C'is either simple or a direct sum of two simple algebras. &ét= C*(V, Q) be theeven
Clifford algebra of (V, @), i.e., the subalgebra @f generated by products of even number
of vectors inV. HenceDim/(C'*) = 2"~!. Whenn is even, it can be shown that" (Q) is
seperable with centef either a quadratic field extension bfor the split quadratic algebra
k x k. In the first cas€'" is simple while in the second it is direct sum of two simpleealg
bras. Ifn is odd,C* is always central simple (defined below).

If we definen : C — C by n(e;, ---ei.) = e e, , ---€;, onthe generators, ---¢;, (1 <

ih < iy < ---<i <nl<r<n)andn(l) = 1, we get a well defined involution
(antiautomorphism or perio®) of C', called thestandard involution. The Clifford group
['(V, Q) is the subgroup of the group of unitsdV, Q) consisting of elementsof C(V, Q)
such thatvt~! € V forallv € V. We calll't(V,Q) = C* NnI'(V, Q) theeven Clifford
group. If t € TH(V,Q), sayt = vyvy - - - vg,, thenN(t) = tn(t) = [IQ(v;) € k.1 andN is

a homomorphism fron'* to £*. The groupSpin(Q) is defined as the kernel @f. We can
now define, for any extensiah/k,

Spin(Q)(L) = {e € Cf [tVit™! =V, tn(t) = 1}.
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The groupSpin(Q) defined above is a connected algebraic group definediowailed the
Spin group of Q andSpin(Q) (k) = Spin(Q). For anyt € Spin(Q)(L), the automorphism
v tut~! of V7, belongs tdSO(Q)(L). This gives us a map : Spin(Q) — SO(Q) which

is a k-homomorphism of algebraic groups, called tleetor representation), is surjective
with kernel {£1}. Thereduced orthogonal group of @ is, by definition,O'(V, Q) =
x(Spin(Q). Foranyg € SO(Q), there existsf € I'* such thaty(f) = ¢g and f is unique
up to a factor ink*. Hence the coset(g) = N(f)k** in k*/k** is determined by. We calll
o(g) thespinor norm of g. If we write g = S, - -+ S,,,, v; € V, Q(v;) # 0, then it follows
thato(g) = N(f)k** = T1Q(v;)k**. We will often need a theorem of Witt on extension of
isometries, we state it below.

Theorem 1.2. (Witt's Extension Theorem) : Let (V;,Q;), 1 < ¢ < 2 be a nondegener-
ate quadratic space and assume tlgat and (), are isometric. Then every isometry of a
subspace o¥; onto a subspace df, extends to an isometry &f onto V5.

Corollary 1.1. (Witt's Cancellation Theorem) Let(V, Q) and(V'Q’) be isometric quadratic
spacesy = W, L Wy, V' =W/ L Wj. Assum&WV,, (Q),) is isometric to(W/, Q}) with
restrictions of the ambient forms. Thé&n, is isometric tolV;.

Pfister forms : This is a special class of quadratic forms having mulptgihe properties

(see T. Y. Lam). An-fold Pfister form is a quadratic formz? — a,22) ® (22 — ay23) ®
@ (22— a,x2,,), i.e. atensor product of the norm forms of quadratic extersofk. We

denote this form by{(a;,ay, -+ ,a,)). So({a)) = 2? — az?. It can be shown that a Pfister

form () is either of maximal Witt index (i.e) = rH for a suitabler) or is anisotropic over

k, i.e. has no nontrivial zeros ovér Pfister forms are closely tied up with algebraic groups

as we will soon see.

2 Octonion algebras and,

Recall that(z, is the root system of smallest rank among the five excepti@uilsystems.
Groups of type7, (i.e. twisted forms of the split grou@,) over a fieldk are intimately con-
nected with certain nonassociative algebras, call@dnion algebrasor Cayley algebras
overk. We begin this section with some preliminaries needed tordesthese algebras. The
material in this section and the next has been largely cadgiiom the texts by Springer
and Veldkamp [SV] and Jacobson [J-3].

Let £ denote a fixed base field. @entral simple algebraof degree: overk is ak-algebra
A such thatd ® k; ~ M, (ks), wherek, denotes a fixed separable closuré:and M,, (k)
is the algebra of matrices of sizex n with entries ink. We also refer talZ,, (k) as thesplit
central simple algebraof degreen over k. We can regard central simple algebras aver
astwisted forms of the split matrix algebra ovet. Central simple algebras are equipped
with twsited versions of the determinant and trace mapseaakspectively theeduced
norm andreduced trace It follows that for central simple algebrd overk andz € A,
its reduced norniV4(x) and its reduced tracE,(z) both belong td:. It also can be shown
that Na(zy) = Na(z)Na(y) andTa(z + y) = Ta(z) + Ta(y) forall z,y € AandT, is a
linear form onA. Degree central simple algebras are callgaaternion algebras these are
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general versions of the well knowtamilton’s quaternion algebra overRR. The reduced
norm map on quaternion algebras is a nondegenerate quafinati and is multiplicative.
A k-algebraC' (not necessarilyy associative) with an identity elemeiitty @ nondegenerate
guadratic form that is multiplicative (called theorm), is called acomposition algebra
Over afieldk ( char(k) # 2), a composition algebr@ is, up to ak-isomorphism, one of the
four possibilities:k with Q(z) = z*, C = K a quadraticétale algebra witlf) = Ny, C' a
guaternion algebrd with Q = N4, C an octonion algebra witly its norm. The following
will be used in the sequel:

Theorem 2.1. (Skolem-Noether Theoreml.et A be a central simple algebra over a field
k. Then every automorphism df is given by an inner conjugation, i.e. is of the form
x — yxy~ ' for a fixedy € A.

The dimension of a composition algebrali2, 4 or 8. A composition algebra is de-
termined by its norm up to isomorphism. Octonion algebras’adimensional composi-
tion algebras. Let,) denote the bilinear form corresponding@on a composition al-
gebraC. The mapr — T = (x,e) — z, wheree is the identity element ir”, satisfies
2T =71 = Q(x), 7y =yxforallz,y € C. Moreover,x +y = 7 + 3 andz = z for
all x € C. We call this map theanonical involution or the conjugation on C'. Clearly
T(x) =2z +7T € k.eandQ(x).e = xz. We callT'(x) thetrace of z. The following is easily
checked:

Theorem 2.2. Let C' be a composition algebra and € C. Thena satisfies the Cayley-
Hamilton equationX? — T'(a) X + Q(a) = 0.

Let C' be a composition algebra arid a composition subalgebra. The fo@D being
nondegenerate, we can write= D @ D+ with D+ nondegenerate. D # C, then there is
a € D+ with Q(a) # 0. We then have

Theorem 2.3.Let C, D and a be as above. Assume # C. ThenS = D @ Da is a
composition subalgebra @f with Dim/(S) = 2Dim(D). The formulae below describe the
product, norm and the conjugation ¢h

(z +ya) (2" +y'a) = (z2" + vy'y) + (y'z + ya')a,

NS($+ya) = ND("E) - VND(?J)? x Jr?/a =T — ya, (w,y,a?',y' € D)v

wherer = —Q)(a) and Ng and N, denote the norms ofi and D respectively. Conversely,
if D is a composition algebra with nordv and . € £*, on the vector spacé€ = D & D
define a product by

(z,9)(@",y) = (22’ + py'y, 'z + ya’), (x,2',y,y" € D)
and a quadratic fornt) by
Q(z,y)) = N(z) — pN(y).

If D is associative theiw' is a composition algebra(' is associative if and only iD is
commutative and associative.
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The following consequence is immediate:
Corollary 2.1. The norm form of a composition algebra is a Pfister form.

The construction described in the above theorem is cdlbedbling. The process of dou-
bling stops at dimensio®iand one obtains an octonion algebra. In other words, alhaato
algebras can be obtained by doubling quaternion algelrdo® horm form of a composition
algebra is anisotropic, i.e., has no nontrivial zeros, Ty nonzero element has a multi-
plicative inverse, in which case we call such a compositigelara adivision algebra. Since
the norm form is either anisotropic or is hyperbolic (singe a Pfister form), it follows that
a composition algebra is eithsplit (i.e. its norm has maximal Witt index) or is a division
algebra.

Definition. LetC' be a composition algebra with norii and A, i € k*. A special (), u)-
pair is an ordered paif(a, b) with a, b € C such that

(a,e) = (b,e) = (a,b) =0, N(a) =X, N(b) = p.
A special(1, 1)-pair is called aspecial pair.
We have

Lemma 2.1. Every special\, u)-pair a, b is contained in a unique quaternion subalgebra,
with basis{e, a, b, ab} and every quaternion algebra contais, 1.)-special pairs for suit-
able parameters. In particular, existence of such a pairliegthat the ambient composition
algebra is a quaternion or an octonion algebra.

The following consequence of Witt's theorem is immediate:

Corollary 2.2. LetC be a composition algebra ovét A\, 1 € k* and (a,b) and (a’, ') be
two special(\, u)-pairs in C. Then there exists an automorphignof C' such thatp(a) =

a, ¢(b) =V

Octonion algebras : We now collect some facts specific to octonion algebras. Gme c
construct the split octonion algebra by doubling the spléatgrnion algebra, i.e. by doubling
M,(k), or by doubling a quaternion division algebra wjth= 1, since this ensures the
norm form is isotropic. We now give another model of the spditonion algebra, called the
kK

algebra of Zorn’s vector matrices. L&brn (k) = ( £

) . We fix the non-degenerate

symmetric bilinear form(, ) on k3, given by

3
<9U>Z/> = szyu €T = (331,1'2,.1'3), Yy = (3/179273/3) € k;g'
=1

Fix an exterior produck on k2 defined by

(z x y,2) =det(z,y,2), (x,y,2 €K).
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Define a producorn(k) x Zorn(k) — Zorn(k) by
a by = ab+ (x,y’) ay + bz + 2’ x
x/ a/ ) y/ b/ bx/ + a/y/ + T X y a/b/ + <a,/,/7 y> .

With this multiplication,Zorn(k) is a (non-associative) k-algebra which adrrétstl) (1) )

as the multiplicative identity element. The norm form isegi\/oyN(( :(Z, 3, )) = aa —

(x,2")y. This is called thezorn algebra of vector matrices and is isomorphic to the split
octonion algebra ovet. We can now list all the split composition algebras:

Proposition 2.1. The split composition algebras ovér up to isomorphism, are the split
qudratic algebrak x k, the matrix algebral/;(k) and the Zorn algebra of vector matrices
Zorn(k).

The group of automorphisms of an octonion algebra :Let C' be an octonion algebra
overk andG = Aut(C) be the group of alk-linear algebra automorphisms 6f. Any
automorphism of” preserves the noriv of C', hence is a subgroup of the orthogonal group
O(N) of isometries ofV. Let K = k be an algebraic closure éfandCx = K ®; C. Let
G = Aut(Ck). ThenG is a linear algebraic group ard = G(k). We need to describe the
subgroup of7 whose elements leave a quaternion subalgebra invariant he an octonion
algebra and> C C be a quaternion subalgebra. et G be such that(D) = D. Then,
since¢ preserves the norm afi, we havep(D+) = D+. We can writeD+ = Da for some
fixeda € D+ with N(a) # 0. Then by Theorem 2.3) = D & Da and we have, for
x,y €D,

¢(z +ya) = ¢(x) + ¢(y)d(a),
where¢(x), ¢(y) € D andg(a) € D*. Note thatp(y)¢(a) € D+ = Da. Define maps
u,v: D — Dbyu(z) = ¢(z) andg(y)p(a) = v(y)a for z,y € D. Thus

o+ ya) =u(z) +v(y)a (x,y € D).
It is immediate that: = ¢|D is an automorphism ab andv is orthogonal for the norm on
D. It follows that
v(zy) = v(z)uly),  (z,y €D).
Letv(e) = p, thenN(p) = 1. We have,
v(y) = puly) (v € D).
Hence we have
¢(z +ya) = u(z) + (pu(y))a (z,y € D).
By the Skolem-Noether theorem, there existe D with N(c) # 0 such thatu(z) =
cxe™' (z € D). Hence
o(x +ya) = cxe™' + (peyc Ha  (z,y € D).

Let us denote this automorphism by,,. Conversely, for any € D with N(p) = 1 and any
c € D with N(c) # 0, the above formula defines an automorphism leavingvariant. We
summarise this below
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Proposition 2.2. LetC be an octonion algebra ovérand D a quaternion subalgebra. Then
the groupAut(C, D) of atomorphisms of' leaving D invariant is given by

Aut(C, D) = {¢oylc € D,N(c) £ 0, p € D, N(p) = 1}.

Corollary 2.3. The groupGp = Aut(C/D) of automorphisms fixing) pointwise can be
identified with the group of nornh elements ofD. Let G, denote the algebraic group of
K-automorphisms of i that fix Dx pointwise. TherGp is a closed subgroup d& and
Gp(k) = Gp. The group of norm elements inDy is isomorphic toSL, = SL(2, K).
HenceGp is a three dimensional connected algebraic group defined bve

We note thaiG is a subgroup of the stabilizer efin O(N). HenceG leavese! in C
invariant. LetV; denote the restriction a¥ to e in C. Let H denote the stabilizer of in
SO(N). Then we have

Proposition 2.3. The restriction map
Res : H — SO(N,), g~ glet,

is an isomorphism of algebraic groups, defined okein particular, we have an induced
isomorphismH = H(k) — SO(Ny).

The proof follows essentially from Witt's theorem. We aravr@ady to compute the dimen-
sion of G.

Theorem 2.4. The groupG of automorphism of'x is a connected algebraic group of di-
mensionl 4.

Proof. Let X denote the set of special pairsdh;. ThenX # () sinceK is algebraically
closed. Using Witt's theorem we see that there is a lineanétoy fixinge and mapping one
special pair to another. It follows th&t acts transitively onX. Let (a,b), a,b € Dk be a
fixed special pair. Then the stabiliz&of (a, b) in H is isomorphic taSO(N,), whereN; is
the restriction ofV to (Ke & Ka @ Kb)*. Hence we have

dim(X) = dim(H/S) = dim(SO(N,))—dim(SO(N,)) = (7.6)—%(5.4) =21-10 = 11.

1
2
By Corollary 2.2,G acts transitively onX. We now note thafe, a, b, ab} is a basis ofD.
Hence the stabilizer dfz, b) in G is preciselyG p, the algebraic group of automorphisms of
Cx whose elements fiX0, pointwise. Therefordim(X) = 11 = dim(G) — dim(Gp).
Hence

dim(G) = 11 4 dim(Gp) = 11 + 3 = 14.

Now X is irreducible sinc&O(N,) is irreducible. AlsoG, is connected. This implies that
G is connected. O

Proposition 2.4. The rank of the grougx of automorphism of’'x, C' an octonion algebra
overk, is 2.
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To prove this, we construct an explicit maximal torusGand show it has the correct
dimension.

A maximal torus of G : We have seen that the (split) octonion algebfacan be viewed as
Dk @ Dgawith D the algebra o2 x 2 matrices ovefs’, with N ((z, y)) = det(z) —det(y).
Let, fort € K*, ¢, denote the x 2 diagonal matrixdiag(t,t~'). We then have

Lemma 2.2. The groupT of all automorphisms of'x given by
tau T+ ya — exrey b+ (cuyc,\_l)a (r,y € Dg),

with A\, € K*, is a2-dimensional torus irc. The centralizer ofl in G is T and hencél’
is a maximal torus irG.

Proof. We work with the basig(e;;,0), (0,¢e;;), 1 < 1,5 < 2} of Ck, wheree;; is the2 x 2
matrix with (¢, j)-entry equal ta and other entrie8. With this, one has the matrix of ,, is

tag = diag(1, N> A7 1A A, A A,

It then follows (by a reparametrization) tHAtis a2-dimensional torus. If € G centralizes
T, thent leaves invariant the eigenspaces ot gll. If A, ;. are chosen to ensure that, has
seven distinct eigenvalues, then its eigenspaces are

K(ell,O) +K<€2270)7K(€1270)7K<62170)7 K<07 e’ij)7 ]- S Z?.] S 2

Hencet must leaveD stable and therefordx + ya) = cxc™ + (peyca, (x,y € Dx),
wherec,p € Dy, det(c) # 0, det(p) = 1. Further analysis of the action on the eigenspaces
shows that = ¢, for somea € K* andp is diagonal. Hence = ¢, s for suitablea, 5 €
K*. O

Corollary 2.4. The center ofx is trivial.

Proof. Let ¢ belong to the center a&. Then by the above lemma,c T. Hencet = ¢, ,
for suitable parameters. Alsocommutes with all automorphisms ofx that leaveD
invariant, hence it must commute with all inner automorptisof Dy = M,(K). Hence
A? = 1 andt|Dx = 1. This holds for all quaternion subalgebras and any elemift;o
imbeds in a quaternion subalgebra (this can be shown usinglidg), hence = 1. n

Corollary 2.5. G is reductive and®(G)| = 12.

Proof. Grant for the moment the fact th@t is reductive. We have shown dimension®fis
14 andrank(G) = 2. Hence|®(G)| = 14 — 2 = 12. For reductivity ofG, we will prove
a general lemma that will be needed later for similar purpd$es proof now follows from
the results below. ]

Lemma 2.3. Let V' be a finite dimensional vector space a@da nontrivial connected alge-
braic subgroup ofGL(V'). Assume thatr acts irreducibly on//. ThenG is reductive.
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Proof. Let U denote the unipotent radical 6f and let
Vo={veV[Uv=0v}=VY,

the subspace of fixed vectors ©fin V. Then, sincdU is unipotent,l; # 0. If v € 1, and
g € G, then for anyu € U we have, using normality dU in G,

u(gv) = g(g~ ug)(v) = gu'(v) = gv,

whereu’ = ¢ 'ug. Hencelj is G-stable. Sincéd/ is irreducible forG, it follows that
U ={1}. [

Theorem 2.5. Let C' be a composition algebra ovér. Then the only invariant (nonzero)
subspaces af'x for Aut(C) are Ke ande*.

Proof. WhenC' is two dimensional, the assertion is trivial. So assurhes a quaternion
algebra, so we may assurg = M,(K). By the Skolem-Noether theorem, every automor-
phism of M, (K) is inner. Now letl” be an invariant subspace ©f; and choose € M, (K)

a diagonal invertible matrix with distinct eigenvalues.enhby direct computation, we see
that the eigenspaces of the inner automorphisitit) are Key; + Kegy and Keqjo, Keo;.
HenceV is spanned by vectors of the form,; + bess, ceqs, desr, a,b,c,d € K. Now we
argue as follows. I, € V, then for anyn € K,

10 1 0\ [ —-a 1

(o V) (e 1) = (0 o)
belongs td/. Thereforee,; € V ande;; —eqs € V. Thisimplieset € V. If aeq;+begy € V
for some0 # a # b, then one can show similarly that,, e;; € V. Therefore if neither
of e;; andey; belong tolV thenV = Ke. This settles the proof for quaternion algebras.
Let now C' be an octonion algebra arid be an inavriant subspace 6fx for Aut(Clk).
Let ), be a quaternion subalgebra@f; and letV; = V N @;. We have seen that every
automorphism o€), extends to an automorphism @f;. Hencel; is an invariant subspace
of Q, for Aut(Q,). Therefore/; = 0, Ke,etNQ; or Q;. LetQ,, V, be defined similarly for
another quaternion subalgebra(gf. But Aut(Ck ) acts transitively on the set of quaternion
subalgebras. Hence theredisc Aut(Cy) such thatp(Q;) = Q2. Theng(V;) = V; and
hencel, = 0, Ke, et N Q, or Q, according to the respective case ¥§r But every element
of Cx is contained in some quaternion subalgebra, héhee0, Ke, et or Ck. O

Corollary 2.6. G = Aut(Ck) has a faithful irreducible representation (over).

Proof. The seven dimensional representatiorCbfn e+ C Cj is faithful and irreducible.
O

We can now prove

Theorem 2.6. The algebraic groupgs = Aut(Cf), for C' an octonion algebra over, is a
connected simple algebraic group of ty@e.
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Proof. We have proved already thét is connected, reductive of rartkand has dimension
14. Since the center ofx is trivial, it follows thatG is in fact semisimple. We have also

|®(G)| = 12. Since the only the only reducible root system of rénkas4 elements
(namely, A; x A,), it follows that ®(G) is irreducible. Now the list of irreducible root
systems of rank pins it down to types. ]

Remark : One can show moreover th@ = Aut(Ck) is defined over for any octonion
algebra (or composition algebr&) over k. It can be shown using Galois cohomology that
all groups of type~, defined ovek occur as above.

3 Albert algebras: Egs, E; and F}

In this section we will describe an algebra whose automsrphigive a group of typé}
defined overk and all such groups arise this way. We will then constructesgnoups of
type Es and E; from such algerbas. We will assume now characteristi¢ of different
from 2 and3. These are assumptions for the sake of simplicity of expwosithere are valid
constructions over arbitrary characteristics.

Let k& be a base field with characteristics other tRak Let C' be a composition algebra
overk. Letx — 7 denote the canonical involution d@n. Let~,v,v3 € k* be fixed and
define on)/;(C), the (non-associative) algebra ®fx 3 matrices with entries frond’, an
involution X + X* = I'X'T, whereT' = diag(1,72,73) and X denotes the matrix
obtained fromX by applying the involutior: — 7 (on C') to each entry an&* denotes the
transpose oK. Let H;(C,I") denote the set of-hermitian matrices, i.e3(C,I') = {X €
M;3(C)|X* = X}. ThenanyX € H;(C,T") has the form

&1 3 V1 3
X =| %' 'ncs ) c1
Co V3 't &3

where¢; € kandc; € C for1 < ¢ < 3. Define a product orH;(C,I") by XY =
1(X.Y + Y.X), whereX.Y denotes the usual matrix product. This is a commutative and
non-associative multiplication with tigex 3 identity matrixe as multiplicative identity. On

A = H3(C,T), we have arace map,T'(X) = & + & + &3, which defines a quadratic form
QonA

1

1
Q(X) = §T(X2) = 5(5% + &+ &)+ 73 e N(e) + 71 N () + 73 N (cs)

for the coordinates oK as above. The bilinear forry) associated t@) is nondegenerate
andassociativei.e.,

(XY, Z)=(X,YZ), (X,Y,Z € A).

We call A = H3(C,T), for C an octonion algebra, @duced Albert algebra. A k-algebra
Ais called amAlbert algebra if for some field extensioi. of &, A®y L ~ H3(C,T") overL,
for some octonion algebr@ over L and a diagonal invertible matrix € M;(L). Just like
the usual matrix algebra, we haveCayley-Hamilton equation that elements ofZ;(C, )
satisfy:
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Proposition 3.1. Every elemeniX € H;(C,T'), C' a composition algebra, satisfies a cubic
equation

X5 — (X, &) X% — (Q(X) — %(X, e))X — det(X)e = 0,

wheredet is acubic form on H3(C,T). (In factdet(X) is the determinant ok’ computed
as usual with brackets put carefully).

The cubic polynomial thaiX above satisfies is called itharacteristic polynomial. In
terms of coordinates oX, one has

det(X) = &8 — 73 6N (e1) — 71 38N () — 75 '1&N (c3) + N(cieo, G),

where N (,) denotes the bilinearization @f on C'. The cubic formdet determines &ym-
metric trilinear form (, , ) with (X, X, X) = det(X). It can be shown that for any Albert
algebraA there is a cubic formV on A, called itsnorm form, there is a linear form¥’
on A, called itstrace form (which in turn defines a quadratic for@ on A) and that every
element of4 satisfies its characteristic equation just as in the cassdoioed Albert algebras.

The cross product onA : We define a produck on A as follows: forX,Y € A, we define
X x Y to be the (unique) element such that

(X xY,Z)=3(X,Y.Z) (Z€A),

where the bilinear form on the left hand is the trace bilifieam on A. It follows by direct
computation thak (X x X') = det(X )e. From this, the above discussion and the proposition
above we have

Corollary 3.1. Let A be an Albert algebra ovek. Thenx € A is invertible if and only if
det(x) # 0.

Corollary 3.2. Every automorphism of preserves the cubic foraet, the trace formi” and
the quadratic form().

Idempotentsin A: Anelement: € A = H3(C,T) is anidempotentif u* = u. We have

Lemma 3.1. If u # 0, ¢ is an idempotent inl thendet(u) = 0 andQ(u) = 3 or Q(u) = 1.

If A contains an idempotest 0, e then it contains an idempotentwith Q(u) = %

We will call idempotents: with Q(u) = % asprimitive idempotents. It is straight forward
that primitive idempotents cannot be decomposed as a suwoafrthogonal idempotents.

Automorphisms fixing a primitive idempotent : Let A = H3(C,T") be a reduced Albert
algebra. Sincel contains idempotentg 0, ¢, there is a primitive idempotent € A by the
lemma above. Let us fix this idempotent for what follows. defin
E = (ke @ ku)* = {z € Al(x,e) = (v,u) = 0}.
One checks easily that the restriction of the (trace) quadiam Q(z) = 7'(2?) to ke® ku
is nondegenerate, hen€eis nondegenerate afi as well. Now, forr € E we have
(uz,e) = T((ux)e) = T(ux) = (u,z) =0, (uz,u) = (zu,u) = (v,u*) = (z,u) =0,

whereT" denotes the trace form oft. Hence we can define: £ — FE by t(z) = uz. We
then have
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Lemma 3.2. t is symmetric with respect tQ), i.e., (t(x),y) = (x,t(y)) forall z,y € E,
and¢? = 1t. MoreoverE = Ey @ Ey, whereE; = {z € El|t(z) = iz}

Proof. The symmetry of follows from that of(, ). By somewhat tedious computations, one
can show that for: € E we have2u(uz) = uz. Hencet? = 1¢ follows. ]

The subspaceg), and E; are respectively called theero spaceand thehalf spaceof w.
It can be shown easily th& is nondegenerate on these spaces. Givenu; a primitive
idempotent, we can imbed in a reducing set of primitive idempotent$u,, us, us}, i.e.,
uy + us + ug = 1 andw;u; = 0 fori # j. In the case when,;, 1 < i < 3, are the diagonal
idempotents ir4, we have

Ey =Ap® Ais, Ey= AN (kug @ kus @ Agg) = k(ug — uz) @ Ass,

0 0 0
A23 = { 0 0 C1 |Cl c O},
0 75 e 0

A1, Aj3 have similar descriptions antl) denotes the subspaceétonsisting of trace zero
elements. Hencéim(E,) = dim(kug @ kus ® Ayg — 1 =10 — 1 = 9 anddim(E;) = 16.
Let G, denote the algebraic subgroup@f= Aut(Ak) leavingu fixed. ThenG, is defined
overk andG, (k) = Aut(A),. Any automorphisns of A fixing u stabilizes the zero and
the half spaces of. Sinces is orthogonal (for@), it induces orthogonal transformations
t: Fy — Egandv : By — FE. It then follows from the fact that is an automorphism of
that

v(zy) =t(x)v(y), (z€ Ey, yeE E).

We have

Proposition 3.2. For every rotationt of E,, there exists a similitude (fap) v of E; such
that
v(zy) = t(x)o(y), (=€ Eo, y € E1).

If t =S4, Sa, - - - Say, TOr SOMen; € Ey, then one may take for

v(y) = ar(ao(-- - (azy) --)) (y € En).

For any rotationt of E,, the similarityv of £; such that the above holds is unique up to
multiplication by a nonzero scalar. The square class of ihelsude factor ofv equals the
spinor norm oft, i.e. n(v) = o(t). In addition, if¢ is an orthogonal transformation df
which is not a rotation, then there does not exist any sintiéwsuch that (zy) = t(x)v(y)
forz € Ey, y € F.

Proof. See [SV]. m

Theorem 3.1. Let A be a reduced Albert algebra as above o¥er. be a primitive idempo-
tent andE, and E; be the zero and the half spaces foin A. The restriction map

Res|Ey : s+ s|Ey (s € Aut(A),)

is a homomorphism oflut(A,) onto the reduced orthogonal group/(Ey, Q) with kernel
of order2.
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Proof. Let s € Aut(A),. Thens stabilizesE, and £; and induces orthogonal transforma-
tionst on E, andv on E;, with v(zy) = t(z)v(y) for x € Ey, y € E,. By the above
propositiony is a rotation. Since is orthogonal, we have(v) = 1 = o(t). Hence we have
a homomorphism

Resg, : Aut(A), — O'(Ey, Q), s — s|Ey.

It can be shown that this homomorphism is surjective wittnkeof order2. n
Theorem 3.2. G, is isomorphic tSpin(Ep, Q).

Proof. The groupSpin(FEy, @) is the subgroup of the even Clifford grodip (£, ) con-
sisting of elements = ajas - - - as, With a; € Ey andQ(a;) = 1. Definey : Spin(FEy, Q) —
G, by ¢(s) to be the linear map from x to itself which fixesu, e, stabilizesE, and E; and
such that)(s)|Ey = S4;Say * * * Sa,, and

V()| Ei(y) = ai(az(- -~ (axy)--+)) (v € Er).
Thenv is the required isomorphism of algebraic groups. ]

Now we are ready to explore the automorphism group of an Ablgebra as an algebraic
group.

Automorphism group of an Albert algebra : Let A be an Albert algebra over. Let
G = Aut(Ak). We need

Proposition 3.3. Let A be an Albert algebra ovek and G = Aut(Ak). ThenG acts
transitively on the set of all primitive idempotentsg.

Theorem 3.3. G is a connected simple algebraic group defined dvand of typeF.

Proof. To compute the dimension & and to proveG is connected, we adopt an approach
similar to the case af7,. We look for an irreducible variety on whichG acts transitively
and such that the stabilizer at a fixed point is a connectedpgwhose dimension can be
computed. LeV be the set of all primitive idempotents iy, It is clear that this is a closed
subset ofd k. It can be shown thaV is irreducible andiim(V) = 16. If u € G, then we
have seen that the stabiliz@r, is isomorphic to the Spin group offadimensional quadratic
form, hencedim(G,) = 9.8 = 36. Thereforedim(G/G,) = dim(V) = 16 and hence
dim(G) = 36 + 16 = 52 and it follows from irreducibility ofV and thatG,, is connected
that G is connected. We have, by a direct computation, for a fixeghipivie idempotent
u € Ak, et = K(e —3u) ® Ey ® E,. SinceG leaves( invariant,G stabilizesiV = e*.
We calim thatlV is a faithful irreducible representation Gf, which in turn (by Lemma 2.3)
would imply thatG is reductive. Clearly,, leavesK (e — 3u), E, and E; stable. We have
seen thats, acts onE), via rotations, hence this representation is irreducibiedq. The
representation of; of G, is thespin representationof Spin(Fy, @), which is irreducible.
HencelV is the sum of three inequivalent irreducible represemataf G,,. By transitivity
of G onV and the fact that an¢-invariant subspace d¥ is alsoG, invariant, it follows
thatW is irreducible forG. Faithfulness is immediate. We next show that the cent€} of
trivial. Let g be a central element 6. Theng induces on/” a scalar multiplication by
for somea € K*. But g restricted toE) is a rotation, hence: = 1 (recalldim(E,) = 9).
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HenceG is semisimple. Now we show is simple. We can write (since center Gf is
trivial) G = G; x Gy x --- x G, with eachG; simple andG; centralizesG, for ¢ # j.
SinceG is semisimpleG,; N11,.,G; = {1}. Letw; denote the projection d&& ontoG,. We
haver;(G,) # {1} for somei, sayr(G,) # {1}. SinceG, has finite center and is simple
modulo center, of dimensioss, we havedim(m(G,)) = 36. Thereforedim(G,) > 36.
But dim(G) = 52, it follows thatn;(G,) = {1} for¢ > 1. HenceG, C G;. Since
G;, i # 1 centralizeG,, they also centraliz&,,. For anyg € G that normalize€,,, g(u)
is fixed by G, andg(u) is an idempotent. Bu&,, fixes no other idempotent than hence
g(u) = v and hence the normalizéf(G,) = G,. SinceG,’s normalize (in fact centralize)
G,, we haveG; ¢ G, C Gy fori > 1. Hencer = 1 andG is simple. ThatG is of
type F follows by observing that any classical type simple group disnension of the form
m(m — 1) or gm(m — 1) for suitablem. The numbep2 is not of this form and the only
exceptional group of this dimension 45. n

Remark : Just as the case 6f,, all groups of typel; arise as algebraic groups of automor-
phisms of Albert algebras. The proof of this fact uses Galolsomology.

The group of isometries of determinant on an Albert algebra :Let A be an albert algebra
over k. We now wish to study the algebraic grolpof linear transformations ofl ; that
leave the cubic formlet on A fixed. This will shown to be connected of tyge,. Let

t : A — Abe an invertible linear map. Defile A — A by

(t(x), t(y)) = (z,y)  (z,y € A).

Sot is thecontragradient of ¢ with respect to the trace bilinear form eh It follows that

t=t, st=35t (s,t€GL(A)).
We have

Proposition 3.4. Let A be a reduced Albert algebra anl be the group of all invertible
linear endomorphisms of leavingdet fixed. Then fot € GL(A), t € H if and only if

tx) xt(y) =tz xy) (z,y€A)

Moreover, ift € H thent € H and the mag — ¢t is an outer automorphism df of order
2.

We also need to know the orbits of the action/Hon A.

Proposition 3.5. Let A be a reduced Albert algebra andb € A with det(a) = det(b) # 0.
Then there exists € H with t(a) = b if and only if the (nondegenerate) bilinear forms
det(a) Yz, y,a) anddet(b)~'(z,y, b) are equivalent.

We also need

Proposition 3.6. Let A be an Albert algebra ovek. Lett € GL(A). Thent € Aut(A) if
and only ift(e) = e andt € H. In other words,Aut(A) is the stabilizer subgroup efin H.
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Theorem 3.4. H is a connected (almost) simple, simply connected algelgaigp of type
E defined ovek.

Proof. Observe thatlim(Ax) = 27. One knows thatiet is an irreducible polynomial.
HenceW = {x € Ak|det(z) = 1} is an irreducible variety of dimensiaé. By definition,
H acts onW. Since over an algebraically closed field any two nondeggaesymmetric
bilinear forms of same dimension are equivalent, it folldwsn Proposition 3.5 that acts
transitively onAx. By the Proposition 3.6, the stabiliz&éf, of e in His G = Aut(Ak),
which is connected of dimensidi2. Hence

dim(W) = 26 = dim(H/H.) = dim(H) — dim(H,) = dim(H) — 52.

Thereforedim(H) = 78. We have seen th&l, action onAx has only irreducible subspaces
Ke andet. It is evident thatt leaves neither of these subspaces invariant. Heingés a
faithful irreducible representation &f. By an earlier lemmaH is reductive. Any central
elementy must be a scalar (by Schur's lemma) and it follows tliat= 1. Hence the center
of H has orden and soH is semisimple. One shows with an argument similar to fhe
case thaH is in fact (almost) simple. The dimension Bf combined with the simplicity
allows Bg, Cs or Ejs as possible root system types Hdr We have shown thdf has an outer
automorphism (see Proposition 3.4). Hence we rule out tyjge€’s and hencdl is of type
Es. The center oH has ordes implies thatH is simply connected. O]

Groups of type E; : Let A be an Albert algebra ovér. Let
M=ApADkk.

Thendim(M) = 56. Define aquartic form f on M as follows:

F((r,y,0,8)) = T@hy*) — aN(r) — BN(y) — (T (y) — ap)’,

wherez# = zxz, T(x) is the trace of andN (z) is the norm ofz. Thenf is ahomogeneous
polynomial function of degreé on A, defined ovek. Under the natural action &&L (M)
on M we have

Theorem 3.5. The connected component (of identity) of the stabilizef of GL(M) is
simply connected of type;, defined ovek.

Proof. See Springer’s paper [S-2] for a proof. O

4 Tits’ constructions of Albert algebras :

To make our exposition complete, we include Tits’ consiang of Albert algebras. Tits
gave two (rational) constructions of Albert algebras oveaegbitrary field and showed that
any Albert algebra arises from these constructions. Thesstuctions put Albert algebras
in a somewhat more uniform setting. We now describe thesstaartions.

The first construction : Let k£ be a base field as fixed before. LBtbe a central simple
(associative) algebra ovérof degree3. We will denote byD, the (special Jordan) algebra
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structure onD, with multiplicationz - y = $(zy + yz), x,y € D. Letu € k* be a scalar.
Let Np andTp respectively denote the reduced norm and reduced traceondpsTo this
data, one associates an Albert algeb(®, ) as follows:

J(D,p) = Dy ® Dy @ Dy,

whereD;, i = 0,1,2, is a copy of D. For the multiplication od(D, 1), we need more
notation. Fom, b € D define

a-b= %(ab +ba), a xb=2a-b—"Tp(a)b —Tp(b)a+ (Tp(a)Tp(b) — Tp(a-b))

anda = 5(Tp(a) — a). The multiplication onJ(D, p) is given by the formula :

(GO, aq, Gz)(bo, b, bz)

1
2

— |
= (CL() . b() + (llbg + b2a2, a01)1 + b()(ll + (2#)_1a2 X bg, a2b0 + b2a0 + —pap X b1>
2

It is known thatJ (D, p) is an Albert algebra over (see [KMRT] or [SV] for more details).
Further,J (D, 1) is adivision algebraif and only if i« is not a reduced norm frod. Clearly

D, is asubalgebra of (D, 11). Let A be an Albert algebra ovérand letD, C A for some

degrees central simple algebr®. Then there exists € £* such thatd ~ J(D, u).

Trace and Norm maps : Let A = J(D, ) be as defined above. The trd€eand the norm
N on A are given by the formulae:

T(x,y,2) = Tp(z), N(z,y,2) = Np(z)+ pNp(y) + p~ Np(z) — Tp(zyz).

From this, one gets an expression for trece bilinear form on A, defined by T'(x,y) =
T(zy), x,y € A. Therefore, one has, far= (2o, x1, z2), ¥y = (Yo, Y1, ¥2),

T(z,y) = Tp(zoyo) + To(z1y2) + Tp(z2v1).

One knows that an Albert algebré is a division algebra if and only if its norm form is
anisotropic ovek (see [SV],[J-3]).

The adjoint map : Let A = J(D, ). One defines the adjoint map ohas follows. Let
x = (xo, 21, x2). We define

o = (xff — wyao, p 2l — wowy, pat — zomy),

where, fory € D,2y* = y x y describes the usual adjoint map fn One can prove that
ra? = z%x = N(x) for all z € A (see [J-3], [KMRT] for details).

The second construction :Let K /k be a quadratic extension and |g8, 7) be a central
simple K-algebra of degre8 over K with a unitary involutionr over K /k. Letu € B*
be such that(u) = v and Ng(u) = pm for someu € K*, here bar denotes the nontrivial
k-automorphism ofX’ and N is the reduced norm map dg. Let H(B, 1) be the special
Jordan algebra structure on the/ector subspace d8 of 7-symmetric elements i, with
multiplication as inB... Let J(B,7,u,u) = H(B,7) & B. With the notation introduced
above, we define a multiplication oR B, 7, u, i) by

(ao, a)(bo, b) = (ag - by + aur(b) + bur(a), dob + boa + F(r(a) x 7(b))u™").
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ThenJ(B, T, u, 1) is an Albert algebra over and is a division algebra if and only/ifis not

a reduced norm fronB. Clearly# (B, 7) is a subalgebra of (B, 7, u, ut). It is known that

if H(B, ) is a subalgebra of an Albert algebdaover k, then there are suitable parameters
u € B*andy € K*, whereK is the centre of, such thatd ~ J(B, 1, u, 1) (see [J-3],
[KMRT]).

Trace and Norm maps :Let A = J(B, 1, u, 1) be an Albert algebra arising from the second
construction. The trac€ and the normV on J(B, 7, u, 1) are given by the formulae:

T(b(), b) = TB(bo), N(bo, b) = NB<b0) + [I,NB(b) + ﬁNB(T(b)) — TB(bobUT(b))

From this, one gets an expression for the trace bilinear fonnd (B, 7, u, 1), defined by
T(xz,y) =T(zy), z,y € A. Therefore, we have, far = (ag, a),y = (b, b),

T(z,y) = Tg(aoby) + Tr(aut (b)) + Tp(bur(a)).

The Albert algebrad = J(B, 1, u, 1) is a division algebra if and only if the norm form is
anisotropic ovek.

The adjoint map : Let A = J(B, 7,u, ) andx = (ag, a). In this case, the adjoint map is
given by

o = (af — aur(a), 7r(a)*u™ — aga),

where fory € B, 2y* = y x y as defined above. One ha§z) = za* = z#x for all
r € A.

Remarks : Itis known that all Albert algebras arise from the two counstions (see [KMRT])
and these constructions are not mutually exclusive: therdHtbert algebras of mixed type
and others are of pure type. Note thatlifs a pure first construction Albert division algebra
then everyd dimensional subalgebra d@f must necessarily be of the form, for a degree3
central division algebr® overk. There is a conomological characterization of pure second
construction Albert algebras. An Albert algebtds a pure second construction if and only
if f3(A) # 0 (see [KMRT], 40.5). However, such a characterization faregfirst construc-
tion Albert algebras does not seem to be available in theatiiee. It is well known that any
cubic subfield of an Albert division algebra reduces it, iie.. C A is a cubic subfield,
where A is a division algebra ovek, thenA @ L is reduced ovel.. Moreover, wherA is

a first construction, every cubic subfield is a splitting fiedd A (see [PR-1]). It is known
that an Albert division algebral over k£ remains division (in particulatAut(A) remains
anisotropic) over any extension bfof degree coprime t8 (see [KMRT])

The structure group of Albert algebras : Recall that every Albert algebra comes equipped
with a cubic form/N, called the norm. The isometries &f form the k-rational points of

a simply connected-algebraic group of typé’s. This group contains the algebraic group
Aut(A) of automorphisms ofA. The group of similitudes ofV is called thestructure
group of A and we denote it bytr(A). This coincides with the group dfrational points

of a strict innerk-form of Eg, which we denote bytr(A). Leta € A and R, denote the
right multiplication bya acting onA. We letU, = 2R? — R,:. ThenU, € Str(A) for

all invertiblea € A. The (normal) subgroup generated By, « invertible, is called the
Inner structure group of A and denoted bynstr(A), this also is the group of-points of

a certain algebraic groumstr(A). The groupAut(A) N Instr(A) is called the group of
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inner automorphisms of A. Finally, recall that a norm isometry is an automorphisnmifi a
only if it fixes the identity element ofi (see Proposition 3.6).

Moufang Hexagons of type27/F and Eg : We reproduce below some of the material from
[TH], suited for this exposition. Letl be an Albert division algebra ovérwith norm map
N and trace mafi’. LetU,, Us, Us be three groups isomorphic to the additive grodp+)
and letUs, Uy, Us be three groups isomorphic to the additive grokip+). Let z; denote the
isomorphism of A, +) or (k, +) with U;. We define a group’,, generated by th&; subject

to the commutation relations as follows (see [TW] 8.13):

(U, Us] = [Us, Us| = [Us, Uy] = [Us, Us| = [Us, Us] = 1,

[Us, Uy] = [Us, U] = 1,
(U1, Us] = [Us, Us) = [Us, U] = 1,
[71(a), z3(b)] = 22
[73(a), 25(b)] = x4
[21(a), 25(b)] = zo(=T(a™, b))z3(a x b)zs(T(a,b¥)),
[22(t), z6(w)] = 2a(tu),
[21(a), z6(t)] = 22(—tN (a))z3(ta™ x4 (8 N(a))zs(—ta),

foralla,b € Aandallt, u € k. Here,[z, y] denotes the commutatoyz 'y~ and[U;, U;] =
1 meandU; centralized/;. We construct a (bipartite) graghfrom this data as follows: Let
¢ be amap fron{1,2,--- ,6} to the set of subgroups of, defined by :

¢(i) = Upi, 1 <i <3, ¢(i) =Upiz3,4 <i <6,

where
U[i,j] =< U;,Uisq, - ,Uj > 1< j<i+mn; U[i,j] = 1 otherwise.

Let the vertex set of be defined by
V(L) ={(i,0(i)g)[1 <i <6, g€ Ust,
whereg(i)g is the right coset of(i) containingg. The edge set df is defined by
E(I) ={((, R),(4,5)| li —jl =1, RN S # 0},

here|i—j| is computed modul6. This gives agraph = (V(I'), E(I")), which is completely
determined (up to isomorphism) by thietuple (U, ,U;,--- ,Us). We call the subgroups
U;, 1 < i < 6 theroot groups of I'. The graphl’ is the Tits building associated to tle
algebraic group of typé’s (with indengg, see [T] for the index notation) with anisotropic
kernel the strict innek-form of Eg corresponding to the structure group4f This graph
is called aMoufang hexagonof type 27/F, whereF' = k if A is a first construction and
a Moufang hexagon of typ&/k if K/k is a separable quadratic extensiontodnd A is

a second constructioi( B, o, u, 1) Albert division algebra,B a degree3 central division
algebra with a unitary involution over K/ k .
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Let G be the group of type preserving automorphisms ahd letG" denote the subgroup
of G generated by the root groups, 1 < i < 6 of I" (see [TW] for definition). Then, by

(37.8, [TW]),
G/G' ~ H/HT,

whereH is the pointwise stabilizer ity of a 12-circuitin" andH" = GT N H.

In (37.41, [TW]) is proved that there is a canonical homomanphfrom H to Aut(k).
Let H, be the kernel of this map. Thei' c H,. Let G, be the subgroup aff containing
G such that

Go/G' = Hy/H'.

ThenG is the group of-rational pointda (k) for an algebraic group defined oveof types
Eg (and Tits indext{Y ). Following the notations in [TW], leX; denote the structure group
of A (Str(A) in our notation) and IeJKlT be the subgroup oX; generated by th&'-operators
U,, a € A* and the the scalar multiplications— tz, ¢ € k* (note thatX| = C.Instr(A)

in our notation). Then itis shown in (37.41, [TW]) that

Ho/H' ~ X, /X1,

By ([TW], 42.3.6), the root groups df are precisely the grougé, (k), wherea is a (nondi-
visible) root corresponding to a maximal sglitorussS in G andiA,, is the unipotent-group
corresponding te. Also,

G(k)/U(k) = Gy /G = Hy/H ~ X,/ X] = Str(A)/C.Instr(A),

whereU (k) denotes the subgroup 6f(k) = G, generated by thé-rational points of the
unipotent radicals of paraboliesubgroups ofz. TheKneser-Tits problem s to determine

if the quotientG(k)/U (k) is trivial. The Tits-Weiss conjectureasserts that the quotient
Go/G" =~ Str(A)/C.Instr(A) is trivial. The conjecture is open in its full generality.
Invariants of Albert algebras : Let k be as before. Let, denote the separable closure of
k and letl’ = Gal(k;s/k). Let for anyl-moduleM, H"(k, M) denote the:ith cohomology
group with coefficients inM (see [J-2]). Theup product

U: HY(T, M) x H (T, My) — H" (T, My ®z M)

is a bilinear map satisfying, U ¢; = (—1)“¢; U ¢;. ConsiderZ/2Z with trivial " action.
Then
H(k,po) ~ H (k,Z/27) ~ k* | k**.

Let J be an Albert algebra over with other notation as before. There exists a 3-fold
Pfister form¢gs and a 5-fold Pfister forms; overk such that

QL ¢p3~<2,22>1 ¢

overk (cf. [S]). Further, this property characterizésand¢s up to isometry. For an-fold
Pfister forme,, =<< a1,a9,--- ,a, >>=<1,—a; > ®---® < 1,—a, >, one has the
Arason invariant A(¢,) € H"(k,Z/27) given by

A(dn) = (—a1) U (=az) - U (—ay),



20 Maneesh Thakur

where, fora € k*, (a) denotes the class afin H'(k,Z/2Z). The mod 2 invariants foy
are defined as

fs(J) = Al¢s), [fs(J) = Al¢s).

If J =H3(C,T) thenfy(J) = A(ne) andfs(J) = A(< 1,797 192 > @ < 1,75 '3 > @ne),
wheren is the norm on the Cayley algebfg which is known to be a 3-fold Pfister form.
Rost ([R]) attached an invariant mod 3 .o denoted byy;(.J), which is defined as follows.
If J = J(B,o,u,u) for some central simple algebra of degree 3 over a quadratic filed
extensionk of £, with an involution of second kind, then define

g3(J) = —Corg([BlU [u]) € H*(k,Z/37Z),
and if J = J(A, v) for a central simple algebrd of degree 3 ovek, then define
g93(J) = (AU ) € H(k,Z/3Z).

These are independent of the expressios a$ a first or a second Tits’ construction (cf. [R],
[PR-2]). Rost showed ([R]) that is a division algebra if and only i3(.J) # 0. Further,gs

is compatible with base change. One of the questions on RA#bgebras that is of central

interest is if the isomorphism class of an Albert algebraegednined by its invariants. It

is also of importance to find relations among the invariants @ompute the image of the

invariant map/ — (f5(J), f5(J), gs(J)).
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