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Polar Spaces of Infinite Rank
Embeddings of polar spaces in groups

S: non-degenerate ordinary polar space.

Σ: family of all chains of singular subspaces of S.

Definition

Rank(S) := min(n : n ≥ |C | − 1, C ∈ Σ)

n: possibly infinite cardinal number

X: subspace of S
Rank(X): rank of the partial linear space induced by S on X

Rank(S) := min(n : n ≥ rank(M), M : max singular subspace of S)
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Polar Spaces of Infinite Rank
Embeddings of polar spaces in groups

Theorem

S: non-degenerate ordinary polar space.

Suppose there exists at least one maximal chain of singular
subspaces of finite lenght (i.e. Rank(M) < ℵ0 for at least one
maximal singular subspace M of S).

Then Rank(S) is finite and |C | = 1 + Rank(S) for every maximal
chain C of singular subspaces, i.e. Rank(S) = Rank(M) for every
maximal singular subspace M of S.
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Polar Spaces of Infinite Rank
Embeddings of polar spaces in groups

Consequences:

If S is a non-degenerate ordinary polar space and Rank(S) ≥ ℵ0

then Rank(S) ≥ Rank(M) ≥ ℵ0 ∀ max singular subspaces M of S

6⇓

all maximal singular subspaces of S have the same rank.
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Polar Spaces of Infinite Rank
Embeddings of polar spaces in groups

S: non-degenerate ordinary polar space.

S admits a Witt index if all maximal singular subspaces have the
same rank.

Theorem

If a non-degenerate polar space admits a finite dimensional
maximal singular subspace then it admits a Witt index.

↪→ There are examples of non-degenerate polar spaces of infinite
rank that admit no Witt index
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Polar Spaces of Infinite Rank
Embeddings of polar spaces in groups

Sketch of the proof

S: non-degenerate polar space

Proposition

If M is a maximal singular subspace of S and p 6∈ M is a singular
point, then p⊥ ∩M is a hyperplane of M and 〈{p} ∪ (p⊥ ∩M)〉 is
a maximal singular subspace of S.

M,M ′: two maximal singular subspaces of S.
X := M ∩M ′

f : M → M ′, x 7→ x⊥ ∩M ′

f induces an injective morphism f̄ : M/X → (M ′/X )∗

X = ∩x∈M f (x)
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Polar Spaces of Infinite Rank
Embeddings of polar spaces in groups

If dim(M) is finite

Then X is the intersection of a finite number of hyperplanes of M ′,
corresponding to a basis of M/X .

⇓
codimM′(X ) = codimM(X )

⇓
dim(M) = dim(M ′).

If dim(M) is NOT finite

Then it is not true anymore that

every maximal singular space has the same dimension.
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Polar Spaces of Infinite Rank
Embeddings of polar spaces in groups

Remarks:

The Classification Theorem for polar spaces of rank at least 3
holds regardless the finiteness or infiniteness of them.

Differences between polar spaces of finite and infinite rank
depend on the fact that sesquilinear or pseudo-quadratic
forms of infinite rank can behave rather differently from forms
of finite rank.
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Polar Spaces of Infinite Rank
Embeddings of polar spaces in groups

The following well known properties hold for non-degenerate polar
spaces of finite rank.

(SS) (Strong Separation Property) For every maximal singular
subspace M, there exists a maximal singular subspace M ′ such
that M ∩M ′ = ∅.

(WS) (Weak Separation Property) There exists at least one pair of
mutually disjoint maximal singular subspaces.
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Polar Spaces of Infinite Rank
Embeddings of polar spaces in groups

Open problems regarding polar spaces of infinite rank.

(O1) Since there are examples of infinite polar spaces admitting no
Witt index, are the (different) dimensions of the maximal
singular subspaces in some way related?

Is it possible to prove that the differences between the
dimensions of the maximal singular subspaces can not exceed
a given infinite cardinal number?

(O2) Prove the validity of either the strong or weak separation
properties for non-degenerate polar spaces of infinite
not-countable rank.

↪→ So far no example is known where the strong separation
property is not fullfilled.
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Polar Spaces of Infinite Rank
Embeddings of polar spaces in groups

Example of polar space of infinite rank

K: division ring; σ: anti-automorphism of K; ε ∈ K \ {0} such
that εσε = 1 and tσ

2
= εtε−1 for every t in K.

V: right K-vector space of infinite dimension
V∗: dual of V,regarded as a right vector space over K according to
ξ · t := tσξ for every ξ ∈ V∗ and every t ∈ K.

Define the natural scalar product 〈., .〉 of the pair (V,V∗) as

〈ξ, x〉 := ξ(x), ξ ∈ V∗, x ∈ V

⇒ 〈., .〉 is a σ-sesquilinear form

V := V⊕ V∗ and Φ: V× V→ K

Φ(a⊕ α, b ⊕ β) := 〈α, b〉+ 〈β, a〉σε.

⇒ Φ is a non-degenerate (σ, ε)-sesquilinear form
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Polar Spaces of Infinite Rank
Embeddings of polar spaces in groups

Let S be the polar space with

points of S: singular points of PG(V) for Φ.
lines of S: singular lines of PG(V) for Φ.

Then S admits no Witt index.

Example: V, V∗: maximal Φ-singular subspaces.

dim(V∗) ≥ 2dim(V) > dim(V).
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Polar Spaces of Infinite Rank
Embeddings of polar spaces in groups

Description of maximal singular subspaces

V := V⊕V∗, Φ: V×V→ K,Φ(a⊕α, b⊕β) := 〈α, b〉+〈β, a〉σε.

⊥: orthogonality relation associated to Φ.

A ⊆ V⇒ A⊥ = V⊕ (A⊥ ∩ V∗) and

A⊥ ∩ V∗ = {ξ ∈ V∗ : ξ(x) = 0∀x ∈ A}.

B ⊆ V∗ ⇒ B⊥ = (B⊥ ∩ V)⊕ V∗ and

B⊥ ∩ V = {x ∈ V : ξ(x) = 0∀ξ ∈ B}.

Note that A = A⊥⊥ for any subspace A of V.
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Polar Spaces of Infinite Rank
Embeddings of polar spaces in groups

A: subspace of V; B: subspace of V∗

A0 := B⊥ ∩ V ⊂ A and B0 := A⊥ ∩ V∗ ⊂ B.

⇓
A0 = B⊥ ∩ A and B0 = A⊥ ∩ A.

⇓
A0 ⊕ B0 is singular.

〈., .〉: the natural scalar product of (V∗,V)

↓ induces

a scalar product 〈., .〉A,B for the pair (B/B0,A/A0), as :

〈Ξ,X 〉A,B = ξ(x) where ξ ∈ Ξ and x ∈ X ,

for Ξ ∈ B/B0 and X ∈ A/A0
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Polar Spaces of Infinite Rank
Embeddings of polar spaces in groups

Suppose A/A0
∼= B/B0 and f : A/A0 → B/B0 an isomorphism s.t.

〈f (X ),Y 〉B,A + 〈f (Y ),X 〉σB,Aε = 0, ∀X ,Y ∈ A/A0.

Then
MA,B,f = {x ⊕ ξ|x ∈ A, ξ ∈ f (x + A0)}.

is a maximal Φ-singular subspace of V and every maximal
Φ-singular subspace of V can be obtained as above, for suitable
choices of A,B and f .

dim(V) ≤ dim(MA,B,f ) ≤ dim(V∗).
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Polar Spaces of Infinite Rank
Embeddings of polar spaces in groups

Γ: residually connected and firm geometry.

X ∈ Γ ↔ X is an element of Γ.

t(X ): type of an element X ∈ Γ

ResΓ(X ): residue of X in Γ

P(Γ): pointset of Γ (elements of minimal type)

L(Γ): lineset of Γ (elements of next-to-minimal type)
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Polar Spaces of Infinite Rank
Embeddings of polar spaces in groups

Γ is a poset-geometry if there exists a total ordering ≤

such that,
∀X ,Y ,Z ∈ Γ, t(X ) ≤ t(Y ) ≤ t(Z ) and Y incident with X and Z

⇓
X is incident with Z

• X ≤ Y if t(X ) ≤ t(Y ) and X ,Y incident

Γ: thick building of connected spherical type and rank at least 2.
F 6= ∅: flag of Γ, C : chamber of Γ

CF : unique chamber in Res(F ) at minimal distance from C .

∀ flag X 6= ∅ of Γ→ d(X ,F ) := min{d(C ,F ) : C ⊇ X ,C chamber}

A flag X is far from F if d(X ,F ) is maximal

Definition

FarΓ(F ) is the subgeometry of Γ formed by the elements far from
F . Two elements X , Y ∈ FarΓ(F ) are incident in FarΓ(F ) if and
only if they are incident in Γ and the flag {X ,Y } is far from F .
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Polar Spaces of Infinite Rank
Embeddings of polar spaces in groups

Γ: poset geometry

If X ∈ Γ then P(X ): set of pts p ≤ X
L(X ): set of lines incident with X

X ≤ Y ⇒ P(X ) ⊆ P(Y )

Definition

An embedding ε : Γ→ G of a poset-geometry Γ in a group G is an
injective mapping ε from the set of elements of Γ to the set of
proper non-trivial subgroups of G such that

(E1) for X ,Y ∈ Γ, we have ε(X ) ≤ ε(Y ) if and only if X ≤ Y ;

(E2) ε(X ) = 〈ε(p)〉p∈P(X ) for every X in Γ;

(E3) G = 〈ε(p)〉p∈P(Γ).

G : codomain of ε
If G is commutative then ε is called abelian.
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Polar Spaces of Infinite Rank
Embeddings of polar spaces in groups

G : additive group of a vector space V over a division ring K

ε(p): linear subspace of V for every p ∈ P(Γ)
⇓

ε : Γ→ V is called a K-linear embedding of Γ in V .

ε: K-linear embedding of a poset-geometry Γ of rank at least 2
dim(ε(p)) = 1 for every p ∈ P(Γ) and dim(ε(L)) = 2 for every L ∈ L(Γ)

⇓
ε : Γ→ PG(V ) is called a lax projective embedding

If ε(L) = ∪p∈P(L)ε(p) for every L ∈ L(Γ)
⇓

ε: is called a full projective embedding.
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Polar Spaces of Infinite Rank
Embeddings of polar spaces in groups

Γ: poset-geometry of rank at least 2

ε : Γ→ G : embedding of Γ and K a division ring.

If {V (p)}p∈P(Γ) and {V (L)}L∈L(Γ) are two families of K-vector spaces s.t.

(LP1) dim(V (p)) = 1 and ε(p) is the additive group of V (p), ∀p ∈ Γ(P)

(LP2) dim(V (L)) = 2 and ε(L) is the additive group of V (L), ∀L ∈ L(Γ)

(LP3) p < L⇒ V (p) is a subspace of V (L), ∀p ∈ Γ(P), ∀L ∈ L(Γ)
⇓

ε: is called a lax locally K-projective embedding.

If furthermore
(LP4) V (p)p∈P(L) is the family of all 1-dim. lin. subspaces of V (L)∀L ∈ L(Γ)

⇓
ε: is called a full locally K-projective embedding.
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Polar Spaces of Infinite Rank
Embeddings of polar spaces in groups

Definition

Γ: poset geometry of rank n, G : group

ε : Γ→ G : embedding

The expansion Exp(ε) of Γ to G via ε is defined to be
a poset-geometry of rank n + 1 where

points of Exp(ε): elements of G ;

i-elements of Exp(ε): right cosets g · ε(X ), for g ∈ G and
X ∈ Γ with t(X ) = i − 1, (1 ≤ i ≤ n + 1).

Incidence relation is inclusion between cosets and between
elements and cosets.
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Polar Spaces of Infinite Rank
Embeddings of polar spaces in groups

Definition

Γ and ∆: geometries of rank n over the same set of types.

If m < n, a type-preserving morphism ϕ : Γ→ ∆ is an m-covering
from Γ to ∆ if for every flag F of Γ of corank m

ϕ|ResΓ(F ) : ResΓ(F )→ Res∆(ϕ(F )) is an isomorphism.

Given an m-covering ϕ : Γ′ → Γ we say that
Γ′ is an m-cover of Γ
Γ is an m-quotient of Γ′.

Γ̄ is the m-universal cover of Γ if for any m-cover Γ′ of Γ then Γ′ is
an m-quotient of Γ̄.

The universal cover of a geometry is its (n − 1)-universal cover.
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Polar Spaces of Infinite Rank
Embeddings of polar spaces in groups

ε : Γ→ G : embedding

U(ε): universal completion of the amalgam A(X ) = {ε(X )}X∈Γ

πε : U(ε)→ G : natural projection

→ ε̃ : Γ→ U(ε) such that ε = πε ◦ ε̃. ε̃: hull of ε

ε→ Exp(ε)

ε̃→ Exp(ε̃)

Theorem

The geometry Exp(ε̃) is the universal cover of Exp(ε).

Definition

An embedding is dominant if it is its own hull.
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Polar Spaces of Infinite Rank
Embeddings of polar spaces in groups

Γ: classical polar space of rank n ≥ 2

ε : Γ→ PG(V): full (natural) projective embedding of Γ.
l

ε(Γ) is the family of totally isotropic linear subspaces of V for a
non-degenerate trace-valued reflexive-sesquilinear form or the
family of totally singular subspaces of V for a non-degenerate
pseudoquadratic form.

∆ := Exp(ε)

↓ Cuypers-Pasini

∆̃ ∼= FarΠ(p0) where

∆̃: the universal cover of ∆.
FarΠ(p0): geometry far from a point p0 of a polar space Π of rank n + 1

Ilaria Cardinali An outline of polar spaces: basics and advances Part 2



Polar Spaces of Infinite Rank
Embeddings of polar spaces in groups

Γ: classical polar space of rank n ≥ 2
ε : Γ→ PG(V): full (natural) projective embedding of Γ.

l

ε(Γ) is the family of totally isotropic linear subspaces of V for a
non-degenerate trace-valued reflexive-sesquilinear form or the
family of totally singular subspaces of V for a non-degenerate
pseudoquadratic form.

∆ := Exp(ε)

↓ Cuypers-Pasini

∆̃ ∼= FarΠ(p0) where

∆̃: the universal cover of ∆.
FarΠ(p0): geometry far from a point p0 of a polar space Π of rank n + 1

Ilaria Cardinali An outline of polar spaces: basics and advances Part 2



Polar Spaces of Infinite Rank
Embeddings of polar spaces in groups

Γ: classical polar space of rank n ≥ 2
ε : Γ→ PG(V): full (natural) projective embedding of Γ.

l
ε(Γ) is the family of totally isotropic linear subspaces of V for a
non-degenerate trace-valued reflexive-sesquilinear form or the
family of totally singular subspaces of V for a non-degenerate
pseudoquadratic form.

∆ := Exp(ε)

↓ Cuypers-Pasini

∆̃ ∼= FarΠ(p0) where

∆̃: the universal cover of ∆.
FarΠ(p0): geometry far from a point p0 of a polar space Π of rank n + 1

Ilaria Cardinali An outline of polar spaces: basics and advances Part 2



Polar Spaces of Infinite Rank
Embeddings of polar spaces in groups

Γ: classical polar space of rank n ≥ 2
ε : Γ→ PG(V): full (natural) projective embedding of Γ.

l
ε(Γ) is the family of totally isotropic linear subspaces of V for a
non-degenerate trace-valued reflexive-sesquilinear form or the
family of totally singular subspaces of V for a non-degenerate
pseudoquadratic form.

∆ := Exp(ε)

↓ Cuypers-Pasini

∆̃ ∼= FarΠ(p0) where

∆̃: the universal cover of ∆.
FarΠ(p0): geometry far from a point p0 of a polar space Π of rank n + 1

Ilaria Cardinali An outline of polar spaces: basics and advances Part 2



Polar Spaces of Infinite Rank
Embeddings of polar spaces in groups

Γ: classical polar space of rank n ≥ 2
ε : Γ→ PG(V): full (natural) projective embedding of Γ.

l
ε(Γ) is the family of totally isotropic linear subspaces of V for a
non-degenerate trace-valued reflexive-sesquilinear form or the
family of totally singular subspaces of V for a non-degenerate
pseudoquadratic form.

∆ := Exp(ε)

↓ Cuypers-Pasini

∆̃ ∼= FarΠ(p0) where

∆̃: the universal cover of ∆.
FarΠ(p0): geometry far from a point p0 of a polar space Π of rank n + 1

Ilaria Cardinali An outline of polar spaces: basics and advances Part 2



Polar Spaces of Infinite Rank
Embeddings of polar spaces in groups

Γ: classical polar space of rank n ≥ 2
ε : Γ→ PG(V): full (natural) projective embedding of Γ.

l
ε(Γ) is the family of totally isotropic linear subspaces of V for a
non-degenerate trace-valued reflexive-sesquilinear form or the
family of totally singular subspaces of V for a non-degenerate
pseudoquadratic form.

∆ := Exp(ε)

↓ Cuypers-Pasini

∆̃ ∼= FarΠ(p0) where

∆̃: the universal cover of ∆.
FarΠ(p0): geometry far from a point p0 of a polar space Π of rank n + 1

Ilaria Cardinali An outline of polar spaces: basics and advances Part 2



Polar Spaces of Infinite Rank
Embeddings of polar spaces in groups

Γ: classical polar space of rank n ≥ 2
ε : Γ→ PG(V): full (natural) projective embedding of Γ.

l
ε(Γ) is the family of totally isotropic linear subspaces of V for a
non-degenerate trace-valued reflexive-sesquilinear form or the
family of totally singular subspaces of V for a non-degenerate
pseudoquadratic form.

∆ := Exp(ε)

↓ Cuypers-Pasini

∆̃ ∼= FarΠ(p0) where

∆̃: the universal cover of ∆.

FarΠ(p0): geometry far from a point p0 of a polar space Π of rank n + 1

Ilaria Cardinali An outline of polar spaces: basics and advances Part 2



Polar Spaces of Infinite Rank
Embeddings of polar spaces in groups

Γ: classical polar space of rank n ≥ 2
ε : Γ→ PG(V): full (natural) projective embedding of Γ.

l
ε(Γ) is the family of totally isotropic linear subspaces of V for a
non-degenerate trace-valued reflexive-sesquilinear form or the
family of totally singular subspaces of V for a non-degenerate
pseudoquadratic form.

∆ := Exp(ε)

↓ Cuypers-Pasini

∆̃ ∼= FarΠ(p0) where

∆̃: the universal cover of ∆.
FarΠ(p0): geometry far from a point p0 of a polar space Π of rank n + 1

Ilaria Cardinali An outline of polar spaces: basics and advances Part 2



Polar Spaces of Infinite Rank
Embeddings of polar spaces in groups

ε : Γ→ PG(V): full (natural) projective embedding of Γ.

ε̃ : ∆̃→ U(ε): hull of ε.

Lemma

The universal cover Ẽxp(ε) of the expansion Exp(ε) of ε is the
expansion Exp(ε̃) of the hull ε̃ of ε.

Theorem

The codomain U(ε) of ε̃ is isomorphic to the unipotent radical of
the stabilizer of p0 in Aut(Π).

Theorem

The embedding ε is dominant if and only if ε(Γ) is a quadric.

Ilaria Cardinali An outline of polar spaces: basics and advances Part 2



Polar Spaces of Infinite Rank
Embeddings of polar spaces in groups

ε : Γ→ PG(V): full (natural) projective embedding of Γ.
ε̃ : ∆̃→ U(ε): hull of ε.

Lemma

The universal cover Ẽxp(ε) of the expansion Exp(ε) of ε is the
expansion Exp(ε̃) of the hull ε̃ of ε.

Theorem

The codomain U(ε) of ε̃ is isomorphic to the unipotent radical of
the stabilizer of p0 in Aut(Π).

Theorem

The embedding ε is dominant if and only if ε(Γ) is a quadric.

Ilaria Cardinali An outline of polar spaces: basics and advances Part 2



Polar Spaces of Infinite Rank
Embeddings of polar spaces in groups

ε : Γ→ PG(V): full (natural) projective embedding of Γ.
ε̃ : ∆̃→ U(ε): hull of ε.

Lemma
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