An outline of polar spaces: basics and advances Part 1

Ilaria Cardinali

University of Siena Italy

Workshop and Conference on Groups and Geometries Indian Statistical Institute, Bangalore, December 10-21, 2012

イロン イヨン イヨン イヨン

Organization

Part 1. Background.

・ロト ・回ト ・ヨト ・ヨト

Organization

Part 1. Background.

• Classical Polar Spaces

Organization

Part 1. Background.

- Classical Polar Spaces
- Abstract Polar Spaces

回 と く ヨ と く ヨ と

Organization

Part 1. Background.

- Classical Polar Spaces
- Abstract Polar Spaces
- Classification Theorems

回 と く ヨ と く ヨ と

Organization

Part 1. Background.

- Classical Polar Spaces
- Abstract Polar Spaces
- Classification Theorems

Part 2.

• Polar spaces of infinite rank

- (目) - (日) - (日)

Organization

Part 1. Background.

- Classical Polar Spaces
- Abstract Polar Spaces
- Classification Theorems

Part 2.

- Polar spaces of infinite rank
- Embeddings of polar spaces in groups

- ∢ ⊒ →

Organization

Part 1. Background.

- Classical Polar Spaces
- Abstract Polar Spaces
- Classification Theorems

Part 2.

- Polar spaces of infinite rank
- Embeddings of polar spaces in groups

Part 3.

• Classical Dual Polar Spaces and their embeddings

Part 1. Background.

- Classical polar spaces
- Abstract polar spaces
- Classification Theorems

回 と く ヨ と く ヨ と

Part 1. Background.

- Classical polar spaces
- Abstract polar spaces
- Classification Theorems

References:

- (1) F. Buekenhout and A. Cohen. *Diagram geometry: related to classical groups and buildings.* Springer, 2012.
 - (2) J. Tits. *Buildings of Spherical type and Finite BN-pairs*. Lecture Notes in Mathematics 386. Springer, Berlin, 1974.

Sesquilinear Forms

 \mathbb{K} : a division ring;

・ロト ・回ト ・ヨト ・ヨト

Sesquilinear Forms

 \mathbb{K} : a division ring; σ : anti-automorphism of \mathbb{K} ;

イロン 不同と 不同と 不同と

Sesquilinear Forms

\mathbb{K} : a division ring; σ : anti-automorphism of \mathbb{K} ; $\varepsilon \in \mathbb{K}^*$

・ロン ・回と ・ヨン・

Sesquilinear Forms

\mathbb{K} : a division ring; σ : anti-automorphism of \mathbb{K} ; $\varepsilon \in \mathbb{K}^*$

(1)
$$\varepsilon^{\sigma} = \varepsilon^{-1}$$
;

・ロン ・回と ・ヨン・

Sesquilinear Forms

 \mathbb{K} : a division ring; σ : anti-automorphism of \mathbb{K} ; $\varepsilon \in \mathbb{K}^*$

(1)
$$\varepsilon^{\sigma} = \varepsilon^{-1}$$
;
(2) $t^{\sigma^2} = \varepsilon t \varepsilon^{-1}$.

・ロン ・回と ・ヨン ・ヨン

Sesquilinear Forms

 \mathbb{K} : a division ring; σ : anti-automorphism of \mathbb{K} ; $\varepsilon \in \mathbb{K}^*$

(1)
$$\varepsilon^{\sigma} = \varepsilon^{-1}$$
;
(2) $t^{\sigma^2} = \varepsilon t \varepsilon^{-1}$.

 \mathbb{V} : right vector space over \mathbb{K} .

イロト イヨト イヨト イヨト

Sesquilinear Forms

 \mathbb{K} : a division ring; σ : anti-automorphism of \mathbb{K} ; $\varepsilon \in \mathbb{K}^*$

(1)
$$\varepsilon^{\sigma} = \varepsilon^{-1}$$
;
(2) $t^{\sigma^2} = \varepsilon t \varepsilon^{-1}$.

 \mathbb{V} : right vector space over \mathbb{K} . Then the function

$$\phi \colon \mathbb{V} \times \mathbb{V} \to \mathbb{K}$$

is a reflexive (σ, ε) -sesquilinear form if

・ロト ・回ト ・ヨト ・ヨト

Sesquilinear Forms

 \mathbb{K} : a division ring; σ : anti-automorphism of \mathbb{K} ; $\varepsilon \in \mathbb{K}^*$

(1)
$$\varepsilon^{\sigma} = \varepsilon^{-1};$$

(2) $t^{\sigma^2} = \varepsilon t \varepsilon^{-1}$

 \mathbb{V} : right vector space over \mathbb{K} . Then the function

 $\phi \colon \mathbb{V} \times \mathbb{V} \to \mathbb{K}$

is a reflexive (σ, ε) -sesquilinear form if

(3) $\phi(x, y\alpha + z\beta) = \phi(x, y)\alpha + \phi(x, z)\beta \quad \forall \alpha, \beta \in \mathbb{K}, \forall x, y, z \in \mathbb{V};$

・ロン ・回 と ・ 回 と ・ 回 と

Sesquilinear Forms

 \mathbb{K} : a division ring; σ : anti-automorphism of \mathbb{K} ; $\varepsilon \in \mathbb{K}^*$

(1)
$$\varepsilon^{\sigma} = \varepsilon^{-1};$$

(2) $t^{\sigma^2} = \varepsilon t \varepsilon^{-1}$

 $\mathbb V:$ right vector space over $\mathbb K.$ Then the function

 $\phi \colon \mathbb{V} \times \mathbb{V} \to \mathbb{K}$

is a reflexive (σ, ε) -sesquilinear form if

(3) $\phi(x, y\alpha + z\beta) = \phi(x, y)\alpha + \phi(x, z)\beta \quad \forall \alpha, \beta \in \mathbb{K}, \forall x, y, z \in \mathbb{V};$ (4) $\phi(y, x) = \phi(x, y)^{\sigma}\varepsilon, \quad \forall x, y \in \mathbb{V}.$

イロト イポト イラト イラト 一日

Consequences:

Consequences:

(5) $\phi(\sum_i x_i \alpha_i, \sum_j y_j \beta_j) = \sum_{i,j} \alpha_i^{\sigma} \phi(x_i, y_j) \beta_j \ \forall \alpha_i, \beta_j \in \mathbb{K}, \ \forall x_i, y_j \in \mathbb{V}.$

イロト イヨト イヨト イヨト

Consequences:

(5)
$$\phi(\sum_{i} x_{i} \alpha_{i}, \sum_{j} y_{j} \beta_{j}) = \sum_{i,j} \alpha_{i}^{\sigma} \phi(x_{i}, y_{j}) \beta_{j} \ \forall \alpha_{i}, \beta_{j} \in \mathbb{K}, \ \forall x_{i}, y_{j} \in \mathbb{V}.$$

(6) $\phi(x, x) = \phi(x, x)^{\sigma} \varepsilon \quad \forall x \in \mathbb{V}.$

Consequences:

(5)
$$\phi(\sum_{i} x_{i} \alpha_{i}, \sum_{j} y_{j} \beta_{j}) = \sum_{i,j} \alpha_{i}^{\sigma} \phi(x_{i}, y_{j}) \beta_{j} \ \forall \alpha_{i}, \beta_{j} \in \mathbb{K}, \ \forall x_{i}, y_{j} \in \mathbb{V}.$$

(6) $\phi(x, x) = \phi(x, x)^{\sigma} \varepsilon \quad \forall x \in \mathbb{V}.$

Notation and Terminology

イロン イヨン イヨン イヨン

Consequences:

(5)
$$\phi(\sum_{i} x_{i} \alpha_{i}, \sum_{j} y_{j} \beta_{j}) = \sum_{i,j} \alpha_{i}^{\sigma} \phi(x_{i}, y_{j}) \beta_{j} \ \forall \alpha_{i}, \beta_{j} \in \mathbb{K}, \ \forall x_{i}, y_{j} \in \mathbb{V}.$$

(6) $\phi(x, x) = \phi(x, x)^{\sigma} \varepsilon \quad \forall x \in \mathbb{V}.$

Notation and Terminology

 $a \perp b$ stands for $\phi(a, b) = 0$ $(a, b \in \mathbb{V})$.

- - 4 回 ト - 4 回 ト

Consequences:

(5)
$$\phi(\sum_{i} x_{i} \alpha_{i}, \sum_{j} y_{j} \beta_{j}) = \sum_{i,j} \alpha_{i}^{\sigma} \phi(x_{i}, y_{j}) \beta_{j} \ \forall \alpha_{i}, \beta_{j} \in \mathbb{K}, \ \forall x_{i}, y_{j} \in \mathbb{V}.$$

(6) $\phi(x, x) = \phi(x, x)^{\sigma} \varepsilon \quad \forall x \in \mathbb{V}.$

Notation and Terminology

$$a \perp b$$
 stands for $\phi(a, b) = 0$ $(a, b \in \mathbb{V})$.
a is an *isotropic vector* if $a \perp a$.

イロン 不同と 不同と 不同と

Consequences:

(5)
$$\phi(\sum_{i} x_{i} \alpha_{i}, \sum_{j} y_{j} \beta_{j}) = \sum_{i,j} \alpha_{i}^{\sigma} \phi(x_{i}, y_{j}) \beta_{j} \ \forall \alpha_{i}, \beta_{j} \in \mathbb{K}, \ \forall x_{i}, y_{j} \in \mathbb{V}.$$

(6) $\phi(x, x) = \phi(x, x)^{\sigma} \varepsilon \quad \forall x \in \mathbb{V}.$

Notation and Terminology

 $a \perp b$ stands for $\phi(a, b) = 0$ $(a, b \in \mathbb{V})$. *a* is an *isotropic vector* if $a \perp a$. $a^{\perp} := \{x \in \mathbb{V} : x \perp a\}.$

→ 同 → → 目 → → 目 →

Consequences:

(5) $\phi(\sum_{i} x_{i}\alpha_{i}, \sum_{j} y_{j}\beta_{j}) = \sum_{i,j} \alpha_{i}^{\sigma} \phi(x_{i}, y_{j})\beta_{j} \ \forall \alpha_{i}, \beta_{j} \in \mathbb{K}, \ \forall x_{i}, y_{j} \in \mathbb{V}.$ (6) $\phi(x, x) = \phi(x, x)^{\sigma} \varepsilon \quad \forall x \in \mathbb{V}.$

Notation and Terminology

 $a \perp b$ stands for $\phi(a, b) = 0$ $(a, b \in \mathbb{V})$. a is an *isotropic vector* if $a \perp a$. $a^{\perp} := \{x \in \mathbb{V} : x \perp a\}.$

 \mathbb{X} is *totally isotropic* if $x \perp y$ for every $x, y \in \mathbb{X} \subseteq \mathbb{V}$.

Consequences:

(5) $\phi(\sum_{i} x_{i}\alpha_{i}, \sum_{j} y_{j}\beta_{j}) = \sum_{i,j} \alpha_{i}^{\sigma} \phi(x_{i}, y_{j})\beta_{j} \ \forall \alpha_{i}, \beta_{j} \in \mathbb{K}, \ \forall x_{i}, y_{j} \in \mathbb{V}.$ (6) $\phi(x, x) = \phi(x, x)^{\sigma} \varepsilon \quad \forall x \in \mathbb{V}.$

Notation and Terminology

 $a \perp b$ stands for $\phi(a, b) = 0$ $(a, b \in \mathbb{V})$. a is an *isotropic vector* if $a \perp a$. $a^{\perp} := \{x \in \mathbb{V} : x \perp a\}.$

X is *totally isotropic* if $x \perp y$ for every $x, y \in \mathbb{X} \subseteq \mathbb{V}$. $\mathbb{X}^{\perp} := \bigcap_{x \in \mathbb{X}} x^{\perp}$.

イロト イポト イヨト イヨト

Consequences:

(5) $\phi(\sum_{i} x_{i}\alpha_{i}, \sum_{j} y_{j}\beta_{j}) = \sum_{i,j} \alpha_{i}^{\sigma} \phi(x_{i}, y_{j})\beta_{j} \ \forall \alpha_{i}, \beta_{j} \in \mathbb{K}, \ \forall x_{i}, y_{j} \in \mathbb{V}.$ (6) $\phi(x, x) = \phi(x, x)^{\sigma} \varepsilon \quad \forall x \in \mathbb{V}.$

Notation and Terminology

 $a \perp b$ stands for $\phi(a, b) = 0$ $(a, b \in \mathbb{V})$. a is an *isotropic vector* if $a \perp a$. $a^{\perp} := \{x \in \mathbb{V} : x \perp a\}.$

X is totally isotropic if $x \perp y$ for every $x, y \in \mathbb{X} \subseteq \mathbb{V}$. $\mathbb{X}^{\perp} := \bigcap_{x \in \mathbb{X}} x^{\perp}$. X is totally isotropic iff $\mathbb{X} \subseteq \mathbb{X}^{\perp}$.

Consequences:

(5) $\phi(\sum_{i} x_{i}\alpha_{i}, \sum_{j} y_{j}\beta_{j}) = \sum_{i,j} \alpha_{i}^{\sigma} \phi(x_{i}, y_{j})\beta_{j} \ \forall \alpha_{i}, \beta_{j} \in \mathbb{K}, \ \forall x_{i}, y_{j} \in \mathbb{V}.$ (6) $\phi(x, x) = \phi(x, x)^{\sigma} \varepsilon \quad \forall x \in \mathbb{V}.$

Notation and Terminology

$$a \perp b$$
 stands for $\phi(a, b) = 0$ $(a, b \in \mathbb{V})$.
 a is an *isotropic vector* if $a \perp a$.
 $a^{\perp} := \{x \in \mathbb{V} : x \perp a\}.$

X is totally isotropic if $x \perp y$ for every $x, y \in \mathbb{X} \subseteq \mathbb{V}$. $\mathbb{X}^{\perp} := \bigcap_{x \in \mathbb{X}} x^{\perp}$. X is totally isotropic iff $\mathbb{X} \subseteq \mathbb{X}^{\perp}$.

$$Rad(\phi) := \mathbb{V}^{\perp} = \{a: a^{\perp} = \mathbb{V}\}$$
: Radical of ϕ .

Consequences:

(5) $\phi(\sum_{i} x_{i}\alpha_{i}, \sum_{j} y_{j}\beta_{j}) = \sum_{i,j} \alpha_{i}^{\sigma} \phi(x_{i}, y_{j})\beta_{j} \ \forall \alpha_{i}, \beta_{j} \in \mathbb{K}, \ \forall x_{i}, y_{j} \in \mathbb{V}.$ (6) $\phi(x, x) = \phi(x, x)^{\sigma} \varepsilon \quad \forall x \in \mathbb{V}.$

Notation and Terminology

$$a \perp b$$
 stands for $\phi(a, b) = 0$ $(a, b \in \mathbb{V})$.
 a is an *isotropic vector* if $a \perp a$.
 $a^{\perp} := \{x \in \mathbb{V} : x \perp a\}$.

X is totally isotropic if $x \perp y$ for every $x, y \in \mathbb{X} \subseteq \mathbb{V}$. $\mathbb{X}^{\perp} := \bigcap_{x \in \mathbb{X}} x^{\perp}$. X is totally isotropic iff $\mathbb{X} \subseteq \mathbb{X}^{\perp}$.

$$\begin{aligned} & \textit{Rad}(\phi) := \mathbb{V}^{\perp} = \{ a \colon a^{\perp} = \mathbb{V} \} : \text{ Radical of } \phi, \\ & \phi \text{ is degenerate if } \textit{Rad}(\phi) \neq \{ 0 \}. \end{aligned}$$

Let $a, b, c \in \mathbb{V}$ and $\mathbb{X} \subseteq \mathbb{V}$. Then

・ロト ・回 ト ・ヨト ・ヨト

Let $a, b, c \in \mathbb{V}$ and $\mathbb{X} \subseteq \mathbb{V}$. Then

(i) $a \perp a, b \perp b, c \perp c, a \perp c, b \perp c \Rightarrow$

・ロン ・回と ・ヨン・

Let $a, b, c \in \mathbb{V}$ and $\mathbb{X} \subseteq \mathbb{V}$. Then

(i) $a \perp a, b \perp b, c \perp c, a \perp c, b \perp c \Rightarrow \langle a, b \rangle \subseteq c^{\perp}$.

・ロト ・回ト ・ヨト ・ヨト

Let $a, b, c \in \mathbb{V}$ and $\mathbb{X} \subseteq \mathbb{V}$. Then

(i)
$$a \perp a, b \perp b, c \perp c, a \perp c, b \perp c \Rightarrow \langle a, b \rangle \subseteq c^{\perp}$$
.

(ii) $\langle \mathbb{X} \rangle \subseteq \langle \mathbb{X} \rangle^{\perp} \Leftrightarrow \mathbb{X} \subseteq \mathbb{X}^{\perp}$.

イロン 不同と 不同と 不同と

Let
$$a, b, c \in \mathbb{V}$$
 and $\mathbb{X} \subseteq \mathbb{V}$. Then

(i)
$$a \perp a, b \perp b, c \perp c, a \perp c, b \perp c \Rightarrow \langle a, b \rangle \subseteq c^{\perp}$$
.

(ii) $\langle \mathbb{X} \rangle \subseteq \langle \mathbb{X} \rangle^{\perp} \Leftrightarrow \mathbb{X} \subseteq \mathbb{X}^{\perp}$.

(iii) $\langle b \rangle \neq \langle c \rangle$ and $\langle b, c \rangle \not\subseteq a^{\perp} \Rightarrow$

・ロン ・回 と ・ ヨ と ・ ヨ と

= 990

Let
$$a, b, c \in \mathbb{V}$$
 and $\mathbb{X} \subseteq \mathbb{V}$. Then

(i)
$$a \perp a, b \perp b, c \perp c, a \perp c, b \perp c \Rightarrow \langle a, b \rangle \subseteq c^{\perp}$$
.

(ii) $\langle \mathbb{X} \rangle \subseteq \langle \mathbb{X} \rangle^{\perp} \Leftrightarrow \mathbb{X} \subseteq \mathbb{X}^{\perp}$.

(iii) $\langle b \rangle \neq \langle c \rangle$ and $\langle b, c \rangle \not\subseteq a^{\perp} \Rightarrow \dim(a^{\perp} \cap \langle b, c \rangle) = 1.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

Let
$$a, b, c \in \mathbb{V}$$
 and $\mathbb{X} \subseteq \mathbb{V}$. Then

(i)
$$a \perp a, b \perp b, c \perp c, a \perp c, b \perp c \Rightarrow \langle a, b \rangle \subseteq c^{\perp}$$
.

(ii)
$$\langle \mathbb{X} \rangle \subseteq \langle \mathbb{X} \rangle^{\perp} \Leftrightarrow \mathbb{X} \subseteq \mathbb{X}^{\perp}.$$

(iii) $\langle b \rangle \neq \langle c \rangle$ and $\langle b, c \rangle \not\subseteq a^{\perp} \Rightarrow \dim(a^{\perp} \cap \langle b, c \rangle) = 1.$

(iv) $a^{\perp} \neq \mathbb{V} \Rightarrow$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

Let
$$a, b, c \in \mathbb{V}$$
 and $\mathbb{X} \subseteq \mathbb{V}$. Then

(i)
$$a \perp a, b \perp b, c \perp c, a \perp c, b \perp c \Rightarrow \langle a, b \rangle \subseteq c^{\perp}$$
.

(ii) $\langle \mathbb{X} \rangle \subseteq \langle \mathbb{X} \rangle^{\perp} \Leftrightarrow \mathbb{X} \subseteq \mathbb{X}^{\perp}.$

(iii)
$$\langle b \rangle \neq \langle c \rangle$$
 and $\langle b, c \rangle \not\subseteq a^{\perp} \Rightarrow \dim(a^{\perp} \cap \langle b, c \rangle) = 1.$

(iv) $a^{\perp} \neq \mathbb{V} \Rightarrow a^{\perp}$ is a hyperplane of \mathbb{V} .

・ロト ・回ト ・ヨト ・ヨト

Definition

A (σ, ε) -sesquilinear form ϕ admits a Witt index

・ロン ・回と ・ヨン・

Definition

A (σ, ε) -sesquilinear form ϕ admits a Witt index if all maximal totally isotropic subspaces have the same dimension.

イロン 不同と 不同と 不同と

Definition

A (σ, ε) -sesquilinear form ϕ admits a Witt index if all maximal totally isotropic subspaces have the same dimension. If ϕ admits a Witt index then $Rank(\phi)$:=Witt index of ϕ .

・ロット (四) (日) (日)

Definition

A (σ, ε) -sesquilinear form ϕ admits a Witt index if all maximal totally isotropic subspaces have the same dimension. If ϕ admits a Witt index then $Rank(\phi)$:=Witt index of ϕ .

Theorem

Let ϕ be a (σ, ε) -sesquilinear form.

・ロト ・回ト ・ヨト ・ヨト

Definition

A (σ, ε) -sesquilinear form ϕ admits a Witt index if all maximal totally isotropic subspaces have the same dimension. If ϕ admits a Witt index then $Rank(\phi)$:=Witt index of ϕ .

Theorem

Let ϕ be a (σ, ε) -sesquilinear form. If there exists a maximal totally isotropic subspace of finite dimension

・ロト ・回ト ・ヨト ・ヨト

Definition

A (σ, ε) -sesquilinear form ϕ admits a Witt index if all maximal totally isotropic subspaces have the same dimension. If ϕ admits a Witt index then $Rank(\phi)$:=Witt index of ϕ .

Theorem

Let ϕ be a (σ, ε) -sesquilinear form. If there exists a maximal totally isotropic subspace of finite dimension then ϕ admits a Witt index.

・ロト ・回ト ・ヨト ・ヨト

Definition

A (σ, ε) -sesquilinear form ϕ is trace-valued if

Definition

A (σ, ε) -sesquilinear form ϕ is trace-valued if $\phi(x, x) \in \{t + \varepsilon t^{\sigma}\}_{t \in \mathbb{K}} \quad \forall x \in \mathbb{V}.$

Ilaria Cardinali An outline of polar spaces: basics and advances Part 1

・ロン ・回 と ・ ヨン ・ ヨン

Definition

A
$$(\sigma, \varepsilon)$$
-sesquilinear form ϕ is trace-valued if
 $\phi(x, x) \in \{t + \varepsilon t^{\sigma}\}_{t \in \mathbb{K}} \quad \forall x \in \mathbb{V}.$

Theorem

Let $\phi \neq 0$ be a (σ, ε) -sesquilinear form of \mathbb{V} and suppose that there exist isotropic points of \mathbb{V} .

・ロン ・回 と ・ ヨン ・ ヨン

Definition

A
$$(\sigma, \varepsilon)$$
-sesquilinear form ϕ is trace-valued if
 $\phi(x, x) \in \{t + \varepsilon t^{\sigma}\}_{t \in \mathbb{K}} \quad \forall x \in \mathbb{V}.$

Theorem

Let $\phi \neq 0$ be a (σ, ε) -sesquilinear form of \mathbb{V} and suppose that there exist isotropic points of \mathbb{V} .

Then \mathbb{V} is spanned by the isotropic points if and only if

・ロン ・回と ・ヨン・

Definition

A
$$(\sigma, \varepsilon)$$
-sesquilinear form ϕ is trace-valued if $\phi(x, x) \in \{t + \varepsilon t^{\sigma}\}_{t \in \mathbb{K}} \quad \forall x \in \mathbb{V}.$

Theorem

Let $\phi \neq 0$ be a (σ, ε) -sesquilinear form of \mathbb{V} and suppose that there exist isotropic points of \mathbb{V} .

Then \mathbb{V} is spanned by the isotropic points if and only if

(a) ϕ is trace-valued;

・ロン ・回と ・ヨン ・ヨン

Definition

A
$$(\sigma, \varepsilon)$$
-sesquilinear form ϕ is trace-valued if $\phi(x, x) \in \{t + \varepsilon t^{\sigma}\}_{t \in \mathbb{K}} \quad \forall x \in \mathbb{V}.$

Theorem

Let $\phi \neq 0$ be a (σ, ε) -sesquilinear form of \mathbb{V} and suppose that there exist isotropic points of \mathbb{V} .

Then V is spanned by the isotropic points if and only if

(a) ϕ is trace-valued;

(b) there exist isotropic points not contained in $Rad(\phi)$.

・ロン ・回と ・ヨン ・ヨン

Proposition

If
$$\operatorname{char}(\mathbb{K}) \neq 2$$

(ロ) (四) (E) (E) (E)

Proposition

If
$$\left|\operatorname{char}(\mathbb{K})
eq 2
ight|$$
 or $\left|\operatorname{char}(\mathbb{K})=2$ and $\sigma|_{\mathcal{Z}(\mathbb{K})}
eq$ id

(ロ) (四) (E) (E) (E)

Proposition

If
$$|\operatorname{char}(\mathbb{K})
eq 2 |$$
 or $|\operatorname{char}(\mathbb{K})=$ 2 and $\sigma|_{Z(\mathbb{K})}
eq$ id

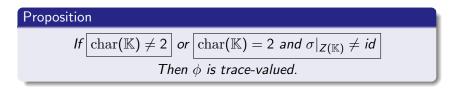
Then ϕ is trace-valued.

・ロン ・四と ・ヨン ・ヨン

PropositionIf $char(\mathbb{K}) \neq 2$ or $char(\mathbb{K}) = 2$ and $\sigma|_{Z(\mathbb{K})} \neq id$ Then ϕ is trace-valued.

 \mathbb{K} : field.

◆□ > ◆□ > ◆臣 > ◆臣 > ○



K: field. The only NON trace-valued (σ, ε) -sesquilinear forms are for

・ロン ・回と ・ヨン・

PropositionIf $char(\mathbb{K}) \neq 2$ or $char(\mathbb{K}) = 2$ and $\sigma|_{Z(\mathbb{K})} \neq id$ Then ϕ is trace-valued.

K: field. The only NON trace-valued (σ, ε) -sesquilinear forms are for $char(\mathbb{K}) = 2$ and $\sigma = id$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

PropositionIf $char(\mathbb{K}) \neq 2$ or $char(\mathbb{K}) = 2$ and $\sigma|_{Z(\mathbb{K})} \neq id$ Then ϕ is trace-valued.

 \mathbb{K} : field. The only NON trace-valued (σ, ε) -sesquilinear forms are for $\operatorname{char}(\mathbb{K}) = 2$ and $\sigma = id \ (\Rightarrow \varepsilon = 1)$

・ロン ・回と ・ヨン ・ヨン

Proposition

If
$$\left|\operatorname{char}(\mathbb{K})
eq 2
ight|$$
 or $\left|\operatorname{char}(\mathbb{K})=2$ and $\sigma|_{\mathcal{Z}(\mathbb{K})}
eq$ id

Then ϕ is trace-valued.

K: field. The only NON trace-valued (σ, ε) -sesquilinear forms are for $\operatorname{char}(\mathbb{K}) = 2$ and $\sigma = id \ (\Rightarrow \varepsilon = 1)$

Rmk: Given a (not null) sesquilinear form ϕ which is not trace-valued, it is always possible to consider the associated non-degenerate trace-valued sesquilinear form ϕ_0 .

Lemma

If A is a maximal totally isotropic subspace of $\mathbb V$ and $p \not\in A$ is an isotropic point

イロト イヨト イヨト イヨト

Lemma

If A is a maximal totally isotropic subspace of \mathbb{V} and $p \notin A$ is an isotropic point then $\langle A \cap p^{\perp}, p \rangle$ is a maximal totally isotropic subspace.

イロト イヨト イヨト イヨト

Lemma

If A is a maximal totally isotropic subspace of \mathbb{V} and $p \notin A$ is an isotropic point then $\langle A \cap p^{\perp}, p \rangle$ is a maximal totally isotropic subspace.

Theorem

Suppose ϕ is a trace-valued sesquilinear form of finite Witt index.

イロン イヨン イヨン イヨン

Lemma

If A is a maximal totally isotropic subspace of \mathbb{V} and $p \notin A$ is an isotropic point then $\langle A \cap p^{\perp}, p \rangle$ is a maximal totally isotropic subspace.

Theorem

Suppose ϕ is a trace-valued sesquilinear form of finite Witt index. Then, for every maximal totally isotropic subspace A of \mathbb{V} there exists a maximal totally isotropic subspace B such that

イロン イヨン イヨン イヨン

Lemma

If A is a maximal totally isotropic subspace of \mathbb{V} and $p \notin A$ is an isotropic point then $\langle A \cap p^{\perp}, p \rangle$ is a maximal totally isotropic subspace.

Theorem

Suppose ϕ is a trace-valued sesquilinear form of finite Witt index. Then, for every maximal totally isotropic subspace A of \mathbb{V} there exists a maximal totally isotropic subspace B such that $A \cap B = \operatorname{Rad}(\phi)$.

イロン イヨン イヨン イヨン

Lemma

If A is a maximal totally isotropic subspace of \mathbb{V} and $p \notin A$ is an isotropic point then $\langle A \cap p^{\perp}, p \rangle$ is a maximal totally isotropic subspace.

Theorem

Suppose ϕ is a trace-valued sesquilinear form of finite Witt index. Then, for every maximal totally isotropic subspace A of \mathbb{V} there exists a maximal totally isotropic subspace B such that $A \cap B = Rad(\phi)$.

Corollary

Suppose ϕ is a trace-valued sesquilinear form of finite Witt index *n*.

イロト イポト イヨト イヨト

Lemma

If A is a maximal totally isotropic subspace of \mathbb{V} and $p \notin A$ is an isotropic point then $\langle A \cap p^{\perp}, p \rangle$ is a maximal totally isotropic subspace.

Theorem

Suppose ϕ is a trace-valued sesquilinear form of finite Witt index. Then, for every maximal totally isotropic subspace A of \mathbb{V} there exists a maximal totally isotropic subspace B such that $A \cap B = Rad(\phi)$.

Corollary

Suppose ϕ is a trace-valued sesquilinear form of finite Witt index n. Then $2n \leq \dim(\mathbb{V})$.

イロト イポト イヨト イヨト

Examples of non-deg. trace-valued (σ, ε)-sesquilinear forms

Alternating Forms.

Examples of non-deg. trace-valued (σ, ε)-sesquilinear forms

Alternating Forms.

< 日 > < 四 > < 回 > < 回 > < 回 > .

Examples of non-deg. trace-valued (σ, ε)-sesquilinear forms

Alternating Forms.

char(\mathbb{K}) $\neq 2$ ϕ : trace-valued (σ, ε)-sesquilinear form is alternating

・ 御 と ・ 臣 と ・ を 臣 と

Examples of non-deg. trace-valued (σ, ε)-sesquilinear forms

Alternating Forms.

 $\begin{array}{c|c} \operatorname{char}(\mathbb{K}) \neq 2 & \phi: \text{ trace-valued } (\sigma, \varepsilon) \text{-sesquilinear form is} \\ & \text{alternating if } (\sigma, \varepsilon) = (id, -1). \end{array}$

(1) マン・ション・ (1) マン・

Examples of non-deg. trace-valued (σ, ε)-sesquilinear forms

Alternating Forms.

 $\begin{array}{c|c} char(\mathbb{K}) \neq 2 & \phi: \text{ trace-valued } (\sigma, \varepsilon) \text{-sesquilinear form is} \\ \hline \\ alternating if (\sigma, \varepsilon) = (id, -1). \end{array}$

Examples of non-deg. trace-valued (σ, ε)-sesquilinear forms

Alternating Forms.

 $\begin{array}{c|c} char(\mathbb{K}) \neq 2 & \phi: \text{ trace-valued } (\sigma, \varepsilon) \text{-sesquilinear form is} \\ \hline & \text{alternating if } (\sigma, \varepsilon) = (id, -1). \end{array}$

 $char(\mathbb{K}) = 2 \phi: \text{ trace-valued } (\sigma, \varepsilon) \text{-sesquilinear form is}$ alternating

(日) (同) (E) (E) (E)

Examples of non-deg. trace-valued (σ, ε)-sesquilinear forms

Alternating Forms.

 $\begin{array}{c|c} char(\mathbb{K}) \neq 2 & \phi: \text{ trace-valued } (\sigma, \varepsilon) \text{-sesquilinear form is} \\ \hline \\ alternating if (\sigma, \varepsilon) = (id, -1). \end{array}$

 $char(\mathbb{K}) = 2 \phi: \text{ trace-valued } (\sigma, \varepsilon) \text{-sesquilinear form is}$ alternating if $(\sigma, \varepsilon) = (id, 1)$

Examples of non-deg. trace-valued (σ, ε)-sesquilinear forms

Alternating Forms.

 $\begin{array}{c|c} char(\mathbb{K}) \neq 2 & \phi: \text{ trace-valued } (\sigma, \varepsilon) \text{-sesquilinear form is} \\ \hline \\ alternating if (\sigma, \varepsilon) = (id, -1). \end{array}$

 $\begin{array}{l} \mbox{char}(\mathbb{K})=2 \end{tabular} \phi \end{tabular}: \mbox{trace-valued } (\sigma,\varepsilon)\end{tabular} \mbox{sequilinear form is} \\ \mbox{alternating if } (\sigma,\varepsilon)=(\textit{id},1) \mbox{ and } \phi(x,x)=0 \end{tabular} \forall x\in\mathbb{V}. \end{array}$

イロト イポト イヨト イヨト

Examples of non-deg. trace-valued (σ, ε)-sesquilinear forms

Alternating Forms.

 $\begin{array}{c|c} char(\mathbb{K}) \neq 2 & \phi: \text{ trace-valued } (\sigma, \varepsilon) \text{-sesquilinear form is} \\ \hline \\ alternating if (\sigma, \varepsilon) = (id, -1). \end{array}$

 $\begin{array}{l} \mathrm{char}(\mathbb{K})=2 \\ \hline \phi: \mbox{ trace-valued } (\sigma,\varepsilon)\mbox{-sesquilinear form is} \\ \hline \mbox{ alternating if } (\sigma,\varepsilon)=(\mathit{id},1) \mbox{ and } \phi(x,x)=0 \ \forall x\in\mathbb{V}. \end{array}$

 ϕ is alternating \Rightarrow all points are isotropic.

Examples of non-deg. trace-valued (σ, ε)-sesquilinear forms

Alternating Forms.

 $\begin{array}{c|c} char(\mathbb{K}) \neq 2 & \phi: \text{ trace-valued } (\sigma, \varepsilon) \text{-sesquilinear form is} \\ \hline \\ alternating if (\sigma, \varepsilon) = (id, -1). \end{array}$

 $\begin{array}{l} \mathrm{char}(\mathbb{K})=2 \\ \hline \phi: \mbox{ trace-valued } (\sigma,\varepsilon)\mbox{-sesquilinear form is} \\ \hline \mbox{ alternating if } (\sigma,\varepsilon)=(\mathit{id},1) \mbox{ and } \phi(x,x)=0 \ \forall x\in\mathbb{V}. \end{array}$

 ϕ is alternating \Rightarrow all points are isotropic.

Non-deg. alternating forms of Witt index n exist only in vector spaces of dimension 2n.

Examples of non-deg. trace-valued (σ, ε)-sesquilinear forms

Alternating Forms.

 $\begin{array}{c|c} char(\mathbb{K}) \neq 2 & \phi: \text{ trace-valued } (\sigma, \varepsilon) \text{-sesquilinear form is} \\ \hline \\ alternating if (\sigma, \varepsilon) = (id, -1). \end{array}$

 $\begin{array}{l} \mathrm{char}(\mathbb{K})=2 \\ \phi: \mbox{ trace-valued } (\sigma,\varepsilon)\mbox{-sesquilinear form is} \\ \hline \mbox{ alternating if } (\sigma,\varepsilon)=(\mathit{id},1) \mbox{ and } \phi(x,x)=0 \ \forall x\in\mathbb{V}. \end{array}$

 ϕ is alternating \Rightarrow all points are isotropic.

Non-deg. alternating forms of Witt index n exist only in vector spaces of dimension 2n.

The canonical matrix of a non-deg. alternating form is (

$$\left(\begin{array}{cc} 0_n & I_n \\ -I_n & 0_n \end{array}\right)$$

Symmetric Forms.

< □ > < □ > < □ > < □ > < □ > .

æ

Symmetric Forms.

 ϕ : trace-valued (σ, ε)-sesquilinear form is symmetric

- 4 回 2 - 4 回 2 - 4 回 2 - 4

Symmetric Forms.

 ϕ : trace-valued (σ, ε) -sesquilinear form is symmetric if $(\sigma, \varepsilon) = (id, 1)$.

イロン イヨン イヨン イヨン

Symmetric Forms.

 ϕ : trace-valued (σ, ε) -sesquilinear form is symmetric if $(\sigma, \varepsilon) = (id, 1)$.

 $\mathbb{K}:$ field such that every element of \mathbb{K} is a square.

A (10) A (10)

Symmetric Forms.

 ϕ : trace-valued (σ, ε) -sesquilinear form is symmetric if $(\sigma, \varepsilon) = (id, 1)$.

 $\mathbb{K}:$ field such that every element of \mathbb{K} is a square.

 $char(\mathbb{K}) \neq 2$: non-degenerate symmetric bilinear forms with finite Witt index *n* exist only if dim(\mathbb{V}) = 2*n* or 2*n* + 1.

소리가 소문가 소문가 소문가

Symmetric Forms.

 ϕ : trace-valued (σ, ε) -sesquilinear form is symmetric if $(\sigma, \varepsilon) = (id, 1)$.

 $\mathbb{K}:$ field such that every element of \mathbb{K} is a square.

 $char(\mathbb{K}) \neq 2$: non-degenerate symmetric bilinear forms with finite Witt index *n* exist only if dim(\mathbb{V}) = 2*n* or 2*n* + 1.

 $char(\mathbb{K}) = 2$: the unique non-degenerate trace-valued symmetric bilinear forms are alternating.

 \mathbb{K} : field such that $[\mathbb{K} : \mathbb{K}^{\square}] = 2$; ϕ : non-deg. symmetric bilinear form

・ロン ・回と ・ヨン・

æ

K: field such that $[\mathbb{K} : \mathbb{K}^{\Box}] = 2$; ϕ : non-deg. symmetric bilinear form (a) dim(\mathbb{V}) = 2*n* and the canonical matrix of ϕ is $\begin{pmatrix} 0_n & I_n \\ I_n & 0_n \end{pmatrix}$;

(1日) (日) (日)

K: field such that $[\mathbb{K} : \mathbb{K}^{\square}] = 2$; ϕ : non-deg. symmetric bilinear form (a) dim $(\mathbb{V}) = 2n$ and the canonical matrix of ϕ is $\begin{pmatrix} 0_n & l_n \\ l_n & 0_n \end{pmatrix}$; (b) dim $(\mathbb{V}) = 2n + 1$ and the canonical matrix of ϕ is $\begin{pmatrix} 0_n & l_n & 0 \\ l_n & 0_n & 0 \\ 0 & 0 & 1 \end{pmatrix}$;

・ 「 ト ・ ヨ ト ・ ヨ ト ・

 \mathbb{K} : field such that $[\mathbb{K}:\mathbb{K}^\Box]=2;~\phi$: non-deg. symmetric bilinear form (a) dim(\mathbb{V}) = 2*n* and the canonical matrix of ϕ is $\begin{pmatrix} 0_n & I_n \\ I_n & 0_n \end{pmatrix}$; (b) dim(\mathbb{V}) = 2*n* + 1 and the canonical matrix of ϕ is $\begin{pmatrix} 0_n & I_n & 0 \\ I_n & 0_n & 0 \\ 0 & 0 & 1 \end{pmatrix}$; (c) dim(\mathbb{V})=2n+2 and the canonical matrix is $\begin{pmatrix} 0_n & I_n & 0 & 0 \\ I_n & 0_n & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & m \end{pmatrix}$, $\eta = - \square$;

伺 ト イヨト イヨト

 \mathbb{K} : field such that $[\mathbb{K}:\mathbb{K}^\Box]=2;~\phi$: non-deg. symmetric bilinear form (a) dim(\mathbb{V}) = 2*n* and the canonical matrix of ϕ is $\begin{pmatrix} 0_n & I_n \\ I_n & 0_n \end{pmatrix}$; (b) dim(\mathbb{V}) = 2*n* + 1 and the canonical matrix of ϕ is $\begin{pmatrix} 0_n & I_n & 0 \\ I_n & 0_n & 0 \\ 0 & 0 & 1 \end{pmatrix}$; (c) dim(\mathbb{V})=2*n*+2 and the canonical matrix is $\begin{pmatrix} 0_n & I_n & 0 & 0 \\ I_n & 0_n & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & m \end{pmatrix}$, $\eta = -\square$; (d) dim(\mathbb{V}) $\geq 2n+2$ and the canonical matrix is $\begin{pmatrix} 0 & I_n & 0 \\ I_n & 0 & 0 \\ 0 & 0 & M \end{pmatrix}$ where $-1 = \square$ and M_0 is the identity matrix of rank dim $(\mathbb{V}) - 2n$.

Hermitian and Anti-Hermitian Forms.

Hermitian and Anti-Hermitian Forms.

 ϕ : trace-valued (σ, ε)-sesq. form is Hermitian

・ロン ・回と ・ヨン ・ヨン

æ

Hermitian and Anti-Hermitian Forms.

 ϕ : trace-valued (σ, ε)-sesq. form is Hermitian if $\sigma \neq id$ and $\varepsilon = 1$.

・ロン ・回 と ・ 回 と ・ 回 と

= 990

Hermitian and Anti-Hermitian Forms.

 ϕ : trace-valued (σ, ε) -sesq. form is Hermitian if $\sigma \neq id$ and $\varepsilon = 1$. ϕ : trace-valued (σ, ε) -sesq. form is Anti-Hermitian

・ロン ・回 と ・ ヨ と ・ ヨ と

Hermitian and Anti-Hermitian Forms.

 ϕ : trace-valued (σ, ε) -sesq. form is Hermitian if $\sigma \neq id$ and $\varepsilon = 1$. ϕ : trace-valued (σ, ε) -sesq. form is Anti-Hermitian if $\sigma \neq id$ and $\varepsilon = -1$.

・ロン ・回 と ・ ヨ と ・ ヨ と

= 990

Hermitian and Anti-Hermitian Forms.

 ϕ : trace-valued (σ, ε) -sesq. form is Hermitian if $\sigma \neq id$ and $\varepsilon = 1$. ϕ : trace-valued (σ, ε) -sesq. form is Anti-Hermitian if $\sigma \neq id$ and $\varepsilon = -1$.

$$\mathbb{K}={\it GF}(q), \;\; q=q_0^2
ightarrowarepsilon=1.$$

・ロン ・回 と ・ ヨ と ・ ヨ と

= 990

Hermitian and Anti-Hermitian Forms.

 ϕ : trace-valued (σ, ε) -sesq. form is Hermitian if $\sigma \neq id$ and $\varepsilon = 1$. ϕ : trace-valued (σ, ε) -sesq. form is Anti-Hermitian if $\sigma \neq id$ and $\varepsilon = -1$.

$$\mathbb{K} = GF(q), \ q = q_0^2 \to \varepsilon = 1.$$

If ϕ is non-degenerate trace-valued ($\sigma,1)$ -sesquilinear form with Witt index n then :

イロト イポト イヨト イヨト

Hermitian and Anti-Hermitian Forms.

 ϕ : trace-valued (σ, ε) -sesq. form is Hermitian if $\sigma \neq id$ and $\varepsilon = 1$. ϕ : trace-valued (σ, ε) -sesq. form is Anti-Hermitian if $\sigma \neq id$ and $\varepsilon = -1$.

$$\mathbb{K} = GF(q), \ \ q = q_0^2 \to \varepsilon = 1.$$

If ϕ is non-degenerate trace-valued $(\sigma, 1)$ -sesquilinear form with Witt index n then :

(a) dim(\mathbb{V}) = 2*n* and the canonical matrix of ϕ is $\begin{pmatrix} 0_n & I_n \\ I_n & 0_n \end{pmatrix}$;

Hermitian and Anti-Hermitian Forms.

 ϕ : trace-valued (σ, ε) -sesq. form is Hermitian if $\sigma \neq id$ and $\varepsilon = 1$. ϕ : trace-valued (σ, ε) -sesq. form is Anti-Hermitian if $\sigma \neq id$ and $\varepsilon = -1$.

$$\mathbb{K} = GF(q), \ \ q = q_0^2 \to \varepsilon = 1.$$

If ϕ is non-degenerate trace-valued $(\sigma, 1)$ -sesquilinear form with Witt index *n* then :

(a) dim(\mathbb{V}) = 2n and the canonical matrix of ϕ is $\begin{pmatrix} 0_n & l_n \\ l_n & 0_n \end{pmatrix}$; (b) dim(\mathbb{V}) = 2n + 1 and the canonical matrix of ϕ is $\begin{pmatrix} 0_n & l_n & 0 \\ l_n & 0_n & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

イロト イポト イラト イラト 一日

Theorem

If \mathbb{K} is a division ring then every trace-valued (σ, ε) -sesquilinear form

イロン イヨン イヨン イヨン

æ

Theorem

If \mathbb{K} is a division ring then every trace-valued (σ, ε) -sesquilinear form is either symmetric,

イロト イヨト イヨト イヨト

Theorem

If \mathbb{K} is a division ring then every trace-valued (σ, ε) -sesquilinear form is either symmetric, alternating

イロト イヨト イヨト イヨト

Theorem

If \mathbb{K} is a division ring then every trace-valued (σ, ε) -sesquilinear form is either symmetric, alternating or proportional to a Hermitian form.

イロン イヨン イヨン イヨン

$$\mathbb{K}_{\sigma,\varepsilon} := \{t - \varepsilon t^{\sigma}\}_{t \in \mathbb{K}} \leq \mathbb{K}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$$\mathbb{K}_{\sigma,\varepsilon} := \{t - \varepsilon t^{\sigma}\}_{t \in \mathbb{K}} \leq \mathbb{K}$$

Definition

A function $f: \mathbb{V} \to \mathbb{K}/\mathbb{K}_{\sigma,\varepsilon}$ is a (σ, ε) -pseudoquadratic form if (i) $f(tx) = tf(x)t^{\sigma} \quad \forall x \in \mathbb{V}, \forall t \in \mathbb{K}$

・ロト ・回ト ・ヨト ・ヨト

$$\mathbb{K}_{\sigma,\varepsilon} := \{t - \varepsilon t^{\sigma}\}_{t \in \mathbb{K}} \leq \mathbb{K}$$

Definition

A function $f: \mathbb{V} \to \mathbb{K}/\mathbb{K}_{\sigma,\varepsilon}$ is a (σ, ε) -pseudoquadratic form if (i) $f(tx) = tf(x)t^{\sigma} \quad \forall x \in \mathbb{V}, \forall t \in \mathbb{K}$ (ii) $f(x+y) = f(x) + f(y) + (\phi(x,y) + \mathbb{K}_{\sigma,\varepsilon}) \quad \forall x, y \in \mathbb{V},$ ϕ : suitable (σ, ε) -sesquilinear form called the

sesquilinearization of f.

・ロン ・回 と ・ ヨ と ・ ヨ と

$$\mathbb{K}_{\sigma,\varepsilon} := \{t - \varepsilon t^{\sigma}\}_{t \in \mathbb{K}} \leq \mathbb{K}$$

Definition

A function $f: \mathbb{V} \to \mathbb{K}/\mathbb{K}_{\sigma,\varepsilon}$ is a (σ, ε) -pseudoquadratic form if

Theorem

If $\mathbb{K}_{\sigma,\varepsilon} \neq \mathbb{K}$ then the sesquilinear form ϕ is uniquely determined by the pseudoquadratic form f.

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Theorem

(a) If $char(\mathbb{K}) \neq 2$

Ilaria Cardinali An outline of polar spaces: basics and advances Part 1

・ロン ・回 と ・ ヨン ・ モン

Э

Theorem

(a) If $\operatorname{char}(\mathbb{K}) \neq 2$ then $f(x) = \phi(x, x)/2 + \mathbb{K}_{\sigma, \varepsilon}, \quad \forall x \in \mathbb{V};$

Ilaria Cardinali An outline of polar spaces: basics and advances Part 1

・ロト ・回ト ・ヨト ・ヨト

æ

Theorem

(a) If char(\mathbb{K}) $\neq 2$ then $f(x) = \phi(x, x)/2 + \mathbb{K}_{\sigma, \varepsilon}, \quad \forall x \in \mathbb{V};$ (b) If char(\mathbb{K}) = 2 and $\sigma|_{Z(\mathbb{K})} \neq id$

・ロト ・回ト ・ヨト ・ヨト

æ

Theorem

(a) If $\operatorname{char}(\mathbb{K}) \neq 2$ then $f(x) = \phi(x, x)/2 + \mathbb{K}_{\sigma, \varepsilon}, \quad \forall x \in \mathbb{V};$ (b) If $\operatorname{char}(\mathbb{K}) = 2$ and $\sigma|_{Z(\mathbb{K})} \neq id$ then

$$f(x) = \phi(x,x)/(1 + (t^{\sigma}/t)^2) + \mathbb{K}_{\sigma,\varepsilon}, \ \forall x \in \mathbb{V}$$

where $t \in Z(\mathbb{K})$ with $t^{\sigma} \neq t$.

・ロン ・回 と ・ ヨ と ・ ヨ と

f: (σ, ε) -pseudoquadratic form

・ロト ・回ト ・ヨト ・ヨト

æ

f: (σ, ε) -pseudoquadratic form ϕ : sesquilinearization of f

- 4 回 2 - 4 □ 2 - 4 □

 $f: (\sigma, \varepsilon)$ -pseudoquadratic form ϕ : sesquilinearization of f

A point *p* in $PG(\mathbb{V})$ is singular if f(p) = 0.

 $f: (\sigma, \varepsilon)$ -pseudoquadratic form ϕ : sesquilinearization of f

A point p in $PG(\mathbb{V})$ is singular if f(p) = 0. A subspace S of $PG(\mathbb{V})$ is totally singular if $f(x) = 0 \ \forall x \in S$.

 $f: (\sigma, \varepsilon)$ -pseudoquadratic form ϕ : sesquilinearization of f

A point p in $PG(\mathbb{V})$ is singular if f(p) = 0. A subspace S of $PG(\mathbb{V})$ is totally singular if $f(x) = 0 \ \forall x \in S$.

Theorem

If S is a totally singular subspace for f

 $f: (\sigma, \varepsilon)$ -pseudoquadratic form ϕ : sesquilinearization of f

A point p in $PG(\mathbb{V})$ is singular if f(p) = 0. A subspace S of $PG(\mathbb{V})$ is totally singular if $f(x) = 0 \ \forall x \in S$.

Theorem

If S is a totally singular subspace for f then S is a totally isotropic subspace for ϕ .

 $f: (\sigma, \varepsilon)$ -pseudoquadratic form ϕ : sesquilinearization of f

A point p in $PG(\mathbb{V})$ is singular if f(p) = 0. A subspace S of $PG(\mathbb{V})$ is totally singular if $f(x) = 0 \ \forall x \in S$.

Theorem

If *S* is a totally singular subspace for *f* then *S* is a totally isotropic subspace for ϕ . All points of $PG(\mathbb{V})$ singular for *f* are isotropic for ϕ .

$$\operatorname{char}(\mathbb{K}) \neq 2 \text{ or } \operatorname{char}(\mathbb{K}) = 2 \text{ and } \sigma|_{Z(\mathbb{K})} \neq id$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$$\operatorname{char}(\mathbb{K}) \neq 2 \text{ or } \operatorname{char}(\mathbb{K}) = 2 \text{ and } \sigma|_{Z(\mathbb{K})} \neq id$$

 ${\it p}$ is an isotropic point for $\phi \Leftrightarrow$

イロン イヨン イヨン イヨン

æ

$$\operatorname{char}(\mathbb{K}) \neq 2 \text{ or } \operatorname{char}(\mathbb{K}) = 2 \text{ and } \sigma|_{Z(\mathbb{K})} \neq id$$

p is an isotropic point for $\phi \Leftrightarrow p$ is a singular point for f.

$$\operatorname{char}(\mathbb{K}) \neq 2 \text{ or } \operatorname{char}(\mathbb{K}) = 2 \text{ and } \sigma|_{Z(\mathbb{K})} \neq id$$

p is an isotropic point for $\phi \Leftrightarrow p$ is a singular point for f.

The theory of totally isotropic subspaces for ϕ \equiv The theory of totally singular subspaces of f

$$\operatorname{char}(\mathbb{K}) \neq 2 \text{ or } \operatorname{char}(\mathbb{K}) = 2 \text{ and } \sigma|_{\mathcal{Z}(\mathbb{K})} \neq \mathit{id}$$

p is an isotropic point for $\phi \Leftrightarrow p$ is a singular point for f.

The theory of totally isotropic subspaces for ϕ $$\equiv$$ The theory of totally singular subspaces of f

$$\operatorname{char}(\mathbb{K}) = 2 \text{ and } \sigma|_{Z(\mathbb{K})} = id.$$

$$\operatorname{char}(\mathbb{K})
eq 2 \text{ or } \operatorname{char}(\mathbb{K}) = 2 \text{ and } \sigma|_{\mathcal{Z}(\mathbb{K})}
eq id$$

p is an isotropic point for $\phi \Leftrightarrow p$ is a singular point for f.

The theory of totally isotropic subspaces for ϕ \equiv The theory of totally singular subspaces of f

$$\operatorname{char}(\mathbb{K}) = 2 \text{ and } \sigma|_{Z(\mathbb{K})} = id.$$

* Many results proved for non-degenerate sesquilinear forms have an analogue for non singular quadratic forms.

(D) (A) (A) (A) (A)

(P, L): partial linear space.

・ロン ・四と ・ヨン ・ヨン

æ

(P, L): partial linear space.

 $a \perp b$ stands for a and b collinear, $a, b \in P$.

イロト イヨト イヨト イヨト

æ

(P, L): partial linear space. $a \perp b$ stands for a and b collinear, $a, b \in P$. $a^{\perp} := \{p \colon p \perp a\} \cup \{a\}$ and if $X \subseteq P$ then $X^{\perp} := \bigcap_{x \in X} x^{\perp}$.

・ロン ・回と ・ヨン・

(P, L): partial linear space.

$a \perp b$ stands for a and b collinear, $a, b \in P$. $a^{\perp} := \{p \colon p \perp a\} \cup \{a\}$ and if $X \subseteq P$ then $X^{\perp} := \cap_{x \in X} x^{\perp}$.

Definition

A partial linear space $\mathcal{P} = (P, L)$

・ロン ・回 と ・ ヨ と ・ ヨ と

(P, L): partial linear space.

$$a \perp b$$
 stands for a and b collinear, $a, b \in P$.
 $a^{\perp} := \{p \colon p \perp a\} \cup \{a\}$ and if $X \subseteq P$ then $X^{\perp} := \cap_{x \in X} x^{\perp}$.

Definition

A partial linear space $\mathcal{P} = (P, L)$ is a non-degenerate ordinary polar space

イロト イヨト イヨト イヨト

(P, L): partial linear space.

$$a \perp b$$
 stands for a and b collinear, $a, b \in P$.
 $a^{\perp} := \{p \colon p \perp a\} \cup \{a\}$ and if $X \subseteq P$ then $X^{\perp} := \cap_{x \in X} x^{\perp}$.

Definition

A partial linear space $\mathcal{P} = (P, L)$ is a non-degenerate ordinary polar space if (*) $P^{\perp} = \emptyset$;

・ロト ・回ト ・ヨト ・ヨト

(P, L): partial linear space.

$$a \perp b$$
 stands for a and b collinear, $a, b \in P$.
 $a^{\perp} := \{p \colon p \perp a\} \cup \{a\}$ and if $X \subseteq P$ then $X^{\perp} := \cap_{x \in X} x^{\perp}$.

Definition

A partial linear space $\mathcal{P} = (P, L)$ is a non-degenerate ordinary polar space if (*) $P^{\perp} = \emptyset$;

(*)
$$|p^{\perp} \cap I| = 1$$
 or $|p^{\perp} \cap I| = |I| \quad \forall p \in P, \ \forall I \in L;$

< ロ > < 回 > < 回 > < 回 > < 回 > <

(P, L): partial linear space.

$$a \perp b$$
 stands for a and b collinear, $a, b \in P$.
 $a^{\perp} := \{p \colon p \perp a\} \cup \{a\}$ and if $X \subseteq P$ then $X^{\perp} := \cap_{x \in X} x^{\perp}$.

Definition

A partial linear space $\mathcal{P} = (P, L)$ is a non-degenerate ordinary polar space if (*) $P^{\perp} = \emptyset$; (*) $|p^{\perp} \cap I| = 1$ or $|p^{\perp} \cap I| = |I| \quad \forall p \in P, \forall I \in L$; (*) $|I| \ge 3 \quad \forall I \in L$.

(日) (同) (E) (E) (E)

Let $\ensuremath{\mathcal{P}}$ be a non-degenerate ordinary polar space.

Let \mathcal{P} be a non-degenerate ordinary polar space. S is singular if $S \subseteq S^{\perp}$.

回 と く ヨ と く ヨ と

Let \mathcal{P} be a non-degenerate ordinary polar space. S is singular if $S \subseteq S^{\perp}$.

Theorem

Let \mathcal{P} be a non-degenerate ordinary polar space.

同 ト く ヨ ト く ヨ ト

Let \mathcal{P} be a non-degenerate ordinary polar space. S is singular if $S \subseteq S^{\perp}$.

Theorem

Let \mathcal{P} be a non-degenerate ordinary polar space. If there exists one maximal chain of singular subspaces of \mathcal{P} of finite length then

向下 イヨト イヨト

Let \mathcal{P} be a non-degenerate ordinary polar space. S is singular if $S \subseteq S^{\perp}$.

Theorem

Let \mathcal{P} be a non-degenerate ordinary polar space. If there exists one maximal chain of singular subspaces of \mathcal{P} of finite length then every maximal chain of singular subspaces has finite length

- 4 周 ト - 4 日 ト - 4 日 ト

Let \mathcal{P} be a non-degenerate ordinary polar space. S is singular if $S \subseteq S^{\perp}$.

Theorem

Let \mathcal{P} be a non-degenerate ordinary polar space. If there exists one maximal chain of singular subspaces of \mathcal{P} of finite length then every maximal chain of singular subspaces has finite length and all maximal chains have the same length.

- A 同 ト - A 三 ト - A 三 ト

Let \mathcal{P} be a non-degenerate ordinary polar space. S is singular if $S \subseteq S^{\perp}$.

Theorem

Let \mathcal{P} be a non-degenerate ordinary polar space. If there exists one maximal chain of singular subspaces of \mathcal{P} of finite length then every maximal chain of singular subspaces has finite length and all maximal chains have the same length.

Definition

Let \mathcal{P} be a non-degenerate ordinary polar space admitting a maximal chain of singular subspaces of finite length.

Let \mathcal{P} be a non-degenerate ordinary polar space. S is singular if $S \subseteq S^{\perp}$.

Theorem

Let \mathcal{P} be a non-degenerate ordinary polar space. If there exists one maximal chain of singular subspaces of \mathcal{P} of finite length then every maximal chain of singular subspaces has finite length and all maximal chains have the same length.

Definition

Let \mathcal{P} be a non-degenerate ordinary polar space admitting a maximal chain of singular subspaces of finite length. The rank of \mathcal{P} is the length of a maximal chain of non-empty singular subspaces.

Theorem

 $\mathcal{P} = (\mathcal{P}, \mathcal{L})$: non-degenerate ordinary polar space of finite rank.

・ロト ・回ト ・ヨト ・ヨト

æ

Theorem

 $\mathcal{P} = (P, L)$: non-degenerate ordinary polar space of finite rank. Then the following hold

イロト イヨト イヨト イヨト

æ

Theorem

 $\mathcal{P} = (P, L)$: non-degenerate ordinary polar space of finite rank. Then the following hold

(i) Every singular subspace of \mathcal{P} is a projective space.

- 4 同 ト 4 臣 ト 4 臣 ト

Theorem

 $\mathcal{P} = (P, L)$: non-degenerate ordinary polar space of finite rank. Then the following hold

- (i) Every singular subspace of \mathcal{P} is a projective space.
- (ii) If S is a maximal subspace of \mathcal{P}

Theorem

 $\mathcal{P} = (P, L)$: non-degenerate ordinary polar space of finite rank. Then the following hold

- (i) Every singular subspace of \mathcal{P} is a projective space.
- (ii) If S is a maximal subspace of \mathcal{P} and p a point not in S

- 4 同 ト 4 臣 ト 4 臣 ト

Theorem

 $\mathcal{P} = (P, L)$: non-degenerate ordinary polar space of finite rank. Then the following hold

(i) Every singular subspace of \mathcal{P} is a projective space.

(ii) If S is a maximal subspace of P and p a point not in S then p[⊥] ∩ S is a hyperplane of S and there exists a unique maximal subspace S' := (p[⊥] ∩ S, p) such that S ∩ S' = p[⊥] ∩ S and S' ⊇ (p[⊥] ∩ S) ∪ {p}.

- 4 同 6 4 日 6 4 日 6

Theorem

 $\mathcal{P} = (P, L)$: non-degenerate ordinary polar space of finite rank. Then the following hold

(i) Every singular subspace of \mathcal{P} is a projective space.

(ii) If S is a maximal subspace of P and p a point not in S then p[⊥] ∩ S is a hyperplane of S and there exists a unique maximal subspace S' := (p[⊥] ∩ S, p) such that S ∩ S' = p[⊥] ∩ S and S' ⊇ (p[⊥] ∩ S) ∪ {p}.

 (iii) Every singular subspace is contained in a maximal singular subspace.

イロト イポト イヨト イヨト

Theorem

 $\mathcal{P} = (P, L)$: non-degenerate ordinary polar space of finite rank. Then the following hold

(i) Every singular subspace of \mathcal{P} is a projective space.

(ii) If S is a maximal subspace of P and p a point not in S then p[⊥] ∩ S is a hyperplane of S and there exists a unique maximal subspace S' := (p[⊥] ∩ S, p) such that S ∩ S' = p[⊥] ∩ S and S' ⊇ (p[⊥] ∩ S) ∪ {p}.

- (iii) Every singular subspace is contained in a maximal singular subspace.
- (iv) There exist two disjoint maximal subspaces.

イロト イポト イヨト イヨト

Examples.

(*) Generalized quadrangles:

イロン イヨン イヨン イヨン

æ

Examples.

(*) Generalized quadrangles: polar spaces of rank 2 in which for any point p and any line l with $p \notin l$ there exists a unique point on l collinear with p.

イロン イヨン イヨン イヨン

Examples.

(*) Generalized quadrangles: polar spaces of rank 2 in which for any point p and any line l with $p \notin l$ there exists a unique point on l collinear with p.

(*) Projective planes

イロン イヨン イヨン イヨン

Examples.

(*) Generalized quadrangles: polar spaces of rank 2 in which for any point p and any line l with $p \notin l$ there exists a unique point on l collinear with p.

(*) Projective planes

Theorem

(i) ϕ : non-degenerate reflexive trace-valued (σ , ε)- sesquilinear form of finite Witt index over a vector space \mathbb{V} .

Examples.

(*) Generalized quadrangles: polar spaces of rank 2 in which for any point p and any line l with $p \notin l$ there exists a unique point on l collinear with p.

(*) Projective planes

Theorem

(i) ϕ : non-degenerate reflexive trace-valued (σ, ε)- sesquilinear form of finite Witt index over a vector space \mathbb{V} . Then the set of all totally isotropic points and lines of $PG(\mathbb{V})$ with respect to ϕ

(日) (日) (日) (日) (日)

Examples.

(*) Generalized quadrangles: polar spaces of rank 2 in which for any point p and any line l with $p \notin l$ there exists a unique point on l collinear with p.

(*) Projective planes

Theorem

(i) ϕ : non-degenerate reflexive trace-valued (σ , ε)- sesquilinear form of finite Witt index over a vector space \mathbb{V} . Then the set of all totally isotropic points and lines of $PG(\mathbb{V})$ with respect to ϕ forms a non-degenerate ordinary polar space of finite rank.

(日) (日) (日) (日) (日)

Examples.

(*) Generalized quadrangles: polar spaces of rank 2 in which for any point p and any line l with $p \notin l$ there exists a unique point on l collinear with p.

(*) Projective planes

Theorem

(i) ϕ : non-degenerate reflexive trace-valued (σ, ε)- sesquilinear form of finite Witt index over a vector space \mathbb{V} . Then the set of all totally isotropic points and lines of $PG(\mathbb{V})$ with respect to ϕ forms a non-degenerate ordinary polar space of finite rank.

(ii) f: non-singular pseudo-quadratic form of finite Witt index over a vector space \mathbb{V} .

Examples.

(*) Generalized quadrangles: polar spaces of rank 2 in which for any point p and any line l with $p \notin l$ there exists a unique point on l collinear with p.

(*) Projective planes

Theorem

(i) ϕ : non-degenerate reflexive trace-valued (σ, ε)- sesquilinear form of finite Witt index over a vector space \mathbb{V} . Then the set of all totally isotropic points and lines of $PG(\mathbb{V})$ with respect to ϕ forms a non-degenerate ordinary polar space of finite rank.

(ii) f: non-singular pseudo-quadratic form of finite Witt index over a vector space \mathbb{V} . Then the set of all totally singular points and lines of $PG(\mathbb{V})$ with respect to f

Examples.

(*) Generalized quadrangles: polar spaces of rank 2 in which for any point p and any line l with $p \notin l$ there exists a unique point on l collinear with p.

(*) Projective planes

Theorem

(i) ϕ : non-degenerate reflexive trace-valued (σ, ε)- sesquilinear form of finite Witt index over a vector space \mathbb{V} . Then the set of all totally isotropic points and lines of $PG(\mathbb{V})$ with respect to ϕ forms a non-degenerate ordinary polar space of finite rank.

(ii) f: non-singular pseudo-quadratic form of finite Witt index over a vector space \mathbb{V} . Then the set of all totally singular points and lines of $PG(\mathbb{V})$ with respect to f forms a non-degenerate ordinary polar space of finite rank.

イロン イボン イヨン イヨン

Definition

A polar space which can be obtained from either a non-degenerate reflexive trace-valued sesquilinear or a non-singular pseudo-quadratic form is called a classical polar space.

- 4 回 2 - 4 □ 2 - 4 □

Definition

A polar space which can be obtained from either a non-degenerate reflexive trace-valued sesquilinear or a non-singular pseudo-quadratic form is called a classical polar space.

Symplectic polar space \leftrightarrow alternating bilinear form \leftrightarrow $Sp(2n, \mathbb{K})$

イロト イポト イヨト イヨト

Definition

A polar space which can be obtained from either a non-degenerate reflexive trace-valued sesquilinear or a non-singular pseudo-quadratic form is called a classical polar space.

Symplectic polar space \leftrightarrow alternating bilinear form \leftrightarrow $Sp(2n, \mathbb{K})$ Orthogonal polar space \leftrightarrow symmetric bilinear form $\leftrightarrow O(N, \mathbb{K})$

イロト イポト イヨト イヨト

Definition

A polar space which can be obtained from either a non-degenerate reflexive trace-valued sesquilinear or a non-singular pseudo-quadratic form is called a classical polar space.

Symplectic polar space \leftrightarrow alternating bilinear form \leftrightarrow $Sp(2n, \mathbb{K})$ Orthogonal polar space \leftrightarrow symmetric bilinear form $\leftrightarrow O(N, \mathbb{K})$ Hermitian polar space \leftrightarrow hermitian sesquilinear form $\leftrightarrow U(N, \mathbb{K})$

・ロン ・回と ・ヨン・

Are there any non-degenerate ordinary polar spaces of finite rank which are not classical?

- - 4 回 ト - 4 回 ト

Definition

A polar space $\mathcal{P} = (P, L)$ is embeddable

æ

Definition

A polar space $\mathcal{P} = (P, L)$ is embeddable if there exists a vector space \mathbb{V}

・ロン ・回と ・ヨン ・ヨン

æ

Definition

A polar space $\mathcal{P} = (P, L)$ is embeddable if there exists a vector space \mathbb{V} and an injective map $\xi \colon P \to \mathrm{PG}(\mathbb{V})$ such that

・ロン ・回と ・ヨン ・ヨン

Definition

A polar space $\mathcal{P} = (P, L)$ is embeddable if there exists a vector space \mathbb{V} and an injective map $\xi \colon P \to \mathrm{PG}(\mathbb{V})$ such that (i) $\xi(I)$ is a line of $\mathrm{PG}(\mathbb{V})$ for every line $I \in L$;

・ロト ・回ト ・ヨト ・ヨト

Definition

A polar space $\mathcal{P} = (P, L)$ is embeddable if there exists a vector space \mathbb{V} and an injective map $\xi \colon P \to \mathrm{PG}(\mathbb{V})$ such that (i) $\xi(I)$ is a line of $\mathrm{PG}(\mathbb{V})$ for every line $I \in L$; (ii) $\langle \xi(P) \rangle = \mathrm{PG}(\mathbb{V})$.

Definition

A polar space $\mathcal{P} = (P, L)$ is embeddable if there exists a vector space \mathbb{V} and an injective map $\xi \colon P \to \mathrm{PG}(\mathbb{V})$ such that (i) $\xi(I)$ is a line of $\mathrm{PG}(\mathbb{V})$ for every line $I \in L$; (ii) $\langle \xi(P) \rangle = \mathrm{PG}(\mathbb{V})$.

Every classical polar space is embeddable

(ロ) (同) (E) (E) (E)

Definition

A polar space $\mathcal{P} = (P, L)$ is embeddable if there exists a vector space \mathbb{V} and an injective map $\xi \colon P \to \mathrm{PG}(\mathbb{V})$ such that (i) $\xi(I)$ is a line of $\mathrm{PG}(\mathbb{V})$ for every line $I \in L$; (ii) $\langle \xi(P) \rangle = \mathrm{PG}(\mathbb{V})$.

Every classical polar space is embeddable

 \hookrightarrow An embeddable polar space is (necessarily) ordinary and all its planes are desarguesian.

・ロン ・回 と ・ ヨ と ・ ヨ と

Definition

A polar space $\mathcal{P} = (P, L)$ is embeddable if there exists a vector space \mathbb{V} and an injective map $\xi \colon P \to \mathrm{PG}(\mathbb{V})$ such that (i) $\xi(I)$ is a line of $\mathrm{PG}(\mathbb{V})$ for every line $I \in L$; (ii) $\langle \xi(P) \rangle = \mathrm{PG}(\mathbb{V})$.

Every classical polar space is embeddable

 \hookrightarrow An embeddable polar space is (necessarily) ordinary and all its planes are desarguesian.

Theorem

Any embeddable polar space of rank $n \ge 2$ is classical.

イロト イヨト イヨト イヨト

Definition

An ordinary polar space of rank n is

Ilaria Cardinali An outline of polar spaces: basics and advances Part 1

< □ > < □ > < □ > < □ > < □ > .

æ

Definition

An ordinary polar space of rank n is thick

Ilaria Cardinali An outline of polar spaces: basics and advances Part 1

< □ > < □ > < □ > < □ > < □ > .

æ

Definition

An ordinary polar space of rank n is thick if every singular subspace of dimension n - 2 is contained in at least three maximal singular subspaces.

イロン イヨン イヨン イヨン

Definition

An ordinary polar space of rank n is thick if every singular subspace of dimension n - 2 is contained in at least three maximal singular subspaces.

A polar space of rank n is

Definition

An ordinary polar space of rank n is thick if every singular subspace of dimension n - 2 is contained in at least three maximal singular subspaces.

A polar space of rank n is top-thin

Definition

An ordinary polar space of rank n is thick if every singular subspace of dimension n - 2 is contained in at least three maximal singular subspaces.

A polar space of rank n is top-thin if every singular subspace of dimension n - 2 is contained in exactly two maximal singular subspaces.

イロト イヨト イヨト イヨト

Theorem

(1) Any ordinary polar space of rank $n \ge 4$ is embeddable (hence classical).

イロン 不同と 不同と 不同と

Э

Theorem

- (1) Any ordinary polar space of rank $n \ge 4$ is embeddable (hence classical).
- (2) A thick polar space of rank 3 is embeddable if and only if its planes are Desarguesian.

イロン イヨン イヨン イヨン

э

Theorem

- (1) Any ordinary polar space of rank $n \ge 4$ is embeddable (hence classical).
- (2) A thick polar space of rank 3 is embeddable if and only if its planes are Desarguesian.
- (3) An ordinary top-thin polar space of rank 3 is embeddable if and only if its planes are Pascalian.

イロト イポト イヨト イヨト

Theorem

- (1) Any ordinary polar space of rank $n \ge 4$ is embeddable (hence classical).
- (2) A thick polar space of rank 3 is embeddable if and only if its planes are Desarguesian.
- (3) An ordinary top-thin polar space of rank 3 is embeddable if and only if its planes are Pascalian.

Moreover

(4) There exists a unique family of non-embeddable thick polar spaces of rank 3. The planes of these polar spaces are Moufang planes.

イロト イポト イヨト イヨト

Theorem

- (1) Any ordinary polar space of rank $n \ge 4$ is embeddable (hence classical).
- (2) A thick polar space of rank 3 is embeddable if and only if its planes are Desarguesian.
- (3) An ordinary top-thin polar space of rank 3 is embeddable if and only if its planes are Pascalian.

Moreover

- (4) There exists a unique family of non-embeddable thick polar spaces of rank 3. The planes of these polar spaces are Moufang planes.
- (5) Any ordinary, top-thin polar space of rank 3 is obtained as the Grassmannian of lines of a projective space $PG(3, \mathbb{K})$.

イロト イポト イヨト イヨト

Wedderburn Theorem: Every finite division ring is commutative

・ロト ・回ト ・ヨト ・ヨト

æ

Wedderburn Theorem: Every finite division ring is commutative Artin and Zorn's Theorem: Every finite projective plane of Moufang type is Pascalian.

イロト イヨト イヨト イヨト

Wedderburn Theorem: Every finite division ring is commutative

Artin and Zorn's Theorem: Every finite projective plane of Moufang type is Pascalian.

Corollary

Every ordinary and finite polar space of rank at least 3 is classical.

イロン イヨン イヨン イヨン