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Introduction

We first set up some notation.
Let G be a simple simply connected algebraic group of rank l over the field
C of complex numbers.
Let T be a maximal torus of G .
Let NG (T ) denote the normaliser of T in G . Let W = NG (T )/T denote
the Weyl group of G with respect to T .
We denote by g the Lie algebra of G .
We denote by h ⊆ g the Lie algebra of T .
Let R denote the roots of G with respect to T .
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Notations

Let R+ denote the set of positive roots. Let B+ be the Borel sub group of
G containing T with respect to R+. Let S = {α1, . . . , αl} denote the set
of simple roots in R+, where l is the rank of G . Let B be the Borel
subgroup of G containing T with respect to the set of negative roots
R− = −R+.
For β ∈ R+ we also use the notation β > 0. The simple reflection in the
Weyl group corresponding to αi is denoted by sαi .
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Notations

We have X (T )
⊗

R = HomR(hR,R), the dual of the real form of h.
The positive definite W -invariant form on HomR(hR,R) induced by the
Killing form of the Lie algebra g of G is denoted by ( , ). We use the

notation 〈 , 〉 to denote 〈ν, α〉 = 2(ν,α)
(α,α) .
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Notations

Let ≤ denote the partial order on X (T ) given by µ ≤ λ if λ− µ is a non
negative integral linear combination of simple roots. We also say that
µ < λ if µ ≤ λ, and µ 6= λ.
We denote by X (T )+ the set of dominant characters of T with respect to
B+.
For any simple root α, we denote the fundamental weight corresponding to
α by ωα.
Let ρ denote the half sum of all positive roots of G with respect to T and
B+.
For every simple root α, sα permutes all positive roots other than α. So,
ρ =

∑
α∈S ωα = sum of all fundamental weights.
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Notations

We denote by X (T )+reg the set of all regular dominant characters of T .
For w ∈W , let l(w) denote the length of w . We define the dot action by
w · λ = w(λ+ ρ)− ρ.
Let w0 denote the longest element of the Weyl group W .

S.Senthamarai Kannan Character formula 6 / 31



Flag Variety and Schubert Variety

Recall,

Flag Variety and Schubert Variety

We denote by G/B, the flag variety of all Borel subgroups of G .
For any w ∈ W , we denote by X (w) = BwB/B ⊂ G/B the Schubert
Variety corresponding to w .
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Notations

Let ≤ denote the Bruhat order on W .
i.e w ≤ τ if and only if X (w) ⊆ X (τ).
We also say that w < τ if w ≤ τ , and w 6= τ .
For a subset J ⊆ S denote W J = {w ∈W |w(α) > 0, α ∈ J}.
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Minimal parabolic subgroup and its Levi factor

Unipotent radical of B

We denote by U (resp. U+ ) the unipotent radical of B (resp B+). We
denote by Pα the minimal parabolic subgroup of G containing B and sα.
Let Lα denote the Levi subgroup of Pα containing T . We denote by Bα the
intersection of Lα and B. Then Lα is the product of T and a homomorphic
image Gα of SL(2) via a homomorphism ψ : SL(2) −→ Lα. (cf. [7,II.1.1.4]).
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One dimensional reprsentation of B

We refer to [6] for notation and preliminaries on semisimple Lie algebras
and their root systems.
For a fixed w ∈W , the set of all positive roots α which are made negative
by w−1 is denoted by R+(w−1).
For any character λ of B, we denote by Cλ the one dimensional represen-
tation of B corresponding to λ.
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Cohomology of line bundles on P1

We make use of following points in computing cohomologies.
Since G is simply connected, the morphism ψ : SL(2) −→ Gα is an
isomorphism, and hence ψ : SL(2) −→ Lα is injective. We denote this
copy of SL(2) in Lα by SL(2, α) We denote by B ′α the intersection of Bα
and SL(2, α) in Lα.
We also note that the morphism SL(2, α)/B ′α ↪→ Lα/Bα induced by ψ is
an isomorphism.
Since Lα/Bα ↪→ Pα/B is an isomorphism, to compute the cohomology
H i (Pα/B,L(V )) for any B- module V , we treat V as a Bα- module and
we compute H i (Lα/Bα,L(V ))
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Bott-Samelson- Demazure-Hansen sheme

We recall some basic facts and results about Schubert varieties. A good
reference for all this is the book by Jantzen (cf [7, II, Chapter 14 ]).
Let w = sαi1

sαi2
. . . sαin

be a reduced expression for w ∈W . Define

Z (w) =
Pαi1
× Pαi2

× . . .× Pαin

B × . . .× B
,

where the action of B × . . .× B on Pαi1
× Pαi2

× . . .× Pαin
is given by

(p1, . . . , pn)(b1, . . . , bn) = (p1 · b1, b−11 · p2 · b2, . . . , b
−1
n−1 · pn · bn),

pj ∈ Pαij
, bj ∈ B. We denote by φw the birational surjective morphism

φw : Z (w) −→ X (w).
We note that for each reduced expression for w , Z (w) is smooth, however,
Z (w) may not be independent of a reduced expression.
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P1-fibration

Let fn : Z (w) −→ Z (wsαn) denote the map induced by the projection
Pα1 × Pα2 × . . .× Pαn −→ Pα1 × Pα2 × . . .× Pαn−1 . Then we observe that
fn is a Pαn/B ' P1-fibration.
Let V be a B-module. Let Lw (V ) denote the pull back to X (w) of the
homogeneous vector bundle on G/B associated to V . By abuse of
notation we denote the pull back of Lw (V ) to Z (w) also by Lw (V ), when
there is no cause for confusion.
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P1-fibration

R i fn∗Lw (V ) = Lwsαn
(H i (Pαn/B,Lw (V )).

This together with easy applications of Leray spectral sequences is the
constantly used tool in what follows. We term this the descending 1-step
construction.
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P1-base

We also have the ascending 1-step construction which too is used
extensively in what follows sometimes in conjunction with the descending
construction. We recall this for the convenience of the reader.
Let the notations be as above and write τ = sγw , with l(τ) = l(w) + 1,
for some simple root γ. Then we have an induced morphism

g1 : Z (τ) −→ Pγ/B ' P1,

with fibres given by Z (w). Again, by an application of the Leray spectral
sequences together with the fact that the base is a P1, we obtain for every
B-module V the following exact sequence of Pγ-modules:
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Short exact sequence of B-modules

(0) −→ H1(Pγ/B,R
i−1g1∗Lw (V )) −→ H i (Z (τ),Lτ (V )) −→

H0(Pγ/B,R
ig1∗Lw (V )) −→ (0).

This short exact sequence of B-modules will be used frequently. So, we
denote this short exact sequence by SES when ever this is being used.
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Vanishing of higher direct images

We also recall the following well-known isomorphisms:

φw ∗OZ(w) = OX (w).

Rqφw ∗OZ(w) = 0 for q > 0.

This together with [7, II. 14.6] implies that we may use the Bott-Samelson
schemes Z (w) for the computation and study of all the cohomology
modules H i (X (w),Lw (V )). Henceforth we shall use the Bott-Samelson
schemes and their cohomology modules in all the computations.
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The Notation H i(w , λ)

Simplicity of Notation If V is a B-module and Lw (V ) is the induced
vector bundle on Z (w) we denote the cohomology modules
H i (Z (w),Lw (V )) by H i (w ,V ).
In particular if λ is a character of B we denote the cohomology modules
H i (Z (w),Lλ) by H i (w , λ).
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Some constructions from Demazure’s paper

We recall briefly two exact sequences from [4] that Demazure used in his
short proof of the Borel-Weil-Bott theorem (cf. [3] ). We use the same
notation as in [4].
Let α be a simple root and let λ ∈ X (T ) be such that 〈λ, α〉 ≥ 0. For
such a λ, we denote by Vλ,α the module H0(Pα/B,Lλ) . Let Cλ denote
the one dimensional B- module.
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Lemma due to Demazure

Lemma (Demazure)

(0) −→ K −→ Vλ,α −→ Cλ −→ (0).
(0) −→ Csα(λ) −→ K −→ Vλ−α,α −→ (0).
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A consequence of the Lemma

Lemma (Demazure)

1 Let τ = wsα, l(τ) = l(w) + 1. If 〈λ, α〉 ≥ 0 then
H j(τ, λ) = H j(w ,Vλ,α) for all j ≥ 0.

2 Let τ = wsα, l(τ) = l(w) + 1. If 〈λ, α〉 ≥ 0, then
H i (τ, λ) = H i+1(τ, sα · λ). Further, if 〈λ, α〉 ≤ −2, then
H i (τ, λ) = H i−1(τ, sα · λ).

3 If 〈λ, α〉 = −1, then H i (τ, λ) vanishes for all i ≥ 0 (cf. Prop 5.2(b),
[7] ).
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Demazure character formula

Let Dα denote the Demazure operator on Z[X (T )] corresponding to a
simple root α.
We recall from Jantzen [7, II, 14.17] that

Dα(eλ) =
eλ − esα(λ)−α

1− e−α
.

Let w = sα1sα2 · · · .sαn be a reduced expression of w .
Then define Dw = Dα1 ◦ Dα2 ◦ · · · ◦ Dαn .
(It is a well known lemma that Dw is independent of reduced expression of
w .)

Demazure character formula:

Dw (eλ) =

l(w)∑
i=0

(−1)ichar(H i (w , λ))
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Character of (H l(w)(w ,−λ))∗

Let λ be a regular dominant character of T . That is λ satisfies 〈λ, α〉 ≥ 1
for each simple root α.
We recall notation from section 2: For w ∈W , we denote by
H l(w)(w ,−λ) the top cohomology of the line bundle L−λ on X (w)
associated to −λ.
Let eρ denote the element of the representation ring Z[X (T )] of T
corresponding to ρ. Here, we use exponential notation eρ for using
multiplication in the ring Z[X (T )].

S.Senthamarai Kannan Character formula 23 / 31



Character of (H l(w)(w ,−λ))∗

Let h0(τ, µ) denote the character of the T - module H0(τ, µ).
Let hl(w)(w ,−λ) denote the character of the T - module H l(w)(w ,−λ).
Let hl(w)(w ,−λ)∗ denote the character of the dual (H l(w)(w ,−λ))∗ of the
T - module H l(w)(w ,−λ).
We have the following theorem:

Theorem (.....)

For any τ ∈W, we have
∑

w≤τ h
l(w)(w ,−λ)∗ = eρ · h0(τ, λ− ρ).
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Twist Character in Serre duality

Let w ∈W be such that X (w) is Gorenstein. Let χ′w be the character of
T such that L−2ρ+χ′w is the canonical line bundle on X (w).
When G is of type An, χ′w is described in a nice combinatorial way by
Woo and Yong in [11].
Then, by Serre duality, there is a character ψw of T such that the B-
modules H l(w)(w ,−λ)∗ and H0(w , λ− 2ρ+ χ′w )

⊗
Cψw are isomorphic.

The character ψw is described by O.Mathieu in [10].
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Twist Character in Serre duality

With notation as above, the following corollary relates the two characters
χ′w and ψw of T .

Corollary (.....)

Then, we have ψw = ρ+ w(ρ)− w(χ′w ).

S.Senthamarai Kannan Character formula 26 / 31



Kernels of Demazure operators

Let Nα denote the kernel of Dα.
Let N denote the intersection

⋂
α∈S Nα of the kernels of all Dα’s, α

running over all simple roots.
Then, we have

Corollary (.....)

{
∑

w∈W hl(w)(w ,−λ) : λ ∈ X (T )+reg} forms a Z basis for N.
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Character of H l(τ)(τ,−λ) for λ ∈ X (T )+
reg

The following theorem gives a formula for the character of H l(τ)(τ,−λ) for
any τ ∈W , and for any regular dominant character λ of T .

Theorem (......)

Let τ ∈W. Let λ ∈ X (T )+reg . Then, the character of H l(τ)(τ,−λ) is equal

to the sum e−ρ(
∑

w≤τ (−1)l(τ)−l(w)h0(w , λ− ρ)∗)
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