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Generalized polygons

Let S be a point-line geometry with point set P 6= ∅, line set L
and incidence relation I ⊆ P × L.

S is called a generalized k -gon with k ≥ 3 if:
(GP1) Every two distinct points are incident with at most one line.
(GP2) S has no subgeometries that are ordinary l-gons with

3 ≤ l < k .
(GP3) S has sufficiently many subgeometries that are ordinary

k -gons: any two elements of S are contained in one such a
subgeometry.

• The generalized 3-gons are precisely the projective planes.
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Generalized polygons

A generalized polygon S is said to have order (s, t) if every line
is incident with precisely s + 1 points and if every point is
incident with precisely t + 1 lines. If s = t , then S is also said to
have order s.

S is called thick if every point is incident with at least three lines
and if every line is incident with at least three points. If S is
thick, then S also has an order.
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Type of problem under consideration

Problem. Classify all finite generalized k -gons of order (s, t) for
certain specific values of k , s and t .

Every non-thick generalized polygon is either an ordinary
polygon or can be constructed from another smaller
generalized polygon.

So, we may assume that the generalized k -gon is thick, i.e. that
s, t ≥ 2.
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Restrictions on k , s and t

Bruck-Ryser Theorem (1949): If there exists a projective plane
whose order n is 1 or 2 mod 4, then n should be the sum of two
squares.

Feit-Higman theorem (1964): Finite thick generalized k -gons
only exist for k ∈ {3,4,6,8} + some other conditions.

Higman’s inequality (1975): If there exists a thick generalized
quadrangle or octagon of order (s, t), then

√
s ≤ t ≤ s2.

Inequality of Haemers-Roos (1981): If there exists a thick
generalized hexagon of order (s, t), then 3

√
s ≤ t ≤ s3.
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Known classification results

• Complete classification of all projective planes of order at
most 10.

• Complete classification of all finite GQ’s of order (2, t), (3, t)
and (4,4). (Dixmier - Zara, 1975; Cameron; Payne 1977)

• Complete classification of all finite GH’s of order (2, t).
(Cohen - Tits, 1985)

• Unique GH of order 3, assuming there is at least one
subhexagon of order (3,1). (De Medts - Van Maldeghem, 2009)

Bart De Bruyn GO(2,4) containing a subGO(2,1)



What about generalized octagons

Till very recently nothing was known, not even for the smallest
possible case (s, t) = (2,4). A GO(2,4) contains 1755 points
and 2925 lines.

Theorem
There exists, up to isomorphism, a unique generalized octagon
of order (2,4) that contains at least one suboctagon of order
(2,1).

This generalized octagon belongs to an infinite family of
generalized octagons constructed by Tits (1961), using the Ree
groups of type 2F4.

Open Problem. Does there exist other finite thick generalized
octagons besides these Ree-Tits octagons and their point-line
duals?
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Other characterization result

Theorem (Cohen, O’Brien and Shpectorov)

Suppose S is a generalized octagon of order (2,4), and G is a
group of automorphisms of S stabilizing all lines through a
distinguished point x and acting transitively on the set of points
opposite to x. Then S is isomorphic to the Ree-Tits generalized
octagon of order (2,4).
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How will we proceed?

• Any GO(2,4) contains 1755 points and 2925 lines, while a
GO(2,1) contains 45 points and 30 lines. There is up to
isomorphism a unique GO(2,1).

•We have a known configuration of 45 points and 30 lines. We
prove that there is at most one way in which this configuration
can be extended to a GO(2,4).

•We use techniques/tricks which are modifications of
techniques/tricks from the theory of near polygons that were
developed by P. Vandecasteele and myself (around 2003) for
the purpose of classifying dense near polygons.

•We also make use of a computer (GAP) to do several
computations.
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Valuations

Let S be a generalized 2d-gon, d ≥ 2, with point set P. A map
f : P → N is called a valuation if the following three conditions
are satisfied:

1 There is a point with value 0.
2 Every line L contains a unique point xL such that

f (x) = f (xL) + 1, ∀x ∈ L \ {xL}.
3 If x is a point with non-maximal value, then there is at most

one line through x containing a point with value f (x)− 1.

The set of points with non-maximal value is a hyperplane Hf of
S.
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Valuations

A valuation f can be completely reconstructed from its
associated hyperplane Hf .

Theorem
Let f be a valuation of a generalized 2d-gon S = (P,L, I). Let
M denote the maximal distance from a point of S to P \ Hf .
Then f (x) = M − d(x ,P \ Hf ) for every point x of S.
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Examples of valuations

Let S be a generalized 2d-gon, d ∈ N \ {0,1}.

Let x be a fixed point and put f (y) := d(x , y) for every point y .
Then f is a so-called classical valuation.

Let O be an ovoid. Put f (x) = 0 if x ∈ O and f (x) = 1 if x 6∈ O.
Then f is a so-called ovoidal valuation.

Suppose x ∈ P and O ⊆ Γd (x) such that every line of S at
distance d − 1 from x has a unique point in common with O.
• f (y) := d(x , y) if d(x , y) ≤ d − 1,
• f (y) := d − 2 if d(x , y) = d and y ∈ O,
• f (y) := d − 1 if d(x , y) = d and y 6∈ O.
Then f is a so-called semi-classical valuation of S.
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Distance-j-ovoids

A distance-j-ovoid of S is a set X of points satisfying the
following properties:

|X | ≥ 2 and the minimal distance between two distinct
points of X is equal to j ;
for every point a of S, there exists a point x ∈ X such that
d(a, x) ≤ j

2 ;
for every line L of S, there exists a point x ∈ X such that
d(x ,L) ≤ j−1

2 .

Distance-2-ovoids = ovoids.
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Distance-j-ovoidal valuations

Let X be a distance-j-ovoid with j even. The map
P → N; x 7→ d(x ,X ) is a so-called distance-j-ovoidal valuation
of S.

The distance-2-ovoidal valuations are precisely the ovoidal
valuations.
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A few definitions

Let f be a valuation of a generalized 2d-gon S.

Of : the set of points with f -value 0.
Af : the set of all points x of S that are not collinear with a
point having f -value f (x)− 1.
Mf : the maximal value attained by f .

Clearly, Of ⊆ Af and Mf ∈ {1,2, . . . ,d}.
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Characterizations of valuations

Theorem
Suppose f is a valuation of S. Then:

Mf = 1 if and only if f is ovoidal;
Mf = d − 1 if and only if f is semi-classical;
Mf = d if and only if f is classical;
Of = Af if and only if f is either classical or
distance-j-ovoidal for some even j.
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Why are valuations useful?

Theorem
Let S be embedded as a full sub-2d-gon in a larger generalized
2d-gon S ′. Let y be a point of S ′ at distance m from S. For
every point x of S, we define

fy (x) := d(x , y)−m.

Then fy is a valuation of S.

We call fy the valuation of S induced by y .
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The valuations of GO(2, 1)

There exists an easy way to determine all hyperplanes of a
given point-line geometry with three points per line.
GO(2,1) has 92 hyperplanes.
12 of these hyperplanes are associated with valuations.

There are 3429 valuations which fall into 12 isomorphism
classes: A, B1, B2, C1, C2, C3, C4, C5, C6, C7, D1, D2.
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The valuations of GO(2, 1)

Type # Mf |Of | |Af | |Hf | Type
A 45 4 1 1 29 classical

B1 90 3 1 9 21 semi-classical
B2 90 3 1 9 21 semi-classical
C1 720 2 1 13 17 –
C2 720 2 2 11 19 –
C3 720 2 2 11 19 –
C4 360 2 3 9 21 –
C5 180 2 1 13 17 –
C6 180 2 1 13 17 –
C7 36 2 5 5 25 distance-4-ovoidal
D1 144 1 15 15 15 ovoidal
D2 144 1 15 15 15 ovoidal
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L-sets of valuations

Let S be a generalized 2d-gon.

Let fi , i ∈ I, be a collection of mutually distinct valuations of S.

The set {fi | i ∈ I} is called an L-set of valuations if for every
point x of S, there exists a (necessarily unique) i ∈ I such that
fj(x)−Mfj = fi(x)−Mfi + 1 for every j ∈ I \ {i}.
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Admissible L-sets of valuations

The set {fi | i ∈ I} is called an admissible set of valuations if the
following holds for all i1, i2 ∈ I with i1 6= i2, for every x ∈ Afi1

and
every y ∈ Afi2

.

If Mfi1
= Mfi2

= d , then d(x , y) = 1.

If x = y , then (fi1(x)−Mfi1
)− (fi2(x)−Mfi2

) ∈ {−1,0,1}.
If x 6= y and at least one of Mfi1

, Mfi2
is distinct from d , then

d(x , y) + fi1(x) + fi2(y)−Mfi1
−Mfi2

≥ −1.
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Importance of admissible L-sets

Theorem
Let S be embedded as a full sub-2d-gon in a larger generalized
2d-gon S ′. For every point y of S ′, let fy be the valuation of S
induced by y.

If y1 and y2 are two distinct collinear points of S, then
fy1 6= fy2 .
For every line L of S, the set {fy | y ∈ L} is an admissible
L-set of valuations of S.
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Admissible L-sets of GO(2, 1)

GO(2,1) has 45966 admissible L-sets which fall into 58
isomorphism classes. According to the types of the valuations
they contain, we can distinguish 52 types of admissible L-sets.

[A,A,A], [A,B1,B1], [A,B2,B2], [B1,C1,C4], [B1,C2,C2],
[B1,C3,C3], [B1,C4,C4], [B1,C5,C5], [B1,C5,C7], [B1,C6,C6],
[B2,C1,C3], [B2,C2,C2], [B2,C4,C5], [B2,C6,C6], [C1,C1,C1],
[C1,C1,C2], [C1,C1,C3], [C1,C1,C4], [C1,C1,C5], [C1,C1,C6],
[C1,C1,D1], [C1,C1,D2], [C1,C2,C3], [C1,C2,C5], [C1,C2,C6],
[C1,C2,D1], [C1,C2,D2], [C1,C3,C6], [C1,C3,D1], [C1,C4,D2],
[C1,C5,C6], [C1,C5,D1], [C1,D1,D2], [C2,C2,C2], [C2,C2,C6],
[C2,C2,D2], [C2,C3,D1], [C2,C4,D2], [C2,C5,D1], [C2,D1,D2],
[C3,C3,C5], [C3,C5,D2], [C3,C6,D1], [C3,D2,D2], [C4,C6,D2],
[C4,D1,D1], [C5,C5,C5], [C5,D2,D2], [C6,C6,C6], [C6,D1,D2],
[C7,D2,D2], [D1,D1,D2]
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The valuation geometry of GO(2, 1)

Let V denote the following point-line geometry.
The points of V are the valuations of GO(2,1).
The lines of V are the admissible L-sets of valuations of
GO(2,1).

The partial linear space V is called the valuation geometry of
GO(2,1).
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Conclusion

In the sequel, S denotes an arbitrary generalized octagon of
order (2,4) that contains a suboctagon GO(2,1) of order (2,1).

Theorem
Let θ be the map which associates with each point x of S the
associated valuation fx of GO(2,1). Then θ is a map between
the point sets of S and V mapping lines of S to lines of V.

For every line L of S, we call θ(L) the line of V induced by L.
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Two basic definitions

A point x of S is said to be of Type T if the valuation θ(x) has
Type T .

A line L of S is said to be of Type [T1,T2,T3] if the admissible
L-set θ(L) is of Type [T1,T2,T3].
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The points of S

Type T S V N
A 45 45 1

B1 270 90 3
C2 720 720 1
C5 180 180 1
C6 360 180 2
C7 36 36 1
D1 144 144 1

Total 1755 – –

N = The number of times a valuation of Type T is induced by a
point of S.
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The lines of S

Type [T1,T2,T3] S V N
[A,A,A] 30 30 1

[A,B1,B1] 135 45 3
[B1,C2,C2] 720 720 1
[B1,C5,C7] 180 180 1
[B1,C6,C6] 180 90 2
[C2,C2,C6] 720 720 1
[C2,C5,D1] 720 720 1
[C6,C6,C6] 240 240 1

Total 2925 – –

N = the number of times an admissible L-set of Type [T1,T2,T3]
is induced by a line of S.
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Uniqueness of the GO

The subgraph of the collinearity graph of S induced on the
points of Type C2, C5, C7 and D1 is isomorphic to the
subgraph of the collinearity graph of V induced on the points of
Type C2, C5, C7 and D1.

The fact combined with the nonexistence of subgeometries that
ordinary l-gons with l < 8 can be used to show that the whole
of S is uniquely determined.
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Other applications

Theorem (De Medts and Van Maldeghem, 2009)
There exists up to isomorphism a unique generalized hexagon
of order 3 containing a subhexagon of order (3,1), namely the
split Cayley hexagon H(3).

Question: Can we also use the above techniques to prove that
result?

Answer: Yes.

First of all, we need to construct the valuation geometry.
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The valuation geometry V of GH(3, 1)

There are 8 types of points in V: A, B1, B2, C1, C2, C3, C4 and
C5.

Type Max. value Number
A 3 52

B1 2 312
B2 2 1872
C1 1 144
C2 1 432
C3 1 468
C4 1 936
C5 1 1872

Total – 6088
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The valuation geometry V of GH(3, 1)

There are 309700 lines in V of 44 distinct types:

[A,A,A,A], [A,B1,B1,B1], [A,B1,B2,B2], [B1,B1,B1,B1],
[B1,B2,B2,C5], [B1,B2,C3,C5], [B1,B2,C5,C5], [B1,C1,C1,C1],
[B1,C1,C5,C5], [B1,C2,C2,C2], [B1,C2,C4,C4], [B1,C3,C3,C3],
[B1,C3,C4,C5], [B1,C4,C5,C5], [B1,C5,C5,C5], [B2,B2,B2,C3],
[B2,B2,C2,C3], [B2,B2,C3,C5], [B2,B2,C5,C5], [B2,C1,C3,C4],
[B2,C1,C3,C5], [B2,C2,C3,C4], [B2,C2,C4,C5], [B2,C2,C5,C5],
[B2,C3,C3,C3], [B2,C3,C4,C4], [B2,C3,C4,C5], [B2,C3,C5,C5],
[B2,C4,C4,C5], [B2,C4,C5,C5], [B2,C5,C5,C5], [C1,C2,C2,C2],
[C1,C3,C4,C4], [C1,C5,C5,C5], [C2,C2,C4,C5], [C2,C2,C5,C5],
[C2,C3,C5,C5], [C2,C4,C5,C5], [C3,C4,C4,C4], [C3,C4,C5,C5],
[C3,C5,C5,C5], [C4,C4,C5,C5], [C4,C5,C5,C5], [C5,C5,C5,C5].
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GH(3,3) containing a GH(3,1)

The valuation geometry can be used to study generalized
hexagons of order (3, t) containing a subhexagon of order
(3,1).

A generalized hexagon of order (3,3) containing a subhexagon
of order (3,1) can only contain points of Type A and B.

Let V1 be the subgeometry of V consisting of all points of Type
A and B, and all lines containing only points of Type A and B.
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GH(3,3) containing a GH(3,1)

There are three types of points in V1: A, B1 and B2.

There are four types of lines in V1: [A,A,A,A], [A,B1,B1,B1],
[A,B1,B2,B2], [B1,B1,B1,B1].

A generalized hexagon of order (3,3) containing a subhexagon
of order (3,1) cannot contain points of Type B2 (such a point
can only be incident with one line).

Let V2 be the subgeometry of V consisting of all points of Type
A and B1, and all lines containing only points of Type A and B1.
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GH(3,3) containing a GH(3,1)

The geometry V2 contains 364 points, the same number of
points of a GH(3,3), and the set of B1 points is connected.

From this it can be derived that any GH(3,3) containing a
subhexagon of order (3,1) must be isomorphic to V2 (and
hence to H(3)).
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Semi-finite generalized polygons

A generalized polygon of order (s, t) is called semi-finite if s is
finite and t is infinite.

The question whether thick semi-finite generalized polygons
exist is one of the most famous open problems in the theory of
the generalized polygons.

A number of results have been obtained for generalized
quadrangles (Cameron, Brouwer, Kantor, Cherlin).
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Semi-finite generalized polygons

Theorem (BDB and Vanhove, 2013)

Let s ∈ N \ {0,1}. Then there are no semi-finite generalized
hexagons that contain a subhexagon of order (s, s3).

Every GH(2,2) is isomorphic to either H(2) or its dual HD(2).
Using valuations, the following can be proved:

Theorem (BDB)

There are no semi-finite GH(2, t) which contain a subhexagon
of order (2,2).
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Dense near polygons

A partial linear space is called a near polygon if for every point
x and every line L there exists a unique point on L nearest to x .
A near polygon is called dense if every line is incident with at
least three points and if every two points at distance 2 have at
least two common neighbours.

If x and y are two points of a dense near polygon at distance δ
from each other, then x and y are contained in a unique convex
subspace of diameter δ (Shult and Yanushka; Brouwer and
Wilbrink).

The point-line geometry induced on every convex subspace is
again a near polygon.
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Valuations of dense near polygons

Let S = (P,L, I) be a dense near polygon. A valuation of S is a
map f : P → N satisfying the following properties:

(V1) There exists at least one point x with f (x) = 0.
(V2) Every line L contains a unique point xL such that

f (x) = f (xL) + 1, ∀x ∈ L \ {xL}.
(V3) Every point x of S is contained in a convex subspace Fx

that satisfies the following properties:
f (y) ≤ f (x) for every point y of Fx ;
every point z of S which is collinear with a point y of Fx and
which satisfies f (z) = f (y)− 1 also belongs to Fx .
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Importance of valuations

Theorem (BDB and Vandecasteele, 2005)
Suppose S is a dense near polygon which is fully and
isometrically embedded as a subgeometry in another dense
near polygon S ′. For every point x of S ′ and every point y of S,
we put fx (y) = d(x , y)−m where m := d(x ,S). Then fx is a
valuation of S.

So, the valuations of S provide some information on how S can
be fully and isometrically embedded as a subgeometry in
another dense near polygon.

Bart De Bruyn GO(2,4) containing a subGO(2,1)



Applications of valuations

Theorem (BDB and Vandecasteele, 2007)
Up to isomorphism, there are 26 dense near octagons with
three points per line.

Theorem (BDB, 2011; BDB and Vanhove, 201?)
There are 28 known dense near octagons with four points per
line. Every other such near octagon must be the direct product
of an unknown dense near hexagon with a line of size 4.

Other applications: Constructions of hyperplanes; classification
of hyperplanes; study of isometric embeddings.
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