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Definition. S a finite set.

Coxeter matrix on S is M = (ms,t)s,t∈S such that:

(a) ms,s = 1 for all s ∈ S ;

(b) ms,t = mt,s ∈ {2, 3, 4, . . . } ∪ {∞} for all s, t ∈ S , s 6= t.

Definition. Coxeter graph, Γ = Γ(M).
Labelled graph defined as follows.

(a) S is the set of vertices of Γ.

(b) Two vertices s, t ∈ S are connected by an edge if ms,t ≥ 3.

(c) This edge is labelled by ms,t if ms,t ≥ 4.
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Example. A Coxeter matrix:

M =

1 3 2
3 1 4
2 4 1



Its Coxeter graph:

4

Definition. Coxeter system of Γ is (W ,S) = (WΓ, S), where

WΓ =

〈
S

∣∣∣∣ s2 = 1 for all s ∈ S
(st)ms,t = 1 for all s, t ∈ S , s 6= t, ms,t 6=∞

〉
The group WΓ is called Coxeter group of Γ.
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Example. The Coxeter graph An:

1 2 3 n-1 n

The Coxeter group:〈
s1, . . . , sn

∣∣∣∣∣∣
s2
i = 1 for 1 ≤ i ≤ n

(si si+1)3 = 1 for 1 ≤ i ≤ n − 1
(si sj)

2 = 1 for |i − j | ≥ 2

〉

W = Sn+1, symmetric group, where si is (i , i + 1).
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Definition. If a, b are two letters and m is an integer ≥ 2, we set

Π(a, b : m) =

{
(ab)

m
2 if m is even

(ab)
m−1

2 a if m is odd

Lemma 1. Let Γ be a Coxeter graph.
Then WΓ has the following presentation.

WΓ =

〈
S
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s2 = 1 for all s ∈ S

Π(s, t : ms,t) = Π(t, s : ms,t) for all s, t ∈ S ,
s 6= t, ms,t 6=∞
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Proof. It suffices to prove that the relation (st)m = 1 is equivalent
to the relation Π(s, t : m) = Π(t, s : m) modulo the relations
s2 = 1 for all s ∈ S .

We prove that for m = 2 and for m = 3.
Assume m = 2.

(st)2 = stst = 1 ⇔ st = t−1s−1 = ts ⇔ Π(s, t : 2) = Π(t, s : 2) .

Assume m = 3.

(st)3 = ststst = 1 ⇔ sts = t−1s−1t−1 = tst

⇔ Π(s, t : 3) = Π(t, s : 3) .
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The Artin system of Γ is (A,Σ) = (AΓ,Σ), where

AΓ = 〈Σ | Π(σs , σt : ms,t) = Π(σt , σs : ms,t)

for all s, t ∈ S , s 6= t, ms,t 6=∞〉

The group AΓ is called Artin group of Γ.

Thanks to Lemma 1, the map Σ→ S , σs 7→ s, induces an
epimorphism θ : AΓ →WΓ.
The kernel of θ is the colored Artin group of Γ and is denoted by
CAΓ.
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Example. The Coxeter graph An:

1 2 3 n-1 n

The Artin group:〈
σ1, . . . , σn

∣∣∣∣ σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n − 1
σiσj = σjσi for |i − j | ≥ 2

〉
.

This is the braid group Bn+1 on n + 1 strands.
The colored Artin group is the pure braid group PBn+1.
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(2) How is the center of an Artin group?

(3) Have Artin groups solvable word problem?
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Definition. I is a nonempty open convex cone in a finite
dimensional real vector space V .

A hyperplane arrangement in I is a family A of linear
hyperplanes of V satisfying

(a) H ∩ I 6= ∅ for all H ∈ A;

(b) A is locally finite in I , that is, for all x ∈ I , there is an open
neighborhood Ux of x in I such that the set
{H ∈ A | H ∩ Ux 6= ∅} is finite.
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Example. Set V = R3 and I = {(x , y , z) ∈ V | z > 0}.

Hk = {x = kz}, and H ′k = {y = kz}.
A = {Hk , H

′
k | k ∈ Z}. This is a hyperplane arrangement in I .

H−1 H0 H1 H2

H ′−1

H ′0

H ′1

H ′2
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Definition. V be a finite dimensional real vector space.

A reflection on V is a linear transformation on V of order 2 which
fixes a hyperplane.

Definition. Let C̄0 be a closed convex polyhedral cone in V with
nonempty interior.
Let C0 be the interior of C̄0.
A wall of C̄0 is the support of a (codimensional 1) face of C̄0, that
is, a hyperplane of V generated by that face.
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Definition. Let H1, . . . ,Hn be the walls of C̄0.

For each i ∈ {1, . . . , n} we take a reflection si which fixes Hi , and
we denote by W the subgroup of GL(V ) generated by
S = {s1, . . . , sn}.
The pair (W ,S) is called a Vinberg system if wC0 ∩ C0 = ∅ for
all w ∈W \ {1}.
In that case, the group W is called reflection group in Vinberg
sense, S is called canonical generating system for W , and C0 is
called fundamental chamber of (W ,S).
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Theorem (Vinberg). Let (W ,S) be a Vinberg system. We set

Ī =
⋃

w∈W
w C̄0 .

Then the following statements hold.

(1) (W ,S) is a Coxeter system.

(2) Ī is a convex cone with nonempty interior.

(3) The interior I of Ī is stable under the action of W , and W
acts properly discontinuously on I .

(4) Let x ∈ I be such that Wx = {w ∈W | w(x) = x} is
different from {1}. Then there exists a reflection r in W such
that r(x) = x .



Theorem (Vinberg). Let (W ,S) be a Vinberg system. We set
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Remark.

(1) There is a difference in the theorem between the pair (W ,S),
viewed as a Vinberg system, and the pair (W , S), viewed a
Coxeter system.

In the first case, W is some specific subgroup of a linear
group, while, in the second case, W is just an abstract group.

(2) Any Coxeter system appears as a Vinberg system (this is due
to Tits), but this representation is not unique in general.

Definition. The above cone I is called Tits cone of the Vinberg
system (W ,S).
Denote by R the set of reflections belonging to W .
For r ∈ R we denote by Hr the fixed hyperplane of r , and we set
A = {Hr | r ∈ R}. By the theorem, A is a hyperplane
arrangement in the Tits cone I .
It is called Coxeter arrangement of (W ,S).



Remark.

(1) There is a difference in the theorem between the pair (W ,S),
viewed as a Vinberg system, and the pair (W , S), viewed a
Coxeter system.
In the first case, W is some specific subgroup of a linear
group, while, in the second case, W is just an abstract group.

(2) Any Coxeter system appears as a Vinberg system (this is due
to Tits), but this representation is not unique in general.

Definition. The above cone I is called Tits cone of the Vinberg
system (W ,S).
Denote by R the set of reflections belonging to W .
For r ∈ R we denote by Hr the fixed hyperplane of r , and we set
A = {Hr | r ∈ R}. By the theorem, A is a hyperplane
arrangement in the Tits cone I .
It is called Coxeter arrangement of (W ,S).



Remark.

(1) There is a difference in the theorem between the pair (W ,S),
viewed as a Vinberg system, and the pair (W , S), viewed a
Coxeter system.
In the first case, W is some specific subgroup of a linear
group, while, in the second case, W is just an abstract group.

(2) Any Coxeter system appears as a Vinberg system (this is due
to Tits), but this representation is not unique in general.

Definition. The above cone I is called Tits cone of the Vinberg
system (W ,S).
Denote by R the set of reflections belonging to W .
For r ∈ R we denote by Hr the fixed hyperplane of r , and we set
A = {Hr | r ∈ R}. By the theorem, A is a hyperplane
arrangement in the Tits cone I .
It is called Coxeter arrangement of (W ,S).



Remark.

(1) There is a difference in the theorem between the pair (W ,S),
viewed as a Vinberg system, and the pair (W , S), viewed a
Coxeter system.
In the first case, W is some specific subgroup of a linear
group, while, in the second case, W is just an abstract group.

(2) Any Coxeter system appears as a Vinberg system (this is due
to Tits), but this representation is not unique in general.

Definition. The above cone I is called Tits cone of the Vinberg
system (W ,S).

Denote by R the set of reflections belonging to W .
For r ∈ R we denote by Hr the fixed hyperplane of r , and we set
A = {Hr | r ∈ R}. By the theorem, A is a hyperplane
arrangement in the Tits cone I .
It is called Coxeter arrangement of (W ,S).



Remark.

(1) There is a difference in the theorem between the pair (W ,S),
viewed as a Vinberg system, and the pair (W , S), viewed a
Coxeter system.
In the first case, W is some specific subgroup of a linear
group, while, in the second case, W is just an abstract group.

(2) Any Coxeter system appears as a Vinberg system (this is due
to Tits), but this representation is not unique in general.

Definition. The above cone I is called Tits cone of the Vinberg
system (W ,S).
Denote by R the set of reflections belonging to W .

For r ∈ R we denote by Hr the fixed hyperplane of r , and we set
A = {Hr | r ∈ R}. By the theorem, A is a hyperplane
arrangement in the Tits cone I .
It is called Coxeter arrangement of (W ,S).



Remark.

(1) There is a difference in the theorem between the pair (W ,S),
viewed as a Vinberg system, and the pair (W , S), viewed a
Coxeter system.
In the first case, W is some specific subgroup of a linear
group, while, in the second case, W is just an abstract group.

(2) Any Coxeter system appears as a Vinberg system (this is due
to Tits), but this representation is not unique in general.

Definition. The above cone I is called Tits cone of the Vinberg
system (W ,S).
Denote by R the set of reflections belonging to W .
For r ∈ R we denote by Hr the fixed hyperplane of r , and we set
A = {Hr | r ∈ R}.

By the theorem, A is a hyperplane
arrangement in the Tits cone I .
It is called Coxeter arrangement of (W ,S).



Remark.

(1) There is a difference in the theorem between the pair (W ,S),
viewed as a Vinberg system, and the pair (W , S), viewed a
Coxeter system.
In the first case, W is some specific subgroup of a linear
group, while, in the second case, W is just an abstract group.

(2) Any Coxeter system appears as a Vinberg system (this is due
to Tits), but this representation is not unique in general.

Definition. The above cone I is called Tits cone of the Vinberg
system (W ,S).
Denote by R the set of reflections belonging to W .
For r ∈ R we denote by Hr the fixed hyperplane of r , and we set
A = {Hr | r ∈ R}. By the theorem, A is a hyperplane
arrangement in the Tits cone I .

It is called Coxeter arrangement of (W ,S).



Remark.

(1) There is a difference in the theorem between the pair (W ,S),
viewed as a Vinberg system, and the pair (W , S), viewed a
Coxeter system.
In the first case, W is some specific subgroup of a linear
group, while, in the second case, W is just an abstract group.

(2) Any Coxeter system appears as a Vinberg system (this is due
to Tits), but this representation is not unique in general.

Definition. The above cone I is called Tits cone of the Vinberg
system (W ,S).
Denote by R the set of reflections belonging to W .
For r ∈ R we denote by Hr the fixed hyperplane of r , and we set
A = {Hr | r ∈ R}. By the theorem, A is a hyperplane
arrangement in the Tits cone I .
It is called Coxeter arrangement of (W , S).



Example. Consider the symmetric group Sn+1 acting on the
space V = Rn+1 by permutations of the coordinates.

Let
C̄0 = {x ∈ V | x1 ≤ x2 ≤ · · · ≤ xn+1} .

For i , j ∈ {1, . . . , n + 1}, i 6= j , we set Hi ,j = {x ∈ V | xi = xj}.
Then C̄0 is a convex polyhedral cone whose walls are
H1,2,H2,3, . . . ,Hn,n+1.
For i ∈ {1, . . . , n}, si = (i , i + 1) is a reflection whose fixed
hyperplane is Hi ,i+1.
Then (Sn+1, {s1, . . . , sn}) is a Vinberg system.
In this case we have

Ī =
⋃

w∈Sn+1

wC̄0 = V .

So, I = V , too.
The set R of reflections coincides with the set of transpositions,
thus A = {Hi ,j | 1 ≤ i < j ≤ n + 1}.
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Example. Consider the affine Euclidean plane E2.

Dk is the affine line of equation x = k , and D ′k the affine line of
equation y = k.

D−1 D0 D1 D2

D ′−1

D ′0

D ′1

D ′2

C̄ ′0
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sk is the orthogonal affine reflection with respect to Dk , and s ′k is
the orthogonal affine reflection with respect to D ′k .

W the subgroup of the orthogonal affine group of E2 generated by
{sk , s ′k | k ∈ Z}.
We have

W = 〈s0, s1, s
′
0, s
′
1 | s2

0 = s2
1 = s ′0

2
= s ′1

2
= 1 ,

(s0s
′
0)2 = (s0s

′
1)2 = (s1s

′
0)2 = (s1s

′
1)2 = 1〉 .

This is the Coxeter group of

s0 s1 s ′0 s ′1

∞ ∞
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We embed E2 in R3 via the map (x , y) 7→ (x , y , 1), and we denote
by Aff(E2) the affine group of E2.

Recall that, for f ∈ Aff(E2), there are a unique linear
transformation f0 ∈ GL(R2) and a unique vector u ∈ R2 such that
f = Tu ◦ f0, where Tu is the translation relative to u.
Recall also that there is an embedding Aff(E2) ↪→ GL(R3) defined
by

f 7→
(
f0 u
0 1

)
.

In this way, the group W can be regarded as a subgroup of
GL(R3).
We denote by Hk the linear plane of R3 generated by Dk , and we
denote by H ′k the linear plane generated by D ′k .
Then sk is a linear reflection whose fixed hyperplane is Hk , and s ′k
is a linear reflection whose fixed hyperplane is H ′k .
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Let
C̄ ′0 = {(x , y) ∈ E2 | 0 ≤ x , y ≤ 1} .

Let C̄0 be the cone over C̄ ′0.
This is a closed convex polyhedral cone whose walls are
H0,H1,H

′
0,H

′
1.

Observe that wC0 ∩ C0 = ∅ for all w ∈W \ {1}, thus (W ,S) is a
Vinberg system, where S = {s0, s1, s

′
0, s
′
1}.

We have

Ī =
⋃

w∈W
wC̄0 = {(x , y , z) ∈ R3 | z > 0} ∪ {(0, 0, 0)} ,

thus
I = {(x , y , z) ∈ R3 | z > 0} .

On the other hand,

A = {Hk ,H
′
k | k ∈ Z} .
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