$\mathcal{K}(\pi, 1)$ problem for Artin groups Part I

Luis PARIS

Institut de Mathématiques de Bourgogne Université de Bourgogne

Bangalore, December 2012.

Definition. *S* a finite set.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Definition. S a finite set. **Coxeter matrix** on S is $M = (m_{s,t})_{s,t \in S}$ such that:

Definition. S a finite set. **Coxeter matrix** on S is $M = (m_{s,t})_{s,t\in S}$ such that: (a) $m_{s,s} = 1$ for all $s \in S$;

Definition. S a finite set. **Coxeter matrix** on S is $M = (m_{s,t})_{s,t\in S}$ such that: (a) $m_{s,s} = 1$ for all $s \in S$; (b) $m_{s,t} = m_{t,s} \in \{2,3,4,\ldots\} \cup \{\infty\}$ for all $s, t \in S, s \neq t$.

Definition. S a finite set. **Coxeter matrix** on S is $M = (m_{s,t})_{s,t\in S}$ such that: (a) $m_{s,s} = 1$ for all $s \in S$; (b) $m_{s,t} = m_{t,s} \in \{2,3,4,\dots\} \cup \{\infty\}$ for all $s, t \in S, s \neq t$.

Definition. Coxeter graph, $\Gamma = \Gamma(M)$.

Definition. S a finite set. **Coxeter matrix** on S is $M = (m_{s,t})_{s,t\in S}$ such that: (a) $m_{s,s} = 1$ for all $s \in S$; (b) $m_{s,t} = m_{t,s} \in \{2,3,4,\ldots\} \cup \{\infty\}$ for all $s, t \in S, s \neq t$.

Definition. Coxeter graph, $\Gamma = \Gamma(M)$. Labelled graph defined as follows. **Definition.** S a finite set. **Coxeter matrix** on S is $M = (m_{s,t})_{s,t\in S}$ such that: (a) $m_{s,s} = 1$ for all $s \in S$; (b) $m_{s,t} = m_{t,s} \in \{2,3,4,\ldots\} \cup \{\infty\}$ for all $s, t \in S, s \neq t$.

Definition. Coxeter graph, $\Gamma = \Gamma(M)$. Labelled graph defined as follows. (a) *S* is the set of vertices of Γ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition. S a finite set. **Coxeter matrix** on S is $M = (m_{s,t})_{s,t\in S}$ such that: (a) $m_{s,s} = 1$ for all $s \in S$; (b) $m_{s,t} = m_{t,s} \in \{2, 3, 4, ...\} \cup \{\infty\}$ for all $s, t \in S, s \neq t$.

Definition. Coxeter graph, $\Gamma = \Gamma(M)$. Labelled graph defined as follows.

(a) S is the set of vertices of Γ .

(b) Two vertices $s, t \in S$ are connected by an edge if $m_{s,t} \geq 3$.

Definition. S a finite set. **Coxeter matrix** on S is $M = (m_{s,t})_{s,t\in S}$ such that: (a) $m_{s,s} = 1$ for all $s \in S$; (b) $m_{s,t} = m_{t,s} \in \{2, 3, 4, ...\} \cup \{\infty\}$ for all $s, t \in S, s \neq t$.

Definition. Coxeter graph, $\Gamma = \Gamma(M)$. Labelled graph defined as follows.

- (a) S is the set of vertices of Γ .
- (b) Two vertices $s, t \in S$ are connected by an edge if $m_{s,t} \geq 3$.

(c) This edge is labelled by $m_{s,t}$ if $m_{s,t} \ge 4$.

$$M = \begin{pmatrix} 1 & 3 & 2 \\ 3 & 1 & 4 \\ 2 & 4 & 1 \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & 3 & 2 \\ 3 & 1 & 4 \\ 2 & 4 & 1 \end{pmatrix}$$

Its Coxeter graph:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$M = \begin{pmatrix} 1 & 3 & 2 \\ 3 & 1 & 4 \\ 2 & 4 & 1 \end{pmatrix}$$

Its Coxeter graph:

Definition. Coxeter system of Γ is $(W, S) = (W_{\Gamma}, S)$, where

$$W_{\Gamma} = \left\langle S \; \left| \; \begin{array}{c} s^2 = 1 \; ext{for all } s \in S \ (st)^{m_{s,t}} = 1 \; ext{for all } s, t \in S, \; s
eq t, \; m_{s,t}
eq \infty \end{array} \right.
ight
angle$$

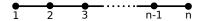
$$M = \begin{pmatrix} 1 & 3 & 2 \\ 3 & 1 & 4 \\ 2 & 4 & 1 \end{pmatrix}$$

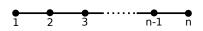
Its Coxeter graph:

Definition. Coxeter system of Γ is $(W, S) = (W_{\Gamma}, S)$, where

$$W_{\Gamma} = \left\langle S \mid s^2 = 1 ext{ for all } s \in S \ (st)^{m_{s,t}} = 1 ext{ for all } s, t \in S, \ s \neq t, \ m_{s,t} \neq \infty
ight
angle$$

The group W_{Γ} is called *Coxeter group* of Γ .

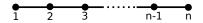




The Coxeter group:

$$\left\langle egin{array}{ll} s_1,\ldots,s_n \end{array} \left| egin{array}{ll} s_i^2=1 ext{ for } 1\leq i\leq n \ (s_is_{i+1})^3=1 ext{ for } 1\leq i\leq n-1 \ (s_is_j)^2=1 ext{ for } |i-j|\geq 2 \end{array}
ight
angle$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



The Coxeter group:

$$\left\langle s_1, \dots, s_n \middle| \begin{array}{c} s_i^2 = 1 \text{ for } 1 \le i \le n \\ (s_i s_{i+1})^3 = 1 \text{ for } 1 \le i \le n-1 \\ (s_i s_j)^2 = 1 \text{ for } |i-j| \ge 2 \end{array} \right\rangle$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $W = \mathfrak{S}_{n+1}$, symmetric group, where s_i is (i, i+1).

Definition. If a, b are two letters and m is an integer ≥ 2 , we set

$$\Pi(a, b: m) = \begin{cases} (ab)^{\frac{m}{2}} & \text{if } m \text{ is even} \\ (ab)^{\frac{m-1}{2}}a & \text{if } m \text{ is odd} \end{cases}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Definition. If *a*, *b* are two letters and *m* is an integer ≥ 2 , we set

$$\Pi(a, b: m) = \begin{cases} (ab)^{\frac{m}{2}} & \text{if } m \text{ is even} \\ (ab)^{\frac{m-1}{2}}a & \text{if } m \text{ is odd} \end{cases}$$

Lemma 1. Let Γ be a Coxeter graph.

Definition. If *a*, *b* are two letters and *m* is an integer ≥ 2 , we set

$$\Pi(a, b: m) = \begin{cases} (ab)^{\frac{m}{2}} & \text{if } m \text{ is even} \\ (ab)^{\frac{m-1}{2}}a & \text{if } m \text{ is odd} \end{cases}$$

Lemma 1. Let Γ be a Coxeter graph. Then W_{Γ} has the following presentation.

$$W_{\Gamma} = \left\langle S \middle| \begin{array}{c} s^2 = 1 \text{ for all } s \in S \\ \Pi(s,t:m_{s,t}) = \Pi(t,s:m_{s,t}) \text{ for all } s,t \in S, \\ s \neq t, m_{s,t} \neq \infty \end{array} \right\rangle$$

(日) (日) (日) (日) (日) (日) (日) (日)

Proof. It suffices to prove that the relation $(st)^m = 1$ is equivalent to the relation $\Pi(s, t : m) = \Pi(t, s : m)$ modulo the relations $s^2 = 1$ for all $s \in S$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$(st)^2 = stst = 1 \iff st = t^{-1}s^{-1} = ts \iff \Pi(s, t:2) = \Pi(t, s:2)$$

$$(st)^2 = stst = 1 \iff st = t^{-1}s^{-1} = ts \iff \Pi(s, t:2) = \Pi(t, s:2).$$

Assume m = 3.

$$(st)^2 = stst = 1 \iff st = t^{-1}s^{-1} = ts \iff \Pi(s,t:2) = \Pi(t,s:2).$$

Assume m = 3.

$$(st)^3 = ststst = 1 \iff sts = t^{-1}s^{-1}t^{-1} = tst$$

 $\Leftrightarrow \Pi(s, t:3) = \Pi(t, s:3).$

Definition. Let $\Sigma = \{\sigma_s \mid s \in S\}.$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

$$A_{\Gamma} = \langle \Sigma \mid \Pi(\sigma_s, \sigma_t : m_{s,t}) = \Pi(\sigma_t, \sigma_s : m_{s,t})$$

for all $s, t \in S, \ s \neq t, \ m_{s,t} \neq \infty \rangle$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$A_{\Gamma} = \langle \Sigma \mid \Pi(\sigma_s, \sigma_t : m_{s,t}) = \Pi(\sigma_t, \sigma_s : m_{s,t})$$

for all $s, t \in S, s \neq t, m_{s,t} \neq \infty \rangle$

The group A_{Γ} is called **Artin group** of Γ .

$$A_{\Gamma} = \langle \Sigma \mid \Pi(\sigma_s, \sigma_t : m_{s,t}) = \Pi(\sigma_t, \sigma_s : m_{s,t})$$

for all $s, t \in S, s \neq t, m_{s,t} \neq \infty \rangle$

(日) (日) (日) (日) (日) (日) (日) (日)

The group A_{Γ} is called **Artin group** of Γ .

Thanks to Lemma 1, the map $\Sigma \to S$, $\sigma_s \mapsto s$, induces an epimorphism $\theta : A_{\Gamma} \to W_{\Gamma}$.

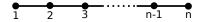
$$A_{\Gamma} = \langle \Sigma \mid \Pi(\sigma_s, \sigma_t : m_{s,t}) = \Pi(\sigma_t, \sigma_s : m_{s,t})$$

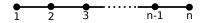
for all $s, t \in S, s \neq t, m_{s,t} \neq \infty \rangle$

The group A_{Γ} is called **Artin group** of Γ .

Thanks to Lemma 1, the map $\Sigma \to S$, $\sigma_s \mapsto s$, induces an epimorphism $\theta : A_{\Gamma} \to W_{\Gamma}$.

The kernel of θ is the **colored Artin group** of Γ and is denoted by CA_{Γ} .

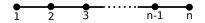




The Artin group:

$$\left\langle \sigma_1, \dots, \sigma_n \middle| \begin{array}{c} \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \text{ for } 1 \le i \le n-1 \\ \sigma_i \sigma_j = \sigma_j \sigma_i \text{ for } |i-j| \ge 2 \end{array} \right\rangle.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

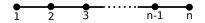


The Artin group:

$$\left\langle \sigma_1, \dots, \sigma_n \middle| \begin{array}{c} \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \text{ for } 1 \le i \le n-1 \\ \sigma_i \sigma_j = \sigma_j \sigma_i \text{ for } |i-j| \ge 2 \end{array} \right\rangle$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

This is the **braid group** \mathcal{B}_{n+1} on n+1 strands.



The Artin group:

$$\left\langle \sigma_1, \dots, \sigma_n \middle| \begin{array}{c} \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \text{ for } 1 \leq i \leq n-1 \\ \sigma_i \sigma_j = \sigma_j \sigma_i \text{ for } |i-j| \geq 2 \end{array} \right\rangle.$$

This is the braid group \mathcal{B}_{n+1} on n+1 strands. The colored Artin group is the **pure braid group** \mathcal{PB}_{n+1} . Open questions.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Open questions.

(1) Are the Artin groups torsion free?

Open questions.

- (1) Are the Artin groups torsion free?
- (2) How is the center of an Artin group?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Open questions.

- (1) Are the Artin groups torsion free?
- (2) How is the center of an Artin group?
- (3) Have Artin groups solvable word problem?

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Definition. I is a nonempty open convex cone in a finite dimensional real vector space V.

Definition. *I* is a nonempty open convex cone in a finite dimensional real vector space V. A **hyperplane arrangement** in *I* is a family A of linear hyperplanes of *V* satisfying

Definition. I is a nonempty open convex cone in a finite dimensional real vector space V.

A hyperplane arrangement in I is a family A of linear hyperplanes of V satisfying

(a) $H \cap I \neq \emptyset$ for all $H \in \mathcal{A}$;

Definition. I is a nonempty open convex cone in a finite dimensional real vector space V.

A hyperplane arrangement in I is a family A of linear hyperplanes of V satisfying

(a) $H \cap I \neq \emptyset$ for all $H \in \mathcal{A}$;

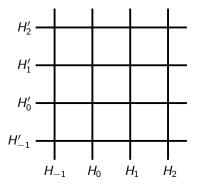
(b) A is locally finite in I, that is, for all x ∈ I, there is an open neighborhood U_x of x in I such that the set {H ∈ A | H ∩ U_x ≠ Ø} is finite.

Example. Set $V = \mathbb{R}^3$ and $I = \{(x, y, z) \in V \mid z > 0\}$.

Example. Set $V = \mathbb{R}^3$ and $I = \{(x, y, z) \in V \mid z > 0\}$. $H_k = \{x = kz\}$, and $H'_k = \{y = kz\}$.

Example. Set $V = \mathbb{R}^3$ and $I = \{(x, y, z) \in V \mid z > 0\}$. $H_k = \{x = kz\}$, and $H'_k = \{y = kz\}$. $\mathcal{A} = \{H_k, H'_k \mid k \in \mathbb{Z}\}$. This is a hyperplane arrangement in I.

Example. Set $V = \mathbb{R}^3$ and $I = \{(x, y, z) \in V \mid z > 0\}$. $H_k = \{x = kz\}$, and $H'_k = \{y = kz\}$. $\mathcal{A} = \{H_k, H'_k \mid k \in \mathbb{Z}\}$. This is a hyperplane arrangement in I.



▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Definition. *V* be a finite dimensional real vector space.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition. Let \overline{C}_0 be a closed convex polyhedral cone in V with nonempty interior.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition. Let \overline{C}_0 be a closed convex polyhedral cone in V with nonempty interior. Let C_0 be the interior of \overline{C}_0 .

Definition. Let \overline{C}_0 be a closed convex polyhedral cone in V with nonempty interior.

Let C_0 be the interior of \overline{C}_0 .

A wall of \bar{C}_0 is the support of a (codimensional 1) face of \bar{C}_0 , that is, a hyperplane of V generated by that face.

Definition. Let H_1, \ldots, H_n be the walls of \overline{C}_0 .

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Definition. Let H_1, \ldots, H_n be the walls of \overline{C}_0 . For each $i \in \{1, \ldots, n\}$ we take a reflection s_i which fixes H_i , and we denote by W the subgroup of GL(V) generated by $S = \{s_1, \ldots, s_n\}$.

Definition. Let H_1, \ldots, H_n be the walls of \overline{C}_0 . For each $i \in \{1, \ldots, n\}$ we take a reflection s_i which fixes H_i , and we denote by W the subgroup of GL(V) generated by $S = \{s_1, \ldots, s_n\}$. The pair (W, S) is called a **Vinberg system** if $wC_0 \cap C_0 = \emptyset$ for all $w \in W \setminus \{1\}$.

Definition. Let H_1, \ldots, H_n be the walls of \overline{C}_0 .

For each $i \in \{1, ..., n\}$ we take a reflection s_i which fixes H_i , and we denote by W the subgroup of GL(V) generated by $S = \{s_1, ..., s_n\}$. The pair (W, S) is called a **Vinberg system** if $wC_0 \cap C_0 = \emptyset$ for

all $w \in W \setminus \{1\}.$

In that case, the group W is called **reflection group** in Vinberg sense, S is called **canonical generating system** for W, and C_0 is called **fundamental chamber** of (W, S).

 $\bar{I} = \bigcup_{w \in W} w \, \bar{C}_0 \, .$

Then the following statements hold.

 $\overline{I} = \bigcup_{w \in W} w \, \overline{C}_0 \, .$

Then the following statements hold. (1) (W, S) is a Coxeter system.

 $\bar{I} = \bigcup_{w \in W} w \, \bar{C}_0 \, .$

Then the following statements hold.
(1) (W, S) is a Coxeter system.
(2) *Ī* is a convex cone with nonempty interior.

 $\overline{I} = \bigcup_{w \in W} w \, \overline{C}_0 \, .$

Then the following statements hold.

- (1) (W, S) is a Coxeter system.
- (2) \overline{I} is a convex cone with nonempty interior.
- (3) The interior I of \overline{I} is stable under the action of W, and W acts properly discontinuously on I.

 $\bar{I} = \bigcup_{w \in W} w \, \bar{C}_0 \, .$

Then the following statements hold.

(1) (W, S) is a Coxeter system.

- (2) \overline{I} is a convex cone with nonempty interior.
- (3) The interior I of \overline{I} is stable under the action of W, and W acts properly discontinuously on I.
- (4) Let x ∈ I be such that W_x = {w ∈ W | w(x) = x} is different from {1}. Then there exists a reflection r in W such that r(x) = x.

(1) There is a difference in the theorem between the pair (W, S), viewed as a Vinberg system, and the pair (W, S), viewed a Coxeter system.

- (1) There is a difference in the theorem between the pair (W, S), viewed as a Vinberg system, and the pair (W, S), viewed a Coxeter system.
 - In the first case, W is some specific subgroup of a linear group, while, in the second case, W is just an abstract group.

(1) There is a difference in the theorem between the pair (W, S), viewed as a Vinberg system, and the pair (W, S), viewed a Coxeter system.

In the first case, ${\cal W}$ is some specific subgroup of a linear group, while, in the second case, ${\cal W}$ is just an abstract group.

(2) Any Coxeter system appears as a Vinberg system (this is due to Tits), but this representation is not unique in general.

(1) There is a difference in the theorem between the pair (W, S), viewed as a Vinberg system, and the pair (W, S), viewed a Coxeter system.

In the first case, ${\cal W}$ is some specific subgroup of a linear group, while, in the second case, ${\cal W}$ is just an abstract group.

(2) Any Coxeter system appears as a Vinberg system (this is due to Tits), but this representation is not unique in general.

Definition. The above cone I is called **Tits cone** of the Vinberg system (W, S).

(1) There is a difference in the theorem between the pair (W, S), viewed as a Vinberg system, and the pair (W, S), viewed a Coxeter system.

In the first case, W is some specific subgroup of a linear group, while, in the second case, W is just an abstract group.

(2) Any Coxeter system appears as a Vinberg system (this is due to Tits), but this representation is not unique in general.

Definition. The above cone *I* is called **Tits cone** of the Vinberg system (W, S). Denote by \mathcal{R} the set of reflections belonging to *W*.

(1) There is a difference in the theorem between the pair (W, S), viewed as a Vinberg system, and the pair (W, S), viewed a Coxeter system.

In the first case, W is some specific subgroup of a linear group, while, in the second case, W is just an abstract group.

(2) Any Coxeter system appears as a Vinberg system (this is due to Tits), but this representation is not unique in general.

Definition. The above cone *I* is called **Tits cone** of the Vinberg system (W, S). Denote by \mathcal{R} the set of reflections belonging to W. For $r \in \mathcal{R}$ we denote by H_r the fixed hyperplane of r, and we set $\mathcal{A} = \{H_r \mid r \in \mathcal{R}\}.$

(1) There is a difference in the theorem between the pair (W, S), viewed as a Vinberg system, and the pair (W, S), viewed a Coxeter system.

In the first case, W is some specific subgroup of a linear group, while, in the second case, W is just an abstract group.

(2) Any Coxeter system appears as a Vinberg system (this is due to Tits), but this representation is not unique in general.

Definition. The above cone *I* is called **Tits cone** of the Vinberg system (W, S). Denote by \mathcal{R} the set of reflections belonging to W. For $r \in \mathcal{R}$ we denote by H_r the fixed hyperplane of r, and we set $\mathcal{A} = \{H_r \mid r \in \mathcal{R}\}$. By the theorem, \mathcal{A} is a hyperplane arrangement in the Tits cone *I*.

(1) There is a difference in the theorem between the pair (W, S), viewed as a Vinberg system, and the pair (W, S), viewed a Coxeter system.

In the first case, W is some specific subgroup of a linear group, while, in the second case, W is just an abstract group.

(2) Any Coxeter system appears as a Vinberg system (this is due to Tits), but this representation is not unique in general.

Definition. The above cone *I* is called **Tits cone** of the Vinberg system (W, S). Denote by \mathcal{R} the set of reflections belonging to *W*. For $r \in \mathcal{R}$ we denote by H_r the fixed hyperplane of *r*, and we set $\mathcal{A} = \{H_r \mid r \in \mathcal{R}\}$. By the theorem, \mathcal{A} is a hyperplane arrangement in the Tits cone *I*. It is called **Coxeter arrangement** of (W, S). **Example.** Consider the symmetric group \mathfrak{S}_{n+1} acting on the space $V = \mathbb{R}^{n+1}$ by permutations of the coordinates.

・ロト・日本・モート モー うへぐ

Example. Consider the symmetric group \mathfrak{S}_{n+1} acting on the space $V = \mathbb{R}^{n+1}$ by permutations of the coordinates. Let

$$\bar{C}_0 = \{x \in V \mid x_1 \leq x_2 \leq \cdots \leq x_{n+1}\}.$$

Example. Consider the symmetric group \mathfrak{S}_{n+1} acting on the space $V = \mathbb{R}^{n+1}$ by permutations of the coordinates. Let

$$\bar{\mathcal{C}}_0 = \{x \in V \mid x_1 \leq x_2 \leq \cdots \leq x_{n+1}\}.$$

For $i, j \in \{1, \dots, n+1\}$, $i \neq j$, we set $H_{i,j} = \{x \in V \mid x_i = x_j\}$.

$$\bar{C}_0 = \{x \in V \mid x_1 \leq x_2 \leq \cdots \leq x_{n+1}\}.$$

For $i, j \in \{1, ..., n+1\}$, $i \neq j$, we set $H_{i,j} = \{x \in V \mid x_i = x_j\}$. Then \overline{C}_0 is a convex polyhedral cone whose walls are $H_{1,2}, H_{2,3}, ..., H_{n,n+1}$.

$$\bar{C}_0 = \{x \in V \mid x_1 \leq x_2 \leq \cdots \leq x_{n+1}\}.$$

For $i, j \in \{1, ..., n+1\}$, $i \neq j$, we set $H_{i,j} = \{x \in V \mid x_i = x_j\}$. Then \overline{C}_0 is a convex polyhedral cone whose walls are $H_{1,2}, H_{2,3}, ..., H_{n,n+1}$. For $i \in \{1, ..., n\}$, $s_i = (i, i+1)$ is a reflection whose fixed hyperplane is $H_{i,i+1}$.

$$\bar{C}_0 = \{x \in V \mid x_1 \leq x_2 \leq \cdots \leq x_{n+1}\}.$$

For $i, j \in \{1, ..., n+1\}$, $i \neq j$, we set $H_{i,j} = \{x \in V \mid x_i = x_j\}$. Then \overline{C}_0 is a convex polyhedral cone whose walls are $H_{1,2}, H_{2,3}, ..., H_{n,n+1}$. For $i \in \{1, ..., n\}$, $s_i = (i, i+1)$ is a reflection whose fixed hyperplane is $H_{i,i+1}$. Then $(\mathfrak{S}_{n+1}, \{s_1, ..., s_n\})$ is a Vinberg system.

$$\bar{C}_0 = \{x \in V \mid x_1 \leq x_2 \leq \cdots \leq x_{n+1}\}.$$

For $i, j \in \{1, ..., n+1\}$, $i \neq j$, we set $H_{i,j} = \{x \in V \mid x_i = x_j\}$. Then \overline{C}_0 is a convex polyhedral cone whose walls are $H_{1,2}, H_{2,3}, ..., H_{n,n+1}$. For $i \in \{1, ..., n\}$, $s_i = (i, i+1)$ is a reflection whose fixed hyperplane is $H_{i,i+1}$. Then $(\mathfrak{S}_{n+1}, \{s_1, ..., s_n\})$ is a Vinberg system. In this case we have

$$\bar{I} = \bigcup_{w \in \mathfrak{S}_{n+1}} w \, \bar{C}_0 = V \, .$$

$$\bar{C}_0 = \{x \in V \mid x_1 \leq x_2 \leq \cdots \leq x_{n+1}\}.$$

For $i, j \in \{1, ..., n+1\}$, $i \neq j$, we set $H_{i,j} = \{x \in V \mid x_i = x_j\}$. Then \overline{C}_0 is a convex polyhedral cone whose walls are $H_{1,2}, H_{2,3}, ..., H_{n,n+1}$. For $i \in \{1, ..., n\}$, $s_i = (i, i+1)$ is a reflection whose fixed hyperplane is $H_{i,i+1}$. Then $(\mathfrak{S}_{n+1}, \{s_1, ..., s_n\})$ is a Vinberg system. In this case we have

$$\bar{I} = \bigcup_{w \in \mathfrak{S}_{n+1}} w \, \bar{C}_0 = V \, .$$

So, I = V, too.

$$\bar{C}_0 = \{x \in V \mid x_1 \leq x_2 \leq \cdots \leq x_{n+1}\}.$$

For $i, j \in \{1, ..., n+1\}$, $i \neq j$, we set $H_{i,j} = \{x \in V \mid x_i = x_j\}$. Then \overline{C}_0 is a convex polyhedral cone whose walls are $H_{1,2}, H_{2,3}, ..., H_{n,n+1}$. For $i \in \{1, ..., n\}$, $s_i = (i, i+1)$ is a reflection whose fixed hyperplane is $H_{i,i+1}$. Then $(\mathfrak{S}_{n+1}, \{s_1, ..., s_n\})$ is a Vinberg system. In this case we have

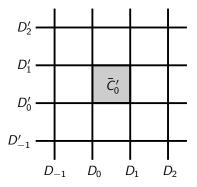
$$\bar{I} = \bigcup_{w \in \mathfrak{S}_{n+1}} w \, \bar{C}_0 = V \, .$$

So, I = V, too. The set \mathcal{R} of reflections coincides with the set of transpositions, thus $\mathcal{A} = \{H_{i,j} \mid 1 \le i < j \le n+1\}.$

Example. Consider the affine Euclidean plane \mathbb{E}^2 .

Example. Consider the affine Euclidean plane \mathbb{E}^2 . D_k is the affine line of equation x = k, and D'_k the affine line of equation y = k.

Example. Consider the affine Euclidean plane \mathbb{E}^2 . D_k is the affine line of equation x = k, and D'_k the affine line of equation y = k.



 s_k is the orthogonal affine reflection with respect to D_k , and s'_k is the orthogonal affine reflection with respect to D'_k .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 s_k is the orthogonal affine reflection with respect to D_k , and s'_k is the orthogonal affine reflection with respect to D'_k . W the subgroup of the orthogonal affine group of \mathbb{E}^2 generated by $\{s_k, s'_k \mid k \in \mathbb{Z}\}$.

 s_k is the orthogonal affine reflection with respect to D_k , and s'_k is the orthogonal affine reflection with respect to D'_k . W the subgroup of the orthogonal affine group of \mathbb{E}^2 generated by $\{s_k, s'_k \mid k \in \mathbb{Z}\}$. We have

$$\begin{split} \mathcal{W} &= \langle s_0, s_1, s_0', s_1' \mid s_0^2 = s_1^2 = {s_0'}^2 = {s_1'}^2 = 1 \,, \\ (s_0 s_0')^2 &= (s_0 s_1')^2 = (s_1 s_0')^2 = (s_1 s_1')^2 = 1 \rangle \,. \end{split}$$

 s_k is the orthogonal affine reflection with respect to D_k , and s'_k is the orthogonal affine reflection with respect to D'_k . W the subgroup of the orthogonal affine group of \mathbb{E}^2 generated by $\{s_k, s'_k \mid k \in \mathbb{Z}\}$. We have

$$W = \langle s_0, s_1, s'_0, s'_1 | s_0^2 = s_1^2 = {s'_0}^2 = {s'_1}^2 = 1,$$

$$(s_0 s'_0)^2 = (s_0 s'_1)^2 = (s_1 s'_0)^2 = (s_1 s'_1)^2 = 1 \rangle.$$

This is the Coxeter group of

We embed \mathbb{E}^2 in \mathbb{R}^3 via the map $(x, y) \mapsto (x, y, 1)$, and we denote by $Aff(\mathbb{E}^2)$ the affine group of \mathbb{E}^2 .

We embed \mathbb{E}^2 in \mathbb{R}^3 via the map $(x, y) \mapsto (x, y, 1)$, and we denote by $\operatorname{Aff}(\mathbb{E}^2)$ the affine group of \mathbb{E}^2 . Recall that, for $f \in \operatorname{Aff}(\mathbb{E}^2)$, there are a unique linear transformation $f_0 \in \operatorname{GL}(\mathbb{R}^2)$ and a unique vector $u \in \mathbb{R}^2$ such that $f = T_u \circ f_0$, where T_u is the translation relative to u.

We embed \mathbb{E}^2 in \mathbb{R}^3 via the map $(x, y) \mapsto (x, y, 1)$, and we denote by $\operatorname{Aff}(\mathbb{E}^2)$ the affine group of \mathbb{E}^2 . Recall that, for $f \in \operatorname{Aff}(\mathbb{E}^2)$, there are a unique linear transformation $f_0 \in \operatorname{GL}(\mathbb{R}^2)$ and a unique vector $u \in \mathbb{R}^2$ such that $f = T_u \circ f_0$, where T_u is the translation relative to u. Recall also that there is an embedding $\operatorname{Aff}(\mathbb{R}^2) \hookrightarrow \operatorname{GL}(\mathbb{R}^3)$ defined

Recall also that there is an embedding ${\rm Aff}(\mathbb{E}^2) \hookrightarrow {\rm GL}(\mathbb{R}^3)$ defined by

$$f\mapsto egin{pmatrix} f_0&u\0&1\end{pmatrix}$$
 .

We embed \mathbb{E}^2 in \mathbb{R}^3 via the map $(x, y) \mapsto (x, y, 1)$, and we denote by $\operatorname{Aff}(\mathbb{E}^2)$ the affine group of \mathbb{E}^2 . Recall that, for $f \in \operatorname{Aff}(\mathbb{E}^2)$, there are a unique linear

transformation $f_0 \in \operatorname{GL}(\mathbb{R}^2)$ and a unique vector $u \in \mathbb{R}^2$ such that $f = T_u \circ f_0$, where T_u is the translation relative to u.

Recall also that there is an embedding $\mathrm{Aff}(\mathbb{E}^2) \hookrightarrow \mathrm{GL}(\mathbb{R}^3)$ defined by

$f\mapsto$	$(f_0$	u)	
	(0	1)	•

In this way, the group W can be regarded as a subgroup of $\mathrm{GL}(\mathbb{R}^3).$

We embed \mathbb{E}^2 in \mathbb{R}^3 via the map $(x, y) \mapsto (x, y, 1)$, and we denote by $Aff(\mathbb{E}^2)$ the affine group of \mathbb{E}^2 .

Recall that, for $f \in Aff(\mathbb{E}^2)$, there are a unique linear transformation $f_0 \in GL(\mathbb{R}^2)$ and a unique vector $u \in \mathbb{R}^2$ such that $f = T_u \circ f_0$, where T_u is the translation relative to u. Recall also that there is an embedding $Aff(\mathbb{E}^2) \hookrightarrow GL(\mathbb{R}^3)$ defined by

 $f\mapsto egin{pmatrix} f_0&u\\0&1 \end{pmatrix}$.

In this way, the group W can be regarded as a subgroup of $GL(\mathbb{R}^3)$.

We denote by H_k the linear plane of \mathbb{R}^3 generated by D_k , and we denote by H'_k the linear plane generated by D'_k .

We embed \mathbb{E}^2 in \mathbb{R}^3 via the map $(x, y) \mapsto (x, y, 1)$, and we denote by $Aff(\mathbb{E}^2)$ the affine group of \mathbb{E}^2 .

Recall that, for $f \in Aff(\mathbb{E}^2)$, there are a unique linear transformation $f_0 \in GL(\mathbb{R}^2)$ and a unique vector $u \in \mathbb{R}^2$ such that $f = T_u \circ f_0$, where T_u is the translation relative to u. Recall also that there is an embedding $Aff(\mathbb{E}^2) \hookrightarrow GL(\mathbb{R}^3)$ defined by

 $f\mapsto egin{pmatrix} f_0&u\\0&1 \end{pmatrix}$.

In this way, the group W can be regarded as a subgroup of $\operatorname{GL}(\mathbb{R}^3)$.

We denote by H_k the linear plane of \mathbb{R}^3 generated by D_k , and we denote by H'_k the linear plane generated by D'_k .

Then s_k is a linear reflection whose fixed hyperplane is H_k , and s'_k is a linear reflection whose fixed hyperplane is H'_k .

$$ar{\mathcal{C}}_0' = \left\{ (x,y) \in \mathbb{E}^2 \mid 0 \leq x,y \leq 1
ight\}.$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のみの

$$ar{\mathcal{C}}_0' = \left\{ (x,y) \in \mathbb{E}^2 \mid 0 \leq x,y \leq 1
ight\}.$$

<□ > < @ > < E > < E > E のQ @

Let \overline{C}_0 be the cone over \overline{C}'_0 .

$$ar{C}_0' = \{(x,y) \in \mathbb{E}^2 \mid 0 \le x, y \le 1\}.$$

Let \overline{C}_0 be the cone over \overline{C}'_0 . This is a closed convex polyhedral cone whose walls are H_0, H_1, H'_0, H'_1 .

$$ar{C}_0' = \left\{ (x,y) \in \mathbb{E}^2 \mid 0 \leq x, y \leq 1 \right\}.$$

Let \overline{C}_0 be the cone over \overline{C}'_0 . This is a closed convex polyhedral cone whose walls are H_0, H_1, H'_0, H'_1 . Observe that $wC_0 \cap C_0 = \emptyset$ for all $w \in W \setminus \{1\}$, thus (W, S) is a Vinberg system, where $S = \{s_0, s_1, s'_0, s'_1\}$.

$$ar{C}_0' = \{(x,y) \in \mathbb{E}^2 \mid 0 \le x, y \le 1\}.$$

Let \overline{C}_0 be the cone over \overline{C}'_0 . This is a closed convex polyhedral cone whose walls are H_0, H_1, H'_0, H'_1 . Observe that $wC_0 \cap C_0 = \emptyset$ for all $w \in W \setminus \{1\}$, thus (W, S) is a Vinberg system, where $S = \{s_0, s_1, s'_0, s'_1\}$. We have

$$\overline{I} = \bigcup_{w \in W} w \, \overline{C}_0 = \{(x, y, z) \in \mathbb{R}^3 \mid z > 0\} \cup \{(0, 0, 0)\},\$$

$$ar{C}_0' = \left\{ (x,y) \in \mathbb{E}^2 \mid 0 \leq x, y \leq 1 \right\}.$$

Let \overline{C}_0 be the cone over \overline{C}'_0 . This is a closed convex polyhedral cone whose walls are H_0, H_1, H'_0, H'_1 . Observe that $wC_0 \cap C_0 = \emptyset$ for all $w \in W \setminus \{1\}$, thus (W, S) is a Vinberg system, where $S = \{s_0, s_1, s'_0, s'_1\}$. We have

$$\bar{I} = \bigcup_{w \in W} w \bar{C}_0 = \{(x, y, z) \in \mathbb{R}^3 \mid z > 0\} \cup \{(0, 0, 0)\},\$$

thus

$$I = \{(x, y, z) \in \mathbb{R}^3 \mid z > 0\}.$$

$$\bar{C}'_0 = \{(x, y) \in \mathbb{E}^2 \mid 0 \le x, y \le 1\}.$$

Let \overline{C}_0 be the cone over \overline{C}'_0 . This is a closed convex polyhedral cone whose walls are H_0, H_1, H'_0, H'_1 . Observe that $wC_0 \cap C_0 = \emptyset$ for all $w \in W \setminus \{1\}$, thus (W, S) is a Vinberg system, where $S = \{s_0, s_1, s'_0, s'_1\}$. We have

$$\bar{I} = \bigcup_{w \in W} w \bar{C}_0 = \{(x, y, z) \in \mathbb{R}^3 \mid z > 0\} \cup \{(0, 0, 0)\},\$$

thus

$$I = \{(x, y, z) \in \mathbb{R}^3 \mid z > 0\}.$$

On the other hand,

$$\mathcal{A} = \{H_k, H'_k \mid k \in \mathbb{Z}\}.$$