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Maximal subgroups of exceptional algebraic groups

Let G be a simple algebraic group of exceptional type, defined over an
algebraically closed field k of characteristic p ≥ 0.

Let M ⊂ G be a maximal positive-dimensional closed subgroup. By the
Borel-Tits theorem, if M◦ is not reductive, then M is a maximal parabolic
subgroup of G .

Now if M◦ is reductive, it is possible that M◦ contains a maximal torus of
G . It is straightforward to describe subgroups containing maximal tori of
G via the Borel-de Siebenthal algorithm. Then M is the full normalizer of
such a group, and finding such M which are maximal is again
straightfoward.
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So finally, one is left to consider the subgroups M such that

M◦ is reductive, and

M does not contain a maximal torus of G .

A classification of the positive-dimensional maximal closed subgroups of G
was completed in 2004 by Liebeck and Seitz. (Earlier work of Seitz had
reduced this problem to those cases where char(k) is ‘small’.)
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We may assume the exceptional group G to be an adjoint type group, as
maximal subgroups of an arbitrary simple algebraic group G̃ must contain
Z (G̃) and hence will have an image which is a maximal subgroup of the
adjoint group.

We adopt the convention p = ∞ when char(k) = 0.

The first result classifies the subgroups which are maximal among proper
closed connected subgroups.
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Maximal closed connected subgroups of the exceptional

algebraic groups

Theorem (Seitz, 1991, Liebeck-Seitz, 2004)

Let G be an exceptional algebraic group defined over an algebraically

closed field of characteristic p. Let X < G be a closed subgroup. Then X

is maximal among proper closed connected subgroups of G if and only if

one of the following:

(1) X is a maximal parabolic subgroup.

(2) X is a maximal rank subsystem subgroup as in Table 1 below.

(3) X and G are as in Tables 2 and 3 below.
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Table 1: Maximal maximal-rank connected subgroups

G X

G2 A1Ã1, A2, Ã2 (p = 3)

F4 (p 6= 2) B4, A1C3, A2Ã2

F4 (p = 2) B4, C4, A2Ã2

E6 A1A5, A2A2A2

E7 A1D6, A7, A2A5

E8 D8, A1E7, A8, A2E6, A4A4

Here Φ̃ signifies a subsystem containing short roots.
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Table 2: Simple maximal connected subgroups, of rank

< rankG

G X simple

G2 A1 (p ≥ 7)

F4 A1 (p ≥ 13), G2 (p = 7)

E6 A2 (p 6= 2, 3), G2 (p 6= 7), C4 (p 6= 2), F4

E7 A1 (2 classes, p ≥ 17, 19 respectively), A2 (p ≥ 5)

E8 A1 (3 classes, p ≥ 23, 29, 31 respectively), B2 (p ≥ 5)
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Table 3: Non-simple maximal connected subgroups, of

rank < rankG

G X semisimple, non-simple

F4 A1G2 (p 6= 2)

E6 A2G2

E7 A1A1 (p 6= 2, 3), A1G2 (p 6= 2), A1F4, G2C3

E8 A1A2 (p 6= 2, 3), G2F4
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Maximal closed positive-dimensional subgroups

Theorem (Liebeck-Seitz, 2004)

Let G be an exceptional algebraic group of adjoint type, defined over an

algebraically closed field of characteristic p. Let M < G be a closed

subgroup. Then M is maximal among positive-dimensional closed

subgroups of G if and only if one of the following holds:

(1) M is a maximal parabolic subgroup.

(2) G = E7, p 6= 2 and M = (Z 2
2 × D4).S3.

(3) G = E8, p 6= 2, 3, 5 and M = A1 × S5.

(4) M = NG (X ) for X as in (3) of the previous theorem.

(5) G = E8, p 6= 2, M = NG (X ), where X = A1G2G2, with A1G2 maximal

closed connected in F4, and M/X = Z2.

(6) M = NG (X ) where X is connected reductive of maximal rank and the

pair (X ,M/X ) is as in the table below, where Ti indicates an

i-dimensional subtorus of G :
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G X M/X

G2 A1Ã1, A2, Ã2 (p = 3) 1, Z2, Z2

F4 (p 6= 2) B4, D4, A1C3, A2Ã2 1, S3, 1, Z2

F4 (p = 2) B4, C4, D4, D̃4, A2Ã2 1, 1, S3, S3, Z2

E6 A1A5, (A2)
3, D4T2, T6 1, S3, S3, W (E6)

E7 A1D6, A7, A2A5, (A1)
3D4, 1, Z2, Z2, S3,

(A1)
7, E6T1, T7 PSL3(2), Z2, W (E7)

E8 D8, A1E7, A8, A2E6, 1, 1, Z2, Z2,

(A4)
2, (D4)

2, Z4, S3 × Z2,

(A2)
4, (A1)

8, T8 GL2(3), AGL3(2), W (E8)

Donna Testerman (EPF Lausanne) Exceptional groups of Lie type: subgroup structure and unipotent elements17 December 2012 11 / 110



Remark

When M is the normalizer of one of the non-maximal rank maximal
connected subgroups, the index |M : X | is 1 or 2. In all cases where X has
a factor of type A2, M induces a non-trivial graph automorphism of this
factor.
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Questions

How effectively can one apply the above results to the study of the
subgroup lattice of G .

For example, if one wants to classify all A1- or B2-type subgroups in
G (up to conjugacy) how does one use the above theorem ?

In principle, for Y ⊂ G connected reductive, if Y lies in a reductive
maximal subgroup M, then we can apply induction and use results on
the subgroup structure of the classical algebraic groups, which are
quite complete in small rank, and determine Y up to conjugacy.

However, if Y lies in a parabolic subgroup P of G , then one is faced
with the difficult question: does Y lie in a Levi subgroup of P? If so,
then again, one can proceed by induction; if not, this question can be
quite complicated.

David Stewart will address this issue in his talks.
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Maximal subgroups of the finite exceptional groups

Reduction theorem:

Theorem (Borovik, 1989 Liebeck-Seitz, 1990)

Let G be an exceptional simple algebraic group, F : G → G an

endomorphism with finite fixed-point subgroup GF , and H < GF maximal.

Then one of the following holds:

(1) H = MF for M an F -stable maximal positive-dimensional closed

subgroup,

(2) H is an exotic local subgroup as described below,

(3) G = E8, p > 5, H = (Alt5 × S6).2, or

(4) H is almost simple.

(We will call such an F a Steinberg endomorphism.)
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Jordan subgroups

Definition

Let G be a simple algebraic group, defined over an algebraically closed
field k . An elementary abelian r -subgroup R of G , with r 6= char(k), is
called a Jordan subgroup of G if it satisfies the following conditions:

1. CG (R) (and hence NG (R)) is finite,

2. R is a minimal normal subgroup of NG (R),

3. NG (R) is maximal subject to conditions 1. and 2., and

4. there is no non-trivial connected NG (R)-invariant proper subgroup of G .
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Exotic locals

Theorem (Borovik, Cohen–Liebeck–Saxl–Seitz (1992))

Let G be a simple exceptional algebraic group of adjoint type with

Steinberg endomorphism F : G → G. Then the Jordan subgroups R in GF

and their normalizers H = NGF (R) are given as follows:

(1) G = G2, R = 23 and H = 23.SL3(2),

(2) G = F4, R = 33, H = 33.SL3(3),

(3) G = E6, R = 33, H = 33+3.SL3(3), or

(4) G = E8, R = 25, H = 25+10.SL5(2), or R = 53, H = 53.SL3(5).

In each case, these are unique up to GF -conjugation.
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In the statement, the notation ra, with r a prime and a ≥ 1, denotes an
elementary abelian r -group of this order, while ra+b stands for an
(unspecified) extension of an elementary abelian r -group of order ra by
one of order rb.

Definition

The normalizers NGF (R) of these Jordan subgroups are called exotic local

subgroups of exceptional groups of Lie type.
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The Liebeck-Seitz-Borovik result reduces the problem of determining the
maximal subgroups of the finite exceptional groups to that of determining
the almost simple maximal subgroups H ⊂ GF .

This problem naturally separates into two cases

H is of Lie type in characteristic p,

H is not of Lie type in characteristic p.
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The latter case has been studied by Liebeck and Seitz. If we include the
consideration of finite subgroups of the exceptional groups defined over C,
there is a much longer story, written by various authors: Cohen, Wales,
Griess, Ryba, Serre.

Note that this is much more complicated in the finite classical groups, and
essentially comes down to difficult questions in modular representation
theory.
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In the case which interests us here, that is of the finite exceptional groups,
the Liebeck-Seitz result is

Theorem

Let S be a finite simple group, some cover of which is contained in an

exceptional algebraic group G in characteristic p > 0. Assume that S is

not a group of Lie type in characteristic p. Then the possibilities for S and

G are given below.
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S ⊂ G , G of type G2, F4,E6 in characteristic p and

S 6∈ Lie(p)

G S

G2 Alt5,Alt6, L2(7), L2(8), L2(13),U3(3)
Alt7 (p = 5), J1 (p = 11), J2 (p = 2)

F4 above,plus : Altr , r = 7, 8, 9, 10, L2(17), L2(25), L2(27)
L3(3),U4(2),Sp6(2),Ω

+
8 (2),

3D4(2), J2
Alt11 (p = 11), L3(4) (p = 3), L4(3) (p = 2)

2B2(8) (p = 5),M11 (p = 11)

E6 above,plus : Alt11, L2(11), L2(19), L3(4),U4(3),
2F4(2)

′,M11,
Alt12 (p = 2, 3),G2(3) (p = 2),Ω7(3) (p = 2),M22 (p = 2, 7),

J3 (p = 2),Fi22 (p = 2),M12 (p = 2, 3, 5)
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S ⊂ G , G of type E7,E8 in characteristic p and S 6∈ Lie(p)

G S

E7 above,plus : Alt12,Alt13, L2(29), L2(37),U3(8)
M12,Alt14 (p = 7),M22 (p = 5),Ru (p = 5),HS (p = 5)

E8 above,plus : Altr , 14 ≤ r ≤ 17, L2(q), q = 16, 31, 32, 41, 49, 61
L3(5),PSp4(5),G2(3),

2B2(8),
Alt18 (p = 3), L4(5) (p = 2),Th (p = 3),2B2(32) (p = 5)
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Questions

In each case, they establish the existence of such a specified covering
group of S in the exceptional algebraic group.

Determine the conjugacy classes of such subgroups.
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The above result reduces the case where H is not of Lie type in the
defining characteristic to a very finite list of configurations to study.

So we see that the remaining cases are those where H is of Lie type in
characteristic p.
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Lifting results

The question we consider here is the following:

Given very precise information about the subgroup structure of a simple
algebraic group G , defined over an algebraically closed field of positive
characteristic, how much can one deduce about the subgroup structure of
finite groups which occur as fixed point subgroups Gσ of some rational
endomorphism σ : G → G ?
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Best case scenario: Steinberg

Theorem (Steinberg, 1963)

Let G be a simple algebraic group defined over F̄p. Let σ : G → G be a

rational endomorphism with finite fixed-point subgroup Gσ and let

ρ : Gσ → GLn(F̄p) be an irreducible representation. Then there exists an

irreducible rational representation ρ̄ : G → GLn(F̄p), such that ρ = ρ̄|Gσ .
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One can in fact show more, namely,

if ρ(Gσ) fixes a nondegenerate bilinear or quadratic form on the associated
F̄pG

σ-module, then ρ̄(G ) fixes the same form. (Seitz, 1988)

Hence, the embedding of ρ(Gσ) in the corresponding finite classical group
‘lifts’ to an embedding of the algebraic group ρ̄(G ) in the corresponding
simple classical type algebraic group.
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No completely general lifting result
Of course one cannot hope for a completely general lifting result, as there
are indecomposable representations of finite groups of Lie type which do
not arise as restrictions of representations of the corresponding algebraic
group.

Example

Take Gσ = SL2(3), and let N ⊂ Gσ be a (normal) 2-Sylow subgroup, with
quotient Gσ/N = 〈cN〉. Define a representation of Gσ/N by

cN 7→





1 1 1
0 1 1
0 0 1



. This defines an indecomposable representation of Gσ.

Since an element of the Weyl group of SL2(F̄3) is represented by an
element in N, we see that if the representation extends to a representation
of SL2(F̄3), the only weight occurring in the representation (for a fixed
maximal torus) is the weight 0 and so a composition series for the module
has trivial composition factors, contradicting the simplicity of the algebraic
group SL2(F̄3).
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Lifting results for exceptional type groups

Let H be a simple algebraic group defined over k = F̄p with
endomorphism σ : H → H having finite fixed point subgroup X = Hσ .

Let G be an exceptional type simple algebraic group defined over k , with
endomorphism F : G → G having finite fixed-point subgroup, and let
ϕ : X → G be a homomorphism whose image lies in GF .

When does there exist a closed F -invariant subgroup X̄ of G such that
ϕ(X ) = X̄ F? One could ask for more, that is, does the homomorphism ϕ
extend to a rational morphism of algebraic groups ϕ̄ : H → G , whose
image is F -invariant and such that ϕ(X ) = ϕ̄(H)F .
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Some answers

There are various complementary results which address this question. Let
me list them in chronological order.

Notation

Let X̃ be a semisimple and simply connected algebraic group over F̄p

and σ an endomorphism of X̃ normalizing each simple factor of X̃
and having finite fixed point group.

Let Z < Z (X̃ σ) and X̄ = X̃/Z . Then σ induces an endomorphism on
X̄ , also denoted by σ.

Here, a finite group of Lie type in characteristic p is a group of the
form X = Op′(X̄ σ).

The group X̄ is called the ambient algebraic group corresponding to

X .

Let Ḡ be a semisimple algebraic group over F̄p and F an
endomorphism of Ḡ such that G = Op′(ḠF ) is finite.
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Theorem (Seitz-Testerman (1990))

Let X be a perfect finite group of Lie type in characteristic p, with

ambient algebraic group X̄ . Let ϕ : X → G be a homomorphism such that

ϕ(X ) is contained in no proper parabolic subgroup of G. There is an

integer N depending on the dimension of the largest simple factor of Ḡ ,

such that if p > N, then ϕ can be extended to a homomorphism of

algebraic groups ϕ̄ : X̄ → Ḡ . If each simple factor of Ḡ is of classical type,

then no restriction on p is required.
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The integer N for the exceptional type groups Ḡ is defined as follows:

Definition

Let Ȳ be a simple factor of X̄ of minimal dimension. Then N = 7 suffices
unless Ȳ is as in Table 1. In the remaining cases, we take N to be the
value in the table corresponding to the pair (Ȳ , Ḡ ).

Table: N(Ȳ , Ḡ)

Ḡ = E8 E7 E6 F4 G2

Ȳ of type A4,B3,C3 13
G2 13 13
A3 13 13 13
B2 23 19 13 13
A2 43 31 19 13
A1 113 67 43 43 19
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The smaller the rank of the group Ȳ , the less control one has over the
embedding of X in G .

In the particular case where X̄ is a simple algebraic group of type A1, there
is an improvement to the above result, if we make some assumption about
the Ḡ -class of the unipotent elements in X .

Definition

Let H be a simple algebraic group and let u ∈ H be a unipotent element.
We say that u is semiregular if CG (u) contains non noncentral semisimple
elements.
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Theorem (Seitz-Testerman (1997))

Let PSL2(p) ∼= X ⊂ Ḡ , where Ḡ is of exceptional type. Assume X

contains a semiregular unipotent element of Ḡ . If p ≥ 5 and

PGL2(p) ⊂ NḠ (X ), then NḠ (X ) ∼= PGL2(p) and NḠ (X ) is contained in a

connected subgroup of type A1.

Notice that considering PSL2(p)-subgroups rather than SL2(p)-subgroups
is not a restriction, since by the assumption on the unipotent elements in
X , we see that the center of X lies in Z (Ḡ) and so we may pass to the
adjoint type group, where we have a PSL2(p)-subgroup.
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A second complementary result shows that if we assume in addition that
q > p, we always find an appropriate positive-dimensional closed subgroup
of Ḡ .

Theorem (Seitz-Testerman (1997))

Let PSL2(q) ∼= X ⊂ Ḡ , where q is a power of p with q > p. Assume X

contains a semiregular unipotent element of Ḡ . Then there exists a

positive-dimensional connected subgroup X̄ ⊂ Ḡ , with

X ⊂ X̄ ∼= PSL2(F̄p). Moreover, except for the case p = 2 and Ḡ = B2, we

have NḠ (X ) = NX̄ (X ) = PGL2(q).

Remark

The first theorem does not hold for classical groups, while the second
theorem does.
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The most definitive result to date for the question of lifting
homomorphisms of finite groups of Lie type to appropriate morphisms of
algebraic groups is

Theorem (Liebeck-Seitz (1998))

Let X be a quasisimple finite group of Lie type in characteristic p, over a

finite field Fq, and suppose that X ⊂ ḠF , where Ḡ is a simple adjoint

algebraic group of exceptional type, defined over F̄p, with endomorphism

F : Ḡ → Ḡ having finite fixed-point subgroup. Moreover assume that

q > t(Ḡ)(2, p − 1) as defined in Table 2, if X = A1(q),
2B2(q) or

2G2(q), or
q > 9 and X 6= Aǫ

2(16), otherwise.

1 Then there exists a closed connected F -stable subgroup Ȳ of Ḡ ,

normalized by NḠ (X ) with X ⊂ Ȳ , such that Ȳ stabilizes every

X -invariant subspace of LieḠ . Moreover, if X is not of the same type

as Ḡ , then Ȳ may be chosen to be a proper subgroup of Ḡ .

2 Assume in addition that p > N ′(X̄ , Ḡ ) as defined in Table 3. Then X

lies in a closed connected semisimple F -stable subgroup Ȳ of Ḡ

where each simple factor of Ȳ has the same type as X̄ .
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Table 2: t(Ḡ )

Ḡ t(Ḡ)

G2 12
F4 68
E6 124
E7 388
E8 1312
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Table 3: N ′(X̄ , Ḡ )

N ′(X̄ , Ḡ ) Ḡ = E8 E7 E6 F4 G2

X̄ is of type A1 7 7 5 3 3
A2 5 5 5 3
B2 5 3 3 2
G2 7 7 3 2
B3 2 2 2 2
C3 3 2 2 2
A3,B4,C4,D4 2 2 2
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Idea of proofs

Recall the setup: ϕ : X → G is a homomorphism such that ϕ(X ) lies in no
proper parabolic subgroup of G . We aim to show that ϕ extends to a
morphism of the associated algebraic groups.

Let us consider the special case where Ḡ is a simply connected, simple
exceptional type algebraic group. We will take N = 3dim Ḡ , just in order
to illustrate how one obtains a bound.

We may assume as well that X̄ is simply connected. We proceed by
induction, taking Ḡ as a counterexample of minimal dimension.
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Step 1:

We first claim that there is no F -stable, closed connected proper subgroup
D of Ḡ with ϕ(X ) ⊂ D.

Indeed, suppose ϕ(X ) ⊂ D ⊂ Ḡ , D 6= Ḡ , as above. If D is not reductive,
then 1 6= Ru(D) is an F -stable unipotent subgroup. Hence,
ϕ(X ) ⊂ D ⊂ NḠ (Ru(D)) lies in a proper F -stable parabolic subgroup,
contradicting the assumption on ϕ(X ).

Hence D is reductive and as X is perfect, ϕ(X ) ⊂ [D,D], a semisimple
F -invariant subgroup of dimension less than dim Ḡ . So by minimality of
Ḡ , we have the desired extension of ϕ.
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Step 2:
We now construct a 1-dimensional subtorus of the group GL(g), where
g = Lie(Ḡ ), which will play a key role in what follows.

Let AdG : Ḡ → GL(g) denote the adjoint representation of Ḡ . Let J ≤ X

with J ∼= SL2(p).

Now let S be the subgroup of J corresponding to the group of diagonal
matrices in SL2(p). So S ⊂ J is isomorphic to F

×

p ; let F
×

p → S , c 7→ S(c),
denote such an isomorphism. As S is cyclic, S lies in an F -stable maximal
torus T of Ḡ .

Let Φ be the set of roots of Ḡ with respect to T . Fix a basis CT of
Lie(T ) and for each α ∈ Φ, choose vα ∈ gα \ {0}, so that
C = CT ∪ {vα | α ∈ Φ} is a basis of g .

Using this basis, identify GL(g) with the group of invertible n× n matrices
(where n = dim g); so we have AdG(T) ≤ D̄n, the group of diagonal
matrices.
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By Steinberg’s theorem, the composition factors of J on g are realized as
restrictions of restricted irreducible representations of SL2.

As p > 3 dim Ḡ = 3dim g , the J-composition factors on g are of
dimension strictly less than p

3 .

The action of S on any J-composition factor is diagonalizable with weights
l ∈ Z satisfying −p−1

3 < l < p−1
3 , where the weights are defined by

S(c) 7→ c l , for c ∈ F
×

p .

So in the present situation we have, for c ∈ F
×

p , AdG(S(c))v = v for all

v ∈ CT and AdG(S(c))vα = clαvα for some integers lα satisfying
−p−1

3 < lα <
p−1
3 .
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We now define a co-character γ : F̄p → D̄n: for a ∈ F̄p, set

i) γ(a)v = v for all v ∈ CT .

ii) γ(a)vα = alαvα, for α ∈ Φ.

Set S := Im(γ), a 1-dimensional subtorus of GL(g); so
γ(c) = AdG(S(c)), for all c ∈ F

×

p .
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Step 3:

S ⊂ AdG(Ḡ)

Indeed, we will show that S acts as a group of Lie algebra automorphisms
of g and so S = S

◦

≤ Aut(g)◦ = AdG(Ḡ).

Let α, β ∈ Φ with [vα, vβ ] 6= 0. Then considering the action of the torus
T , we see that [vα, vβ ] is a scalar multiple of vα+β.

Thus for all c ∈ F
×

p ,

c lαc lβ [vα, vβ] = [γ(c)vα, γ(c)vβ ] = γ(c)[vα, vβ ] = c lα+β [vα, vβ]

so c lα+lβ = c lα+β for all c ∈ F
×

p .
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Using the fact that lα, lβ lie in the interval [−p−1
3 , p−1

3 ] we see that

lα + lβ = lα+β

and so
alα+lβ = alα+β

for all a ∈ F̄
×

p . Hence,

γ(a)[vα, vβ ] = [γ(a)vα, γ(a)vβ ].

One easily checks that the action on the remaining commutators [v , v ′],
for v , v ′ ∈ C is also preserved by γ(a) and so S acts as a group of
automorphisms of the Lie algebra g , as claimed.
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Steps 4 and 5:

Step 4: Using Step 3, one can show that the closed subgroup
R = (Ad−1

G
(S))◦ is F -stable.

Step 5: We can now show that X acts irreducibly on g .

For suppose that V is a proper X -invariant subspace of g , so V is spanned
by weight vectors for S . We claim that weight vectors for S are in fact
weight vectors for S .

For suppose two S-weights on g have equal restrictions to S . Then
c lα = c lβ for some α, β ∈ Φ and for some generator c ∈ F

×

p ; that is,

c lα−lβ = 1, so (p − 1)|(lα − lβ). But −
p−1
3 ≤ lα, lβ ≤ p−1

3 , so lα = lβ as
claimed.
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Now set D = 〈xRx−1 | x ∈ X 〉, a closed connected subgroup of G , which
is F -stable as R is.

Moreover D stabilizes the subspace V and so D is proper in Ḡ .

But the group [X ,S ] is normal in X and contains the subgroup J, so we
have

X = [X ,S ] ≤ [X ,RZ (G )] = [X ,R ] ≤ D,

which contradicts our standing assumption.

Hence X acts irreducibly as claimed.
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Step 6
A lengthy argument relying upon detailed considerations of the
representation theory of X and Ḡ , shows that the groups X̄ and Ḡ have
isomorphic root systems and the absolutely irreducible representation
AdG ◦ ϕ : X → GL(g) is the restriction of a twist of the adjoint
representation of X̄ ,

that is, there exists a standard Frobenius endomorphism F ′ of X̄ such that
AdG ◦ ϕ = (AdX̄ ◦ F′)|X.

We now have that X stabilizes two Lie brackets on g : [ , ]G coming from
g and [ , ]X̄ coming from Lie(X̄ ).

Now the existence of a Lie bracket on g shows that HomkḠ (g ∧ g , g) is
nontrivial. Moreover, using the theory of highest weights and the
assumption on p, one can check that for each exceptional group Ḡ , g
occurs with multiplicity 1 as a composition factor of g ∧ g and so

HomkḠ (g ∧ g , g) is a 1-space.
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Conclusion

Hence the two Lie brackets are scalar multiples of each other and
AdX̄(F

′(X̄)) = AdG(Ḡ).

Recall that X̄ is simply connected.

Moreover the isogeny AdG : Ḡ → AdG(Ḡ) satisfies ker dAd = ker ad = 0,
by the restriction on p.

Hence we obtain a morphism ψ : X̄ → Ḡ such that AdX̄ = AdG ◦ ψ.

But then AdG(ϕ(x)) = AdX̄(F
′(x)) = AdG(ψ(F

′(x))) for all x ∈ X .

Since X is generated by its unipotent elements and AdG is bijective on
unipotent elements, we have

ϕ = ψ ◦ F ′|X , whence ψ ◦ F ′

is the desired extension.
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Remarks

The proof of the Liebeck-Seitz lifitng result is based upon a much
more detailed study of the representation theory of the group X and
the set of possible composition factors occurring in its action on
Lie(Ḡ ). The integer t(Ḡ), calculated by Lawther, is defined as
follows:

Definition

Let Φ be an irreducible root system; we call an element of the root lattice
ZΦ a root difference if it is of the form α− β for some α, β ∈ Φ. Given a
sublattice L of ZΦ, we write t(L) for the exponent of the torsion subgroup
of the quotient ZΦ/L; we set

t(Φ) = max{t(L) | L a sublattice of ZΦ generated by root differences}.
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The other ingredient of the Liebeck-Seitz result, which requires the
bound N ′(X̄ , Ḡ ), is a result on Ḡ -complete reducibility.

One needs to know when a closed connected reductive subgroup of a
parabolic subgroup of Ḡ must necessarily lie in a Levi factor of the
parabolic subgroup.
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Avenues for investigation

Look carefully at the embeddings of (P)SL2(q) subgroups of
exceptional groups, according to the class of the unipotent elements.

In particular, completely settle the lifting problem for (P)SL2(q)
subgroups containing a regular unipotent (i.e. centralizer dimension
equals the rank of the group).

We know that if q > p, we can always lift the embedding to an
embedding of algebraic groups.
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In case q = p, the maximal subgroups of the finite groups G2 are
know (Cooperstein, Kleidman, et al), and using Magaard’s thesis and
Aschbacher’s work on the subgroups of E6, one should be able to
deduce the extension result in these cases. (Containing a regular
unipotent element is quite restrictive.)

For the groups E7 and E8, the regular unipotent elements have order
p if and only if p > 17, 29 respectively.
Now we apply the semi-regular lifting result and see that it remains to
consider the primes 17 < p < 67 for Ḡ = E7 and the primes
29 < p < 113 for Ḡ = E8, when NḠ (X ) does not contain a PGL2(p).
This becomes then a very finite problem.
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One could use the results of Stewart improving the Liebeck-Seitz
result on Ḡ -complete reducibility. This should lead to an
improvement of the bounds in in the Liebeck-Seitz lifting result.

Establish a result which depends on the finite group G , that is, for
particular choices of F , that is for particular choices of field Fq, over
which the finite group G = ḠF is defined, use the representation
theory of X to restrict to a list of possible actions of X on Lie(Ḡ ).

For specific groups X , enough will be known about the extensions of
simple modules and the actions of unipotent elements on these
modules, to rule out the configuration.
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Overgroups of unipotent elements

There has been much work on studying properties of subgroups which
contain representatives of certain classes, for example, subgroups
containing long root elements, or subgroups which are centralizers of
semisimple elements, either in G or in Aut(G ).

Here we consider subgroups of simple algebraic groups defined by the
property of containing representatives of certain classes of unipotent
elements (other than root elements).
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A1-type subgroups

We start with a result about overgroups of elements of order p.

Theorem (Testerman, 1995, Proud-Saxl-Testerman, 2000)

Let G be a simple algebraic group defined over an algebraically closed field

k of characteristic p ≥ 0. Let u ∈ G be unipotent. If char(k) > 0 assume

u has order p. Then with one exception, u lies in an A1-type subgroup of

G , that is, there exists a closed connected subgroup X ⊂ G,

X ∼= (P)SL2(k) with u ∈ X. The exception is for the group G = G2, when

char(k) = 3 and u lies in the unipotent class A
(3)
1 ; here u lies in no closed

connected A1-type subgroup of G .
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Analogue for finite groups

Theorem

Let G be as above and assume char(k) = p > 0. Let σ be an

endomorphism of G , with finite fixed-point subgroup Gσ. Suppose that

u ∈ Gσ has order p. Then u lies in a closed connected σ-invariant A1-type

subgroup of G , except in the following cases:

(i) G = G2, p = 3 and u lies in the A
(3)
1 class.

(ii) G = G2, p = 3 and σ is a morphism involving the graph

automorphism of G .

(iii) G = B2 or G = F4, p = 2 and σ is a morphism involving the graph

automorphism of G .

Indeed one has:

Proposition

There are no σ-invariant A1-type subgroups of G if σ involves a nontrivial

graph automorphism of G .

Donna Testerman (EPF Lausanne) Exceptional groups of Lie type: subgroup structure and unipotent elements17 December 2012 57 / 110



One can still ask whether the finite groups contain finite A1-subgroups
containing u.

1 if Gσ = 2B2(2
2e+1), then Gσ has order r2(r2 + 1)(r − 1), for

r = 22e+1. Since 3 6 | |Gσ|, it follows that Gσ does not contain a
subgroup isomorphic to SL2(2).

2 In case Gσ = 2G2(3
2e+1), since Gσ has Sylow 2-subgroups which are

elementary abelian of order 8, Gσ contains no subgroup isomorphic to
SL2(3

i ), nor PGL2(3
i ).
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On the other hand, we have

Proposition

Let G be a simple algebraic group of type G2 defined over an algebraically

closed field of characteristic 3. Let σ be an endomorphism of G , involving

a graph automorphism and such that σ2 is a q-power Frobenius

endomorphism of G . If u ∈ Gσ lies in the class of subregular elements, i.e.

in the class G2(a1), then u lies in a subgroup of Gσ isomorphic to

PSL2(3
2e+1). Moreover, such a subgroup contains representatives of the

two Gσ-classes in G2(a1) ∩ Gσ.

(Note that u ∈ G2(a1) is not semiregular, so the semiregular result does
not apply.)
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The A
(3)
1 class in G2

Proposition

Let G be a simple algebraic group of type G2, defined over an algebraically

closed field of characteristic 3. Let u ∈ G lie in the A
(3)
1 class. Then u

does not lie in any subgroup of G isomorphic to PSL2(3).

Corollary

Let τ = q or τ = gq with g a nontrivial graph automorphism of G = G2.

So G τ = G2(q), or G
τ = 2G2(3q

2).

(i) If u ∈ A
(3)
1 , then u does not lie in any closed connected A1-type

subgroup of G .

(ii) If u ∈ A
(3)
1 ∩ G τ , then u does not lie in any finite A1-type subgroup

of G τ .
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G = F4, p = 2, and σ involves a graph automorphism of G

There are two classes of involutions in the finite group 2F4(2
2e+1), u1 and

u2 distinguished by the fact that u1 lies in the center of a Sylow subgroup
and u2 does not. Then we have

Proposition

With the above notation, u2 lies in a subgroup of Gσ isomorphic to

SL2(2
2e+1), while u1 does not lie in any subgroup of Gσ isomorphic to

SL2(2).
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Questions

What group should replace an A1 when u has order greater than p?

What properties, other than existence, do the A1 subgroups have ?

Over fields of positive characteristic, there often exist non-conjugate A1

subgroups containing a fixed element of order p. If we restrict our
attention to A1-subgroups satisfying some particularly nice properties, we
do get a conjugacy result.
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Good A1’s

Definition

Let G be a simple algebraic group defined over an algebraically closed field
of positive characteristic p. Let A be a closed connected A1-type subgroup
of G , wih maximal torus TA. We will say that A is a good A1 if all weights
of TA on Lie(G ) are at most 2p − 2.
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Theorem (Seitz, 2000)

Let G , p be as above and assume p is a good prime for G . Let u ∈ G be a

unipotent element of order p.

i. There exists a good A1 containing u.

ii. Any two good A1’s containing u are conjugate by an element of

Ru(CG (u)).

iii. Let A be a good A1 containing u, and let U ⊂ A be a 1-dimensional

subgroup containing u. The CG (u) = CG (U) = CG (Lie(U)).
Moreover, CG (u) = CG (A)Ru(CG (u)) and CG (A) is reductive.
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Consequences

Proposition

Let G , p and u be as above. There is a unique 1-dimensional unipotent

group U containing u such that U is contained in a good A1 subgroup of

G .

In general, if one does not restrict one’s attention to good A1-subgroups,
still under certain restrictions on p, one can classify up to conjugacy the
A1-subgroups of the exceptional algebraic groups.

Theorem (Lawther-Testerman, 1999)

Let G be an exceptional algebraic group defined over an algebraically

closed field of characteristic p > 3, 3, 5, 7, 7, if G is of type

G2,F4,E6,E7,E8 respectively. All conjugacy classes of A1-subgroups of G ,

together with their connected centralizers and their composition factors on

Lie(G ) are classified.
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Progess on removing the prime restrictions

David Stewart has classified all reductive subgroups of G2, in
particular the A1-type subgroups.

Bonnie Amende in her Oregon PhD thesis (2005) classifies up to
conjugacy all G -irreducible A1-subgroups of G = F4, that is, those
subgroups which do not lie in a proper parabolic subgroup of G .
(Indeed she considered the groups E6 and E7 as well, and determined
all possible such G -irreducible A1-subgroups).

If X lies in a Levi factor of a parabolic subgroup of G , one can proceed
by induction to determine the embedding of X in G (given that we
are in a bounded rank setting and the classical groups occurring as
Levi factors have small natural representations). This is currently
under investigation by Litterick, a PhD student of Martin Liebeck.

The non G -completely reducible A1-subgroups of F4, i.e. those which
lie in a proper parabolic subgroup without lying in a Levi factor of the
parabolic are classified in the recent Memoir of David Stewart as well.
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Remaining questions

Complete Amende’s work on G -irreducible A1-subgroups and carry out
Stewart’s analysis in exceptional groups of type En.
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Regular unipotent elements
An element in a semisimple algebraic group is said to be regular if its
centralizer is of minimal dimension, which is necessarily the rank of the
group.

The set of regular unipotent elements in G is a single G -conjugacy class
which forms a dense subset of the variety of unipotent elements in G .

In the group G = SLn, the regular unipotent elements are those having a
single Jordan block (in the natural representation), as is also the case for
the symplectic groups and the odd-dimensional orthogonal groups. For the
even-dimensional orthogonal groups, the regular unipotent elements have
two blocks: of sizes 2n − 1 and 1 if p is odd, and of sizes 2n − 2 and 2 if
p = 2.

If p is large enough, (greater than the height of the highest root of the
root system of the group), then u has order p and by the above results we
know precisely when u lies in an A1-type subgroup. One can ask what
other reductive (possibly disconnected) subgroups contain a regular
unipotent element.
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Maximal overgroups of regular unipotent elements

Theorem (Saxl-Seitz, 1997)

Let X be a maximal closed positive-dimensional subgroup of a simple

algebraic group G of exceptional type. Assume that X ◦ is reductive. Then

X contains a regular unipotent element of G if and only if X ⊂ G is one of

the following:

a) A1 ⊂ G, with p = 0 or p ≥ h, where h is the Coxeter number of G ;

b) F4 ⊂ E6;

c) A2.2 ⊂ G2, and p = 2;

d) D4.S3 ⊂ F4 and p = 3;

e) (D4T2).S3 ⊂ E6, and p = 3;

f) (E6T1).2 ⊂ E7 and p = 2;

g) A7
1.L3(2) ⊂ E7 and p = 7.

(They also have a statement for the classical groups.)
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Descending through the subgroup lattice

As we have already seen, having a result for maximal subgroups is not
sufficient for completing a classification, precisely because of the existence
of non G -completely reducible subgroups.

In the particular case of subgroups containing regular unipotent elements,
this is relevant since every parabolic subgroup contains a regular unipotent
element (in fact a representative of every unipotent class).

So in order to deduce from the above result a statement about all reductive
subgroups containing regular unipotent elements, we must determine
whether there exist non G -completely reducible subgroups of this type.
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Connected reductive overgroups of regular unipotent

elements are G -irreducible

Theorem (Testerman-Zalesski, 2012)

Let H be a connected reductive subgroup of a connected reductive

algebraic group G. Suppose that H contains a regular unipotent element

of G . Then H lies in no proper parabolic subgroup of G , that is, H is

G-irreducible.

In particular, these groups are G -completely reducible.
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From this we deduce the following:

Theorem

Let H be a closed semisimple subgroup of the simple algebraic group G,

containing a regular unipotent element of G . Then either the pair G , H is

as given in the following table, or H is a (P)SL2-subgroup and p = 0 or

p ≥ h, where h is the Coxeter number for G . Moreover, for each pair of

root systems (ΦG ,ΦH) as in the table, respectively, for (ΦG ,A1, p), with
p = 0 or p ≥ h, there exists a closed simple subgroup X ⊂ G of type ΦH ,

respectively A1, containing a regular unipotent element of G .

Donna Testerman (EPF Lausanne) Exceptional groups of Lie type: subgroup structure and unipotent elements17 December 2012 72 / 110



Table: Semisimple subgroups H ⊂ G containing a regular unipotent element

G H

A6 G2, p 6= 2
A5 G2, p = 2

C3 G2, p = 2

B3 G2, p 6= 2

D4 G2, p 6= 2
B3

E6 F4
An−1, n > 1 Cn/2, n even

B(n−1)/2, n odd, p 6= 2

Dn, n > 4 Bn−1
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The proof of the second theorem is straightforward, using the classification
of maximal closed connected subgroups of the exceptional groups, the
result of Saxl-Seitz, the theorem on G -irreducibility of reductive subgroups
containing regular elements, and representation theory.

Sketch of proof of G -irreducibility of reductive overgroups of regular
unipotent elements.

There is a first reduction to G simple (easy) and then to H simple
(This is slightly less obvious, but in fact, no non simple semisimple
subgroup of G can contain a regular unipotent element.)

Assume that G and H are both simple and that H contains u, a
regular unipotent element of G .

One shows by a density argument that u is a regular unipotent
element of H.
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Suppose H lies in a proper parabolic subgroup of G ;

choose a parabolic subgroup P of G minimal with respect to containing H.

Note that the projection of u in a Levi factor of P must be a regular
unipotent element of L.

Moreover, H does not lie in a conjugate of L. That is H is non
G -completely reducible.
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Case I: G classical.

Here H stabilizes a totally singular subspace in its action on the natural
module for G .

We have the Jordan block structure of regular unipotent elements on this
representation space.

Two ingredients:

The projection of H in L lies in no proper parabolic of L.

Work of Suprunenko which determines the irreducible representations
ρ : X → GL(V ) of a simple algebraic group X whose image contains
a unipotent element of GL(V ) with precisely one Jordan block.

One must consider the various configurations for the action of H on the
natural module of G , together with knowledge of the possible nontrivial
extensions among the irreducible modules identified by Suprunenko.
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Case II: G exceptional.
Here we rely upon the Seitz-Liebeck theorem which identifies the possible
types of simple non G -completely reducible subgroups of G .

One could probably shorten this part of the proof with the recent work of
Stewart.

Comparing the order of the regular unipotent elements in the subgroup H

and the order of the regular unipotent elements in G , we reduce down to
one potential configuration,

that is H of type G2 in G = E7 when p = 5.

Now according to a preprint of Stewart, there is no non G -completely
reducible G2 in E7 when p = 5.

We gave an argument that no such subgroup could contain a regular
unipotent element of E7.
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Double centralizers of unipotent elements

As we have seen above, if u ∈ G has order p, in all but one case u lies in
an A1-type subgroup of G .

In particular, u lies in a closed connected 1-dimensional subgroup of G .
Even in the one exceptional case, u still lies in a 1-dimensional closed
connected subgroup of G . Moreover, if p is a good prime for G , then there
exists a 1-dimensional subgroup U containing u, which has particularly
nice properties, for example:

CG (u) = CG (U) = CG (Lie(U))
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Question

What replaces U, either in bad characteristic, or when u no longer has
order p.

The conditions u ∈ U and CG (U) = CG (u) mean that the subgroup U lies
Z (CG (u)) = CG (CG (u)).

Thinking about the structure of abelian algebraic groups, and in particular
abelian connected unipotent groups, one sees that what one should aim
for a t-dimensional group if o(u) = pt .
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A first result

Theorem (Proud, 2001)

Let G be a simple algebraic group over k and assume char(k) = p is a

good prime for G . Let u ∈ G be unipotent of order pt , t > 1. Then there

exists a closed connected abelian t-dimensional unipotent subgroup

W ≤ G with u ∈ W

Donna Testerman (EPF Lausanne) Exceptional groups of Lie type: subgroup structure and unipotent elements17 December 2012 80 / 110



Further questions

Proud’s existence result does not point to any particularly canonical
properties of the overgroup.

Candidate: Z (CG (u)) = CG (CG (u)) is a canonically defined abelian
overgroup of u.

But is it unipotent?

And what about the connected component CG (CG (u))
◦, which is also a

canonically defined subgroup of CG (u), does it even contain u?
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Proud went on to study more general properties of the group Z (CG (u)),
work which was later continued by Seitz. They showed (independently)

Proposition

Z (CG (u)) = Z (G )× Z (CG (u))u . Moreover, if p is good for G , then

Z (CG (u))u = Z (CG (u))
◦. In particular, if p is good, the group Z (CG (u))

◦

is a canonically defined connected abelian unipotent overgroup of u.

Remark

If p is a bad (i.e. not good) prime for G , there exist unipotent elements
u ∈ G such that u 6∈ CG (u)

◦ and so one cannot hope to find a connected
abelian overgroup of u.
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Describing Z (CG(u)), good characteristic, joint work with

Lawther
We consider as well the case where the field is of characteristic 0, (and
obtain new results even in this setting).

Here we have a certain number of very powerful tools available:

Springer maps: Given G and u, we fix a Springer map, a
G -equivariant homeomorphism ϕ : U → N , between the variety of
unipotent elements in G and the variety of nilpotent elements in
LieG . Such a bijection exists as long as p is good for G (and in fact
is an isomorphism of varieties as long as p is very good for G ).
So we have CG (u) = CG (ϕ(u)). We will henceforth study the
centralizers of nilpotent elements in LieG .

Smoothness of centralizers: We also use the result of Slodowy: if
char(k) = 0 or char(k) = p is a very good prime for G , then
Lie(CG (u)) = CLieG (u).
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For the classical groups, we use a result of Yakimova which gives a
basis for Z (CLieG (e)), for e ∈ LieG , nilpotent.

Bala-Carter-Pommerening classification of unipotent classes/nilpotent
orbits. This classification requires the following notion.

Definition

Let H be a connected reductive algebraic group. We say that a nilpotent
element e ∈ Lie(H) is a distinguished nilpotent element in Lie(H) if
CH(e)

◦ contains no noncentral semisimple elements or, equivalently, each
torus of CH(e) lies in Z (H).

Note: Taking S to be a maximal torus of CG (e), we have that e is
distinguished in the reductive subgroup CG (S) (a Levi subgroup of
G ).
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Now let e ∈ LieG be nilpotent. There exists an associated
cocharacter for e (Pommerening, Premet), that is,

Definition

A morphism τ : k∗ → G is said to be an associated cocharacter for e if

i. τ(c)e = c2e for all c ∈ k∗, and

ii. im(τ) ⊂ L′, the derived subgroup of a Levi factor of G , such that e is
a distinguished nilpotent element in Lie(L).

(Any two cocharacters associated to e are conjugate by an element of
CG (e)

◦.)
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We also define a weighted Dynkin diagram associated to the element e (or
the G -orbit of e):

Definition

Let e ∈ LieG be nilpotent and τ an associated cocharacter. Embedding
im(τ) in a maximal torus T of G , there exists a base ∆ of the root system
Φ(G ) (with respect to T ), such that τ has weights 0, 1 or 2 on the
elements of the base; that is, for all α ∈ ∆, there exists iα ∈ {0, 1, 2}, such
that α(τ(c)) = c iα .

We associate to the G -orbit of e a so-called weighted Dynkin diagram,
where the node corresponding to α is labelled with the integer iα. (This is
analogous to the usual Kostant-Dynkin theory in characteristic 0.)
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Finally, we will need the following notion.

Definition
1 We write n2(e) for the number of weights equal to 2 on the weighted

Dynkin diagram of e.

2 We say that e is even if all weights of τ are even, so the weighted
Dynkin diagram has all labels either 0 or 2.

For example, distinguished nilpotent elements are even.
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A dimension formula

Theorem (Lawther-Testerman, 2011)

Let e ∈ LieG be an even nilpotent element. Then

dimZ (CG (e)) = n2(e) = dimZ (CG (im(τ))).

(We establish a more technical dimension formula for non even elements
as well, which I’ll not state here.)
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Examples

If e is a regular nilpotent element, and so the corresponding class of
unipotent elements consists of regular elements, then the weighted
Dynkin diagram consists of all weights equal to 2.

Also CG (e) is abelian, so indeed dimZ (CG (e)) = rank(G ) = n2(e)
and the centralizer of the torus im(τ) is a maximal torus of G and so
dimZ (CG (im(τ))) is also equal to rank(G ).

If e = 0, then the labelled diagram for e has only weights 0 and so
n2(e) = 0, while CG (e) = G . So indeed dimZ (CG (e)) = 0 and
τ : k∗ → G is the trivial cocharacter and so CG (im(τ)) is also G .
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More examples

Assume rank(G ) > 2 and let e ∈ LieG be a regular element in an A2

Levi factor of LieG , generated by root vectors corresponding to long
roots in Φ(G ). Then e has weighted Dynkin diagram as follows:

Aℓ 2 0 · · · 0 2, so dimZ (CG (e)) = 2

Bℓ,Cℓ,Dℓ (ℓ ≥ 4) 0 2 0 · · · 0, so dimZ (CG (e)) = 1

F4 2 0 0 0 , so dimZ (CG (e)) = 1

E6

0

2

0 0 0 0
so dimZ (CG (e)) = 1

E7

2

0

0 0 0 0 0
so dimZ (CG (e)) = 1

E8

0

0

0 0 0 0 0 2
so dimZ (CG (e)) = 1
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Note that in the above examples, when dimZ (CG (e)) = 1, we have a
1-dimensional connected abelian unipotent overgroup U of u, satisfying
the properties CG (u) = CG (U), as with the good A1’s. Indeed, this must
be the same group (p > 2, u has order p).
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A mysterious connection with the degrees of the Weyl

group invariants

Note that im(τ) normalizes CG (e) and so acts on the subspace
Lie(Z (CG (e))), with a certain set of (integral) weights.

Theorem

Let e ∈ LieG be a distinguished nilpotent element, with associated

cocharacter τ . Let d1, · · · , dℓ be the degrees of the invariant polynomials

of the Weyl group of G , ordered such that dℓ is ℓ if G is of type Dℓ, and

otherwise dℓ is max{di}, and di < dj if i < j < ℓ. Then the weights of

im(τ) on Lie(Z (CG (e))) are the n2(∆) integers 2di − 2 for i ∈ S∆, where

S∆ =

{

{1, . . . , n2(∆)− 1, ℓ} if G is of type Dℓ and ∆ = · · ·
2
2 ;

{1, . . . , n2(∆)− 1, n2(∆)} otherwise.
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Examples

Let e be the regular nilpotent element in LieG of type E6, and so
dim(Z (CG (e)) = 6. Moreover, the degrees of the Weyl group
invariants are 2, 5, 6, 8, 9, 12.

The im(τ) weights on Lie(Z (CG (e))) are 2, 8, 10, 14, 16, 22.

Let e1 be the subregular nilpotent in LieG of type E6,

whose weighted Dynkin diagram is
2

2

2 0 2 2
.

The im(τ) weights on Lie(Z (CG (e)) are 2, 8, 10, 14, 16.

Let e be a regular nilpotent element in LieG of type D5, where the
degrees of the Weyl group invariants are 2, 4, 5, 6, 8, (ordered 2, 4,
6, 8, 5). Then the weights of im(τ) on CLieG (e) are 2, 6, 10, 14, 8.

Let e be subregular in LieG of type D5, so the weighted Dynkin
diagram of e is 22022 .

The im(τ) weights on Lie(Z (CG (e)) are 2, 6, 10, 8.
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Additional information

Under our standing hypotheses on char(k), CG (e) = CR , a semi-direct
product of R = Ru(CG (e)) and a reductive (not necessarily connected)
group C .

In fact, C = CG (e) ∩ CG (im(τ)). In the case where G is exceptional, we
consider the action of C ◦ on Lie(R), and give for each nilpotent orbit a
decomposition of Lie(R) as a direct sum of indecomposable tilting
modules for C ◦.

Donna Testerman (EPF Lausanne) Exceptional groups of Lie type: subgroup structure and unipotent elements17 December 2012 94 / 110



About the proof

Let e ∈ LieG be a nilpotent element with associated cocharacter τ .

For an im(τ)-invariant subspace M of LieG , we will write M+ for the sum
of the im(τ) weight spaces Mj , corresponding to strictly positive weights
j > 0.

Recall CG (e) = CR , R the unipotent radical and C a reductive
complement.

Proposition (Main Tool)

Let e, τ , and C be as above. Assume char(k) = 0 or p a very good prime

for G . Then Lie(Z (CG (e))) = (Z (CLieG (e)+))
C , that is the fixed points

of C acting on Z (CLieG (e)+).
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So we have ‘linearized’ the problem;

find a basis for Z (CLieG (e)+) (if G is classical, this can be deduced
from the basis for Z (CLieG (e)) given by Yakimova),

determine the fixed point space of the connected reductive group C ◦

acting there, and

find representatives for the component group C/C ◦ and let them act
as well.

In the exceptional groups: lengthy case-by-case considerations are required
for most results.
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Inductive result

We also have a further inductive result, which is probably related to the
notion of induced nilpotent orbits, studied by Lusztig and Spaltenstein.

Definition

Given a weighted Dynkin diagram ∆ for the group G , we define the 2-free

core of ∆ to be the sub-weighted diagram ∆0 obtained by removing from
∆ all weights equal to 2, together with the corresponding nodes.

Then we let G0 be a semisimple algebraic group (of any isogeny type)
whose root system has the type of the underlying Dynkin diagram of ∆0.
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Theorem

Assume char(k) is either 0 or a good prime for G . Let e ∈ LieG be a

nilpotent element with associated weighted Dynkin diagram ∆. Let ∆0

and G0 be as above. Then there exists a nilpotent G0-orbit in Lie(G0)
having weighted Dynkin digram ∆0. Moreover if e0 is a representative of

this orbit then we have

dimCG (e) − dimCG0
(e0) = n2(e) = dimZ (CG (e)) − dimZ (CG0

(e0)).
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Example

Let e be a regular nilpotent element in an A3 Levi factor of E6. Then the
weighted Dynkin diagram for the G -orbit of e is

∆
1

2

0 0 0 1

Now the 2-free core is 1 0 0 0 1, and the corresponding A5-orbit of
nilpotent elements is represented by e0, whose Jordan normal form has
blocks of sizes 2,1,1,1,1 (a root element in A5).

Then dim(Z (CG0
(e0))) = 1. So according to the above result,

dim(Z (CG (e))) = 2.
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Double centralizers in exceptional groups in bad

characteristics
The difficulties:

No Springer isomorphism; the number of nilpotent classes and
unipotent classes is not always the same.

Centralizers are not smooth, that is, for u ∈ G unipotent, we do not
always have Lie(CG (u)) = CLieG (u). So now studying CG (u) and
Z (CG (u)) cannot be ‘linearized’ in the same way as above.

For u unipotent, we do not necessarily have u in CG (u)
◦ and so

Z (CG (u))
◦ will not work as a canonically defined connected abelian

overgroup of u.

Springer showed (1966) that for u ∈ G regular and char(k) a bad
prime for G , then u 6∈ CG (u)

◦. Liebeck-Seitz determine all classes u
for which u 6∈ CG (u)

◦. (AMS monograph, 2012)
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Questions

Does the dimension formula given by Lawther-Testerman hold in bad
characteristic?

Does u lie in Z (CG (u))
◦, at least when u ∈ CG (u)

◦, as in good
characteristic?

What is a characteristic independent description of Z (CG (u))
◦ which

allows us to compute this subgroup?
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Answers to the above questions are given in the 2013 PhD thesis of Iulian
Simion.

His first result gives a description of Z (CG (u))
◦, which provides an

algorithm for calculating this group.

Choose T ⊂ G a maximal torus and B ⊂ G a Borel subgroup containing
T . The unipotent radical of B will be denoted by U. The root system is
chosen with respect to T and the positive roots are with respect to B .

Theorem

Let u ∈ G be a unipotent element and suppose that B contains a Borel

subgroup of CG (u). Then

Z (CG (u))
◦ = CZ(CU (u)◦)◦(Tu, Ã)

◦

where Tu is a maximal torus of CB(u) and Ã is a set of coset

representatives for CG (u)
◦ in CG (u).
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In order to apply this result, he first needs to find a Borel subgroup which
contains a Borel subgroup of the centralizer.

Once he has this, he can work out (after long computations) Z (CU(u)
◦)◦.

Here there is a partial ‘linearization’ of the problem, possible because he is
working with a connected unipotent group.

His main result is

Theorem

Let u ∈ G be a unipotent element. Then dimZ (CG (u)) is explicitly
determined. We indicate as well when u ∈ Z (CG (u))

◦ and when

u ∈ Z (CG (u)
◦)◦.

In particular, he determines precisely when u does not lie in Z (CG (u))
◦,

which can be the case even when u does lie in CG (u)
◦.
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Result for G = E6

For a fixed unipotent class representative ũ, we denote by C its centralizer
CG (ũ) and by Uũ the unipotent radical of a Borel subgroup of C . In the
second column we give the dimensions of Uũ.

In the fourth and fifth columns we give the dimension of the center of the
connected component C ◦ and that of the center of C respectively. Note
that this column includes the good characteristic result for comparison.

In the sixth column we mark with ∗ those cases where ũ is not in
Z (CG (ũ)

◦)◦ (in particular ũ 6∈ Z (CG (ũ))
◦),

with ∗∗ those cases where ũ ∈ Z (CG (u)
◦)◦ \ Z (CG (u))

◦,

and with ⋆ those cases where u 6∈ CG (u)
◦.
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Class dimUũ A
dim dim u 6∈ Z (C)◦

Z (C ◦) Z (C ) 2 3

E6 6 Z(6,p) 6 6 ⋆ ⋆

E6(a1) 8 1 5 5 ∗ ∗
D5 9 Z(2,p) 4 4 ⋆ ∗

E6(a3) 12 Z2 4 3 ∗ ∗
D5(a1) 13 1 3 3 ∗ ∗
A5 12 1 3 3 ∗ ∗

A4A1 15 1 2 2 ∗ ∗
D4 13 Z(2,p) 2 2 ⋆ ∗
A4 15 1 3 3 ∗

D4(a1) 18 S3 3 1 ∗ ∗∗
A3A1 19 1 2 2 ∗
A2
2A1 22 1 1 1 ∗

Table: Center of centralizer E6
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Class dimUũ A
dim dim u 6∈ Z (C)◦

Z (C ◦) Z (C ) 2 3

A3 19 1 2 2 ∗
A2A

2
1 25 1 1 1 ∗

A2
2 22 1 2 2

A2A1 26 1 2 2
A2 26 Z2 2 1 ∗∗
A3
1 31 1 1 1

A2
1 33 1 1 1

A1 36 1 1 1

Table: Center of centralizer E6
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Remarks

Note that we have

Z (CG (u))
◦ ⊂ Z (CG (u)

◦)◦ ⊂ Z (CG (u)
◦).

Clearly, when u 6∈ CG (u)
◦, we have u 6∈ Z (CG (u))

◦.

But in fact, there exist u with u ∈ CG (u)
◦, but u 6∈ Z (CG (u))

◦. There are
examples which show that each of the above inclusions is proper.
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Questions

Find a proof in characteristic 0 that for even elements
dimZ (CG (e)) ≤ n2(e).

Study the relatonship between the Lusztig-Spaltenstein induced
unipotent classes and our inductive formula for the double centralizer
dimension.

Find a case-free, characteristic independent proof of the inequality
dimZ (CG (u)) ≤ rank(G ).
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When is CG (u) abelian? This question was posed in the
Springer-Steinberg article
Conjugacy classes, in Seminar on Algebraic Groups and Related Finite
Groups, (1970).

It was known (Kostant, characteristic 0, and Springer, characteristic p),
that for a regular unipotent element u, CG (u)

◦ is abelian. Then Lou
showed (1968) that for regular elements the full centralizer CG (u) is
abelian. Kurtzke (1983) showed that in good characteristic u is regular if
and only if CG (u)

◦ is abelian.

Lawther extended these results to cover bad characteristics; he showed:

Theorem (Lawther, 2011)

For u ∈ G unipotent, u is regular if and only if CG (u) is abelian.
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The result of Kurtzke does not generalize however. Lawther shows:

Theorem

For u ∈ G unipotent, with CG (u)
◦ abelian, then either

u is regular, or

u ∈ G = G2, p = 3 and u lies in the class of subregular elements.

Again more or less, case-by-case considerations.
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