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1. Introduction

The original idea behind these lectures was to prove directly, starting from
“first principals”, some beautiful, but deep, result about finite simple groups,
whose proof would illustrate the “practical” uses of character theory in group
theory. The advantages of this idea were evident. Since the number (twelve)
of lectures was quite limited, it would be necessary to concentrate on those
parts of representation theory which are really used to prove the theorem
—essentially those parts dealing with the values of the ordinary irreducible
characters and their relations with the structure of the group and its sub-
groups—and to use the minimum of ring-theoretic machinery. This would
avoid the usual trap in which one spends so much time developing this
machinery that none is left over for the groups. The main disadvantage was
also evident—namely, this machinery is used currently in the literature. So a
student attending this course would perhaps learn the proof of this one
theorem, plus many auxiliary results, but would by no means be prepared to
read published proofs.

A minor disadvantage was less evident at the time, but became serious
during the lectures themselves. The result chosen as a goal—Glauberman’s
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theorem about weakly closed involutions in 2-Sylow subgroups (Theorem
15.1 below)—has a very elegant proof, given the character—theoretic tools
which were developed in the course. But it depends essentially upon the
theorem of Brauer and Suzuki that groups with quaternion 2-Sylow sub-
groups are not simple (Theorem 14.11 below), whose proof is rather messy
no matter how you do it, and which requires more machinery—in particular,
Brauer’s characterization of characters (Theorem 7.1 below)—than is
needed for Glauberman’s proof. In fact, due to the pressure of time, it was
impossible to prove either of the last two theorems during the lectures. So
part of the written account below—Sections 7 and 14, and the last part of
Section 12, starting at (12.16)—were not actually given verbally.

The rest of this account represents more or less closely the lectures as given,
although there are a large number of minor modifications and a few major
ones. These will be evident to those who were present during the course, and
of no interest to anyone else. So there is no need to list them here.

As mentioned above, the reader really needs more preparation than this
before tackling articles in the literature. For example, he should read the
chapter on modular representation (Chapter X1l) in the book by Curtis and
Reiner (1962), or the excellent lecture notes of Feit (1969) on the subject.
Even in the theory of ordinary characters, he should be familiar with much
more than there was time to mention here. A reading of Chapter V of the
book by Huppert (1967) would be very profitable in this regard.

2. Characters

Let V be a finite-dimensional vector space over a (commutative) field F.
We denote by GL(V') the group of all non-singular linear transformations of
V. A (linear) representation of a finite group G on V is a homomorphism R
of G into GL(V'). The character yg of such a representation R is the function
from G to F sending each ¢ € G into the trace tr (R(¢)) of the corresponding
linear transformation R(a) of V:

yr(o) = tr (R(o)), for all ceG. 2.1

We are interested in the characters as invariants of the group G, and in
their relations with the algebraic structure of . For example, we have

PROPOSITION 2.2. yp(c") = xgr(0), for all 6, 1€ G.

Proof. Of course, ¢* is the conjugate 1~ 'a7 of ¢ by 7. Since R is a homo-
morphism, we have R(¢%) = R(r)"'R(0)R(r). So the linear transformations
R(67) and R(o) are similar. Therefore they have the same trace, which is the
proposition.

The (finite) dimension of V is called the degree deg (R) of the representa-
tion R. Since the homomorphism R sends the identity 1 = 1; of G into the
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identity linear transformation 1,_, of V, we have
deg (R)

— ——
xr(lg) =deg (R) 1y =1p+...+1p (2.3)
In particular, if F has characteristic zero, and if we identify the ordinary
integers with their images in F, then yi(1) = deg (R) is always a non-
negative integer.
If deg (R) = dim (V') = |, then yg is called a linear character of G. In this
case the trace function is an isomorphism of GL(V') onto the multiplicative
group F* of F. It follows that

The linear characters of G are just the homomorphisms from G
into F~, (2.4)
Of course, the linear characters are allequal to 1 on the derived group G’ of G
(since F is commutative). So there aren’t very many of them. In fact, the
only linear character present for all finite groups G is the frivial character
l=1lg,p:0— 1 forallced.
We should note that any function R satisfying the following conditions is a
representation of the group G on the finite-dimensional vector space V:

R(o)e Homg(V, V), foralloeG, (2.5a)
R(0)R(t) = R(071), forall ,7€QG, (2.5b)
R(lg)=1,.,. (2.5¢)

Indeed, (1.5b, c) imply that R(c™') is a two-sided inverse to R(c), for al
6 € G. So Risin fact a homomorphism of G into GL(V).

Any permutation representation of G determines a linear representation,
and hence a character, of G. Let G act as permutations of a finite set S, with
any o € G taking each s € S into so € S. Form the finite-dimensional vector
space F.S having S as a basis (the elements of FS are just the formal linear
combinations Y fs with unique coefficients f; € F, and the operations are

se§S
“coefficientwise”). Then any ¢ € G determines a unique linear transforma-
tion Rg(o) of FS satisfying

SRs(6) = sa, forall se8S. (2.6)

One verifies immediately that Ry satisfies (2.5) and hence is a linear repre-
sentation of G on FS. Using the matrix of the linear transformation Rg(o)
with respect to the basis S of FS, we easily compute the character of this
representation:

Ars(0) = |{s€S : 50 = st -1p, forall ceG. (2.7)
An important special case is the regular representation in which § = G

and so, for se S = G and ¢ € G, is the product in the group G. We then
denote Rg by Reg. In this case so = sif and only if ¢ = 15. So the regular
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character yg., has the values:
|G| 1¢, ifo=1g,

fanl2) = {o, o # 16

Any natural method for making new vector spaces from old ones can be
used to construct new linear representations or characters from old ones.
For example, let R,, R,,..., R, be a finite number of representations of G
on finite-dimensional vector spaces V,, V,,..., V,, respectively, over F. The
direct sum ¥V, @...® V, is again a finite-dimensional vector space over F,
on which we have the representation R, @...® R, of G defined by

[Rl @ . .@R"](O') = Rl(o-)@ g .@R"(O'):
Uy @ s @ vn_)lel(o-) @ DZRZ(G) @ e @ Uan(O-)7
foralloeG, v, eV,,..., eV, (2.9)

(2.8)

An elementary calculation gives
Irio.. orl0)=xr(0)+ ... +yp(0), foralloeG. (2.10)
In particular, the sum of two characters of G is again a character of G.
Suppose that Q, R are representations of finite groups H, G on finite-
dimensional vector spaces U, V, all respectively, over F. Then the tensor
product U ® V (over F) is again a finite-dimensional vector space on which
we have the representation Q ® R of the direct product group HxG
determined by
[O®R](6%x1)=0Q(6)® R(T) : u ® v->uQ(0) ® vR(1),
foralloeH,1eG,ueclU, veV, 2.1
The character y, ¢ g can easily be computed:
Xo o r(6 X T) = yo(@)xr(z), foralloeH, 1eG. (2.12)
If H = G in the preceding case, then the diagonal map ¢ » oo is a
natural monomorphism of G into G x G whose composition with @ ® R gives
the inner Kronecker product QxR of the two representations Q and R of G:
[Q+R](0) = Q(6) ® R(0) : u ® v—uQ(0) ® vR(0),
forall 6eG,uel, veV. (2.13)

Of course Q+R is a representation of G on U ® V whose character is given by
Xoxr(6) = 1o(0)xr(0), forall ceG. (2.14)

In particular, the product of two characters of G is again a character of G.

Returning to the case of representations Q, R of two groups H, Gon U, V,
respectively, we can define a representation Hom (R™!, Q) of G x H on the
finite-dimensional vector space Homg(V, U) by:

[Hom (R™1, Q)] (6 x 1) = Hom (R(c™ 1), Q(7)) : T->R(¢™")TQ(1),
foralloeG,teH, TeHom(V, U). (2.15)
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Its character is given by:

Xtom (R-1,0)(0 X T) = xr(6 ™ yo(r), foralloeG, teH. (2.16)

As a special case, let H = {1> be the trivial group, U be F, and
O(1) = 1p,p. Then Homg(V, F) is the dual vector space V* to V and
[Hom (R™Y, Q)] (6 x 1). for ¢ € G, is the dual linear transformation R(c™')*
to the linear transformation R(c ™ ') of V. Hence the dual representation R™*
to R, the representation on V* defined by

T[R *(@0)] = R(c™ )T, forall 6eG, TeV*, 217

has the character
yr-+6) = yx(6™ "), forallceG. (2.18)

3. Group Algebras

The deeper properties of the characters of a finite group G come from a
study of the group algebra FG of G over the field F, and of modules over this
algebra. Those parts of the theory of algebras needed to carry out this study
(essentially the theory of Wedderburn) are quite well known. A very concise
account of them can be found in Chapter V of the book by Huppert (1967).
So we shall just state the necessary definitions and results here, and refer the
reader to that book for the proofs.

By an algebra A over our field F, we understand a finite-dimensional vector
space 4 over F together with an F-bilinear associative product (a, a’) - aa’
from A x A to A. We assume, unless otherwise noted, that 4 has a two-sided
identity 1 = 1, for this product. Then algebra multiplication and vector
space addition make A into a ring with identity, while scalar multiplication
gives us a natural, identity-preserving homomorphism f — f'1, of the field F
into the center of the ring A.

Leta,,..., a, be a basis of 4 (as a finite-dimensional vector space over F).
Then there are unique multiplication coefficients fi € F, fori, j, k = 1,...,n,
such that:

n
aa; =Y fipd foralli,j=1, .., n. 3.0
k=1

Since the product in 4 is F-bilinear, it is determined by the n® products
aa; (i,j = 1,..., n). These products themselves are computed via (3.1) from
the coefficients f;;;. Hence the multiplication coefficients determine the
algebra A to within isomorphism.

The group algebra FG of a finite group G over F has the elements of G as a
basis. The corresponding multiplication coefficients are determined by the
rule that the algebra product of two basis elements g, T € G be their product
ot in the group G. Using F-bilinearity, we see that the product of two arbitrary
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elements of FG is given by:

(a;;faa) (Zgrr) =3, ( Y fugr)p, (3.2)

te@G peG \o,1€G, 6t =p
for any coefficients f,, g, € F. The associativity in G easily implies that of
multiplication in FG, and the identity 1, of G is also the identity for FG. So
FG is an algebra over F in the sense in which we use the term.

By a module M over an F-algebra A we mean a right module over the
ring A, which is unitary, in the sense that ml, = m, for all me M, and finite-
dimensional as a vector space over F. Of course, the vector space structure of
M comes from the A-module structure via the natural homomorphism of F
into the center of A4, so that scalar multiplication is defined by:

fm=m(f1)), forallfeF, meM. 3.3)

We note that the module product (m, a) - ma is an F-bilinear map of
Mx A into M, and that any A-homomorphism of modules is also an F-

linear map.
If M is an FG-module, then each ¢ € G defines a linear transformation R(s)

of the finite-dimensional vector space M by
mR(e) = mo, for all meM. (3.4

The module identities m(ot) = (mo)r,forallo, 1 e G, me M, and ml; = m,
for all m e M,imply that R satisfies (2.5),i.e. that R is a representation of G

on M.

Conversely, let R be a representation of G on a finite-dimensional vector
space M over F. Then there is a unique FG-module structure for M which is
consistent with both (3.4) and the vector space structure of M. Indeed, the

module product must be given by
m ( )y faa) =Y f,mR(c), forallmeM andany f,’seF. (3.9)
oeG aeCG

Thus there is a complete identity between FG-modules and representations of
G on finite-dimensional vector spaces over F.

A module M over an algebra A is irreducible if M # {0}, and if M and {0}
are the only A-submodules of M. The (Jacobson) radical J(A) of the algebra
A is the two-sided ideal of A defined by

J(A)={aeA: Ma=0, forall irreducible A-modules M}. (3.6)

The algebra A is called semi-simple if J(4) = 0. In the case of group
algebras FG we have

PROPOSITION 3.7. The group algebra FG of a finite group G over a field F
is semi-simple if and only if the characteristic of F does not divide the order

|G| of G.
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Proof. See Satz V.2.7 in Huppert (1967). Notice that the condition of
Proposition 3.7 is always satisfied when F has characteristic zero.

An irreducible module M over an algebra A satisfies MJ(4) = 0. So M
can naturally be regarded as a module over the factor algebra A/J(A).
Obviously M is also irreducible as an A/J(4)-module. Evidently {0} =
J(A)}J(A) is the ideal J(A/J(A4)) of all elements in A/J(A) annihilating all
such irreducible A/J(A4)-modules M. Hence, we have

the factor algebra AJJ(A) is always semi-simple. (3.8)

An algebra A is simple if A # {0} and if 4 and {0} are the only two-sided
ideals of 4. A semi-simple algebra can be decomposed into a direct sum of
simple ones.

PROPOSITION 3.9. A semi-simple algebra A has only a finite number k = 0
of minimal two-sided ideals A,,..., A,. Each such ideal A; is a simple sub-
algebra of A, and

K
A=@ ) 4. (3.10)
i<t
Any two-sided ideal of A is a direct sum of a subset of the As. Finally,
Ad; = {0}, forall i,j=1,..., k withi # j.

Proof. See Satz V.3.8 in Huppert (1967).

Notice that the condition 4;,4; = {0}, for i # j, implies that algebra
multiplication, as well as addition and scalar multiplication, is component-
wise in (3.10):

(@, ®..0a)(@D...®a) =(a,a)) D (a,a5) D... D (@4,
ifa, aied; (i=1,...,k). (3.11)

We indicate this by saying that (3.10) is a direct sum of algebras (as well as of
vector spaces). .
It remains to consider the structure of a simple algebra.

ProOPOSITION 3.12. A simple algebra A has, up to isomorphism, exactly one
irreducible module 1. The commuting ring D = Hom (I, I) is a division
algebra over F. The natural map of A into Hom (I, I) is an algebra isomorphism
of A onto the commuting ring Homy, (I, I).

Proof. This follows from lemma 1.10.5 and Section V.4 in Huppert (1967).

Of course, a division algebra is an algebra in which the non-zero elements
form a multiplicative group. Notice that our hypotheses of finite-dimension-
ality for algebras and modules force D to be finite-dimensional over F and I
to be finite-dimensional as a vector space over the skew-field D.

The field F is called a splitting field for a simple algebra A4 if the above
division algebra D is just F-1,. Notice that:
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PropOSITION 3.13. If F is algebraically closed, then it is a splitting field for
any simple F-algebra.

Proof. See Lemma V.4.3 in Huppert (1967).

I 4 is a semi-simple algebra over F, and A,,..., 4, are the simple sub-
algebras of Proposition 3.9, then Fis a splitting field for A if and only if itisa
splitting field for each 4, (i = 1,.. ., k).

Fix a semi-simple algebra A over F (which may or may not be a splitting
field for 4). Then A is the direct sum (3.10) of its minimal two-sided ideals
A,..., A,. There is a corresponding decomposition of A-modules as
direct sums of A;,-modules.

ProrposITION 3.14. If M is an A-module, then each MA; (i = 1...., k), is
an A-submodule of M. T he A-module MA; is “really” an A -module in the
sense that:

ma, ®...®a)=ma;, forall meMA, a €Ay,...,a,eA,. (3.15)
Furthermore,

M=o Z MA,. (3.16)
i=1
Progf. Since A; is a two-sided ideal of 4, the product MA; is an A-
submodule of M. Equation (3.15) comes from the fact that 4,4; = {0}, for
all j # i (see Proposition 3.9). By (3.10) we have

k
M=MA=Y MA, (3.17)

i=1
The intersection L = MA4; N ( Y MAi) is “really” an 4;-submodule of M4;.
Jj#i

Hence it satisfies L = LA = LA;. On the other hand, LA4; = Z MA;A; = {0}.
So L = {0} and the sum (3.17) is direct, which finishes the proof of the
proposition.

The unique submodule M A, is called the A-primary (or A;-homogeneous)
component of M.

Let I, be an irreducible A;-module, for each i = 1,..., k (such a module
exists by Proposition 3.12). Using (3.15) in reverse, we regard [; as an
obviously irreducible) 4-module.

ProposiTION 3.18. Let M be an A-module. For each i = 1,..., k, there
is a unique integer m; > 0 such that
mi-times

———Ae——
MA,2mxI;=1,®...@1I;, (as A- (or as A;-) modules). (3.19)

Proof. 1t follows from Proposition 3.12 that the simple algebra 4; is semi-
simple. So Satz (V.3.4 of Huppert, 1967) tells us that M A; is a direct sum of
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irreducible 4;-modules. But J; is, to within isomorphism, the only irreducible
A;-module (by Proposition 3.12). Hence (3.19) holds for some integer
m; > 0. Clearly m; = dimp (MA;)/dimg(];) is unique. So the proposition is
proved.

The unique integer m; of Proposition 3.18 is called the multiplicity m(I; in
M) of the irreducible A-module 7; in M. Combining the preceding proposi-
tions, we get:

M~(m(I,in M)XI)®...®(m{,in M)xI,)
(as A-modules), for all A-modules M. (3.20)
An immediate consequence of this is:

Any irreducible A-module is isomorphic to exactly one of the modules
Ii,..., 1. 3.21)

4. Character Identities

Let G be a finite group. Proposition 3.7 says that the group algebra FG of G
over any field F of characteristic zero is semi-simple. If F is algebraically
closed, then Proposition 3.13 gives

F is a splitting field for the group algebra FH of any
subgroup H of G. 4.1

We assume, from now on, that Fis any field of characteristic zero satisfying
(4.1). As usual, we identify the ordinary integers with their images in F.

It is convenient to extend the definitions of ‘‘representation” and
“character” from group elements to arbitrary elements of FG. Let M be an
FG-module. Then any element y of FG defines an F-linear transformation
Ry () of the vector space M by

mRy(y) = my, forall meM. (4.2)
The module identities tell us that the map R,, is an algebra homomorphism
of FG into Hom; (M, M). It is called the representation of FG on M cor-
responding to the module structure of M. It is related to the representation
R of G on M given in (3.4) by

RM( Y f,cr) =Y f,R(¢), forany fs inF. 4.3)

ceG cecG

The character y,, of the module M is the function from FG to F defined by
am(y) =tr (Ry(y)), for all ye FG. (4.4)

Since both tr and R, are F-linear, so is y,. Evidently, it is related to the
character yy of the representation R, given in (2.1), by

XM( ZGfa'O-) =0§GfGXR(G)’ for any fa’S inF. (45)

Thus the representation R, and character y,, are just the extensions to FG of
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the representation R and character yxp, respectively, by use of F-linearity.
From now on we shall use these extended definitions of “‘representation” and
“character.

Proposition 3.9 telis us that the semi-simple algebra FG has the unique
decomposition

FG=A4,®...® A, (asalgebras), (4.6)
where the simple subalgebras A,,. .., 4, are the minimal two-sided ideals of
FG. By Proposition 3.12,each 4; (i = 1, ..., k) has, up to isomorphism, a

unique irreducible module 7, We regard [, as usual, as an irreducible
A-module, and denote the corresponding representation R;, and character
x1, by R;and y,. respectively. The characters y;, . . ., y, are called the irreducible
characters of G (or of FG).
The definition of the FG-module structure of I; gives
R{(A;) = {0}, and hence y(A;) = {0},
foralli,j=1,..., kwithi#]. 4.7)
Condition (4.1) says that Fis a splitting field for each simple algebra 4;. This
and Proposition 3.12 imply that
R; sends the algebra A; isomorphically onto Homg (I, I), for all
i=1,...,k (4.8)
In particular, there exists an element g; € A; such that y,(a;) = tr (Ri(a)) = 1,
forany i = 1,..., k. Since y;(a;) = 0, for j # i, (by (4.7)), we conclude that

X1s- - -+ 7y are F-linearly independent functions from FG to F. (4.9)
Let M be any FG-module. From (2.10), (3.20) and (4.5) we get
e =m(in M)y, +...+m(I, in M)y,. (4.10)

By (4.9) the multiplicities m(; in M),. . ., m(I, in M) are uniquely determined
by the character y,, via this equation. So (3.20) gives
An FG-module M is determined to within isomorphism by its
character yy- (4.11)

The algebra FG is itself an FG-module in which the module product my
of an element m of the module FG with an element y of the algebra FG is the
algebra product of m and y in FG. It is clear from (2.6) and the definition of
FG that the corresponding representation of G on FG is the regular repre-
sentation Reg. So (2.8), (4.5) and the identification of arbitrary integers with
their images in F give

_ {]Gla I.f 6= lGa
) =0, ifoeG—{1g}. (4.12)

We can compute yp; another way using (4.10). Clearly 4; = (FG)A; is
the A,-primary component of the module FG. So 4; ~ m(J; in FG)x I; as
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an A-module. The dimension of 7; is x;(1) by (2.3) and (4.5). The dimension
of 4; ~ Hom (1, I;) (by (4.8)) is (dim [)* = x(1)*. Hence,

m(l;in FG) = dim A;/dim I;, = y(1), foralli=1,..., k.  (4.13)
This and (4.10) give
xr = XDy + -+ 0D (4.14)
For each i = 1,..., k, the simple algebra A4, has an identity element 1,
Let y be a general element of FG. By (4.6) there are unique elements y; € 4
(i=1,...,k)such thaty = y,+ ...+, From (3.11) we see that y, = yl,
(i =1,..., k). Hence (4.7) implies
1) = 1 (y) =0, ifj=1,...,kandj#Ii,
=0, fi=i (4.15)
In view of (4.14), this gives
tre(W14) = xDxy), for all yeFG,i=1,..., k. (4.16)

We apply this equation and the other formula (4.12) for yp; to compute
14, As an element of FG, the identity 1,, has the form )’ f,o, for some

aeG
unique coefficients f, € F. Evidently £, is the coefficient of 15 when ¢~ 11, is
written as a linear combination of elements of G:

0-—11,4,- = fo»1(;+ -
Applying yr; and using (4.12) we obtain
tra(0™'1,) = |Glf,, forallceG.

This and (4.16) give us a formula for 1, as a function e(y;) of the character y;:

L= e(x) = ZG"‘(I)}]‘(;T e, fori=1,..., k. (4.17)

We know from (3.11) that 1,1,; = 0, if i # j. * So (4.15) implies that
xi(ly) =0, for i#j On the other hand, (4.15) also implies that
xi(14) = x(1), for all i. Substituting the expression (4.17) for 1, in these
equations and using the linearity of the characters x;, we obtain

Xllél) ZX,(U—I)XJ(O') ifi,j::la-"a kandi?éj’
ceG
=Xl(1)’ ifi.:j:ls"-’k'
By (2.3) the integer x:(1) is strictly positive. So we can divide by it to get:

ZL(G (o) = ifi,j=1,...,k andi#],
=1, ifi=j=1,...,k (4.18)

The identities (4.18) are usually expressed by means of an inner product

IGI
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(¢, ¥); defined for any two linear functions ¢, ¥ from FG to F by

(¢, ¥)g = [c] GI ZGfb(G_ W (o). (4.19)

Since we can replace ¢ by ¢! in this summation, (-, ) is a symmetric,
F-bilinear form on the space (FG)* = Homy(FG, F). Equations (4.18)
just say that

The irreducible characters y, . . ., x, are orthonormal with respect to
the form (-, *)g. 4.20)

So far we have no close connections between the irreducible characters
L1s- - -» X and the structure of the group G. One way of forming such con-
nections uses the center Z(FG) of the group algebra FG. The center
Z(Homy (I, I))) of the algebra of all F-linear transformations of I; is clearly
the set F-1; ., of F-multiples of the identity transformation. By (4.8) this
implies that

Z(A)=F-14, (i=1,..., k). (4.21)
This and (4.6) give immediately
Z(FG)=Z(A)®.. @Z(AY)=F 1, ®... ®F-1, (asalgebras). (422)

There is another way of looking at the center Z(FG). Let K|,..., K, be
the conjugacy classes of the finite group G, and K, be the class sum
=0 (4.23)
ocKi

in FG, fori = 1, ..., ¢). Then we have

PROPOSITION 4.24. The class sums K,,. .., K, form a basis for the algebra
Z(FG).

Proof. Lety = Z f,0 be any element of FG, where the f.’s all lie in F.

Evidently y lies in Z(FG) if and only if yt = 1y, for all 7 in the basis G of FG,
i.e. ifand only if t "'yt = y, forallTe G. Sincet 'yt = Y f,o', this occurs
aecG
if and only if £, = f,. for all 6, 7 € G, i.e. if and only if y is a linear combina-
tion of the classsums K;,. .., K.. Therefore K ,,. .., K, span Z(FG). They are
linearly independent, since Kj,..., K. are pairwise disjoint, non-empty sub-
sets of G. So the proposition holds.
Combining this proposition with (4.22) we obtain

PROPOSITION 4.25. The number k of irreducible characters of G equals the
number ¢ of conjugacy classes of G.

Proof. By (4.22), k = dim Z(FG). By Proposition 4.24, the latter number
1s ¢. So the proposition holds.
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There is another way to regard Proposition 4.25. A class function on the
group G is a linear function ¢ : FG — F which is constant on each conjugacy
class K; of G. Evidently these functions form an F-subspace CF(G) of (FG)*
and dimp (CF(G)) = ¢. By Proposition 2.2, each character y,, of G is a class
function. In view of (4.9) and (4.20), Proposition 4.25 is equivalent to

The irreducible characters y ., . . ., y, form an orthonormal basis for
CFE(G) with respect to the form (-, *)g. (4.26)
Since Z(FG) is a subalgebra of FG, there are unique multiplication
coefficients a,,;;, (h,i,j = 1,..., ¢), such that

KRi=Y aK;, (hi=1,... 0. 4.27)
i=h

These coefficients have a simple, but important, relationship with multiplica-
tion in the group G.

PrRoOPOSITION 4.28. Let h,i,j = 1,..., c. If pe K, then ay; is the number
of ordered pairs (6, 1) of elements of G such that 6 € K, T € K, and o1 = p.
Proof. By (4.27), ay; is the coefficient of p in K,K;= 5 or. This

geKp, tekK;
coeflicient is obviously the number of the above ordered pairs (o, 7).

Evidently the decomposition (4.22) gives us k distinct epimorphisms
0,,.... 0, of the algebra Z(FG) onto F defined by

0(fi- 14, @..@ fi'ly)y=/fis foralli=1,... kand any fjsinF. (4.29)
These epimorphisms #; can easily be computed in terms of the irreducible
characters y;.

If y € Z(FG), then evidently R(y) = 0(»)-1;,..;, € Homg([, I,). Since the
trace of the identity transformation 1,_;, is dim,/;, which equals x,(1) by
(2.3), we have )

() =t (RO =0 tr (]l,-al,-) = 0:(»)x(1).

Therefore,

_ %)
xil(1)
If we substitute (4.30) in the formula 8 yz) = 0,(»)0,(z) (which is valid for

all y, z € Z(FG) since 0, is a homomorphism) and then multiply by x;(1)?, we

obtain the useful formula:
1W1(2) = x(Dyyz), forally, ze Z(FG), and i=1,..., k(431

We can use the formulas (4.18) and (4.30) to compute the values of the
irreducible characters y; starting from the multiplication table of the group G.
By Proposition 4.28, we can compute the multiplication coefficients a,;; in

0.y) , forall yveZ(FG) and all i=1,.. ., k. (4.30)
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(4.27). Since any 8, is a homomorphism of Z(FG) into F, its value Bg(K,,) at
a class sum K, satisfies:

0,R)0,R) =Y a,0,R), foralli=1,...,c.
i=1

Because 6, is an epimorphism, not all the Hg(I?i) (i=1,...,c), can be zero.
We conclude that OH(K,,) is an eigenvalue of the ¢ X ¢ matrix (@), ;= 1,..., o
and that (0,K))...., OQ(K)C)T is a corresponding eigenvector. With this
observation one can theoretically (and even practically on a computer)
compute the values Og(I?,,) of the k distinct epimorphisms 6,,..., 6, of
Z(FG) onto F at the class sums K, (# = 1,..., ¢). Applying Proposition 2.2,
and (4.30). we get

740) _ 0,K,)
o= -2 forallg=1,...,kand ceG, 4.32
20~ K @32

where K, is the class 6¢ of o. Using (4.18) we find that

1 1 -t
— 19 ) %(0), Jorallg=1,.. k.

MGl &2 2D 7D

Therefore z,(1)* is computable. But y,(1) is a positive integer by (2.3).
Hence it is computable. This, together with (4.32), determines the character
values y(s)foralleoeGandallg = 1,.. ., k.

Of course the above program is a bit difficult because of the eigenvalue
computation needed in the middle. But it does imply one important fact:
the multiplication coefficients ay,;; of (4.27) determine the irreducible characters
Y1s- - -~ 1y of G, in particular, any information about these coefficients should
be reflected in properties of the group characters.

We illustrate the last principle, which is vital in many proofs, by considering
the coefficients of 1 in (4.27). Evidently {1;} is a class, say K, and 1 is its

class sum K,. For any class K, let K;! be the class {¢™! : 0 € K;} and K '
be its class sum. Using Proposition 4.28 with p = 1, we compute to obtain

RK;'=01+..., ifi,j=1,...,candi#j,
= K| 1g+..., ifi=j=1,...,¢
where the three dots refer to linear combinations of the other sums K, (4 > 1).
Applving g to these equations and using (4.12), we obtain

0, ifi,j=1,...,cand i #j,

L RRSTy
zm(K.'Kj )_{‘GHKI'{’ ifi=j=1,...,c
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Next we use (4.14) and (4.31) to get

—~ k - B
XFG(Kin_I) = ¥ KK

h=1

= th(l\ ),(;.(K .

Choose any elements o€ K;, 1€ K;, Then Proposition 2.2 implies that

(R = |Kia(o), and 5, (K1) = |K |z(x™"), for all & = 1,..., k. Hence
the above equations become:
0, ifo~r,

k L G
IR, 2 ot = {IGHK.»L oy

where, of course, ¢ ~ T means “‘o is G-conjugate to t”, and ,( ~ T means

‘o is not G- conjugate to . Dividing by [K/[K;|, and using the fact that
= |Cg(7)|, we obtain the following identities:

|C()], if o, 7€G and o~ (4.33)

k
Z XI:(O-)XII(T l =

0, if 6,7eGand o ~ 1.
G
Besides their relations with the conjugacy classes and the multiplication
coefficients a,;;, the irreducible characters of G are also connected with
certain normal subgroups of G. To explain this connection, we start with
two lemmas.

LeMMA 4.34. Let M be any FG-module and ¢ be any element of G. Then

there exists a basis my,. .., m, for M satisfying:
mo={m; (i=1,...,n), (4.35)
where {,,...,(,€ Fare ,G[th roots of unity (they are even eth roots of unity,

where e is the exponent of G).

Proof. The cyclic subgroup {a) generated by ¢ is abelian, and F is a
splitting field for its group algebra F{g) by (4.1). It follows from (4.6) and
(4.8) that each irreducible F(s)-module is one-dimensional. Because F{c)
is semi-simple, (3.20) tells us that M, considered as an F{o)-module, is a
direct sum of irreducible F{s)-submodules J, @...® J,. If m, is a basis
element for the one-dimensional module J; (i = 1,..., n), then m,,..., m, is
a basis for M satisfying (4.35), for some {,,..., {,€ F. Evidently ¢° = 1
implies that each {; is an eth root of unity and hence a |G|th root of unity. So
the lemma holds.
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Lemma 4.36. Let {,,..., {, (n > 1) be |G|th roots of unity in F. If
(o oo+ L, = nl, where { is also a|G|th root of unity, then | =...={, = (.

Proof. The |G|th roots of unity in F generate a subfield £ which is finite-
dimensional over the rational subficld Q. Evidently it suffices to prove the
lemma for E in place of F. But E can be isomorphically embedded in the
complex numbers C. Therefore it suffices to prove the lemma for F = C.

In C, the absolute value [{| of any |G|th root of unity is . So, we have

[t oo+ Gl = [l = n =0+ +]G)-
This implies that {,,. . ., {, are all positive multiples of each other. Since they
all have absolute value 1, they must be equal {; =...= {,. Evidently their
common value is ({;+ ... +{,)/n = {. So the lemma holds.
The normal subgroups associated with the irreducible character y;
(i=1,..., k) are
Ker(3)={oceG:yo=y, forall yel} (4.37a)
Z(G mod Ker () = {6e€G : ¢ Ker (1) e Z(G/Ker (x;))}. (4.37b)

Their relations with the values of y; are given by

ProrosiTioN 4.38. Fixi=1,..., k. If o€ G, then

(a) o eKer (y) if and only if yi(o) = y(1),

(b) o € Z(G mod Ker (x) if and only if (o) = (1), for some |G|th root
of unity { e F.

Proof. 1f 0 €Z(G mod Ker (y,)), then the linear transformation R, (o)
evidently commutes with every R,(7) (t € G). In view of (4.8), R,(c) must lie
in the center of Homg (f;, I,). So it has the form R(¢) = {-1;,,;, where
{ € F. This implies that y;(c) = { dim(1;) = {z,(1), by (2.3). Since ¢!% = 1,
the element { € F is a |G|th root of unity. Obviously { = I if and only if
o € Ker (x;). So we have proved the “only if” parts of both (a) and (b).

Now suppose that o satisfies y(a) = (y,(1), for some |G[th root of unity
{ € F (in the case (a), we take { = 1). Lemma 4.34 gives us a basis m,,..., m,
for I and |G|th roots of unity {,,. .., {, satisfying (4.35). The trace y,(o) of
R,(0) is then clearly {,+...+¢, = n{, which implies {; =...={, = { by
Lemma 4.36. So Ri(¢) = ({1,_,;, commutes with R,(t), for all 7 € G, which is
equivalent to saying that ¢ € Z(G mod Ker (y;)). When { = 1, we even have
o € Ker (x;). Therefore the proposition is true.

5. Induced Characters

We continue to use the notation and hypotheses of Section 4. If o€ G and

x € (FG)* = Homy (FG, F), then the conjugate function y° € (FG)* is given by :
W) =1y ) = yloye™"), for all yeFG. (5.1)
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This is a linear action of G on (FG)* contragradient to the conjugation action
of G on FG. Notice that the form (-, -); of (4.19) is invariant under this
action:

(Caa XG)G = (k.rs X)G, for a” O'EG, é, XE(FG)*' (52)
The subspace CF(G) of all class functions on G is evidently given by
CF(G) = {ye(FG)* : y° =y, forallceG}. (5.3)

Let H be any fubgroup of G. We extend any function ¢ e CF(H) to a
linear function ¢ € (FG)* by setting ¢(s) = 0, for all 6 G\H. So ¢ is

defined by:
&(azaf,a) = d)(,;,,f”a)’ for any f,’s in F. (5.4)

Since ¢ is a class function on H, its extension ¢ satisfies ¢° = ¢ forall o € H.
Hence we can define the induced function ¢ e (FG)* to be the “‘trace from
Hto G” of ¢:

= 3 B (5.5)
cerep (G/H)

where rep (G/H) is any family of representatives for the left cosets Ho of H
in G. Evidently ¢ is independent of the choice of these representatives, and

is fixed under conjugation by any element of G. So (5.3) implies
Induction: ¢ — ¢ is an F-linear map of CF(H) into CF(G). (5.6)
The restriction y, to FH of a class function y of G is clearly a class function
of H. The F-linear map y — yy of CF(G) into CF(H) is, in fact, contra-

gradient to induction.

ProposiTION 5.7 (Frobenius reciprocity law). If x € CF(G) and ¢ e CF(H),
then

(Xa (!)G)G = (XH: ¢)H

Proof. We know from (5.3) that y = 7, for all - G. So (5.5) and (5.2)
give:

i

(X9 ¢G)G

(s Fon?)
cerep (G/H) G

= Y (% 0e=[G:Hl(x b

ogerep (G/H)

By (4.19) and (5.4), we have:

(ot P = |G| agcmw(a-l) IGI S H)be™)

[G H] (xu> D)u-

The result follows from this and the preceding equation.
The Frobenius reciprocity law has the following important consequence.
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PROPOSITION 5.8. If ¢ is a character of H, then ¢ is a character of G.

Proof. By (4.26) the class function ¢¢ is a unique linear combination
¢ = fix + ... +fite with coefficients f,,..., fy € F, of the irreducible
characters xy,. . ., x, of G. In view of (4.10), ¢° is a character of G if and only
if each f; is a non-negative integer. Using (4.20) and the Frobenius reciprocity
law, we have:

Ji= %) = (D> Pur-
Evidently the restriction (y;); is a character of H (the corresponding repre-
sentation is that of FH on the FG-module ). By definition, ¢ is a character
of H. If A,..., A, are the irreducible characters of H, equation (4.10) gives
us non-negative integers ny,. .., n;, Mmy,. .., m, such that

O =i+ .o+ ngdy, db=md+...+mi,.
But then (4.20) for H implies:

Ji= (0> Pu =_;l”i’”i-

The last expression is a non-negative integer, since each »; or my; is. This
completes the proof of the proposition.

Another consequence of the Frobenius reciprocity law is used often enough
to deserve special mention.

ProposiTION 5.9. Let xy,..., x be the irreducible characters of G, and
Aise..s Ay be the irreducible characters of H, where y,, A, are the trivial
i

characters of G, H, respectively. If ¢ = ) [A, with each f, € F, is any class
=

k
Sunction on H, and $% = 3 e;y;, with each e; € F, then e, = f.
j=1

Proof. This is shorter to prove than to state. Obviously (y,)y = 4;. So
the Frobenius reciprocity law and (4.26) give:

er = Oy = (1 )us P = (115 $°) =1
which proves the result.
A trivial intersection set (or t.i. set) with H as its normalizer is a non-empty
subset S of H satisfying:

S°=S, foralloeH, (5.10a)
S~ S is empty, foralloeG\H, (5.10b)
S=S"1!'={6""':0eS}. (5.10c)

As an example of a t.i. set, we define a subset \/5, for any ¢ € G, by:
Vo ={teG : ce (). (5.11)

Then we have:




CHARACTER THEORY OF FINITE SIMPLE GROUPS 267

ProrosiTiON 5.12. For any ¢ € G, the set \/c; is a t.i. set with Ng({o)) as its
normalizer.

Proof. Clearly Joisa non-empty subset of Ny({c>). Since ¢ € () if and
only if (6> < {1, the subset Va is invariant under conjugation by elements
of Ny({o>). If pe G\Ny({0o)) and 1€ S* n S, then {t) contains both {¢)
and <{g*> = {o)” # (o). This is impossible, since the cyclic group {7
contains only one subgroup of order [{o}| = |[¢a}?|. Hence $* N S is empty.
Finally {t)> = {z~!) implies that (\/rf)‘1 = o. So the proposition holds.

Let S be any t.i. set with A as its normalizer. We define an F-subspace
CF(H|S) of CF(H) by

CF(H|S) = {¢eCF(H) : ¢(0) =0, for all se H\S). (5.13)

The functions in CF(H|S) behave very well under induction.

PROPOSITION 5.14. If ¢ € CF(H|S) and 6 € G, then
0, unless ¢ ~ 1, for some €8S,
Gy — G
¢°(0) (1), ifo~1t, JorsomerteS.
G

Proof. By (5.4) the extension ¢ is zero on G\S. For any p e rep (G/H), the
conjugate ¢ is zero on G\S”. From (5.5) we conclude that ¢¢ is zero on
G\ () S, which gives the first of the above equations. For the second, we

P

may assume that ¢ = 7€ S, since ¢ is a class function on G. Then (5.10)
implies that ¢ ¢ S” for all p erep (G/H) except the single representative
po € H. So $?(c) = 0, for all p # p, in rep (G/H). This and (5.5) imply that
$%(0) = ¢*°(0) = P(a*") = $(a*") = ¢(o), which completes the proof of
the proposition.

From this proposition and the Frobenius reciprocity law, we deduce

PROPOSITION 5.15. The map ¢ — ¢° is an isometry of CF(H|S) into
CF(G|S©) (where Sf= S“), ie.

ceG
(9%, &9 = (¢, O, Jor all &, éECF(H,S). (5.16)

Proof. By (5.6) and Proposition 5.14 the map ¢ — ¢ sends CF(H|S)
linearly into CF(G[S®). So we only need to prove (5.16). The Frobenius

reciprocity law gives
(0%, &% = (D) O = 1557 2 (0)e(a™).
IHI oceH

Since ¢ € CF(H|S). the value &(c™") is zero unless 6~ ' € S. By (5.10¢) this

1
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occurs if and only if 6 € S. But then ¢°(c) = ¢(o) by Proposition 5.14. So
we have

7l Hl % 9(0)e(a™)

2 ¥(0)e(a™") = (o, O,
|H| ceH
which proves the proposition.

Obviously the identity 1, can lie in S only if H = G, which is not a very
interesting case. So (2.3) implies that the only character in CF(H ]S) is 0,
whenever H < G. Nevertheless, one can very well have generalized characters
of Hin CF(H]S). A generalized character y of the group G is a class function
of the form

(d)G’ éG)G |Hl Z ¢G(a)é(o'_ 1)

r=n+ ...+, (..., mel) (5.17)

where, as usual, y,. .., y are the irreducible characters of G. By (4.10) the
generalized character y is an actual character if and only if each of the
coeflicients ny,..., n, is non-negative. Clearly the generalized characters
form the additive subgroup X(G) of CF(G) generated by the characters.
From this description and Proposition 5.8 we immediately obtain

Induction ¢ — ¢° is an additive homorphism of X(H) into X(G). (5.18)

We denote by X(H|S) the intersection X(H) n CF(H|S), consisting of all
generalized characters ¢ of H vanishing on H\S. Then (5.18) and Proposi-
tion 5.15 give

Induction ¢ — ¢ is an additive isometry of the subgroup X(H [ S)
into X(G|S°). (5.19)

To obtain the full force of trivial intersection sets, we use them in con-

junction with involutions of the group G. An involution is just an element of
order 2. Their most important property is

PROPOSITION 5.20. If ¢, ' are involutions in G, then 6 = ' is inverted by
both vand \':
o=c¢" =01 (5.21)
It follows that {v, V"> = {u, 6) is a dihedral subgroup of G, with {¢> as a
normal cyclic subgroup of index 2.

Proof. Since ¢t = «"Yand ¢ = !, we have:
o l=() " =ti= T (u =0

Similarly we have 6™! = ¢". So (5.21) holds. The rest of the proposition
follows easily from this.
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COROLLARY 5.22. Ifa€ S, then ¢, ' € H.

Proof. By (5.21) and (5.10c), the intersection S* ~ S contains ¢ = ¢~ 1.
So ve H by (5.10b). Similarly ¢ € H.
As a result of the above corollary, we obtain the very useful

ProrosiTiON 5.23.  Let I, I' be conjugacy classes of involutions in G.
. ~ /_\/ /‘\-/
Denote by I, I', (I~ H), (I' n H) the sums in FG of the elements of the

corresponding sets I, I', I n H, I' n H, respectively. If ¢ € CF(H|S), then
we have

— L —

$511) =[G : HI¢((I n H) (I A H)). (5.24)

Proof. Let II'=Y f,0, for non-negative integers f,. If o ¢S, then
geG

¢%c) = 0 by Proposition 5.14. Hence,
RS WAL
The conditions (5.10) say that S¢ is the disjoint union of its conjugate
subsets S?, for p e rep (GlH). Since 77’ € Z(FG), the constant f,? equals £},
forallae S, perep (G[H). Applying Proposition 5.14 again, we get
$A = ¥ f4°0)

perep(G/H)

=[G H] ) Jod(o).

If 6 € S, the coefficient f, of @ in 11" is just the number of ordered pairs of
involutions (¢, ) such that te I, " e ["and «' = ¢. In view of Corollary 5.22,
this is just the number e, of ordered pairs (v, ¢'), where te In H, ' e’ n H

T —— 7 —

and «’ = g. Bute, in turn is the coefficient of s in(I " H)(I' " H) = Y e,0.
ceH

Since ¢(o) = 0 for g € H\S, the previous equation becomes

¢G(i;) =[G : H] Zse,,dJ(a) =[G: H]¢( ZHeaa)
T N— T N——
=[G : H]¢(U n H)(I' n H)),
and this proves the proposition.

6. Generalized Quaternion Sylow Groups

We apply the ideas of the last section to study the finite groups having
generalized quaternion groups as 2-Sylow subgroups.
To construct a generalized quaternion group, we start with a cyclic group
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{z) of order 2", where n > 2. The automorphism ¢ — ¢~ ' of <t} then has
order 2 and leaves fixed the involution ¢ = t2" ", It follows that there is a
unique group Q containing {t) as a normal subgroup of index 2, in which
some element p € Q\{t) satisfies

=171,  pr=u1=12""" (6.1)

This group Q is called the generalized quaternion group of order 2"*!, If
n = 2, it is, of course, the ordinary quaternion group.

PROPOSITION 6.2. Fach element p € Q\{z) satisfies (6.1). Hence ¢ is the
only involution in Q.

Proof. Fix an element p, € Q\(t) satisfying (6.1). Since [Q : {(z)] = 2,
any element p € Q\{t)> has the form 1'p,, for some integer /. From (6.1) for
po we compute that
1

P =70 = P = 7

p? = Tpgtpy = tpi(py 'Tpy) = T =,

Therefore p also satisfies (6.1). In particular, p has order 4. So any involution
in Q must lie in () and therefore equal ¢, which finishes the proof.

We must compute some irreducible characters of Q in a field F of charac-
teristic zero satisfying (4.1) for the group Q. Certainly we have the trivial
character 1 = I, . Since Q/{t) is cyclic of order 2, we have a linear
character 1 satisfying

/= {1 L on Q\{z>, 63)
on {1).

Because n > 2, there is a linear character p of {7 sending 7 into a primitive

fourth root of unity Vv =1. We can find such a root in £ by (4.1). So we have
two linear characters yu, u~! of {t)> given by

Wi ==, @)= =) =(=v=1), forall integers i.

(6.4)
By (5.5) and (6.1), the induced character 0 = u@ satisfies
0 on Q\{1),
0= 6.5
{,u+u‘1 on (1. (6-5)

Since y and p~! are distinct irreducible characters of {t), the Frobenius

reciprocity law implies that (6, 0)g = (O.y. 10y = (+u"", ¢y = 1. But
the character 6 is a linear contribution of the irreducible characters of Q
with non-negative integral coefficients. From this and (4.20) we conclude
that @ is an irreducible character of Q. Since 6(1) =2 # 1 = (1) = (1),
we have

1, 4, 8 are distinct irreducible characters of Q. (6.6)
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From (6.3), (6.4) and (6.5), we compute:
0 onQ\<r),
on {TH\(T?),
on {T*H)\ (%D,

on {14,

l+i-0= (6.7)

S B

With this we are ready to prove

THEOREM 6.8 (Brauer—-Suzuki). If'n = 3 and the above generalized quater-
nion group Q of order 2"*' is a 2-Sylow subgroup of a finite group G, then G
has a proper normal subgroup N containing the involution t.

Proof. Let ¢ = 1°. Proposition 5.12 tells us that Vo is a ti. set with
H = Ng({z)) as its normalizer. We first prove

LeMMA 6.9. The group H is the semi-direct product QK of Q with a normal
subgroup K of odd order centralizing o.

Proof. Evidently the characteristic subgroup {¢) of () is itself normal
in Q. So Q < H. Since Q is a 2-Sylow subgroup of G, it must also be one
of H.

Because n > 3, the element ¢ of order 2"~! is not its own inverse. It
follows from this and Proposition 6.2 that Q n C4(6) = (). Since Cg;(0)
is normal in N;({g)») = H, this intersection is a 2-Sylow subgroup of C(5).
It is well known and elementary (see Section 1.6 of Huppert, 1967) that
the finite group Cg(o) with a cyclic 2-Sylow group {t> has a unique
normal 2-complement K, i.e., a normal subgroup K of odd order such that
Cs(0) = (DK.

The factor group H/Cs(o) = Ng({6))/C¢(a) is isomorphic to a subgroup
of the automorphism group of {¢), and hence is a.2-group. It follows that
[H: K] =[H: C4(0)] [Cslo) : K]is a power of 2. Since K is characteristic
in Cg(o), it is normal in H. Therefore it is a normal 2-complement in //.
and the lemma is proved.

Next we must compute the t.i. set Jo < H.

LEMMA 6.10. v/o = (TOK\(*HK.

Proof. Suppose that pr e\/a, for pe Q, e K. Passing to the factor
group H/K = QK /K ~ Q, we see that o € {p). Since n = 3, the element
o is not in {+>. So Proposition 5.2 implies that p € {(z>. Obviously p ¢ (%)
since ¢ = 12 ¢ (t*). Hence v/o = (1DK\(T*K.

Suppose that p € (t)\(t*> and n € K. Then either {p> = {1*) = (o) or
{p> = {1). In the first case n is an element of odd order commuting with
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the element p of order 2"~ !, by Lemma 6.9. So {pn) = {p> x<{(nd> = {p)
= (o). In the second case (pn)* € (T*YK\(T*DK. So g e {(pn)*) < {pn),
by the first case. Hence pn € \/ o in both cases, which completes the proof of
the lemma.

Let ¢ be the natural epimorphism of H = QK onto Q. Then (6.6) implies
that the compositions 1o¢, Ao¢h, Oo¢p are distinct irreducible characters of H.
From (6.7) and Lemma 6.10 we see that logp+Aop—0o¢p = (1+1—0)op is a

generahzed character of H vanishing outside \/ g, i.e. a member of X(H [\/ o).
Since Vo is a t.i. set with H as its normalizer, we can apply (5.19) and deduce

that (1c¢p + Zop—0.0)¢ € X(GI(\/O’)G). In view of (5.17) and Proposition 5.9
we have

(1o¢+lo¢_60¢)6= 1+n2X2+. . .+nka,

where 1 is the trivial character, and y,,..., y, are the other irreducible
characters of G, and where n,,..., n, are arbitrary integers. Using (4.20)
and (5.16), we get
PP+nd+. . +nf=(lodp+rod—0.0), (lodp+lodp—0.0),
=(1o¢+lo¢_00¢, 10¢+lo¢—‘00¢)"
= 3.
Hence exactly two of the »; are non-zero, and they are both + 1. Therefore,
we have
There exist distinct non-trivial irreducible characters A, © of G and
integers €,, &, = 1 such that: (lop+ op—0o) = 1+6,A—¢,0. (6.11)
Since (> < (1%, it follows from Lemma 6.10 and Proposition 6.2 that
V& contains no involution. Hence (\/o')G contains neither ¢ nor 1. Since
(Lo + iop—0.$)C is zero outside (v/6)%, this and (6.11) imply that
14+6,A(1)—¢e,0(1) =0, 1+6,A()—e,00) =0. (6.12)

Let / be the conjugacy class of 1 in G. From Proposition 6.2 and Lemma
6.9, the intersection I n H is contained in (K. So (In H)? < (\K)? =
It follows from this and Lemma 6.10 that (I n H)* n Vo is empty. Smce
lop+icp—0.¢p is zero on H\\/o—, we conclude that (in the notation of

Proposition 5.23)
(1 o¢+Ao¢—901)((IﬁH)2) =0.
Applying (5.24) and (6.11), we get

0=[G: H](Io¢+iod—0.0) (I H))
=(1+&,A—g,0)(I?).
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In view of (4.31) and Proposition 2.2, this gives

1(1)? N A()? o(I)?
= 3 —¢

1 YA(D TP eq)
_ (1 OO RCCIORY
gA(l)y  8,0()

We can remove the non-zero factor |7|?. Substituting the values of &,0(s),
£,0(1) obtained from (6.12), we have:

@AWY (L+e,AW)

0

&A1) T+&,A1)
- (51/\(‘)_51/\(1))2
e A(D) (1 +e,A(1)
Therefore A(r) = A(1). By Proposition 4.38, the involution ¢ lies in

N = Ker (A), which is a proper normal subgroup of G, since A # 1. This
proves the theorem.

0=1+

7. Brauer’s Characterization of Generalized Characters

As usual, let G be a finite group and F be a field of characteristic zero satis-
fying (4.1). A subgroup F of G is called Brauer elementary if it is the direct
product of a cyclic group and a p-group, for some prime p. The following
theorem, due to Brauer (but whose present proof is due to Brauer and Tate
jointly) is difficult but extremely useful for constructing group characters.

THEOREM 7.1, A class function ¢ on G is a generalized character if and only
if its restriction ¢ to each Brauer elementary subgroup E of G is a generalized
character of E.

Proof. The “only if” part is trivial, so we need only prove the “if” part.
We shall do it in a series of [emmas. First we pass to a different (but actually
equivalent) form of the theorem. Let & be the family of all Brauer elementary
subgroups of G. For each E e &, induction maps the additive group X(E)
of all generalized characters of E onto a subgroup X(E)¢ of X(G) (by (5.18)).

LeEMMA 7.2. Theorem 7.1 is implied by the equality:
X(G) =Y X(E)C. (7.3)
Eeé&

Proof. Suppose that (7.3) holds. Let ¢ be any class function on G whose
restriction ¢ lies in X(E), for any Fe &. Then the Frobenius reciprocity
law implies that (¢, {9 = (¢p, O Z, for all ¢ € X(E) and any Ee&. Tt
follows that (¢, ) € Z, for any ¥ in the right side of (7.3), i.e., for any
Ve X(G). If xq,..., x € X(G) are the irreducible characters of G, we con-
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clude from this, (4.26), and (5.17) that ¢ = (¢, x )1+ ... +(P, Wy is a
generalized character of G. This proves the lemma.

For the rest of this section we regard characters, generalized characters,
and class functions as functions from G to F, rather than as linear functions
from FG to F, i.e., we adopt the viewpoint of Section 2 instead of that of
Section 4. It follows from (2.14) that the additive group X(G) is closed under
multiplication of functions, and hence is a ring of functions from G to F.
The identity element of this character ring X(G) is clearly the trivial character
1 =145.p0fG.

Let Y < X(G) denote the right side of (7.3).

LeMMA 7.4. Y is an ideal in the character ring X(G).

Proof. Clearly Y is an additive subgroup of X(G). So we need only show
that it is closed under multiplication by an arbitrary element € X(G).
Clearly it suffices to show that y¢%e X(E)¢ < Y, for any E€ & and any
Ee X(E).

As in (5.4), let & be the extension of & to a function from G to F which is
zero outside E. Then, clearly, we have

L~
¥ = gd)
Since the restriction Y lies in the ring X(E), so does the product £, Hence
(Wg&)° lies in X(E)°. Because y is a class function on G, it equals y°, for all
g € G. So the above equality and (5.5) imply that

W= T @dr= T Wd°

cerep (G/E) oerep (G/E)
— z lpaé:o' — !l/ Z éo’
ocerep (G/E) agerep(G/E)

= Yo

Therefore £ € X(E)C, which proves the lemma.

The importance of Lemma 7.4 is that any ideal Y # X(G) is contained in a
maximal ideal of X(G), and that we can say something about these maximal
ideals. Before we do so, however, we must make a ‘“‘ground ring extension”.

It follows from (4.1) that F contains a primitive |[(c)|th root of unity (the
value A(o) of a suitable linear character 2 of {¢)), for each 60 G. If e
denotes the exponent of G, we conclude that F contains a primitive eth root
of unity @. Let O = Z[w] be the subring of F generated by w.

Lemma 4.34 implies that y(¢) € O, for all y € X(G), 6 € G. So X(G) is a
ring of functions from G to ©. Therefore, so is the family DX(G) of all
O-linear combinations of members of X(G):

D X(G) is a ring of functions from G to O, (7.5)
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Lemma 7.4 and the F-linearity of induction imply that the corresponding
family OY satisfies

OY = Y [OX(E)]® is an ideal of DX(G). (7.6)
Eecé
We must show that nothing is lost by passing from Z to O.

LemMma 7.7. If we have
QY = DX(G), (7.8)
then (7.3) holds.

Proof. By (4.9) and (5.17) the additive group X(G) is a free Z-module with

the irreducible characters y,,..., y of G as a basis. Since Y < X(G), the
elementary divisor theorem gives us a Z-basis ¢,. .., ¢, of X(G) and non-
negative integers n,,..., 1, such that ¥ = Zn, ¢, + ... +Znp,.

Because the Z-basis y;,. . ., yx of X(G) is F-linearly independent (by (4.9)),
so is the Z-basis ¢,. .., ¢,. It follows that OX(G) = O¢p, @ ... D D¢, is
a free O-module with ¢,,..., ¢, as a basis. If (7.8) holds, then
Oneg, @...® O, =0Y =0X(G) =D¢, @...® D¢,. So,

On; =9, (i=1,...,k).

Fix i=1,..., k. The above equation implies that the non-negative
integer n; is positive, and that O contains 1/n;. So O contains the subring
Z[1/n] of rational numbers generated by 1/m;. Since O = Z{w] = Z-1
+Zo+Zo*+ ... +Zw®" ! is a finitely generated Z-module, so is its sub-
module Z[1/n;]. This is only possible if n, = 1

Fromn, =1 = 1,..., k), we get

Y=Znp +...+Znp,=2Zd,+...+Z¢, = X(G).

This proves the lemma.
Each element o € G defines an “‘evaluation” homomorphism 17, of the
function ring © X(G) into O given by )

n.(0) = Y(o), for all Y e DX(G). (1.9)
Since n,(y-1) = yl(s) = y, for all y € O, we have

For each o € G, the map 1, is an epimorphism of the ring
DX(G) onto O. (7.10)

Now we fix a maximal ideal M in O X(G). We shall construct an element of
Y not lying in M. First we must analyze M.

LEMMA 7.11. There exists an element o € G and a maximal ideal P of O
such that M is the inverse image n,; (P) of P by n,.

Proof. The intersection of the kernels Ker (n,) of the epimorphisms #,,
g € @G, is the set of all functions Y € X(G) which vanish at all 6 € G, i.e., it is
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{0}. Since there are only a finite number of ¢ € G, and the product
HGKer (n,) = ﬂGKer (n,) = {0}
is contained in the maximal ideal M of the ring O X(G) with identity, there is
some ¢ € G such that Ker (1,) & M. Evidently this and (7.10) force M to be
the inverse image 7, }(P) of a maximal ideal P of ©. So the lemma is true.
We fix o and P satisfying the conditions of Lemma 7.11. Since P is a
maximal ideal of O, the quotient ring /P is a field.

LeMMA 7.12. The field O/P has prime characteristic p.

Proof. Suppose not. Then it has characteristic zero. But its additive group
is a finitely-generalized Z-module, since © is. This is impossible, since it
contains the additive group of the rationals, which is not finitely-generated.
So the lemma holds.

We write the exponent e as a product e = p"f, where # > 0 and p does not
divide the positive integer f. Then there exist integers a, b such that:

ap"+bf = 1. (7.13)

It follows that o = 6*7"¢®/, where the order of ¢*”" divides f and that of
6"/ is a power of p.

LemMA 7.14. Yi(a) = Y(a°"") (mod P), for all y € OX(G).

Proof. Since both sides of this congruence are O-linear in ¥, it suffices to
prove it when ¥ is an irreducible character of G. Let I be a corresponding
irreducible FG-module. By Lemma 4.34 there are a basis y,,. .., y,for I over
F and eth roots of unity {,,..., {, such that y,0 = {;y, foralli=1,..., ¢
This implies that y,6*”" = {*"y, (i = 1,..., f). Hence,

Yo)—y(e) = (ot ...+ )=+ + 57
= =D+ 0TG-
by (7.13). So it suffices to prove that (% —1eP, (i = 1,..., ?).

Since ¢, is an eth root of unity, its power 6 = [?/ is a p"-th root of unity.
The image § of d in O/P is also a p"-th root of unity. But 1 is the only p"-th
root of unity in the field O/P of characteristic p. Hence § = 1, and
{8/ —1 = 6 —1€P, which finishes the proof of the lemma.

COROLLARY 7.15. We can assume that the order of o is relatively prime to p.

Proof. 1f not, let t = ¢®". The lemma implies that M = 5, (P) = 5, '(P).
So we can replace ¢ by 7, whose order divides fand hence is relatively prime
to p.

Of course, from now on we do assume that |<a>| is relatively prime to p.
Let S be a p-Sylow subgroup of Cg;(s). Then F = {o) xS is a Brauer
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clementary subgroup of G. Since {¢) is abelian, each of its irreducible
characters 4 is linear. Using the projection of E on {¢) (or (2.12)), we obtain
a corresponding linear character A x 1 of E satisfying

Ax1(pt) = XAp), for all pelo), 1€8.
Let Z,...., 4 (I = |<o)]) be the irreducible characters of {6). Then

!
A=Y Ao (4 x1)eDX(E).
i=1
Using (4.33) we compute:
0, if p # o,

A( 7:)={, f (pe o), tes). 7.16)
POl o=, (
By (7.6) the induced character A lies in OY. It satisfies

LemMa 7.17. A%o) = [C4(0) : S] # 0 (mod P).

Proof. As in (5.4), we extend A to a function A from G to F which is zero
outside E.

Suppose that A*(c) # 0, for some 1€ G. Then ¢* ' € E and A(c*™ ") # 0.
The order of ¢°”* equals that of ¢. Evidently (o) is the set of all elements of
E = (o) x S whose orders are not divisible by p. Hence 6~ ' € {(¢). But then
A(c*™") # 0 implies 6° ' = o, by (7.16). Therefore T e Cy(0).

On the other hand, if © € C4(0), then (7.16) gives A%(6) = A(6*™") = A(o)
= [<a)| # 0. It follows from this and (5.5) that

A= Y A= Y, Kol =[Cqlo) : (o> x S]Ka)]|
terep (G/E) rerep (Co(a)/E)
= [C4l0) : S].
This is not divisible by p, since S is a p-Sylow subgroup of C4(6). So it does
not lie in P by Lemma 7.12. This completes the proof of the lemma.

Now we can finish the proof of the theorem. By Lemmas 7.2 and 7.7, we
need only show that (7.8) holds. If that is false then DY is an ideal properly
contained in D X(G), by (7.6). So we can choose our maximal ideal M to
contain OY. But the above character A lies in O Y and notin M = 5 }(P),
by (7.9) and Lemmas 7.11 and 7.17. The contradiction proves the theorem.

8. p-adic Algebras
Fix a prime p in the ring Z of ordinary integers. From the descending chain
pZ > p*Z > p’Z o ... of ideals of Z we obtain an infinite chain of natural
ring epimorphisms

... Z|p’Z~Z[p*’Z~Z/pZ. 8.0
The corresponding inverse limit ring Z, ="<1_.i:-O Z/p"Z is called the ring of

p-adic integers.
F.S.G. 10
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From its definition Z, is provided with a family of natural ring epimor-
phisms Z, — Z/p"Z, for all n > 0, commuting with the epimorphisms in
(8.1). If m > n, then the kernel of the epimorphism Z/p™Z — Z/p"Z in (8.1)
18 p"Z/p™Z, which is p"(Z/p™Z) as an additive subgroup of Z/p™Z. It follows

that the kernel of Z, — Z/p"Z is p"Z,= <—m p"(Z/p”‘Z) So we have a
natural identification of rings:

Z,/p"Z,=1Z/p"L, foralln>D0. (8.2)
Under this identification, the chain (8.1) becomes the corresponding chain
for Z,:

... Z,jp°Z,~Z,|p*L,~Z,|pZ,.
We conclude that the natural homomorphism of Z, into .fl%o Z,/p"L, is an
identity of rings:

lim

Z,= 1,07, (8.3)

The rings Z/p"Z have identities lnzr/nl,,.z which map onto each other in (8.1).

It follows that their inverse 15, = 17z is the identity for Z,. The unit
group U(Z,) is easily seen to be the inverse limit

lim
U(Z,) = <~ UZIp'Z),
of the unit groups U(Z/p"Z) of the rings Z/p"Z. But U(Z/p"Z) =
(Z/p"ZY\(pZ/p"Z), for all n > 0. Hence, we have
lim
U(Z,) = o (ZIP"D\WZ/P'D) = Z,\pL,. (8.4)

From the above information we can deduce the entire ideal structure of Z,,.

PROPOSITION 8.5. The distinct ideals of Z, are {0} and p"Z, (n = 0, 1, 2,
3,...).

Proof. By (8.2) we have Z, = p°Z, > pZ, > p*Z, > .... So the ideals
p"Z, (n=0,1,2,...), are distinct from each other and from {0}.

Let  be any non-zero ideal of Z,. By (8.3) the intersection () p"Z, = {0}.
n=20

So I'is not contained in every ideal p"Z,. On the other hand, I P°Z, =17,
Hence there exists an integer n > O such that I < p"Z, but I & p"*'Z,. Let
y be any element of I not in p"*1Z,. Since y € p"Z,, there is an element
peZ, such that y = p"u. Since y ¢p"+1Zp, the element u does not lie in
pZ, By (8.4) pis a unit of Z,. Therefore I 2 yZ, = p"uZ, = p"Z,. So
I = p"Z, and the proposition is proved.

CoroLLARY 8.6. The ring Z, is a principal ideal domain of characteristic
zero, and pL, is its only maximal ideal.
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Proof. By the proposition, Z, is a commutative ring with identity in which
every ideal is principal. The product p"Z,p"Z, = p"*"Z, of any two non-
zero ideals p"Z,, p"Z, of Z, is again non-zero. It follows that the product of
any two non-zero elements of Z, is non-zero. So Z, is a principal ideal
domain.

The characteristic of the domain Z, is either zero or a prime. But Z,
has a quotient ring Z ,/p*Z, of characteristic p?, by (8.2). So its characteristic
cannot be a prime. Hence it is zero.

The final conclusion of the corollary, that pZ, is the only maximal ideal
of Z,, comes directly from the proposition.

We should note that the field of fractions Q, of the integral domain Z,
is called the p-adic number field.

A p-adic module M will be a finitely-generated unitary module over Z,.
Since Z, is a principal ideal domain, we can apply the structure theory of
finitely-generated modules over such domains (see Section 1.13 of Huppert.
1967). In view of Proposition 8.5, we obtain

rterms

e
M~Z,®...® ZpeB(Zp/p"’Zp) ®...®(Z,/p"L,)
(as Z,-modules), (8.7

for some unique integers r, s > Oand n,,...,n, > 1. This has two important
consequences.

In the first place, the factor module M /pM is clearly the direct sum of
r+s copies of Z,/pZ,, which is isomorphic to Z/pZ by (8.2). Regarding
M [pM as a vector space over the field Z/pZ, we obtain

dimg,,z (M [pM) = r+s, for all p-adic modules M. Furthermore,

this dimension is zero if and only if M = {0}. (8.8)
The second immediate consequence of (8.7) and (8.3) is that
M =n<t—r:OA'I/p"M, Sfor all p-adic modules M, (8.9)

in the usual sense that the natural map of the left side into the right 1s a
module isomorphism.

By a p-adic algebra we understand a p-adic module A together with a
Z -bilinear, associative product (a, a’) —» aa’ from Ax A4 to A. Unless
otherwise noted we assume that 4 has an identity 1 = 1, for this multiplica-
tion. So A4 is a ring with identity, and z — z1, is an identity-preserving ring
homomorphism of Z, into the center of 4.

Obviously the additive subgroup p4 is a two-sided ideal of 4. By (8.8)
the factor ring A/pA is finite-dimensional over Z/pZ. Hence, we have

AlpA is an algebra over Z/pZ. (8.10)
We define the radical J(A) to be the inverse image in A of the radical J(A4 pA)

10*
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of the algebra A/p4. (In fact, one can easily see that J(A) is the Jacobson
radical of 4). Then J(A) is a two-sided ideal of 4 containing p4 and, by (3.8)
AlJ(A) ~ [A/pA)}J(A[pA) is a semi-simple algebra over Z/pZ. 8.11)
By Satz V.2.4 of Huppert (1967), the radical J(4/pA) is a nilpotent ideal
in the algebra A/pA. It follows that
J(A)Y = pA <= J(A), for some integer d > 0. (8.12)
This implies that J(4)* < (pA)" = p"A < J(A)", for all integers n > 0.
Hence we have natural ring epimorphisms
S ALIAY— < A" A 5 ALI(AY
But the natural epimorphism of the left ring onto the right is clearly an
isomorphism. So they are both isomorphic to the center ring. From this
and (8.9) we conclude that’

lim

A=< Alpd = < ALJ(AY (8.13)

in the usual sense that the natural maps among these objects are isomorphisms.

9. The Krull-Schmidt Theorem

Let M be a module over a ring R. Consider a decomposition
M=Mo®..eM,, 9.1)

where M,,..., M,, are R-submodules of M. The corresponding projections

e;:M—> M;(i=1,..., mall lie in the ring Homg (M, M) of R-endomor-

phisms of M, and satisfy

el=¢ (i=1,...,m), (9.2a)
ee; =0 (,j=1,....,m withi#j), (9.2b)
l=e+...+e,. (9.2¢)

Furthermore, these projections determine (9.1) since M; = Me;, for
i = 1,...,m. (Notice that we regard the R-endomorphisms as right operators
on M.)

On the other hand, if ey,. .., e, are elements of Homg (M, M) satisfying
(9.2), then one easily verifies that M, = Me,,..., M, = Me, are R-
submodules of M satisfying (9.1), and that e, is the corresponding projection
of M onto M; (i = 1,...,m). So there is a natural one to one correspondence
between decompositions (9.1) of the R-module M and decompositions (9.2¢)
of the identity into elements e,. . ., e, of the ring Homg (M, M) satisfying
(9.2a, b).

The R-module M is indecomposable if it is non-zero and cannot be written
as the direct sum of two proper R-submodules. The former condition is
equivalent to 1 # 0 in the ring Homg (M, M). The latter says that there is
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no decomposition 1 = ¢, + ¢, in the ring Homg (M, M) satisfying (9.2a, b)
for m = 2. Since any idempotent ¢ # 0, 1 in Hom, (M, M) gives such a
decomposition 1 = e+ (1 —e), we see that

M is indecomposable if and only if 1 is the unique non-zero
idempotent in Homg (M, M). 9.3)

In the case when R is a p-adic algebra A (with identity), we can give another
condition for the indecomposability of certain A-modules. By a module M
over the p-adic algebra A we understand a finitely-generated unitary right
A-module. Since A is itself a finitely-generated unitary module over Z,,
so is M. Hence M is a p-adic module in the sense of Section 8.

ProrosiTiON 9.4. For any module M (in the above sense) over the p-adic
algebra A, the ring Hom (M, M) is naturally a p-adic algebra.

Proof. Since all multiplications involving 4 or M are Z-bilinear, the ring
Hom, (M, M) is naturally a unitary Z,-module, and its multiplication is
Z,-bilinear. So the only problem is to show that Hom, (M, M) is a finitely-
generated Z -module. But it is a Z,-submodule of Homz (M, M), which is
a finitely-generated Z,-module since M is and since Z, is a principal ideal
domain. It follows that Hom, (M, M) is finitely-generated over Z,, which
proves the proposition.

In view of (9.3) and the above proposition, we must study the p-adic
algebras for which 1 is the unique non-zero idempotent. To do so, we use

Lemma 9.5 (Idempotent refinement lemma). Let A be a p-adic algebra
and f be an idempotent in AJJ(A). Then there exists an idempotent e in A such
that { = e+J(A).

Proof. By (8.13) the ring A is the inverse limit of the family of rings and
epimorphisms ’
o AJJ(A)P S AJJ(A)P - AlJ(A).
We shall construct, by induction, idempotents e, e A/J(A)", for n > 1,
satisfying:
...ore3oe, ey =l

Evidently e = dm e, will be the desired idempotent of 4.

We start with e, = f. Suppose that idempotents e, € A/J(A4), e, € A/J(A)?,
.e.s €,€ AJJ(A)" have been constructed so that e, > e, »... > ¢, = f.
Let g be any element of A4/J(A)"*! having ¢, as image in A/J(4)". From
e2 = ¢, we obtain

9 =g+,
where y lies in the kernel Y = J(A)"/J(A)"*t of A/J(A)t! = A/J(A)".
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Evidently y = g°>—g commutes with g. Furthermore y* e Y2 = {0} (since
rn > 1). It follows that e, , = g+ (1 —2g)y satisfies

ene1 =9 +29(1-29)y+(1-29)%y"
=g+v+Q2g9—4g%y+0
=g+(1-29)y+(4g—4g%)y
= en+1—4}’2 =€r41-

Since e,,, = g (mod Y), we have found an idempotent e, € 4/J(4)"*?
satisfying e,., — ¢,. This completes the inductive construction of the e,
and finishes the proof of the lemma.

It is convenient to know the structure of the unit group of 4.

LemMMA 9.6. Let A be a p-adic algebra. An element u is a unit in A if and
only if its image u+J(A) is a unit in AJJ(A).

Proof. If uis a unit in 4, then u+J(A) is clearly a unit in A/J(A4). Suppose,
conversely, that u+J(A) is a unit in 4/J(4). Then there exists an element
ve A such that wo = vu =1 (mod J(A)). Let y = l—uveJ(4). Then
y"eJ(A)", foralln > 1. It follows from (8.13) that the sum [ +y+y* +3> + . ..
“converges’” In ML AlJ(A)" = A to a two-sided inverse to 1—y = uv.
Therefore u has the right inverse (1 —y)~'. Similarly u has a left inverse. So
u is a unit in 4 and the lemma holds.

As a result of these lemmas, we have:

ProrosiTioN 9.7.  The following properties are equivalent for a p-adic
algebra A:

(a) 1 is the unique non-zero idempotent in A,

(b) 1 is the unigue non-zero idempotent in A/J(A),
(¢) A}J(A) is a division algebra over Z/pZ,

(d) A\J(A) is the unit group of A.

Proof. (a) <> (b). First notice that 0 is the only idempotent in J(A).
Indeed, any such idempotent e satisfies e = " € J(4)", forall n > 1, and hence
ee () J(A)" = {0} by (8.13).

nz1

Now suppose that (a) holds. Since 1 # 0 in A4, the idempotent 1 does not
lie in J(A4). Hence its image 1 is # 0 in A/J(A4). If fis an idempotent of
A/J(A) different from O and 1, then Lemma 9.5 gives us an idempotent e € A
having f as its image in 4/J(A). Clearly e # 0, 1 in A4, which is impossible by
(a). Therefore (a) implies (b).

Suppose that (b) holds. Then 1 # 0 in A/J(A4), which implies 1 # 0 in 4.
If e is an idempotent of 4 other than 1 or 0, then so is 1—e (since
(1—e)? = 1—2e+e* = 1—2¢+e¢ = 1—¢). Both e and 1 —e must have the
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image 1 in A/J(A4), by (b) and the first paragraph of this proof. That is
impossible since their sum 1 also has the image 1 and 1 # 0 in A/J(A).
Therefore (b) implies (a).

(b) < (c). Suppose that (b) holds. By (8.11), the ring A/J(4) is a semi-
simple algebra over Z/pZ. Proposition 3.9 gives us simple subalgebras
Ay,..., A, such that A/JJ(A) = A, ®...® A,. If k> 1, then 1, is an
idempotent of 4 different from 0 and 1, contradicting (b). If & = 0, then
1 = 0 in A4/J(A), also contradicting (b). So & = 1 and A/J(A4) is a simple
algebra over Z/pZ.

Now Proposition 3.12 tells us that 4/J(4) ~ Homy(, 1), where D is a
division algebra over Z/pZ and I is a finite-dimensional vector space over D.
Applying (9.3) with D, / in place of R, M, we see from (b) that / is an in-
decomposable D-module. So I ~ D is one-dimensional over D. It follows
easily that A/J(4) ~ Homp (D, D) is a division algebra anti-isomorphic to D.
So (b) implies (¢).

Suppose that (c) holds. Then 1 # 0 in 4/J(A4). If fis an idempotent in
A/J(A) different from | and 0, then f # 0, 1 —f # 0, and f{1 —f) = f—f*
= f~f = 0, which is impossible in a division algebra. Hence (c) implies (b).

(c) <= (d). Evidently (c) holds if and only if [4/J(4)\{0} is the unit
group of A/J(A). By Lemma 9.6 this is equivalent to (d). So the proposition
is proved.

CoroLLARY 9.8 (Fitting’s Lemma). The following conditions are equivalent
Jor a module M over a p-adic algebra A:

(a) M is indecomposable,
(b) Hom, (M, M)/J(Hom (M, MY) is a division algebra over Z/pZ,
(¢) Hom (M, M)\ J(Hom, (M, M)) is the group of A-automorphisms of M.

Proof. In view of Proposition 9.4, this follows directly from the above
proposition and (9.3). :

Since any module over a p-adic algebra is, in particular, a p-adic module, it
satisfies (8.8). This implies immediately that

A module M over a p-adic algebra A has at least one decomposition
M=M ®...®M,, where m > 0 and each M, is an indecomposable
A-submodule of M. (9.9)

The point of the Krull-Schmidt theorem is that this decomposition is as
unique as it can be.

THeOREM 9.10 (Krull-Schmidt Theorem). Let M be a module over a
p-adic algebra A. Suppose that M =M, ®@.. @M, =N, &®...@ N,
where m, n = 0 and each M; or N, is an indecomposable A-submodule of M.
Then n = m and, after renumbering, M; ~ N, (as A-modules), fori = 1,...,m.
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Proof. We use induction on m. If m = 0, then M = {0} and the theorem
is trivial. So we can assume that m > 0, and that the result is true for all
smaller values of m. Obviously this implies that M # {0}, and hence that
n>0.

The decomposition M = M, ®...® M, defines projections e; of M onto
M; (i=1,..., m). Similarly, the decomposition M =N, @®...® N,
defines projections f; of M onto N; (j = I,..., n). From (9.2c) we obtain

Si=lfi=efitefit... te,fi.

Let e;; € Hom, (N, M,) be the restriction of ¢; to N, and f;; € Hom, (M,,
N,) be the restriction of f; to M; (i = 1,...,m). Thene,;f;; e Hom(N,, N,)
(i=1,...,m). Since f, is identity on N,, the above equation implies that

L =eyifiitenfoit .. . tefur in Homy(N,, Ny).

Because N, is an indecomposable A-module, we may apply Corollary 9.8
toit. It is impossible thateverye,;f; lies in J(Hom (N, N)), (i = 1,...,m),
since their sum [ does not lie in this ideal. After renumbering, we can
assume that e, fi, ¢ J(Hom, (N, N,)). By Corollary 9.8(c), the product
e,1f;; is an A-automorphism of N,. Let {(e,,f;;)”! be its inverse in
Hom, (N, N,). Then e;, e Hom,(N,, M,) and f;,(e,,f1,)~ ' € Hom (M|,
N,) satisfy ey fi1(e; fi1)™" = 1y, o n,- It follows that e;; is a mono-
morphism, and that M, = Nye;; @ Ker (f1,(e;,/1,)™") (as A-modules).
Since M is indecomposable and N, # {0}, we conclude that Ker (f},
(ey1/11)" 1) = {0}, and that e,, is an isomorphism of N, onto M.

We now know that the restriction of e, is an isomorphism of N, onto M.
It follows that M = M, @ M, ®.. ®d M, = N, & M, &.. ® M,
Therefore M, ®... & M, ~ M/N, 2 N, ®...® N,, (as A-modules). By
induction m = n and, after renumbering, M; ~ N, (as A-modules), for
i=2....m. Since M, ~ N, already, this proves the theorem.

Let R be a commutative ring with identity. Then any idempotent e € R
is the identity of the subring eR = Re. If e,..., e, € R satisfy (9.2), then
R is the ring direct sum of its subrings Re,,..., Re,. Conversely, if
R =R, ®...® R, (as rings), then the identities e,,..., e, of R, ..., R,,
respectively, satisfy (9.2) and R; = Re; (i = 1,..., m). So our “‘standard”
condition that 1 be the unique non-zero idempotent in R is equivalent to the
condition that R be idecomposable as a ring.

We sayv that an idempotent e € R is primitive if it is the unique non-zero
idempotent in the subring eR, i.e., if eR is an indecomposable subring of R.
The importance of decompositions (9.2) in which each e; is primitive is
explained by the

PrROPOSITION 9.11, Let ey,. .., e, be primitive idempotents satisfving (9.2)
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in a commutative ring R. Then the elements ¢g = Z e, for S {l,...,m.
ieS
are precisely the distinct idempotents in R. In particular. e,,. . ., e, are the onl

primitive idempotents in R.

Proof. An elementary calculation shows that e is an idempotent, for any

Sc {l,...,m}. Since ees = ¢, if ie S, and is zero if i ¢ S, (G = 1,.... m).
the idempotent eg determines the set S. Therefore distinct subsets S of
{1,..., m} yield distinct idempotents es.

Let /' be any idempotent of R. Fori = 1,..., m, fe; = e;fis an idempotent
in ¢;R. Since e; is primitive, fe; is either 0 or e;. Letting S be the set of all
i =1,..., msuch that fe; = ¢, we obtain

f=fl=fe;+fea+...+fe,, =3 e;=es.
ieS
This proves that the eg are the only idempotents in R.

Since Reg contains eeg = ¢;, for allie Sand any S < {1,..., m}, we sec
immediately that eg is primitive if and only if S contains exactly one element.
So the proposition is proved.

We shall apply the above result to a commutative p-adic algebra A. In any
decomposition 4 = 4, ®...® A4, (as rings), the subrings A; are ideals and
hence p-adic subalgebras of 4. As in the case of (9.9), statement (8.8) implies
that 4 has such a decomposition in which m > 0 and each 4, is an indecom-
posable ring. The equivalence between these decompositions and the
decompositions (9.2) in A, together with Proposition 9.11, imply that

A commutative p-adic algebra A has a finite number of primitive
idempotents e, ..., e, (m = 0). These idempotents satisfy (9.2)

and the elements es=> e, for S < {1,..., m} are precisely the
ieS
distinct idempotents in A. (9.12)

The Idempotent Refinement Lemma 9.5 can be used to give a close con-
nection between idempotents of 4 and those of A/J(A4).

ProrosITION 9.13. Let A be a commutative p-adic algebra. The map
e — e+J(A) sends the family of all idempotents e of A one to one onto the
Jamily of all idempotents of AJJ(A). Furthermore e is primitive in A if and only
if e+J(A) is primitive in AJJ(A).

Proof. Evidently e —» e+J(A) sends the first family into the second. By
Lemma 9.5 the map is onto. So we must prove it to be one to one.

Suppose that e, f are idempotents of 4 such that e = fimod J(4)). Then
e = e = ef(mod J(4)). Hence e—ef = e(1—f) is an idempotent in J(A).
As in the first paragraph of the proof of Proposition 9.7, this implies that
e—ef = 0, or e = ¢f. Similarly, ¢f = f. Therefore e — e+J(A) is one to one
and the first statement of the proposition is proved.
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We know that an idempotent e is non-zero in A4 if and only if e+J(A) is
non-zero in A/J(A). If fis an idempotent in eA different from e and 0, then
f+J(A) is an idempotent in (e +J(A)) (4/J(A)) different from e+J(A) and 0.
Conversely, if (e+J(A4)) (4/J(A)) contains an idempotent g # e+J(4), 0,
then Lemma 9.5 gives us an idempotent fin 4 such that g = f+J(4). The
product ef is an idempotent in e4 whose image in A/J(A4) is (e+J(A)g = g
(since g e (e+J(A)) (A}J(A4))). Hence ef # 0, e. This proves the second
statement and finishes the proof of the proposition.

10. Orders

We fix a prime p. Recall from Section 8 that the p-adic number field Q, is the
field of fractions of the integral domain Z, of p-adic integers. Let 4 be an
algebra (in the sense of Section 3) over Q,. An order (or, more strictly, a
Z ,-order) in 4 is a subset O satisfying:

O is a subring of A, (10.1a)
1,e90, (10.1b)
O is a finitely-generated Z ,-submodule of A. (10.1¢c)

For each a € A, there exists z # 0 in Z, such that zae 2. (10.1d)
Evidently (10.1a, b, ¢) imply that

D is a p-adic algebra. (10.2)

Since O is a Z,-submodule of the vector space 4 over Q,, it is a torsion-

free Z,-module. Because Z, is a principal ideal domain, this and (10.1c)

imply that O is a free Z -module of finite rank n. Hence there is a Z -basis
a,...,a,of O such that

ntimes
O=2,0,®0..®Z,0,22Z,®.. ®Z, (asZ, modules). (10.3)

From (10.1d) it is clear that a;,.. ., a, is also a Q,-basis for the algebra 4.

Therefore, we have
dimy A = n = rank, ©. (10.4)

The order O determines the algebra 4 to within isomorphism, since the
multiplication coefficients for the basis a,,. .., a, can be computed in O.
Of course, orders always exist.

ProposITION 10.5. Any algebra A over Q, contains at least one order O.

Proof. Let by,. .., b, be any basis for A4 over Q,. Then there are unique
multiplication coefficients f;;, € Q,, for i, j, k = 1,..., n, such that

bib; =kzlfijkbk (i,j=1,...,n).
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Since @, is the field of fractions of Z,, there is a z # 0 in Z, such that
z#fin€l, (i, j, k= 1,..., n). The basis zb,,..., zb, for A over Q, then
satisfies

(zby)(zby) =k§:!(zf,.jk)(zbk)elp(zb1)+ e+ Zy(zb) (G j=1,...,n).

So the Z,-submodule M = Z,(zb,)+ ... +Z,(zb,) of A is closed under
multiplication. It follows that © = Z,-1,+9 is also closed under multi-
plication. Therefore O satisfies (10.1a). By its construction it satisfies
(10.1b, ¢). It satisfies (10.1d), since Mt does. Hence it is the order we seek.

A general algebra A contains many orders, and it is impossible to single
out one of them in any reasonable fashion. However, there is one important
exception to this rule when the algebra A is a finite algebraic extension field F

of Q,.

ProPoSITION 10.6. There is a unique maximum order O containing all the
other orders in F.

Proof. Let O, and £, be two orders in F. Since F is commutative and
1O, n L,, the subring generated by O, and D, is their product ©,0,, the
additive subgroup generated by all products xy, with xe O, ye O,. If
a.....a,isa Z,basis of O, and by,. .., b, is a Z,-basis of O,, then clearly
the products a;b; (i, j = 1,..., n) generate OO, as a Z,-module. Therefore
0,9, is an order of F containing both O, and D,.

In view of Proposition 10.5, the above argument implies that the union O
of all the orders in F satisfies (10.1a, b, d). To complete the proof of the
proposition, we therefore need only show that © is a finitely-generated
Z ,-module.

If fe F, then its field trace tr (f) e @, is the trace of the Q,-linear trans-
formation L, : y — fy of F. We must prove that

tr (f)eZ, forall feO. (10.7)

Indeed, an element fe O is, by definition, contained in an order O, in F.
A Z basisa,,. .., a,for O is also a Q,-basis for F. Since O, is closed under
rultiplication, there are elements z;;€Z, (i, j=1,..., n) such that

fa; =Y za;, (i=1,...,n). But, then,
i=1
tr(f)=tr (L) =tr ((z;;)) =z, +232+...+2,,€Z,
So (10.7) holds.

Since Z, has characteristic zero (by Corollary 8.6), the trace tr (1)
= dim,_(F) is non-zero. If f# 0 in F, then tr (ff~!) =tr (1) # 0. It
follows that f, g — tr (fg) is a non-singular Q -bilinear form from F x F into
Q,. 1If O, is an order of F with a Z,-basis a,,. . ., a,, then there exists a dual
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basis ¢y,..., ¢, for Fover Q, such that tr (a;,c;) is the Kronecker J-function
0;; (i,j = 1,..., n). It follows easily that

{feF:tw(fx)eZ,, forallxeO}=Z,c @...®ZLy,

In view of (10.7), the ring O is contained in the left side of this equation. So
D is a Z,-submodaule of the finitely-generated Z,-module on the right side.
Since Z,, is a principal ideal domain, this implies that DO is a finitely-generated
Z,-module, which completes the proof of the proposition.

The above maximum order O is usually described differently in the
literature. We don’t really need the other description, but we put it here
anyway out of respect for tradition.

An element f'€ Fis integral over Z, if it satisfies an equation of the form:

ez " 4z, =0, forsomem>1andz,...,z,€Z, (10.8)

The set of all such elements f'is called the integral closure of Z,in F. In fact,
it is simply the maximum order O.

PROPOSITION 10.9. The maximum order O is the integral closure of Z, in F.

Proof. Obviously condition (10.8) for an element fe F implies that
1, f,f%.... ™! alone generate the Z,-module Z,[f] generated by all the
powers 1, f, f%,... of . On the other hand, if Z,[f] is a finitely-generated
Z,-module, then we can find a finite subset 1, £ f3. .., f™" ! generating
Z,[f] in the infinite family I, f, f Z,... of generators. Clearly this implies
that (10.8) holds. Hence f'is integral over Z,, if and only if Z,[f] s a finitely-
generated Z -module.

If fe O, then Z,[f] is a submodule of the finitely-generated Z ,-module O,
and hence is finitely-generated. If Z,[f] is a finitely-generated Z,-module,
then Z,[f]-O is also a finitely-generated Z,-module. But Z,[f]O is a subring
of F containing O, and hence is an order in F. By Proposition 10.6,
f=,1eZf]'DO = O. Therefore fe D if and only if Z,[f] is a finitely-
generated Z,-module. Together with the first paragraph, this proves the
proposition.

That the order O is a local ring is given by

Prorosition 10.10. The radical J(O) is the unique maximal ideal in the
maximum order O of F.

Proof. Since F is a field, the only idempotents in F are O and 1 5% 0. It
follows that 1 is the unique non-zero idempotent in the p-adic algebra O.
By Proposition 9.7 and the commutativity of O, the factor ring O/J(O) is a
field. Hence J(D) is a maximal ideal in O. Furthermore, Proposition 9.7
also says that every element of O\J(D) is a unit in O. Therefore every ideal
# O of O is contained in J(D). So the proposition is true.
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We return to an arbitrary algebra 4 over @, and an arbitrary order O in 4.
Let M be a module over A in the sense of Section 3. By an D-lattice L in M
we understand a subset satisfying:

L is a finitely-generated O-submodule of M, (10.11a)

For each y € M, there exists z # 0 in Z, such that zy € L. (10.11b)

Evidently L is a module over the p-adic algebra © in the sense of Section 9,

and hence is a p-adic module in the sense of Section 8 (see the remarks

preceding Proposition 9.4). As in the case of (10.3), this implies that L is a

free Z -module of finite rank m. From (10.11b) we see that any Z -basis for
L is also a @ -basis for M. Hence,

dimg M = m = rank, L. (10.12)
As usual, this implies that the O-module L determines the A-module M to
within isomorphism.
As in the case of Proposition 10.5, lattices always exist.

PropositTioN 10.13. If O is an order in an algebra A over Q,, and M is a
module over A, then there exists at least one O-lattice in M.

Proof. Lety,,..., v, bea Q,-basis for M. Then L = Oy, +...+Op, is
evidently a finitely-generated O-submodule of M satisfying (10.11b). This is
the lattice we are seeking.

11. Blocks

Before we can define the blocks of a finite group G, we must find a good
splitting field.

PROPOSITION 11.1. If E is a field of characteristic zero, then there is a finite
algebraic extension F of E which is a splitting field for the group algebra FG.

Proof. 1In view of Propositions 3.9 and 3.12, an extension F of E is a
splitting field for FG if and only if there exist integers #y,..., n, > 1 (for
some k > 1) such that:

FG~[F), ®@...®[F], (asalgebras),
where [F],, is the algebra of all »; x n; matrices with entries in F. Choosing the
usual basis for the matrix algebra [F],, (consisting of those matrices with all
but one entry equal to zero, and that entry equal to one), we see that this
occurs if and only if FG has a basis over F consisting of elements ¢} for
I=1,...,kand i,j = 1,..., n, satisfying

oy - [6is WT=Tandj=1,
v 0, otherwise,

forall I’ = 1,.. k,alli,j=1,...,mandalli’,j’ = 1,..., n.

(11.2)
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By Proposition 3.13 the algebraic closure E of £ is a splitting field for EG.
So EG has a basis {e{} of the above form. Since both bases are finite, there
are only a finite number of coefficients in the matrix transforming the basis G
into the basis {e{}. Hence these coefficients generate a finite algebraic
extension F < E of E such that e{? lies in FG = EG. Evidently the ¢! form
a basis of FG satisfying (11.2). Hence F is a splitting field for FG, and the
proposition is proved.

Now let p be any prime. Since the finite group G has only a finite number
of subgroups, the above proposition implies the existence of a field F
satisfying

F is a finite algebraic extension of the p-adic number field Q,, (11.3a)

F is a splitting field for the group algebra FH of any subgroup H of G.
(11.3b)
We fix such a field F, and denote by O the maximum order in F given by
Proposition 10.6.

Because of (11.3a), the group algebra FG is finite-dimensional as a vector
space over @, < F. Hence it is an algebra over @, in the sense of Section 3.
Evidently the group ring OG of G over O, defined by

DG={Z}’GGGFG 1 y,e90, fora//aeGJ“., (11.4)
ageG
is an order in FG.

Asin (4.23), let K,,. .., K. be the conjugacy classes of Gand K ,.. ., K_ be
the corresponding class sums. We can repeat the proof of Proposition 4.24
almost word for word to show that the center Z(DG) of the ring OG is given
by

Z(9G) = {;yiki €D (i=1,..., c)}. (11.5)

In view of that proposition, this implies that Z(DG) is an order in the center
Z(FG) of the group algebra FG. In particular, Z(DG) is a commutative p-adic
algebra. So (9.12) says that the primitive idempotents e,,..., ¢, € Z(OG)
satisfy

l=e+...+e,andee; =0, foralli,j=1,...,bwithi#j. (11.6)

The group G has b blocks By,. . ., B, (for the prime p) corresponding to the
primitive idempotents e,. . ., e, respectively. The concept “block’ is open
and not closed. That is, we do not define it once and for all (e.g., by calling
e;, which determines B;, the block B;). Rather, any time a collection C of
objects attached to the group G decomposes naturally into a disjoint union

of subsets C,. .., C, attached to the idempotents e,,. . ., ¢,, respectively, we
put the objects of C; in the block B, foreachi = 1,..., 5.
For example, we can put ¢; in the block B;, foreach i = 1,..., 5. Itis

then the unique primitive idempotent of Z(OG) lying in B,;.
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As in (4.6), let 4,,..., A, be the minimal two-sided ideals of FG. From
(4.22) we see that their identities 1,,..., 1, are idempotents in Z(FG)
satisfying 1 = 1, +...+1, and 1,1, =0ifi,j=1,..., k with i # /.
Since 1, Z(F!,, = F-1,, ~ Fis a field, the idempotent 1, is primitive in
Z(FG) (i=1,..., k). Applying Proposition 9.11 to the ring Z(FG), the
decomposition 1 = 1, +...+1,,, and the idempotents e;,..., ¢, of the
subring Z(9G), we obtain unique subsets S,..., S, of {1,..., k} such that

e;=S 1, (i=1,..,b). (11.7)

leS;

Evidently the condition e;e; = 0, for i # j, says that §; n S; is empty, while
the condition 1 = e, +...+e,saysthat S; u...u S, = {l,..., k}. There-
fore {1,..., k} is the disjoint union of its subsets S,,..., S,. If /e S, for
some { = 1,..., b, we can now put the minimal two-sided ideal A,, its
identity 1,, and the corresponding irreducible character y; of G in B;. In
view of (4.17), the equation (11.7) becomes

=y e(y) (i=1,...,b). (11.8)

Xt € Bi

Hence the block B, is uniquely determined by its irreducible characters.
Some blocks only contain one irreducible character.

ProOPOSITION 11.9. Let p° be the largest power of the prime p dividing ]G[
If p® divides y,(1), for some irreducible character y, of G, then y, is the only
irreducible character in its block.

Proof. In this case (4.17) implies that e(y;) € Z(OG). Since e(y,) is primitive
in Z(FG), it is primitive in Z(9G). Hence e(y,) = ¢, for some i = 1,..., b.
In view of (11.8), this implies the proposition.

CoRrOLLARY 11.10. If p does not divide |G|, then there is a one 1o one cor-
respondence between blocks and irreducible characters of G, in which each
block corresponds to the unigue character it contains. After renumbering we
then have e; = e(y;), i = 1,..., b).

Proof. In this case p* = 1 divides y(1), forall/ = 1,..., k. So the proposi-
tion gives the corollary.

The blocks of the type described in Proposition 11.9 are called blocks of
defect 0.

Proposition 9.13 says that the images e,,..., &, of e,,. . ., e, respectively.
are precisely the primitive idempotents in Z(DG)/J(Z(DG)). Hence we can dis-
tribute them among the blocks so that ¢; is the primitive idempotent of
Z(OG)J(Z(OG6)) in B; (i = 1,..., b). Notice that the idempotent ¢; also
determines B; since, by Proposition 9.13, e, is the only idempotent of Z(LG)
having e; as its image in Z(DG)/J(Z(DG)).



292 E. C. DADE

Since Z(OG) is a commutative p-adic algebra, (8.11) and Propositions 3.9
and 3.12 imply that Z(DG)/J(Z(OG)) has a unique decomposition

ZOG)J(Z(DG) =E, ®...®E, (as Z|pZ-algebras),  (11.11)

where E|,. .., E, are finite-dimensional extension fields of Z/pZ. Incidentally,
we have not made an error in counting the E’s. Evidently 1 ,..., 1, are
precisely the primitive idempotents of Z(0G)/J(Z(DG)). So the number of
direct summands E; in (11.11) is in fact the number b of primitive idempotents
¢;, and hence the number of blocks of G. We choose the notation so that

lg, =&, fori=1,...,b. (11.12)

Of course we put each FE; in the corresponding block B;.
The natural homomorphism y — y1 of the ring O into Z(20G) makes the
latter ring an algebra (with identity) over the former.

LemMa 11.13. For each | = 1,..., k, the restriction of the epimorphism
0, : Z(FG) — F of (4.29) is an epimorphism of Z(G) onto O as O-algebras.

Proof. Since 0, is a homomorphism of F-algebras, its restriction is an
D-algebra epimorphism of Z(DG) onto an O-subalgebra 6,(Z(0G)) of F.
Evidently 0,(Z(0G)) contains D8,(1) = O-1 = O. On the other hand, the
image 0(Z(OG)) of the order Z(DG) of Z(FG) must be an order in
0(Z(FG)) = F (just verify (10.1)"). So 6,(Z(2G)) = D by Proposition 10.6.
That proves the lemma.

We know from (4.29) that x,(1,)is 1,if/ = j,and is0,if [ # j (j./=1,...,k).
This and (11.8) imply that

Oe) = {(1) I.f?(lEBi’
» if n¢B;,
forall/=1,...,kandi=1,..., 5.

We denote by b, the D-algebra epimorphism of Z(DG) onto F = D/J(D)

obtained by composing 6, with the natural epimorphism of © onto O/J(D).

(11.14)

ProposiTION 11.15. There are precisely b epimorphisms ny,. . ., n, of Z(OG)
onto F as O-algebras. For any i = 1,..., b, the epimorphism n; is zero on
J(Z(ZG)). and the induced epimorphism ij; on Z(DG)/J(Z(OG)) is zero on each
E, (h + i) and an isomorphism of E; onto F. An irreducible character y, of G
lies in a block B; if and only if 0, = n,.

Proof. Let 1 be any O-algebra epimorphism of Z(OG) onto F. Since F
is a field of characteristic p, the ideal pZ(0G) is contained in the kernel
Ker () of . In view of (8.12), the image n(J(Z(DG))) is nilpotent. Because F
is a field. this image is zero. Therefore # induces an D-algebra epimorphism #
of ZITGYJ(Z(DG)) onto F.
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Since F is a field, and each field E; (i = 1,..., b) is an O-subalgebra of
Z(OG)J(Z(DG)), it is clear from (11.11) that the epimorphism # must be
zero on all but one of the E; and an isomorphism on that one. Because
F = O- 1y, the exceptional E; satisfies E; = ©-1;. Hence it has exactly one
Q-isomorphism onto F. Therefore n = #; is uniquely determined by this
value of 7.

Now let i be any of the integers 1,. .., b and y, be any irreducible character
of G in the block B;. Then 0, is an O-algebra epimorphism of Z(DG) onto F.
By the above argument, 0, induces an O-algebra epimorphism 8, of
Z(OG)]J(Z(DG)) onto F. From (11.14) we see that 6,(¢,) = 8,(¢;) = 1. Hence ,
is not zero on E;. The above argument implies that 8, is the unique O-
epimorphism y; associated with this value of 7. This completes the proof of
the proposition.

COROLLARY 11.16. Two irreducible characters y;, y, of G belong to the same
block if and only if

1K) _ Ky

2D w()

for each class sum K, (i = 1,..., ¢) of G.

Proof. This follows from the proposition, (11.5), and (4.30).
As usual, we put #; in the block B, for each i = 1,..., . Evidently #;
determines e; (and hence B;) by the condition

1F5 Jl = h,
nien) = {0) ifi#h,

As a final example of objects which can be put in blocks, we consider the
indecomposable ©G-modules. If L is any DG-module (in the sense of
Section 9) then conditions (11.6) and the fact that the idempotents e; all
belong to the center of OG imply that

L=Le;®...®Le, (as OG-modules). (11.19)
In particular, if L is indecomposable, then exactly one of the OG-submodules

Le; is non-zero, and that one equals L. Obviously we put L in the correspond-
ing block. Hence,
An indecomposable OG-module L lies in the block B,
(where i = 1,...,b)if and only if L = Le,. (11.20)

One relation between indecomposable lattices and irreducible characters
in a block is very useful.

(mod J(D)), (11.17)

(G, h=1,...,b) (11.18)

ProposSITION 11.21, Let M be an FG-module (in the sense of Section 3) and
L be an OG-lattice in M. If L is indecomposable and lies in a block B; of G,
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then the character y, of M (defined by (4.4)) has the form
M= Z (2748 (11.22)

X1 € B;
Sfor some integers ¢; = 0.

Proof. By (11.20) multiplication by ¢, is identity on L. It follows that e;

also acts as identity on M. In view of (11.8) this implies that
M=@ ) Me(y) (as FG-modules)
x1€Bi

From Proposition 3.18 we see that each Me(y) = M1,, = M4, is a direct
sum of ¢; copies of the irreducible FG-module I, corresponding to the
character y,, for some integer ¢, = 0. The proposition results directly from
this, the preceding equation, and (2.10).

We close this section with a useful example of groups for which the blocks
are highly non-trivial.

ProrosiTION 11.23. Suppose that G is a p-group. Then we have

JOG) =JO)IL+ Y DO(-1). (11.24)
ceG,0 £ 1
Therefore.
OG/J(DG) ~ D/J(D) ~ F. (11.25)

Proof. By definition J{OG) is the inverse image in OG of J(OG/pOG). Let
I be an irreducible ©G/pOG-module. Since 7 has finite dimension over Z,,
its additive group is a finite p-group. Using the operation of G on I, we form
the semi-direct product GI, which is also a finite p-group having 7 as a non-
trivial normal subgroup. It follows (see Satz III.7.2 in Huppert, 1967) that
I~ Z(GI) is non-trivial. Hence there is an element y # O in [ such that
yo =y, for all ¢ € G. Because [ is irreducible, we must have I = z(D/pL)
Furthermore, Imust be irreducible as an O/pO-module. Hence yJ(O/p0) =0.
It follows that the only irreducible OG/pQOG-module is F = O[J(O) with
trivial action of G. Equation (11.24) follows directly from this and (3.6),
while (11.25) follows from (11.24).

CorOLLARY 11.26. The p-group G has just one block containing every
irreducible character of G.

Proof. The proposition and Proposition 9.7 imply that 1 is the unique
non-zero idempotent in OG. Hence 1 is also the unique non-zero idempotent
in the subring Z(©G). This implies the corollary.

12. Orthogonality Relations

We continue to use the notation and hypotheses of the last section.
Let L be an ©G-module, and K be an OH-submodule of L, for some
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subgroup H of G. We say that L is induced from K (and write L = K©) if
L=® Y Ko (asO-modules) (12.1)
oserep (G/H)
where rep (G/H) is, as in (5.5), a family of representatives for the left cosets
Ho of H in G. For each ocerep (G/H) and 7€ G, there are unique
¢’ erep (G/H) and p € H such that 67 = pe’. Since K is an ODH-submodule
of L, it follows that:

(ko)r = (kp)o' €Ko’, for all keK. (12.2)

Evidently k — ko is an O-isomorphism of K on to Ko. So this and (12.1)
imply that the OG-module structure of L is completely determined by the
OH-module structure of K. Furthermore it is evident that we can start
with an arbitrary O H-module K and construct via (12.1) and (12.2) an
OG-module L satisfying L = K% (to get K to be a submodule of L, pick
rep (G/H) to contain 1 and identify K with the summand K1 in (12.1)).

There is a simple connection between induced modules and the induced
characters of Section 5. To express it, it is convenient to write y, for the
character y,, of an FG-module M having L as an OG-lattice.

PrROPOSITION 12.3. Let M be an FG-module, L be an OG-lattice in M, and
K be an DH-submodule such that L = K®. Then K is an OH-lattice in the
F-subspace N of M which it spans. Furthermore,

2= xxe = (0% (12.4)
where xy is the H-character of K.

Proof. Clearly N is an FH-submodule of M. A glance at (10.11) shows
that K is an O H-lattice in N. From (12.1) we easily obtain the equation
M=@® Y Nog (as F-spaces)
cerep(G/H)
Let ¢ be any element of G and T be the linear transformation m — mz of M.
The above decomposition gives us unique F-linear maps 7, , : No — Nr,
for o, m e rep (G/H), such that

Tm)y=® Y T, .m), forallserep(G/H), meNa.

nerep (G/H)

@ =m@=tu(M)= % tr(T,,)

gerep (G/H)

Furthermore,

Let o be any element of rep (G/H), and ¢’ € rep (G/H), p € H be the unique
elements such that o6t = po’. Then T(No) = Not = Nps' = No'. Hence
T, .= 0forn # ¢’. In particular T, , = 0 unless ¢ = o', which occurs if
and only if 7" = p e H. In that case the F-isomorphism # — no of N onto
No defines an equivalence between T, , and the linear transformation
n—nt®' of N. Therefore tr (7, ,) equals the trace xy(z° ') of this last
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transformation. Using (5.1), (5.4) and (5.5), we conclude that
1u(7) = Y 2 @)= = ().
gerep(G/H), 1% "eH
So the proposition holds.
We shall need some lemmas to aid us to compute endomorphism rings of
induced modules.

LeMMA 12.5. Let L be an OG-module and K be an O H-submodule such that
L = KC. If § e Homg (L, L) then the restriction ¢y to K lies in Homg, (K, L).
Furthermore the map ¢ — ¢ is an DO-isomorphism of Homgg (L, L) onto
Homgy (K, L).

Proof. Clearly ¢x € Homgy (K, L), for all ¢ € Homgg (L, L). Furthermore
¢x determines ¢ because of (12.1) and the equation

¢(ko) = ¢p(k)o = ¢p(k)o, for all keK, ocerep (G/H). (12.6)
Hence the map ¢ — ¢ is an O-monomorphism of Homgg (L, L) into
Homgy (K, L).

Suppose we are given ¢ € Homgy (K, L). By (12.1) there is a unique
O-linear map ¢ of L into L satisfying (12.6). Choosing o € H, we see that ¢
is indeed the restriction of ¢ to K. From (12.2) we compute easily that
¢ € Homg, (L, L). So ¢ — ¢ is an epimorphism, and the lemma is proved.

COROLLARY 12.7. The inverse of the above isomorphism ¢ — ¢y sends
Homgy (K, K) & Homgy (K, L) monomorphically into Homgg (L, L) as
O-algebras. This monomorphism carries the identity 1y _, x of the first algebra
into the identity 1, , | of the second.

Proof. If ¢,y € Homgg (L, L) satisfy ¢y, Yx € Homgy (K, K), then clearly
(DY) = dxxx. The first statement of the corollary follows from this and the
lemma. The second comes from the remark that 1, x is obviously the
restriction to Kof 1, _, ;.

We shall use the above lemma in a very special case. Let (x> be a cyclic
p-group of order p? > 1. We consider an O¢n)-module L and an O{xn?)-
submodule K such that L = K<, Since {(n) is commutative, the map
IT : I - Inis a central element of Homg, (L, L). We identify Homg ., (K,
K) with its image in Homg,, (L, L) via the algebra monomorphism of
Corollary 12.7. Then we have

LeMMA 12.8. The power I17 is the central unit Yy : k — kn® of Homg .z (K,
K). Furthermore,
Homg(,y (L, L) =
Homg 0y (K, K) ® Homg s (K, K)IT @ ... @ Homg,y (K, K)ITP™1
(as O-modules) (12.9)
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Proof. The first statement is clear from the definition of IT and Lemma 12.5.
For the second, notice that TT' : k — kn'is an O(x?)-isomorphism of K onto
Kt (i=0, 1,..., p—1). Hence Homg ., (K, K)IT' is isomorphic to
Hottg ey (K, Kn') (i =0, 1,..., p—1). Since L= K®KSD...® Kn"™*
(as O{n")-modules), this and Lemma 12.5 prove (12.9). So the lemma holds.

From this knowledge of the structure of Homg .y (L, L) we easily prove

PROPOSITION 12.10 (Green). If, in the situation of Lemma 12.8, the O{n"}-
submodule K is indecomposable, then so is the O{n>-module L.

Proof. Let A = Homg,, (L, L) and B be its subalgebra Homg ., (K, K).
By Lemma 12.8, A is obtained from B by adjoining the central element
IT: A4 = B[II}. If Iis an irreducible 4/pA-module, we conclude that IJ(B}
is an A/pA-submodule of I. By (8.12), the ideal J(B) is nilpotent modulo
pB < pA. So IJ(B) = I would imply that I = IJ(B) = IJ(B)* = ... = 0.
which is impossible. Therefore IJ(B) = 0, and [ is really an irreducible
module over the ring A = A/J(B)A. It follows that J(A) is the inverse
image in A4 of J(A).

The ring 4 is generated over its subring B = B/(B n J(B)A) by the image
I of I1. From the definition of IT it is clear that II** = 1 in 4. Hence
I = 1 in A. But A is a ring of characteristic p. Therefore 0 = II?"— 1
= (II—1)*. It follows that the central element TI—1 generates a nilpotent
two-sided ideal of A. As usual, this ideal is contained in J(4). Hence J(4) is
the inverse image in A of the radical of A/(IT—1)4 ~ B/(B n (T1-1)A).

The indecomposability of K and Corollary 9.8 tell us that B/J(B) is a
division algebra over Z/pZ. Since B n J(B)4 = J(B), we conclude that
B = B/(BnJ(B)A) # 0is also a division algebra over Z/pZ. Hence so is its
epimorphic image B/(B n (I1-1A) ~ A/(TI-1)4. We conclude that
AlJ(4) ~ A/T1- DA is a division algebra over Z/pZ. By Corollary 9.8
again, this implies that L is indecomposable. So the proposition is proved.

We combine Propositions 12.3 and 12.10 to obtain an extremely useful
criterion for the vanishing of certain characters.

ProrosiTiON 12.11. Let {o) be a cyclic group whose order is divisible by p.
and {(n) be the p-Sylow subgroup of {¢)>. Suppose that M is an F{o>-modulec.
L is an O{a)-lattice in M, and K is an O{a?y-submodule of L such that
L = K as an O{n)-module. If L' is any O{o)-direct summand of L, then
L' is an Do )-lattice and

(1) =0, forall te {c)\{a"). (12.12)

Proaf. Of course, we assume implicitly that the conditions of Section 11, in
particular (11.3), are satisfied by the group {¢) and field F. Obviously L' is
an D{o)-lattice in the F-subspace of M which it generates. So the problem is

F.8.G. 11
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to prove (12.12). In doing so, we can assume that L’ is an indecomposable
D{o>-module, since a decomposition L =L, @ L, (as O{c)>-modules)
implies that y,. = x.., + Xz,

We can find a subgroup {p) of the cyclic group such that p does not divide
the order of {p) and o) = {p) x{n). Leti,,..., A be the irreducible, and
hence linear, characters of {(p>. By Corollary 11.10 the corresponding
idempotents e(4,),. .., e(4,) of F{p) all lie in O{p)> < o). Since O{c) is
abelian, this implies that

E=Le(A)®...®Le(2) (as O{o)-modules).
Because L’ is an indecomposable O{o)-module, we conclude that L’ = L'e(4)),
for some i = 1,..., k. It follows that I’p! = A,(p)/’, for all /"€ L’ and
pf € {p>. Since all the values of the linear character A, lie in O (by (11.3)),
this implies that any ©O-submodule of L’ is an D{p)-submodule of L’.
Hence any O{rn)-submodule of L' is an O({p> x (n)) = O{o)-submodule.
In particular, L’ is indecomposable as an O{rm)-module.

Choose indecomposable O{n”)>-submodules K,,..., K, of K so that

K=K @®...® K, From (12.1) it is clear that

L=K®=K{™@®...® K™ (as O{n)-modules).

Proposition 12.10 tells us that each K{* is an indecomposable O{m)-
submodule of L. Since L' is an indecomposable O{z)-direct summand of L,
the Krull-Schmidt Theorem 9.10 implies that L' ~ K7 (as O{n)-modules),
forsomej = 1,...,t. Hence there is an O{n")-submodule K’ of L’ such that
L' = (K')X™ (as O¢n)-modules). The O-submodule K’ is invariant under
{p>, and hence is an O({p) x (n?)) = O{o?)-submodule of L’. From this
and (12.1) we see easily that L' = (K')¢°? (as O{a)-modules). Now Proposi-
tion 12.3 tells us that x,. is induced from the character yx. on <{¢”). Using
(5.1), (5.4) and (5.5) we compute directly that

_ Codry ! 0, if te{a)\{a",
1w =@ = T
In particular, (12.12) holds. This proves the proposition.

As an application of the above proposition, we prove an orthogonality
relation for the characters in a single block which should be compared with
the identity (4.33) for all the characters.

For any element ¢ of a finite group G, we define the p-part ¢, and the p’-
part ¢, of ¢ to be the unique elements of (o) whose orders are, respectively,
a power of p and relatively prime to p, and which satisfy ¢ = ¢,6, = 0,0,

THEOREM 12.13. Let B; be any block of the finite group G, and o, T be any

two elements of G whose p-parts a,, t, are not G-conjugate. Then

Y, 2z =0. (12.14)

2j€B;
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Proof. The cyclic subgroup {(tx o) of Gx G acts naturally on the set G
so that
p(txa)=1""pa (for all peQG). (12.15)

Evidently this operation makes OG an O{t x o)-lattice in the F{tXxc)-
module FG.

Suppose that 7 = (1xg), = 1,x0, fixes an eclement peG. Then
1, 'po, = p, which implies that o, = p~'r,p. This is impossible since o,
and 7, are not G-conjugate. Therefore each {(n)-orbit R of G has length
p? > 1. It follows that R is the disjoint union of {zn?)-orbits of the form
R=SuStu...uSr?"'. Hence the submodules OR, OS generated by
R, S, respectively, in OG, satisfy

OR=0S®OST®...®OSa?" ! (as O-modules).

Comparing with (12.1), we see that the O{z)-module DR is induced from its
O{nP)y-submodule OS. Since OG is the direct sum of the OR (as O{xn)-
modules), where R runs over all the {n)-orbits of G, we conclude that OG
is induced, as an O{x)-module, from an O{xP)>-submodule.

Because the primitive idempotents ey, . . ., ¢, all lie in the center of Z(DG),
we have

06=¢,9G0D...0¢,0G (as two-sided OG-modules).

From (12.15) it is clear that this is also a decomposition as O{z x ¢ )-modules.
Now all the conditions of Proposition 12.11 are satisfied with (z x o) as the
cyclic group, {n) as its p-Sylow subgroup, OG as the Ot x ¢)-lattice L, and
&, 0G as its O(t xo)-direct summand L’. Since tx o ¢ {t¥x g¥), equation
(12.12) implies that
Xeio6(T X 6) = 0.

Evidently ¢,0G is an 01 x ¢)-lattice in ¢,FG. Using (11.8), (4.6) and (4.7)

we see that
eFG= @ e(x)FG= ® A; (as two-sided FG-modules).
xj€ Bi xj€Bi
It follows that
0 = ¥e,06(t X 0) = Yepa(T X 0) = XZB L4t %0).
Jj € Di

Fix j = 1,..., k so that y; e B;. From (4.8) and (12.15) we see that the
representation of {(txo) on 4; ~ Hom(/;, I;) is obtained by restriction
from the representation Hom (R} ', R;) of G x G on Hom (I}, I;) defined by
(2.15). So (2.16) tells us that y, (tx0) = xj(r'l)xj(a). Substituting this in
the preceding equation, we obtain (12.14). Hence the theorem is proved.

Let T be any family of p-elements of G closed under inverses, i.e., T~! = T.
The p-section S(T') is defined by

S(T)={0€G : (s,)eT, for some teG}. (12.16)
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Clearly S,(T) is a union of conjugacy classes of G which is also closed under
inverses.

As in (5.13), we denote by C’F(G] T)) the F-vector space of all class
functions from G to F which vanish outside S (T). For each block B; of G,
let CF(G|S (T), B)) be the subspace of all Flmear combinations ¢ of the
irreducible characters y; € B; such that ¢ = 0 on G\S AT).

Prorosition 12.17. The inner product (-, *)g of (4.19) is non-singular on the
subspace CF (G[S (T)) of CE(G). With respect to this inner product,
CFi (Gl A7)} is the perpendicular direct sum of its subspaces CF{(G ISP(T ), B,
ie.

CF(G|S,(T)) = Z CF(G|S,(T), B)). (12.18)
i=1

Proof. Let Kj,..., K, be the conjugacy classes of G contained in S,(T).
Since S,(T) is closed under inverses, there is an involutory permutation 7 of

, I such that K;! = K.y for each i = 1,..., I. The characteristic
functions ¢,..., ¢, of the classes K;,. .., K|, respectively, form a basis for
CF(G|S,(T)). In view of (4.19) we have

J'I-K"I ifi=],
(¢ ¢n(j))o = [GI
lO ifi]j,

forall7,j = 1,..., 1 It follows that (-, -); is non-singular on CF(G[SP(T)).
For any p e S,(T) and any block B; of G, we define a class function
lpp,B.' by
Vo= 2 1p™ Y-

Xxj€B;
From (12.16), we see that p, is not conjugate to t,, for any 1 e G\S,(T).
Therefore i, p, vanishes at all such t by Theorem 12.13.  Hence
¥, 5, € CF(G|SAT), B). By (4.33) the sum

k
le//p B; ZIX,'(P_I)X;

is of the class K, containing p.
Since every ¢, can be obtained in this fashion, this proves that

CF(G|S,(T)) = §1CF(G|S,,(T), B).

Suppose that 6 e CF(G|S(T), B) and 0'e CF(G|S,(T), B.), for two
distinct blocks By, B, of G. Then 0 is a linear combination of the y; € B; and
6" is a lincar combination of the y; € B,. Hence (0, 0'); is a linear combina-
tion of the (y;, x;)g, for y; € B;, x;» € B.. But all these (x;, x;)¢ are zero by
(4.20) since B; # B,. Therefore CF(G|S/(T), B) is perpendicular to
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CF(G|S(T), B;), for all i, i’ = 1,..., b with i # i’. Since (-, -)g is non-
b

singular on CF(G|S,(T)) = Y. CF(G|S,(T), By), this is enough to prove the

i=1
proposition.
We use the above result to prove another orthogonality relation similar to
(4.18). For any class function ¢ on G, we denote by ¢ls,,m the class function
which equals ¢ on S,(T') and is zero on G\S,(T").

THEOREM 12.19. If the irreducible character y; belongs to the block B; of G,
then y j] sp(1) € CFl (G|SP(T), B). If x; is another irreducible character belonging
to a different block B, of G, then

0= (les,,(ns Zj'is,,(r))a = ,é Z Zj(o'— I)Xj’(a)' (12.20)
I aeSp(T)

Proof. Clearly yls,r, € CF(G|S/T)). If B; is any block of G different
from B, and 8¢ CF(G[SP(T), B.), then (y;, 6)¢ = 0 by (4.20), since 0 is a
linear combination of the irreducible characters y;. € B;., all of which are
different from y;. Since 0 = 0 on G\S,(T), this and (4.19) give

1
0= (st O = 1 Z Xj(a")(](a)
lGl g e Sp(G)

= (les,,(r)a 0)g-
Therefore x,|s,(r, is perpendicular to CF(G|S(T), By), for every i’ % i. In
view of (12.18), this implies that y|s r,€ CF(G|S(T), B). The rest of the
theorem follows directly from this and (12.18).

13. Some Brauer Main Theorems

As in the last section, we continue to use the hypotheses and notations of
Section 11.

Let P be a p-subgroup of G. We define an O-linear map S = S, , p of
Z(DG) into OG by

S(Ky= Y o, foreachclass sum K;(i=1,...,¢)of G, (13.1)
cek; A Ca(P)

where an empty sum is understood to be zero.
PROPOSITION 13.2. If H is a subgroup of G satisfying Co(P) < H < Ng(P).
then S(Z(CG)) = Z(OH). Furthermore,
S(R)S(K ;) = S(K,K)) (mod pZ(DH)) (i,j=1,...,¢). (13.3)

Proof. Since Ci(P) is a normal subgroup of H and K; is invariant under
H-conjugation, the intersection K; n Cz(P) is H-invariant, (i = 1,..., ¢).
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Hence its sum S(K)) lies in Z(DH). This proves the first statement of the
proposition.

For the second, let p be any element of H. We must prove that the co-
efficient x of p in the product S(K)S(K ;) is congruent to the coefficient y of p
in S(K;K;) modulo p when both products are written as linear combinations
of elements of H. Since S(K;) and S(K;) both lie in OCy(P), so does
S(K',-)S(I?j). Therefore x = 0 for p ¢ Cz(P). In that case y is also zero by
(13.1). Hence the result is true for p ¢ C4(P).

Now suppose that p € C4(P). From Proposition 4.28 and (13.1) it is clear
that y is the number of elements in the set T of all ordered pairs (o, 1) such
that ¢ € K;, t € K; and ot = p. Because P centralizes p, it operates naturally
on T by conjugation

(6,7)eT, e P—(0, 1) = (6", T")e T.

Let T, be the subset of all elements of 7 fixed by P. Evidently (o, 1) e T}
ifand only if 0 € K; n Cy(P), 1€ K; n Cy(P) and a7 = p. In view of (13.1),
the coefficient x of p in S(K)S(K)) is precisely the order of 7. But every
P-orbit of T\T, has length divisible by p, since P is a p-group. Therefore
x = |Ty| = |T| = y (mod p), and the proposition is proved.

COROLLARY 13.4. The map S induces an identity-preserving O-algebra
homomorphism of Z(DG)[pZ(OG) into Z(OH)[pZ(TH).

Proof. This follows directly from the proposition and the observation that
S(le) = 1.

Let B be a block of H. By Proposition 11.15 there is a unique O-algebra
epimorphism g : Z(OH) — F lying in B. Clearly 5 is zero on pZ(OH). So
Corollary 13.4implies that the composition 5.5 is an O-algebra epimorphism
of Z(DG) onto F = O-1;. We denote by BY the unique block of G having
g S as its O-algebra epimorphism Z(0G) — F, i.e., satisfying

Hgc =i1§os. (135)

There is another way of considering the relation between B and B®. For
any block B of H, let e be the corresponding primitive idempotent of Z(OH).
Define ey € Z(OG) similarly, for any block B of G. Then we have

PRrROPOSITION 13.6. If H is any subgroup of G satisfying Co(P) < H < Ny(P)
and if B is any block of G, then

S(ep) =Yes (mod pZ(OH)), (13.7)
summed over all blocks B of H such that B° = B.
Proof. Since (8.11) holds for Z(OH), Proposition 9.13 implies that the

primitive idempotents of Z(OH)/pZ(OH) are precisely the images of the
primitive idempotents eg of Z(OH). By Corollary 13.4 the image of S(ep) is
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an idempotent in Z(OH)/pZ(OH). So Proposition 9.11 gives us a unique
set 7 of blocks of H such that

S(ep) EBZTeE (mod pZ(DH)).

Suppose that B e . From (11.8) for H we sec that iz S(ez) = Ip. Hence
HgoS = yg, by (11.18) for G, and B = B®.If B is a block of H not in 7, then
ngo S(ep) = 0 by (11.18) for H. Therefore 505 # ng, by (11.18) for G. So T’

is precisely the set of all blocks B of H such that B = B¢, and the proposition
is proved.

For Brauer's second main theorem we need a simple criterion (due to
D. Higman) telling us when we can apply Proposition 12.11.

LemMmA 13.8. Let {n) be a non-trivial cyclic p-group, and L be an O{n)-
module. Suppose there is an O<{n"y-endomorphism ¢ : | — I of L satisfying

i ,=¢+n ton+.. . +a" P~ Dgpnlr=D, (13.9)
Then there is an O(a’y-submodule K such that L = K<™,

Proof. Form an O{n)-module L* having L as an O{n")- (but not O{n)-)
submodule so that L* = L™, We write the module product in L* with * to
distinguish it from that in L. Then (12.1) gives

F=L@Lsn®...® L+’ (as O-modules).
Let y : L — L* be the map:
Il =1p@In '¢prn®...@ln" P Dprnr !,

Using (12.2), we easily compute that ¢ is an Od{n)-homomorphism of L
into L*. Similarly the map ¢ : L* — L defined by

lh@lisn®.. . @lL_ *xn? "o lg+lin+.. . +1, 7",
Sorallly, 1y,...,1,_ €L,

> dp-
is an O{n)-homomorphism of L* into L. Condition (13.9) says that & is the
identity on L. Hence ¥ is an O<{n)-monomorphism and L* = (L) & Ker ¢
(as ©{ny-modules).

Because the OD{r)-module L* is induced from its O{n”)-submodule L,
Proposition 12.10 and the Krull-Schmidt Theorem 9.10 imply that every
O{n)-direct summand of L is induced from one of its O{n">-submodules.
We have just seen that L is O{zn)-isomorphic to such an O{xn)-direct
summand Y(L). Therefore the lemma holds.

To state the following theorem, we choose P to be a non-trivial cyclic
p-subgroup {m)» of G. If y; is any irreducible character of G, then its restric-
tion (¥,)cgx) is @ character of Cg(n) = C4(P), and hence a linear combination
of the irreducible characters of that group. Since these are partitioned
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among the blocks B of Cy(n), we have a unique decomposition
Deam = ;Xj, B (13.10)

where each y; 5 is a linear combination of the irreducible characters in the
block B of C4(n).

With this notation we have

THeEOREM 13.11 (Brauer’s second main theorem). Let the irreducible
character y; lie in the block B of G. If p is a p'-element of Cy(n), then:

@)=Y 1) (13.12)

Proof. (Nagao). As in Proposition 13.6, let ez be the primitive central
idempotent of Z(OG) lying in B. Let e be the idempotent Y e; of

Bs’='p

Z(OCg4(m). Choose any OG-lattice L in the irreducible FG-module I;

corresponding to x;. Then L = L(l—e) ® Le (as DC;(m)-modules).

Evidently 3 yx;, pis the character y, of Le. So (13.10) implies that (13.12)
8c='B

is equivalent to
AL -efmp) = 0. (13.13)
Let K, be any class of G. Then K\(K; n C4(n)) is a union of {x)-orbits,
each of which has length p", for some » > 0. It follows that there is a
{nP)-invariant subset H; of K\(K; n C4z(n)), such that the latter set is the
disjoint union of the conjugates H, HY,..., H* ' of H,. Writing A, for the
sum of the elements of H;, we obtain
K-SK)y=H+n"Ha+...+2® " VFzr"1 (i=1,...,¢).

c

Write e = Z a;K;, with coefficients a; € ©. Then S(ep) = Z a;S(K;). By
(13.7) the dlﬂ”erence S(ep) —e has the form

S(ep)—e=px=x+n"'xn+...+7 @ UxgP 1,
for some x € Z(DCq4(n)). We conclude that
ep = (eg—S(ep)) +(S(ep)—e)+e

c

= Z a(R;—S(K))+px+e

i=

=y+nlyn+... 4+ P VynP~l e,

= (i glaiﬁi> +x

is an element of OG commuting with z°. Since e is an idempotent commuting
with 7, this implies that

es(l—e)=y(l—e)+n " y(l—-en+... +1 P Yyl —e)n? 1.

where
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Because x; lies in the block B, the idempotent ey acts as identity on ;. It
follows that eg(l —e) acts as identity on L(1—e). Since L is an ©G-module
and y(1—e) € OG commutes with #n¥, the map ¢ : /> ¢ = Iy(1—e) is an
O{n">-endomorphism of L(1 —e). The above equation now tells us that {z).
L(1—e), and ¢ satisfy the hypotheses of Lemma 13.8. Hence there is an
O(n?y-submodule K such that L(1 —e) = K<™,

Since p is a p’-element centralizing r, the group <z} is a p-Sylow subgroup
of the cyclic group (np). Now we can apply Proposition 12.11 to {(wp).
{my, I;(1—e), L(1—e)and K, with L(1 —¢) in the role of both L and L’. From
(12.12) we conclude that (13.13) holds. So the theorem is proved.

To make the most effective use of Brauer’s second main theorem we need
Brauer’s “third main theorem” which tells us that prinicipal blocks correspond
only to principal blocks in the relation B¢ = B. The principal block of a
group G is the block containing the trivial character 1 of G. We shall denote
this block by By(G). In view of Proposition 11.15 and equation (4.30), the
corresponding O-epimorphism 7,6, of Z(DG) onto F is given by

Neoc(K) = |Ki| 15, for all classes K; of G. (13.14)

As you might expect, we have

PropPosITION 13.15. If P is a p-subgroup of G and Cyz(P) < H < Ng(P)
then Bo(H)¢ = By(G).

Proof. Let K; be any class of G. Letting P operate by conjugation on A’
we see that the non-trivial P-orbits form the subset K\(K; n C4(P)), whose
order is divisible by p. From (13.1), (13.5) and (13.14) we obtain

”BQ(H)G(ki) = nBO(H)(S(Ki)) = |Ki n CG(P)I‘ Ip
= [Kil'lF = rlBo(G)(Ki) (l =1...,0),

since F has characteristic p. This proves the proposition.

The difficult thing is to show that the converse to Proposition 13.15 holds
whenever H contains PC4z(P). In that case any block B of H satisfyving
B¢ = By(G) must be equal to By(H). The proof of this, which is Brauer’s
third main theorem, is rather roundabout.

We start with the study of defect groups. A defect group D(K)) = D (K))
of a conjugacy class K; of G is any p-Sylow subgroup of the centralizer
Cq(0) of any element ¢ € K;. Evidently D(X)) is a p-subgroup of G determined
up to G-conjugation by the class K.

In order to talk about conjugacy classes ot subgroups of G, we adopt the
notation D; < D, (or Dy S D,) to mean that D, and D, are subgroups of
G and that D, is G-conjugate to a subgroup of D,. Evidently < is a partial
ordering on the subgroups of G. Two subgroups D,, D, are equivalent for
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this partial ordering if and only if they are conjugate in G, in which case we
write D; ~ D, (or D, ~; D,).

LeMMA 13.16. Let a;;, be the integers satisfying
K‘KJ: Za,-jhk,,, fm‘a”i,j=1,...,(’.
h=1
Ifa,;, # 0(mod p), for some i, j, h, then D(K,) < D(K)) and D(K,) £ D(K)).

Proof. Pick p € K,. We know from Proposition 4.28 that g, is the number
of elements in the set 7= {(s, 1) : 0 € K, 1€ K;, ot = p}. Choose the
defect group D(K,) to be a p-Sylow subgroup of C;(p). Then D(K,) operates
by conjugation on the set 7 of ordered pairs (¢, 7). Ifa;;, = |T| # 0 (mod p),
then there must be a (o, 1) € T fixed by the p-group D(K,). Then D(K}) is a
p-subgroup of both Cg(a) and Cg(r), and hence is contained in p-Sylow
subgroups of these two groups, which we may take to be D(K}) and D(K)),
respectively. So the lemma holds.

With the aid of the above lemma we can define defect groups of blocks.

PrROPOSITION 13.17. Let B be a block of G, and n be the corresponding
O-algebra epimorphism of Z(OG) onto F. Then there is a unique G-conjugacy
class of p-subgroups D(B) of G satisfying

There exists a conjugacy class K; such that D{(B) ~ D(K;) and

ny(K;) # 0. (13.18a)

If K; is any conjugacy class of G such that r,B(I?J.) # 0,
then D(B) < D(K ;). (13.18b)

Proof. Choose D(B) among the minimal elements for the partial ordering
< on the set of all defect groups of all classes K; such ns(K;) # 0. Then
there exists a class K; such that D(B) ~ D(K;) and n4(K,) # 0. If K, is any
class of G such that ng(K,) # 0, then nu(K:K;) = ng(Rns(K;) # 0 in the

field F. In the notation of Lemma 13.16 we have
0+# nﬂ(kikj) =hzlaijh"B(Kh)-

So there must exist an 4 = 1,..., ¢ such that nuK,) # 0 and a; %0
(mod p). From Lemma 13.16 we obtain ID(K,) < D(K) ~ D(B). The
minimality of D(B) forces D(K,) ~ D(B). But then Lemma 13.16 again tells
us that D(B) ~ D(K,) < D(K,). Therefore D(B) satisfies (13.18). Evidently
the properties (13.18) determine D(B) to within conjugation. So the proposi-
tion is proved.

The groups D(B) are called the defect groups of the block B. When ny
is known, they are, of course, very easy to calculate. For example, (13.14)
implies that n,6,(K;) # 0 if and only if p does not divide |K;, i.e., if and
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only if D(K)) is a p-Sylow subgroup of G. Hence,
D(By(G)) is a p-Sylow subgroup of G. (13.19

To obtain a different characterization of the defect groups of a block we
shall use

LEMMA 13.20. Let A be an O-sub algebra (with or without identity) of Z(<G).
and 2 be an O-algebra epimorphism of A onto F. Then there is an O-algebra
epimorphism n of Z(QG) onto F whose restriction to A is A.

Proof. By Proposition 11.15 and (11.11) the ©-algebra epimorphisms
Nis. .., 4y Of Z(OG) onto F satisfy Ker #, n...n Kern, = J(Z(DG)). By
(8.12) there is an integer ¢ > 0 such that J(Z(DG)) < pZ(DG). Since 4 is a
Z,-submodule of the finitely-generated Z ,-module Z(OG), there is an integer
s > 0 such that p*Z(0G) n 4 = p4 < Ker A. It follows that A n Ker .
..., A n Ker n, are ideals of A4 satisfying

[(AnKern)...(AnKerp)]* = An[(Ker ny). .. (Ker n)]*
c An[(Kernin...nKern)]"
= AN J(Z(DG))"
S Anp'Z(OG) € pA = Ker A

Since 2 is an epimorphism of 4 onto a field F, we conclude that
A nKery, = Ker A, forsomei = 1,..., 5. Butthen 2 is the restriction to -
of an O-algebra epimorphism 5 of 4 + Ker 5, onto F such that Ker n; < Ker n.
Since

Ker n; € Ker y « A+ Ker ; € Z(0G6),

and Z(OG)/Kern; ~ F (as D-algebras), we must have Ker 5 = Ker 7.
A+XKern;, = Z(£G), and 5 = y;. Therefore the lemma holds.

The other characterization of the defect groups of a block B is as the
largest groups P, in the partial ordering <, from which B can be obtained
via (13.5).

PrOPOSITION 13.21. Let P be a p-subgroup of G, H be any subgroup satisfving
Co(P) < H < Ni(P), and B be a block of G. Then there exists a block B of 1
such that B¢ = B if and only if P < D(B).

Proof. Suppose such a block B exists. Then the O-algebra epimorphism
ng of Z(OH) onto F lying in B defines the corresponding epimorphism
ng : Z(OG) - F by (13.5). From (13.1) it is clear that S(K,) = 0. for all
classes K; of G such that P £ D(K;). Hence n4K,) = n5(S(K})) = 0. for all
such K,. In view of (13.18a), this implies that P < D(B).

Now suppose that P < D(B). From (13.18b) we see that 54(K;) = 0, for
all classes K; of G suchthat P € D(K;). Butthe kernel of S : Z(TG) - Z(OH )
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is precisely the O-linear span of the sums K; of these classes (by 13.1).
Hence there is a unique O-linear map A, of the image S(Z(OG)) into F such
that ng = 4,05, It is clear from (13.1) that S(pZ(DG)) = pS(Z(DG))
= pZ(OH) n S(Z(DG)). Since yp is zero on pZ(DOG), the map A, is zero on
pS(Z(DG)).  So it has a unique extension to an D-linear map A of
A = pZ(OH)+S(Z(DG)) onto F such that A(pZ(OH)) = 0. In view of
Corollary 13.4, 4 is an D-subalgebra of Z(OH) and 1 is an D-algebra
epimorphism. Lemma 13.20 now gives us an O-algebra epimorphism
n : Z(OH) — F whose restriction to Ais .. ThengoS=10S= 1,08 = y3,
and B = B, where B is the block of H corresponding to » in Proposition
11.15. This proves the proposition.

We need some information about the blocks of a group H having a
normal p-subgroup P. Let ¢ be the D-algebra epimorphism of OH onto
O(H /P) induced by the natural group epimorphism H — H/P. Then the
restriction of ¢ is an O-algebra homomorphism of Z(DH') into Z(O(H /P)).

LeMMA 13.22. If B is a block of H, then there exists a block B of H|P such
that ng = ngo .

Proof. Let Aug (OP) be the augmentation ideal of OP, having the elements
o—1, for ¢eP—{l}, as O-basis. Proposition 11.23 implies that
Aug (OP) = J(OP). So (8.12) gives us an integer d > 0 such that
[Aug (OP))* = pOP. Evidently the kernel of ¢ is Ker ¢ = Aug (OP)-OH
= DH-Aug (OP). Hence,

(Ker ¢)! = [Aug (OP)}*- OH < pOH.

It follows that Ker ¢ n Z(DH), the kernel of the restriction of ¢ to Z(DH),
is an ideal of Z(OH) which is nilpotent modulo pZ(OH). This implies that
Ker ¢ n Z(OH) < Ker 5. So there is a unique D-algebra epimorphism A
of A = ¢(Z(OH)) onto F such that ny = Jo¢. Applying Lemma 13.20, we
obtain an O-algebra epimorphism n of Z(O(H /P)) onto F whose restriction
to A is A. By Proposition 11.15, y = 55, for a block B of H/P. We have
proved the lemma.

CoRroOLLARY 13.23. If K is a conjugacy class of H lying in H\Cy(P) then ng
vanishes on the corresponding class sum K. Hence P < D(B).

Proof. Let o be an element of K, and Cy(¢(c)) be the inverse image in H
of Cy,p(¢(0)). Then the image in H /P of the class K of ¢ is the class L of ¢(0).
But the corresponding class sums K and Lare related by

$(K) = [Cu(d(0)) : Cu(]L,

since [Cy(¢(0)) : Cy(o)] members of K map onto each member of L.
Evidently Cyx(¢(6)) contains PCy(g). Therefore [Cy(d(a)) : Cyxlo)] is
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divisible by [PCy(o) : Cy(o)] = [P : Cp(o)] = p°, for some s = 1, since P
does not centralize . It follows that ¢(K) € pZ(D(H/P)), and hence that
73(K) = nzop(K) = 0 in F, which is the first conclusion of the corollary.
The second conclusion comes from the first and the definition (13.18) of D(B).
Since Pis a normal subgroup of H, so is Cy(P). Hence H acts by conjuga-
tion as O-algebra automorphisms of Z(OCy(P)). It follows that H permutes
the D-algebra epimorphisms # : Z(OCy(P)) —» F among themselves by

conjugation:
n°(») =n(y"""), forall ceH, ye Z(DCy(P)). (13.24)

Applying Proposition [1.15, we obtain a natural action of H on the cor-
responding blocks of C,(P).

PROPOSITION 13.25. There is a one-to-one correspondence between blocks
B of H and H-conjugacy classes of blocks B of Cy(P). The block B corresponds
to the class of B if and only if the corresponding O-algebra epimorphisms
np : Z(OH) - F and ng: Z(OCy(P)) - F have the same restriction to
Z(OH) n Z(DCyu(P)).

Proof. For cach block B of H, let T(B) be the family of all blocks B of
Cy(P) such that 5z and 5 have the same restriction to 4 = Z(OH)
NZ(OCy(P)). Since 1 e A4, the restriction 1 of n, is an D-algebra epimor-
phism of 4 onto F. So Lemma 13.20 and Proposition 11.15 imply that T(B)
is not empty. Because each element of A4 is fixed under conjugation by
clements of H, it follows from (13.24) that 7(B) is an H-invariant set of
blocks of Cy(P).

Let B,,..., B, be an H-orbit in T(B), and e,,. . ., e, be the corresponding
primitive idempotents of Z(OCy(P)). Evidently e;,. .., e, is an H-conjugacy
class of primitive idempotents of Z(OCy(P)). So e, +...+e, is invariant
under H, and hence lies in 4. From (11.18) we .see that A(e,+ ... +ey)
= ng(e;+...+e) = 1. If Bis any other block of Cy(P), then (11.18) gives
neles+...+e) =0 % Ae,+...+e). Therefore B does not lie in T(B).
Hence T(B) = {B,..., B,} is an H-conjugacy class of blocks of Cy(P).

If B is any block of Cy(P), then the restriction A of g to 4 is an D-algebra
epimorphism of 4 onto F, and hence is the restriction to 4 of ng, for some
block B of H, by Lemma 13.20 and Proposition 11.15. Therefore B e T(B),
for some block B of H.

Corollary 13.23 implies that #; is determined by its restriction to
Z(OH) n OCx(P) = A, for any block B of H. Hence B is determined by
T(B). We have shown that B «> T(B) is a one to one correspondence between
blocks of H and H-conjugacy classes of blocks of Cy(P). That is the
proposition.

We need one more lemma,
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LemMMA 13.26. Let P be a p-subgroup of the group G. Then the map
K‘-“—> K; N Cy(P) sends the family of all conjugacy classes K; of G such that
P ~ Dg(K)) one to one onto the family of all conjugacy classes L; of Ng(P)
such that P = Dy_py(L)).

Proof. If P is a defect group of a conjugacy class K; of G, then K contains
some element ¢ having P as a Sylow subgroup of its centralizer Cg(0).
Hence g € K; n Cz(P). Therefore K; n C4(P) is not empty.

If 7 is another element of K; n C4;(P), then 7 = ¢, for some peG.
Evidently both P and P”? are p-Sylow subgroups of Cy;(r). Hence there
exists m € Cg(t) such that P?* = P. Now pr is an element of Ng(P) satisfying
¢’ = 1" = 7. We conclude that K; n C4(P) is a conjugacy class of Ng(P).
Because P is a p-Sylow subgroup of Cy,(p)(0), the defect group Dy (p)(K;
N Cg(P)) is precisely P.

Now let L; be any conjugacy class of Ng(P) such that P = Dy _(p(L)), and
let K; be the conjugacy class of G containing L;. Evidently L; = K; n C,(P).
Pick an element o € L;. Let D be a p-Sylow subgroup of Cg(0) containing P.
If P < D, then P < Ny(P) < Cy,(p)0), which is impossible since P is a
p-Sylow subgroup of Cy_p\(0). Hence P = D ~ D(K). Because K; n C;(P)
is a class of N4(P), we have L; = K; n C4(P). The map K; - K, n Co(P)
being clearly one-to-one, this is enough to prove the lemma.

At last we have

THeEOREM 13.27 (Brauet’s third main theorem). Suppose that P is a p-
subgroup of G, and that H is a subgroup satisfying PCo(P) < H < Ng(P). If
B is a block of H, then B¢ = By(G), if and only if B = By(H).

Proof. We already know that B = By(H) implies B¢ = B,(G), by Proposi-
tion 13.15. So it is only necessary to prove the converse, Choose a counter-
example P, H, B with [P| maximal. We must first show that we can assume
H = Ng(P).

Since P is a normal subgroup of H and C4(P) = Cy(P), Proposition 13.25
tells us that B and By(H) # B correspond to distinct H-conjugacy classes of
blocks of C,;(P). It is evident from (13.14) that B,(H) corresponds to the
H-conjugacy class containing By(Cg(P)). Let B # B, (Cz(P)) be a block of
C4(P) in the H-conjugacy class corresponding to B. It follows from (13.14)
that Bo(C4;(P)) is Ng(P)-invariant. So the block B, of N;(P) corresponding
to the Ng(P)-class of B in Proposition 13.25 is different from By(Ng(P)). But
11g,, ng and nz have the same restriction to

S(Z(DG)) = Z(DC(P)) N Z(ON(P)) = Z(DCo(P)) N Z(DOH).

Therefore 715, 0 S = o S. Hence B = B = B,(G), and P, Ni(P), B, is a
counterexample to the theorem.
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Now assume that H = NG(P) By Corollary 13 23, the defect group D(E)
contains P. Suppose that D(B) = P. Then ng( L ) # 0, for some sum L of
some class L; of Ng(P) having D(L;) = P. Lemma 13.26 gives us a conjugacy
class K; of G satisfying D(K})) ~ P and K;n Cs(P) = L;. By (13.1),
S(K) = L;. Therefore np,,(K;) = 15°S(K)) = ng(L;) # 0. From (13.18b)
and (13.19) we conclude that P is a p-Sylow subgroup of G. Now every class
L; of Ng(P) contained in Cg(P) has P as its defect group. Since
B # By(Ng(B)), Corollary 13.23 implies the existence of such a class L; such
that ng( L) # n,( L;). But then the corresponding class K; of G satisfies

'7§°S(Ki) = nE(Ej) # ’YBO(EJ’) = ’130"5(12;-),
which is impossible, since B¢ = BS = B,(G) (by Proposition 13.15). We
conclude that D(B) strictly contains P. ‘

From P < D(B) we obtain Cgz(D(B)) < C4(P) < Ny(P). Therefore
D(B)C,(D(B)) < Ny4(P).  Proposition 13.21 gives us a block B of
D(B)C4(D(B)) such_that By = B. Since B # By(Ng(P)), Proposition
13.15 implies that B is not Bo(D(B)Cy(D(B))). From (13.1) we compute
1mmed1ate1y that B¢ (defined with respect to the p- group D(B)) is
(BYe(G = B¢ — B (G). Therefore D(B), D(B)C4(D(B)), B is a counter-
example with |D(B)| |P|. This contradicts the maximality of |P|. The final
contradiction proves the theorem.

We denote by O,.(G) the largest normal p’-subgroup of G, i.e., the largest
normal subgroup whose order is not divisible by p. The following relation
between O,(G) and By(G) is very useful in applications.

PrOPOSITION 13.28. O,(G)= () Ker(x).

24 € Bo(G)

Proof. Let f=|0G)|™" Y ¢ be the primitive idempotent of
6€0p(G)

Z(FO,(G)) corresponding to the trivial character of O,(G). By Corollary
11.10, fis an idempotent in OG. Clearly it lies in Z(OG). So Proposition 9.11
gives a unique decomposition f = e;+...+e, where ey, .. ., ¢ are primi-
tive idempotents of Z(OG) corresponding to blocks By,. .., B,, respectively,
of G. Using (11.8), we see that the unique decomposition of f as a sum of
primitive idempotents in Z(FG) is

f= Z Y elx)) (13.29)

i=1 y;eB;

Evidently the idempotent e(1) = |G| ™' ¥ & of Z(FG) corresponding to the
ageCG

trivial character of G satisfies fe(1) = e(1). So it appears in the decomposition
(13.29) of /. Hence the block By(G) containing e(1) appears in the list
B,,..., B, say as B,. If y; is any character in B,(G), then (13.29) implies
that e(y;)f = e(x;). If I; is any irreducible FG-module with character y;,
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then I; = Ie(x;) and e(y;)f = e(y;) imply that facts as identity on ;. Since
Jo = f, for all ¢e€0,(G), we conclude that O,(G) acts trivially on I,
Therefore O,.(G) < Ker (y;), by (4.37a). This proves that
0,(G) = () Ker(x.
Xj € Bo(G)

Evidently N= () Ker(y ;) is a normal subgroup of G. Suppose that
xj € Bo(G)

N & O,(G). Then p must divide |N|. So there is a p-element 7 # 1 in N.
Applying Theorem 12.13, we obtain
0= Z )Xj(n)Xj(l)'

. ) x2j¢€ Bo(G
But this sum is

Z XJ(I)Z > 09

1€ Bo(G)
since n € Ker (), for all g; € By(G) (see Proposition 4.38(a)). The contra-
diction shows that N < O,(G), and finishes the proof of the proposition.

14. Quaternion Sylow Groups

In addition to the hypotheses of the last three sections, we suppose that G
has a t.i. set S satisfying

An element o € G lies in S if and only if 6, € S. (14.1)

We denote by H the normalizer of Sin G.

Let T be the subset of all p-elements in S. By (5.10a, ¢), the subset T is
closed under inverses and invariant under H-conjugation. From (14.1) it is
clear that S is the p-section of H defined by 7 via (12.16). We write this section
as S,(T in H), instead of S,(T), to indicate the group H. Then S€ is the
p-section S (T in G).

We use the notation of Proposition 12.17 and Theorem 12.19 with respect
to CF(H|S, B), or CF(G|S®, B), for blocks B, B of H, G respectively.

PROPOSITION 14.2. Induction: ¢ — ¢ is an isometry of CF(H|S, By(H))
on to CF(G|S€, B,(G)).

Proof. Proposition 5.15 says that ¢ — ¢ is an isometry of CF(H|S) into
CF(G|S%). If i is any class function on G, let y|s be the class function on H
which equals { on S and is zero on H\S. From Proposition 5.14 it is clear
that (¥/|5)¢ equals  on S and is zero on G\S°. It follows that ¢ — ¢ is an
isometry of CF(H|S) onto CF(G|S®), with ¥ — |5 as its inverse.

Let 7 be any p-element of S. Since S'is a t.I. set, the centralizer C = Cg4(n)
is contained in H, and hence equals Cy(n). Let R = R(n) = S,({n, n7 '} in
C). Evidently R is the set of all ¢ € C such that ¢, = n or z~'. By (14.1),
S is the union of its subsets R(rn), where = runs over all elements of 7.

Suppose that i/ is a class function on some group containing C. For each
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block B of C we denote by /5 the unique F-linear combination of the
irreducible characters in B such that the restriction ¥ of  to C satisfies

Ye= Z'//E-
B

As usual, we denote by v,b[ r the class function on C which equals y on R and
is zero on C\R. Theorem 12.19 implies that WBIR € CF(C[R, B), for all
blocks B of C. Hence,

‘p|R = l/’C|R = ;‘/’BIR (14-3)

is the unique decomposition of zp| r € CF(C IR) as a sum of elements
Y¥g|r € CF(C|R, B), given by (12.18).

Now let ¥ be an element of CF(G[SG, B), for some block B of G. Brauer’s
second main theorem, applied to both 7 and 7™, tells us that

llllR =BGZ=: B'/’BlR-
Since the decomposition (14.3) is unique, we conclude that
Ygle =0, for all B such that B® # B. (14.4)
We decompose s in the form
lpls = ;‘PE,
where y® € CF(H|S, B), for each block B of H. As in (14.4), we have
(Yp)slr =0, for all B, B such that B" + B. (14.5)

Evidently R < S implies that
‘”R = (Wls)lk = ;%IR =BZB('P§)E]R-

The unicity of (14.3) and (14.5) give
lpBlR = ;(lllﬁ)ﬁlR = (Ypn)p

Suppose that B = By(G). Brauer’s third main theorem and (14.4) tell us
that Y|z = 0, for all B # By(C). If B # By(H), then (14.5), (14.6) and
Brauer’s third main theorem now imply that (%)E]R = 0, for all B. Hence
l//BIR = 0 by (14.3). Since 7 is an arbitrary element of 7, this says that /g
vanishes on the union S of the R(n), = € T. Therefore 5 = 0. We conclude
that Y|s = Ypom). So ¥ — Y|s maps CF(G|S€, By(G)) into CF(H|S, Bo(H)).

Suppose that B # By(G). Brauer’s third main theorem and (14.4) tell us
that x//BO(C)l r = 0. So (14.6), (14.5), and Brauer’s third main theorem imply
that (g,an)slz = 0, for all B. Therefore yp, )| = 0. As above, we con-
clude that Y,y =0. So ¥ -yl maps > CF(G|S% B) into

B # Bo(G
, Y. CF(H|S, B). Since §y — Y| sends CF(G|S%) on(to) CF(H|S), this and
# Bo(H)
(12.18) are enough to prove the proposition,

« Jorall B. (14.6)
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COROLLARY 14.7. The inverse map to ¢ — ¢° sends y € CF(G|SC, By(G))
into |s € CF(H|S, Bo(H)).

Proof. This was shown in the first paragraph of the above proof.

The above proposition gives us a “method” for finding those irreducible
characters x; € Bo(G) which do not vanish on S° By Theorem 12.19 and
{12.18), an irreducible character x; of G satisfies these conditions if and only
if Xj'sc is a non-zero element of CF(G|SG, By(G)), hence if and only if there
exists § € CF(G|SY By(G)) such that (, x)¢ = (¥, Aj|se) # 0. By the
proposition this occurs if and only if (¢, x;)¢ # 0, for some ¢ € CF(H|S,
By(H)). Therefore we can find all these y; by taking all the characters
pe CF(H]S, By(H)) (actually, a basis will do), inducing them to G, writing
the resulting characters ¢ as linear combinations of irreducible characters
7; of G, and taking all the x; having a non-zero coefficient in one of these
decompositions. This do€sn’t sound too practical, but, as we shall see later,
it can be made to work in certain cases.

The best of all cases is the coherent case. To define this, let ¢,. . ., ¢, be the
irreducible characters in By(H ) which do not vanish on S. The coherent case
occurs when we can find irreducible characters y,..., y. of G and signs
£1...., &, = %1 satisfying

If f1,..., foeFand fi¢,+ ...+ f.b.c CF(H|S, By(H)), then

(fl¢l+'"+fc¢c)G=f181X1+"'+fc‘8£Xc' (148)
In the coherent case we have

ProrosiTioN 14.9. The characters y4,. .., x. are precisely the irreducible
characters in By(G) which do not vanish on S°. Furthermore, they satisfy:

X.']s = s,-qb,]s (i=1,...,¢). (14.10)

Proof. Evidently every ¢ € CF(H|S, By,(H)) has the form fi¢,+ ... +/.¢,
for some f},..., f.€ F. We have seen in the above discussion that the ir-
reducible characters in B,(G) which do not vanish on S¢ are precisely those
which occur with a non-zero coefficient in some such ¢%. So these characters
are among y,,. . ., X, by (14.8).

Fix i = 1,..., ¢. By Theorem 12.19, the class function ¢i|s is a non-zero
member of CF(H|S, B,(H)). So Proposition 12.17 gives us an element
¢ € CF(H|S, By(H)) such that (¢yls, ¢)y #0. Evidently ¢ = fi¢,+
...+f. ¢, for some fi,..., f.e F, and

Ji=(di &)a = (¢ils» P)g # 0.

From (14.8) we see that y; has a non-zero coeflicient f; in ¢¢. Therefore
1 € Bo(G) and X,-[So # 0. This proves the first statement of the proposition.
For the second statement, notice that condition (14.8) implies that

(i 99 = (e:bin P, Sor all ¢€CF(HlSs Bo(H)).
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Using the Frobenius reciprocity law, this becomes

(XiISa D = D> P = (s ‘f’G)c = (5;'(15.‘!5, Dus
for all e CF(H|S, By(H)).

By Corollary 14.7 and Theorem 12.19, both x5 and e, lie in CF(H|S,
By(H)). So Proposition 12.17 and the above equation imply (14.10), which
finishes the proof of the proposition.

We shall apply the above ideas in the case p = 2 to prove

THEOREM 14.11 (Brauer—Suzuki). Let G have a quaternion group Q (of
order 8) as a 2-Sylow subgroup. Then G has a normal subgroup N # G
containing the involution « of Q.

To show this we shall prove a series of lemmas, all based on the hypothesis
that G is a counterexample. We begin with

LemMA 14.12. All the elements of Q\{v) are conjugate to each other in G.

Proof. Let p, T be two elements of Q\(+)> which are not G-conjugate to
each other. Since p is Q-conjugate to p~ !, the cosets p{t), 1(1), pr{¢) are the
three involutions in the four-group Q/<t). One of p and 7, say p, is not
G-conjugate to pr. Then the two cosets {p) = {1, p, ¢, p~'} and
{p> = {1, pr, 7" L, (p1) "'} of {p) in Q have the property that no clement in
one is G-conjugate to any element in the other.

We define a function 4 : G — F by

(o) +1, if o, is G-cor ‘ugate to an element of {p),
AMo) =
—1, if 6, is G-conjugate to an element of ©{p)

for any 6 € G. Evidently 1 is a well-defined class-function on G whose
restriction to Q is a linear character. If E is any nilpotent subgroup of G,
and E = Dx A, where D < Q and A is a subgroup of odd order, then the
restriction of A to E is clearly a linear character. Since every nilpotent sub-
group of G is conjugate to such an E, we conclude from Theorem 7.1 that 2 is
a generalized character of G.

By definition A(c) = +1, for all e G. Furthermore, i(c™!) = A(o).
Hence,

1 1
lG[ ZG)L(O'_I)),(O') = [b’[ Zﬁ(il)z = 1.

k
But A=Y a;x;, where a,,..., ¢,€Z and y,,..., y arc the irreducible
i=1

(4, Vg =

k
characters of G. From (4.20) we get 1 = (4, )¢ = ), aj, which implies that
i=1

all the a; except one are zero and that that one is +1. Hence A is an
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irreducible character of G. Since A(1) = 1 > 0, we conclude that 1 is a
linear character of G. Now N = Ker 1 is a normal subgroup of G containing
1 and not containing p. This contradicts the fact that G is a counterexample
to Theorem 14.11. The contradiction proves the lemma.

Fix an element p € Q\{¢>. The above lemma implies immediately that

COROLLARY 14.13. The elements 1, v, p are representatives for the distinct
conjugacy classes of 2-elements of G.

In fact, we can say more. Let H be the normalizer in G of {+>. Of course,
H = Cg4(v), and Q is a 2-Sylow subgroup of H.

LEMMA 14.14. The elements 1, «, p are representatives for the distinct
conjugacy classes of 2-elements of H.

Proof. Let © be any element of Q\{(1)>. By Lemma 14.12 there exists
n € G such that p™ = 7. Butthen ™ = (p?)" = 1% = 1. Hencene H = C,(v).
Therefore all elements of Q\{+)> are H-conjugate to p. The lemma follows
from this.

Evidently H contains the group L = N4({p)). Hence L = Ny ({p>). The
structure of L is quite simple.

LeMMA 14.15. The group L is the semi-direct product QK of Q with an
odd normal subgroup K centralizing p.

Proof. Since {p)> is normal in Q, and @ is a 2-Sylow subgroup of G, the
group Q is a 2-Sylow subgroup of L. Inversion p — p~!, is the only non-
trivial automorphism of the cyclic group {p) of order 4, and any element of
O\{p) inverts {p>. It follows that L = QC, where C = C4(p), and that
{p> = Q0 n C is a cyclic 2-Sylow subgroup of C. This implies that
C = <{p>K, where K = 0,.(C) (see Section 1.6 of Huppert, 1967). Since K is
characteristic in C, it is normal in L, and L = QK is the semi-direct product
of Q and K. This proves the lemma.

The group Q has four linear characters 1, A, 4,, 45, coming from the
four-group @/{t>, and the irreducible character 6 defined by (6.5). If
7€ Q\{pD,then 1,1, p, 7, pt are representatives for the five Q-conjugacy classes
of Q, and we have (after renumbering) the character table:

1 ¢ p T pT
1 1 1 1 1 1
Ay 1 1 1 -1 -1 (14.16)
Ay 1 1 -1 1 -1
As 1 1 -1 -1 1
0 2 =2 0 0 0
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By Proposition 4.25, 1, A, 4,, 43, 0 are all the irreducible characters of Q. We
denote by 1, 4,, 7,. 1,, 0 the corresponding characters of L = QA obtained
from 1, 2, 4,, A3, 0, respectively, by composition with the natural epimor-
phism of QK onto Q = QK/K.

LEMMA 14.17. The characters 1, A,, X5, X5, 0 are precisely the irreducible
characters in By(L).

Proof. By Proposition 13.28 any irreducible character in By(L) has
K = 0,.(L) in its kernel. Therefore it must be among the characters 1, £, 7,
13, 0 which come from those of Q = L/K. On the other hand, one verifies
easily from (4.30), (13.14) and Proposition 11.15 that each character on our
list lies in By(K). This proves the lemma.

By Proposition 5.12, the set \/p is a t.i. set in both H and G with L as its
normalizer. Since p is a 2-element, this t.i. set clearly satisfies (14.1) (for both

H and G). From Lemma 14.15 it is evident that \/;; = pK v p~'K. Now the
table (14.16) and Lemma 14.17 imply that

CF(LINp, Bo(L)) = F(A+1,—1,~1y). (14.18)
In view of (5.19), the induced character (I+1,—71,—2;)" =@ is a
generalized character of H satisfying:
(@, Oy =0+1-1,—1,, T+1,-1,— 1), =4

d
Proposition 5.9 implies that ® = 1+ ) a;¢;, where 1 is the trivial character
ji=1
and ¢,,..., ¢, are the non-trivial irreducible characters of H, and where
d
a,,..., a, are integers. Since 4 =12+ Y a?, all the a; but three must be
f=1

zero, and those three must be 4+ 1. Hence there are three distinct non-trivial
irreducible characters, say ¢, ¢,, ¢3 of H, and three signs a,, a,, a; = +1
such that
(1+A1"12_/13)H =1+a,¢,+a,p,+az¢;.
By (14.18) and (14.8) we are in the coherent case. So Proposition 14.9
tells us that
L, @1, &2, b3 are precisely the irreducible characters in By(H)
which do not vanish on (\/p)!.  (14.19)

Furthermore, (14.10) and (14.16) give
a;¢y =a,p, =azp; =1 on (\/p)H. (14.20)

To compute the rest of the characters in B,(H) we shall use a process of
modification of generalized characters based on Theorem 7.1. Let H,. be
the subset of all elements of odd order in H. Since ¢ is central in H, it is clear
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that («>H,. = H, v tH, is the 2-section of all 6 € H such that g, = 1 or ¢,
We define X(H|<L>H2,, By (H)) to be the intersection X(H) n CF(HI(t)HZ,,
By(H)), i.e., the additive group of ail Z-linear combinations ¢ of the irredu-
cible characters ¢; € B,(H) such that ¢ = 0 on H\{:pH,..

Let X, X_ be the two additive subgroups of X(H ](L)HZ,, By(H)) defined
by

X, ={¢peX(H[{:yH,, By(H)) : (o) = (o), foralloeH},  (142la)
X_ ={peX(H|{DH,, By(H)) : p(ov) = P(o), foralloeH}.  (14.21b)
For any ¢ € X, u X_ we define a class function ¢* on H by

&(e), for ceH,,
¢*(o) =< — (o), foroelH,., (14.22)
0, Jorce H\(:DH,..
Then we have

LemMMaA 14.23. The map ¢ — ¢* sends X, isometrically into X_ and 2X_
isometrically into X ,.

Proof. Let ¢ be any element of X, U 2X_., We first show that ¢* € X(H).
By Theorem 7.1 it suffices to prove that the restriction ¢} lies in X(E), for
any nilpotent subgroup E of H. Since we can pass to any H-conjugate of E,
Lemma 14.14 implies that we can assume E to have one of the four forms
T, {1y x T, {pyx T, or @xT, where |T| is odd.

If E = T, then ¢fe X(E), by (14.22). If E = (> x T, then (14.21) implies
that ¢ = Ax Y, where y € X(T) and 4 is one of the two linear characters of
{¢y. Evidently ¢¥ is then A’ x 1, where 1" is the other linear character of {¢).
So ¢fe X(E).

If E = {p)> x T, then the fact that ¢ is zero on ({pX\{D)x T € H\{)H,.,
together with (14.21), implies that ¢, = A¢?> x y, where ¥ € X(T') and 2 is one
of the linear characters of {¢». Then ¢} = (1')¢*? xy € X(E), where A’ is the
other linear character of {¢).

There remains the case in which E = Q xT. Suppose that ¢ € X,. Since
¢ =0 on (Q\(D)xT, it follows from (14.16) and (14.21a) that
dp = (1+7,+1,+23) x ¢, forsome iy & X(T). Butthen ¢F = 20 x ) € X(E).
On the other hand, if ¢ €2X_, we see from (14.16) and (14.21b) that
(3d)e = Uxip, for some ¥ € X(T). Hence ¢y = 20xy and ¢F = (1+4,
+ A4+ 23) xy € X(E). Therefore ¢f € X(E) in all cases, which proves that
¢* e X(H).

It is evident from (14.22) that ¢* lies in X(H[(L)Hz.). We must show that
it lies in X(H [{t)H,., Bo(H)). Let ¢; be an irreducible character of H such
that (¢*, ¢ )y # 0. It suffices to prove that ¢; € Bo(H).

Since ¢ is a linear combination of the irreducible characters in Bg(H),
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Theorem 12.19 implies that ¢ |y, € CF(H|H,., Bo(H)) and ¢|,y,, € CF(H|H,,,

By(H)). From (14.22) we get
0+ (Cb*, ¢j)H = (d)lyzl“ﬁblinz,a d’j)y = (‘l’lyw ¢le2r)H—(¢Iin»’ ¢j]m;ﬂ)n

So one of (|u,.» @5l is (Dliws @5lms ) is non-zero. In view of Theorem
12.19 and (12.18), this implies that ¢; € Bo(H).

We now know that ¢* € X(H|[() H,., Bo(H)). It is clear from (14.21) and
(14.22) that ¢*e X_ if pe X, and ¢*e X If $e2X_. Since the map
¢ — ¢* is obviously an isometry (with respect to (-, *)g), this proves the
lemma.

Because the involution ¢ lies in the center of H, it acts on any irreducible
FH-module I either as multiplication by 1 or as multiplication by —1. So the
corresponding irreducible character ¢; of / satisfies either

$fo) =¢ o), foralloceH, or (14.24a)
$ (o) = —¢0), foralloeH, (14.24b)

respectively.

LemMmA 14.25. The characters 1, ¢y, ¢o, ¢5 are precisely the irreducible
characters ¢; in Bo(H) satisfying (14.24a).

Proof. Since p is conjugate to pt = p~!, any irreducible character ¢;

satisfying (14.24b) is zero on p. This and (14.20) imply that each of 1, ¢, ¢,,
¢, satisfies (14.24a).

Now let ¢; be any irreducible character in By(H) satisfying (14.24a).
Assume that ¢, is not 1, ¢, (/)2, or ¢5. Then ¢; = 0 on </ p)" by (14.19).
Lemma 14.14 implies that (V' p)" = H\(OH,.. Hence $;€ X,. Applying
Lemma 14.23, we see that ¢ e X_ and (¢}, ¢y = (¢}, ¢))u = 1. There-
fore +¢7 is an irreducible character of H. Since ¢7(1) = ¢(1) > 0, we
conclude that qu, ¢7¥ are (obviously distinct) irreducible characters in B,(H).

Because ¢; is zero on Q\{+) and satisfies (14. 24a), its restriction to Q is an
integral multiple of (14-2;+ 4,4+ 13). Hence 4 divides ¢;(1). Now (4.17) and
(14.22) imply that the primitive idempotents f, f* of Z(FH) corresponding
to ¢, ¥, respectively, satisfy

¢, (N[0 N+ ¥ ")]e

Li+li=2 1H|
o 260900
=X

Since 8, which is the highest power of 2 dividing |[H|, divides 2¢ (1), we
conclude that f;+f* € Z(DH). This is impossible by (11.8), since By(H)
contains other characters besides ¢; and ¢7F. Therefore ¢; does not exist
and the lemma is proved.
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COROLLARY 14.26. X, = {col+c1a;0,+ 10,0, +c3a5; :
Cos €15 €25 €3 € Z, co+Cy+cy+¢3 = 0}

Proof. 1t is evident from (14.21a) and (14.24) that any ¢ € X, is a Z-linear
combination of those irreducible characters ¢; e By(H ) satisfying 14.24a,
Le., of 1, ¢y, ¢, ¢35. So X, consists precisely of all ¢ = ¢yl+c,a,¢;
+ 28,0, +c3a3¢3, With ¢, ¢y, €5, ¢3 € Z, such that ¢ = 0 on H\(DHH,.
But H\{¢)H, = (\/p)H by Lemma 14.14. By (14.20), ¢ = O on (\/p)H if and
only if ¢+ ¢, +¢5+c¢c3 = 0. This proves the corollary.

CoROLLARY 14.27. By(H) contains precisely three irreducible characters
b4, s, g satisfving (14.24b).  Furthermore X_ = {c ¢ +cs5¢s+csds ¢
Cqy Cs, C ELY.

Proof. Any irreducible character ¢; € Bo(H) satisfying (14.24b) is cer-

tainly not one of 1, ¢, ¢,, ¢3. So ¢; = 0on (\/p)" = H\{:>H,. by (14.9).
Hence ¢;e X_. It follows that these ¢; form a Z-basis for X_. Since
Lemma 14.23 implies that the Z-rank of X _ is the same as that of X, , which
is 3 by Corollary 14.26, this completes the proof of the corollary.

Actually, we can compute ¢,, @5, ¢ quite explicitly.

LemMA 14.28. There exist signs ay, as, ag = =+ 1, such that (after re-

numbering)
20,07 = 1+a ¢, —a,p,—a30;
2050 =1—a,¢,+a,p,—asp; (14.29)
20605 = 1—a ¢, —ab,+as¢;

Proof. 1fj = 4, 5 or 6, then Lemma 14.23 implies that (2¢ )* is an element
of X, satisfying ((2¢)*, (2¢)*)y = 4. From the description of X, in
Corollary 14.26 it is clear that (2¢)* has the form +1ta,¢;ta,¢,+a;¢;
where the sum of the four +’sis zero. So, with a suitable choice of a; = +1,
the character 2a;¢7 has one of the three forms on the right of (14.29). Since
there are three distinct ¢;, they must exhaust these three forms. This proves
the lemma.

Now we can compute the module X(H |\/ t, Bo(H)) of all Z-linear combina-
tions ¢ of irreducible characters in By(H) such that ¢ = 0 on H\\/L = H,.

Lemma 14.30. The Z-module X(H I\/ t, By(H)) has the Z-basis
L4a,¢+a,pr+asd;, arp,+asds+asds, a,¢ +azdps+asds,
a1 +a,d,+agds. (14.31)
Proof. We know from its definition that 1+a,¢, +a,¢,+as¢; vanishes
outside (\/;;)H. In particular, it is zero on H,.. So l+a,¢,+a,¢,+a;¢;
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€ X(H[\/i, By(H)). From this, (14.22) and (14.29) we see that
2a4¢4|H2' =1+ ald)lle’_a2¢2‘Hz’_a3¢3le’
= _2(a2¢ZIH2’+a3¢3le’)'
It follows that a,¢, +azps+asd, e ._X(Hl\/t, B,(H)). Similarly a, ¢, +a;¢;
+ashs, a;p,+a,9;, +agps € X(H|\/l’ By(H)). N
Since ¢,, ¢s, ¢ are F-linearly independent on H, vanish on (\/p)”
= H\{:D>H,’, and satisfy (14.24b), their restrictions to H,. are F-linearly

independent. It follows that the module X(H |BO(H )) of all Z-linear combina-
tions of 1, ¢,. . ., ¢ maps by restriction to H,. onto a Z-module isomorphic

to X(H[BO(H))/X(HI\/T, B,(H)) of rank at least 3. But the elements (14.31)

generate a submodule M of rank 4 in X(H ]\/;, By(H)). Hence X(H l\/_a,
By(H)) has rank 4. Since X(H |B0(H )/ L is clearly Z-torsion free, M equals

X(H]\/:, By(H)), and the lemma is proved.
By Proposition 5.12 the set Jiis ati. setin G with normalizer 4.

LEMMA 14.32.  There exist distinct non-trivial irreducible characters
X1s---» Ko Of G and signs ¢,,. .., &g = + | such that

(l4+a,¢;+aydr+a303)% = 14,0+, + 6313 (14.33a)
(@202 +a303+a400)% = &30 +€3x3+8axa (14.33b)
(a1;+asds+ashs)® = eq, +esxs+esys (14.33¢)
(a1 +a,0,4a506)° = &)1+ €202 +E6 6 (14.33d)

Proof. 1t follows as usual from Lemma 14.30, Proposition 5.9 and (5.19)
that there exist three distinct non-trivial irreducible characters y,, x,, x5 of G
and three signs &, &,, &3 = +1 such that (14.33a) holds. (Compare the
argument preceding (14.19)). Since (5.19) and Lemma 14.30 imply that
¥ = (a,p,+asd;+asd,)® is a generalized character of G satisfying
(¥, ¥)¢ = a3+a3+ak = 3, there exist three distinct irreducible characters
V1, W3, Y3 of G and three signs dy, d5, dy = +1 such that ¥ = d,, +d, ¥,
+ds3. By Proposition 5.9, none of Yy, V5, Y5 is 1. We also know from
(5.19) that

(Lt ey +eaxz+e3xs, diW +day +dshy)g = a3 +a3 = 2.
It follows that two of the ¥; are equal to two of the x;, say ¥, = x5, ¥, = x3
that d; = ¢,, d, = &;, and that ¥ is distinct from 1, ¥, %,, xs. Hence
(14.33b) holds with y, = 5 and ¢4, = d,.

Similarly (a,¢,+a3ds+as¢s)® = exi+e;x;+esxs, where i, j=1, 2, 3,
i #j,es = +1and ysis an irreducible character of G distinct from 1, y;, %5,
x3- If i, j = 2, 3, then (5.19) gives

1= a3 = (e;02+83X3+Eadas €202+ 8303+ E5Xs)e = 2+8485(Xas Xs)o-
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Hence y, = x5 and ¢, = —e¢5. But both &,3,+63x3+e4xs = (a0, +a3¢0;
a,04)¢ and ey, +e3x3—ea)s = (@10 +az¢;+asps)® vanish at 1. Hence
¥x4(1) = 0, which is impossible. Therefore one of 7, j is equal to 1 and the
other is equal to 2 or 3, say 3. Now (14.33¢c) holds. Since
L= (eax2+ 33+ €akas €11+ 33+ EsK5)g = L+€.85(04s X5)as

the characters 1, ¥, ¥, X3, ¥4, X5 are all distinct.

A similar argument shows that (14.33d) holds for an irreducible character
1e distinct from 1, x4,.. ., xs and foran e = +1. So the lemma is proved.

COROLLARY 14.34. e|\/t = ap|/. (=1,...,6).

Proof. This follows directly from the lemma, Proposition 14.9, and
Lemma 14.30.
At last we can prove Theorem 14.11. Let I be the conjugacy class of ¢ in G.

Evidently « is the only involution in H, and «* = 1¢ Vi So Corollary 5.22
implies that % N \/ ¢ is empty. It follows from this and Proposition 5.23 that
¢%(I?) = 0,forany ¢ X(H[\/L). Applying this to ¢ = a,¢,+asd;+asd,,
and using (14.33b), we get
0= 82%2(72)+33X3(T2)+84X4(T2)
— [%Xz(b]j [eaxs(D]* &/g(ll]z (by (4.31))
€272(1) €313(1) &4xa(1)
2 2 2
— |Ilz {[82)(2(0] L [83X3(¢)]_ " [%4(0]‘} (by Proposition 2.2)
&212(1) &313(1) e424(1)

Since 1+a,¢,+ayp,+asp; = (1+4,—1,— 1) vanishes at ¢, we com-

pute from (14.29) and (14.22) that
2a404() = —1—a;$()+a,$2() + a303(1) = 2a,P(0)+2a3¢5(1)
Using Corollary 14.34, we see that this implies
€axa(¥) = £222(0) +&3x3(0)-
Because ¢ = g,), +¢313+&4)4 vanishes at 1, we have
axa(l) = —e22(1) —&35(1).
Substituting these in the previous equation we obtain:
0= [%Xz(‘)]_z n [%Zs(‘)]i _ [eax2(0) +e523(0]°
&22(1) e373(1) x72(1) +&3x3(1)
_ [eax2(v)esxa(1) — 83X3(‘)82X2(1)]j
&xx2(1esxa(1) (e222(1) +e3x5(1)

X2(0x3(1) — x3(x2(1) = 0.

Hence,
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or
1) _ xs()
(D) xa()
By symmetry we also have Jgg( ) XI(L). So there is a constant d such that
2(1) %3(1).
() = dy(D), for i=1, 2, 3. Since 1+£1X1+82X2+83X3 = (14a,¢,
Fayhy+asp3)¢ = (144, — A, —2;)° vanishes outside (v/p)®, it is zero at 1
and at . This gives
0="T+er(D+e()+e3x5(1)
0= 1+e;7:()+e2002() + 8375 (1)
= 1+d(e (D +e2202(1) +e373(1))-
Therefore d = 1, and y,(t) = x(1), for i = 1, 2, 3. Proposition 4.38 now
tells us that N = Ker (y,) is a normal subgroup of G containing ¢:. Since
¥ # 1, its kernel N is not the whole of G. Therefore G is not a counter-
example to the theorem. This contradiction proves the theorem.

15. Glauberman’s Theorem
We have now reached the goal of these lectures, which is the proof of

THEOREM 15.1 (Glauberman). Let G be a finite group, and T be a 2-Sylow
subgroup of G. Suppose that T contains an involution . satisfying
if “eT, forsomeoeG, then " =u, (15.2)
Then ¢ lies in Z(G mod O,.(G)). In particular, if G is simple, then G = ().

Proof. We use induction on the order of G. The result is obvious if
|G| = 2, 50 we can assume it to be true for all groups of smaller order than |G[

Assume that G contains a normal subgroup N with te N < G. Then
T ~ N is a 2-Sylow subgroup of N containing ¢, and N, T n N, ¢« satisfy the
hypotheses of the theorem. So the image of ¢ is central in N/O,.(N) by
induction. Since O,.(N) is characteristic in N, it is normal in G. It follows
that O,.(N) = N n 0,(G). Therefore the image® of ¢ in G = G/O,.(G) is
central in the image N of N.

Suppose that © is not central in G. Then there exists some element ¢ € G
such that @ is different from the image (:°) of «°. Both « and its G-conjugate
(—1"—) lie in the 2-Sylow subgroup of Z(N), which is characteristic in N and
hence normal in G. So they both lie in the image T of T. Regarding things in
the inverse image TO,{G) of T, we see that i** e T, for some t € Q,(G). By
(15.2), this implies that «“*=t. But then the image (L‘") = (c") of «*% equals .
This contradiction forces © to be central in G, which is the theorem in this
case. Therefore we can assume from now on that

The only normal subgroup of G containing v is G itself (15.3)
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One case in which (15.2) is satisfied is that in which ¢ is the only involution
in T. To handle this case, we shall use the following old result about
2-groups.

LeMMA 15.4. Let T be a finite 2-group containing exactly one involution t.
Then T is either generalized quaternijon of order 2"*1, for some n > 2, or else
eyclic.

Proof. Choose 4 maximal among the normal abelian subgroups of 7. We

must show that
A = C(A). (15.5)

Because 4 is an abelian normal subgroup of 7, its centralizer C;(A4) is a
normal subgroup containing 4. If Cr(4) > A, let B be minimal among all
the normal subgroups of T satisfying 4 < B < C;(4). Then [B: A] = 2,
and B = (B, A), for any pe B\A. Since 4 is abelian and f e C;(4) cen-
tralizes A, the normal subgroup B of T is also abelian. This contradicts the
maximality of A. Therefore (15.5) holds.

Evidently ¢ is the only involution in the abelian subgroup 4. So 4 = ()
is cyclic of some order 2" > 1. In view of (15.5), conjugation in T defines an
isomorphism of T/4 onto a subgroup T of the automorphism group of 4.
If T= 1, then T = A is cyclic, and the proof is finished. So we can assume
that T # 1. Then there exists an element p € T whose image j is an involu-
tion in T. Let k be an integer such that t* = 1*. Because 1° also generates
A = {r), the integer k is a unit modulo 2". This, g # 1, and p*> = 1, imply
that

k =1 (mod 2), k & 1 (mod 2"), k? =1 (mod 2"). (15.6)

Obviously n > 2. If n =2, the only solution to (15.6) is k = —1
(mod 2"). If n > 2, there are two other solutions: k = 1+2""! and
k= —1+2""1 (mod 2") which we must eliminate.

Suppose that n > 2 and that k = 1+2""! (mod 2"). Since p? = 1, the
element p? lies in 4. Hence it lies in C,(p) = (t?)>. So p? = 1%, for some
integer I. If & is any integer, then

(pt")? = ptpt = p*(p~ ')t = 1
Since n > 2, the integer 1 +2""2 is a unit modulo 2". Hence we can choose
hsothat (1+2""%)h = —/(mod 2"). Then (pt")? = 1. So pz"is an involution
in 7, which is impossible since pt" ¢ 4 and the only involution ¢ lies in A.

Suppose that n > 2 and that k = —1+2""! (mod 2%). Then p* e C,(p)
= (t?"7"> = (). Since p is not an involution, we must have p? = 2" 7",
But then

(pr)? =prpr =pip ltp)r =¥ TP =1 = 1,
So pt is an involution not in A, which is impossible.

-1 -2
2 (1427 Yhgh 20+ (14272
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In view of the above arguments, we must havern > 2and k = —1 (mod 2%).
Since p2 € C,(p) = (%" ""> and p? # 1, we have p?> = t*""" = 1. Therefore
{p, Ay = {p, 1) is a generalized quaternion group of order 2"*! (by (6.1)).

If {p, A> < T, then {p> < T. The above arguments show that p is the
only involution in T. So there must exist a ¢ € T whose image & & T satisfies
&> = p. Then 1° = ™ for some integer m satisfying m?> = —1 (mod 2").
Since n > 2, this implies m*> = —1 (mod 4), which is impossible. Therefore
{p, A> = T, and the lemma is proved.

Now assume that ¢ is the only involution in T (our Sylow subgroup). By
the above lemma, T is either cyclic or generalized quaternion. If T is cyclic,
then G = T0,.(G) (see Section 1.6 of Huppert, 1967). So the image of ¢ is
central in G/O,(G) =~ T, which is the theorem in this case. If 7'is generalized
quaternion of order 2"*!, for n > 2, then Theorem 6.8 (for n > 3) or
Theorem 14.11 (for n = 2) give us a normal subgroup N < G containing ¢.
This contradicts (15.3). Therefore we can assume from now on that

T contains an involution other than . (5.7

Another ‘““trivial case” is that in which some involution ¢, is central in G.
If ¢, =+, the theorem is clearly true. If ¢; # ¢, then the image v of ¢ in
G = G/{¢,) satisfies (15.2) with respect to the image T of T, which is a 2-
Sylow subgroup of G. Indeed, if % € T, for some & € G, and ¢ € G has & as
its image in G, then «“ lies in the inverse image T of T. So © = ¢ (by (15.2))
and 1* = 7. Since |G| < |G|, induction tells us that te Z(G mod 0,(G)). It
follows that the inverse image in G of {(:)>0,.(G) is a normal subgroup
containing ¢. By (15.3), it must be G itself. The inverse image N of 0,.(G) is
then a normal subgroup of G with G = (¢)N. The 2-Sylow subgroup {¢,;»
of N is cyclic and centralizes N. We conclude that N = (¢;> x O,.(N). Now
0,.(N) = 0,.(G). Since G/0,.(G) has order 4, itis abelian. So the theorem is
true in this case. Therefore we can assume from now on that

Cs(t)) < G, for all involutions 1, €G. (15.8)

One almost obvious remark is

LeMMA 15.9. If rwo G-conjugates \°, \ of « lie in the same 2-subgroup P of G,
then © = (",

Proof. The 2-subgroup P is contained in a conjugate 7'" of the 2-Sylow
subgroup T. So «“* ', ™ " both liein 7. By (15.2), ™" ' = ¢ = «*"', Hence

0= 1"

CororrArY 15.10. If H is a subgroup of G such that ve H < G, then
1€ Z(H mod O,.(H)).

Proof. Applying the lemma to a 2-Sylow subgroup P of H containing ¢,
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we conclude that H, P and . satisfy the hypotheses of the theorem. Since
|H| < |G|, induction gives this corollary.

Now we come to the heart of the matter.

LemMma 15.11. Let i, be any involution in T other than «. If y is an irreducible
character in By(G) and o € G, then y(u3) = yx(u,).

Proof. First assume that «:§ is an involution. Then ¢ centralizes «J. We can
therefore find an element ne C;(¢5) such that ¢ and «°% lie in the same 2-
Sylow subgroup P of C4(:3). By Lemma 15.9 we have ¢ = ", Hence
ug == 1°"5" is G-conjugate to tt,. Therefore (i) = x(ut,) in this case.

Now let T = u§ be arbitrary. By Proposition 5.20, the group D = {4, ¢5) is
dihedral, with {7} as a cyclic normal subgroup of index 2 inverted by both ¢
and ¢§. For any integer i we have

(9" = 745t = t7 D) T () () = 172, (15.12)
since ¢ is an involution. If [{(z}| is odd, we can choose i so that
17249 = 1§ =, This is impossible, since ¢, is not G-conjugate to ¢ (by
(15.2)). Therefore |<r>| is even, and {7) contains an involution ¢, centralized
by all of D.

In view of (15.8) the group H = Cg4(+,) is properly contained in G. This
group contains D and hence ¢«. By Corollary 15.10, ¢ lies in Z(H mod O,.(H)).
Therefore T = u§ =t (mod O,.(H)). It follows that 12 € O,(H). Hence
{1*» has odd order, and we are in the following situation:

() =Ly x<e?), () =<y N Oy (H). (15.13)

The Brauer second and third main theorems tell us that there exist integers
a;, one for each irreducible character ¢; € By(H ), such that

x(e1p) = Z aj¢j(‘1p)a
¢ € Bo(H)
for all elements p of odd order in H. From (15.13) we see that T = ¢,p,
where p e (1% < O,.(H) has odd order. Proposition 13.28 then implies
that ¢;(¢,p) = ¢;(1,), for all ¢; € By(H). So, we have
x(ee]) = x(v) = x(1;,p) = z aj¢j(‘1p) = Z aj¢j(‘1) = x(¢p)

@€ Bo(H) ¢ ;€ Bo(H)
But (15.12) and (15.13) imply that ¢, = «(«§)", for some integer i. Since ¢,
is an involution, we have already seen that this implies x(¢;) = x(¢ty).
Therefore y(ud) = x(t;) ="x(xt,), and the lemma is proved.

Let I be the conjugacy class of 1in G, and I be the corresponding class sum.
Define I,, , similarly for any involution ¢, # ¢ in 7. If y is any irreducible
character in By(G), then (4.31) gives

1Dx(Iy) = x(Dx(IT).
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Evidently II, is a sum of |I||,] elements of the form ¢"¢) = (uy” )7, for
o, Te G. By Lemma 15.11, the value of x at any such element is y(ct,).
Therefore the above equation becomes

|I|X(‘)|12|X(‘2) = X(I)IIHIZIX(HZ)

2(Dx(e2) = x(Dx(eer).
Since ¢ is central in T (by (15.2)), the product , uis also an involution
different from ¢ in 7. Applying the above equation to ¢, in place of ¢,, we
obtain

or

21(x(wz) = x(Dy(e)-

102 1(12) = (Dr(Dx(ee2) = %(1)*x(e2)-
If x(¢,) # 0, we conclude that y(t) = +x(1), and hence that ¢« e Z(G mod
Ker (y)) (by Proposition 4.38(b)). So we have

If x is any irreducible character in By(G) such that y(v,) # 0, for
some involution 1, € T\{t), then 1 € Z(G mod Ker (y)). (15.14)

Let N be the intersection of the kernels, Ker (y), of all the irreducible
characters y of G satisfying the hypotheses of (15.14). Then N is a normal
subgroup of G and : € Z(G mod N). From Proposition 13.28 we see that
N > 0,(G). To show that N < 0,.(G), which will finish the proof of the
theorem, it suffices to prove that no involution of T lies in V.

Suppose that N contains an involution ¢, of T other than . Then the
definition of N and Proposition 4.38(a) imply that the value y(:,) is either 0
or (1), for any irreducible character y € By(G). Now Theorem 12.13 tells us
that

Hence,

0= Y ()= Y 2(1)?

2€Bo(G) 2€Bo(G), 2(12) # 0
Since at least one y, the trivial character, satisfies ¥(¢,) # 0, and since each
x(1) is a positive integer, this is impossible. So 1, ¢ N.
Suppose that ¢ € N. Then N = G by (15.3). So N contains an involution
t, € T other than ¢, by (15.7). We have just seen that this is impossible.
Therefore N contains no involutions, N = O,.(G), and the theorem is
proved.

BIBLIOGRAPHY

Curtis, C. W. and Reiner, L. (1962). “Representation Theory of Finite Groups and
Associative Algebras”. Interscience. New York.

Feit, W. (1969). “Representations of Finite Groups”. Department of Mathematics,
Yale University.

Huppert, B. (1967). **Endliche Gruppen I"". Springer—Verlag, Heidelberg.



	Finite Simple Groups
	Contributors
	Preface
	Contents
	I. Glauberman: Global and Local Properties of Finite Groups
	II. Gorenstein: Centralizers of Involutions in Finite Simple Groups
	III. Curtis: Chevalley Groups and Related Topics
	IV. Leonard: Finite Complex Linear Groups of Small Degree
	V. Herzog: Finite Groups with a Large Cyclic Sylow Subgroup
	VI. Higman: Construction of Simple Groups from Character Tables
	VII. Conway: Three Lectures on Exceptional Groups
	VIII. Dade: Character Theory Pertaining to Finite Simple Groups

