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1. Representations and Modules

Let G be a finite group and let k be a commutative ring of coefficients. A
representation of G over k is a group homomorphism G → GL(n, k) for some
n. The group algebra kG consists of linear combinations of elements of G with
coefficients in k. With addition and multiplication defined as follows(∑

g∈G

αgg
)

+
(∑

g∈G

βgg
)

=
∑
g∈G

(αg + βg)g(∑
g∈G

αgg
)(∑

g∈G

βgg
)

=
∑
g∈G

( ∑
hh′=g

αhβh′

)
g

kG is a ring, even a k-algebra.
Given a representation ϕ : G → GL(n, k), we make V = kn into a kG-module

via (∑
g∈G

αgg
)
· v =

∑
g∈G

αgϕ(g)(v), v ∈ V.

Conversely, provided that a kG-module M , when regarded as a k-module via k ↪→
kG, is finitely generated and free, we get a representation ϕ : G → GL(n, k) by
choosing a k-basis for M and setting

ϕ(g)(v) = g · v, g ∈ G, v ∈ V.

Example 1.1. If k is a field, then representations of G over k correspond to finite
dimensional kG-modules.

Given two representations ϕ : G→ GL(n, k), ψ : G→ GL(m, k), they are similar
if n = m and there exists X ∈ GL(n, k) such that Xϕ(g)X−1 = ψ(g) for all g ∈ G.
This corresponds to an isomorphism of kG-modules. In general, an intertwining
operator is an n×m matrix X with the property that

ϕ(g)X = Xψ(g) ∀g ∈ G.

This corresponds to a homomorphism between the corresponding kG-modules.

Example 1.2. For G = Z/2 = { 1, t }, k = F2, define ϕ : G→ GL(2, k) by

ϕ(1) =
(

1 0
0 1

)
, ϕ(t) =

(
1 1
0 1

)
.
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Then the corresponding kG-module structure is given by

(α · 1 + β · t)
(
x
y

)
=
(

(α+ β)x+ βy
(α+ β)y

)
, α, β, x, y ∈ k.

2. Reducibility and Decomposability

A representation ϕ : G→ GL(n, k) is reducible if it is similar to a representation
ψ such that

ψ(g) =
(
∗ ∗
0 ∗

)
∀g ∈ G.

The subspace spanned by the first i basis vectors is an invariant subspace. (W ≤ V
is invariant if gw ∈ W ∀g ∈ G ∀w ∈ W .) A representation is irreducible if it is
nonzero and not reducible.

A kG-module V is reducible if there is a submodule W with 0 6= W 6= V .
Provided that k is a field, this concept corresponds to the reducibility of the repre-
sentation. A kG-module is irreducible or simple if it is nonzero and not reducible.

A representation ϕ : G→ GL(n, k) is decomposable if it is similar to a represen-
tation ψ such that

ψ(g) =
(
∗ 0
0 ∗

)
∀g ∈ G.

This says V = W1⊕W2, dimW1 = i, dimW2 = j with W1, W2 invariant subspaces.
A kG-module is decomposable if V = W1⊕W2 with W1, W2 nonzero submodules

of V . If V is nonzero and not decomposable, then it is indecomposable.
A short exact sequence of kG-modules is a sequence of kG-modules and kG-

module homomorphisms of the form

0→ V1 → V2 → V3 → 0

such that for each pair of composable arrows the image of the left one is the kernel
of the right one.

Example 2.1. In matrix notation:

0→
(
ϕ
)
→
((
ϕ
)

∗
0

(
ψ
))→ (

ψ
)
→ 0.

A short exact sequence 0 → V1
α−→ V2

β−→ V3 → 0 is split if there is a map
V3

γ−→ V2 (a splitting) such that β ◦ γ = idV3 . In this case, we have

V2 = α(V1)⊕ γ(V3) ∼= V1 ⊕ V3.

Example 2.2. Example 1.2 gives a nonsplit short exact sequence in which V1 and
V3 have dimension 1 and V2 has dimension 2.

Theorem 2.3 (Maschke’s Theorem). If |G| ∈ k× and 0→ V1
α−→ V2

β−→ V3 → 0 is
a short exact sequence of kG-modules that splits as a sequence of k-modules, then
it splits as a short exact sequence of kG-modules.

Proof. Given a k-splitting ϕ : V3 → V2, set γ = 1
|G|
∑

g∈G g
−1ϕg. If x ∈ V3,

βγ(x) =
1
|G|

∑
g∈G

βg−1ϕgx =
1
|G|

∑
g∈G

g−1βϕgx = x.
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If h ∈ G, then

γ(hx) =
1
|G|

∑
g∈G

g−1ϕghx = h
1
|G|

∑
g∈G

(gh)−1ϕghx = hγ(x).

�

3. Homs and Tensors

Let R be a ring, and let M be a right R-module and N be a left R-module. The
abelian group M ⊗R N has generators the symbols m ⊗ n, m ∈ M , n ∈ N and
relations:

(m+m′)⊗ n = m⊗ n+m′ ⊗ n
m⊗ (n+ n′) = m⊗ n+m⊗ n′

mr ⊗ n = m⊗ rn

where m ∈M , n ∈ N , r ∈ R.
Let A be an abelian group. A bilinear map f : M ×N → A is called R-balanced

if it satisfies
f(mr, n) = f(m, rn)

for m ∈M , n ∈ N , r ∈ R.

Theorem 3.1 (Universal Property of Tensor Products). There is a R-balanced
bilinear map τ : M × N → M ⊗R N such that given any abelian group A and an
R-balanced bilinear map α : M × N → A we have a unique group homomorphism
β : M ⊗R N → A

M ×N α //

u

��

A

M ⊗R N

∃!β

::v
v

v
v

v

such that α = β ◦ τ .

Example 3.2. If R is a commutative ring, then left and right modules over R are
equivalent. Given any two (left) R-modules M , N , we can form M ⊗R N and this
is again an R-module via

r(m⊗ n) = rm⊗ n = m⊗ rn, r ∈ R,m ∈M,n ∈ N.

If R, S are two rings, we say M is an R-S-bimodule if it is a left R-module and
a right S-module in such a way that

(rm)s = r(ms), m ∈M, r ∈ R, s ∈ S.

If M is an R-S-bimodule and N is a left S-module, then M⊗SN is a left R-module
via

r(m⊗ n) = rm⊗ n, m ∈M,n ∈ N, r ∈ R.

Example 3.3. If R is a ring, then we can regard R as an R-R-bimodule via left
and right multiplication. If S is a subring of R, we can similiarly regard R as an
R-S-bimodule.



4 DAVE BENSON (NOTES BY KAY JIN LIM AND SEJONG PARK)

If H is a subgroup of G, then we regard kH as a subring of kG and look at kG
as a kG-kH-bimodule. If M is a kH-module,

kG⊗kH M

is a left kG-module called the induced module M ↑G.
Hom(N,Hom(M,A)) corresponds bijectively to the set of bilinear maps M ×

N → A. The right action of R on M gives a left action of R on Hom(M,A) by
(rϕ)(m) = ϕ(mr) where ϕ ∈ Hom(M,A), m ∈ M , r ∈ R. So it makes sense to
look at HomR(N,Hom(M,A)). It corresponds bijectively to the set of R-balanced
bilinear maps M × N → A. Hence the universal property of tensor product gives
an isomorphism of abelian groups

HomR(N,Hom(M,A)) ∼= Hom(M ⊗R N,A).

IfM is an S-R-bimodule andA is a left S-module, then this isomorphism restricts
to

HomR(N,HomS(M,A)) ∼= HomS(M ⊗R N,A)

In particular, we have

HomkH(U,HomkG(kG, V )) ∼= HomkG(kG⊗kH U, V ).

Since kG is viewed as a kG-kH-bimodule, HomkG(kG, V ) is V regarded as a left
kH-module by restriction, V ↓H . Thus we have

HomkH(U, V ↓H) ∼= HomkG(U ↑G, V )

This is called the Frobenius reciprocity or the Nakayama isomorphism.
If U and V are two kG-modules, then U ⊗k V becomes a kG-module via

g(u⊗ v) = gu⊗ gv, g ∈ G, u ∈ U, v ∈ V.

Warning. Elements of the group algebra kG acts in a way extended linearly from
this:

(g + h)(u⊗ v) = gu⊗ gv + hu⊗ hv
6= (g + h)u⊗ (g + h)v.

where g, h ∈ G, u ∈ U , v ∈ V .

Similarly, Homk(U, V ) becomes a kG-module: if f ∈ Homk(U, V ) and g ∈ G,

(gf)(u) = gf(g−1u), u ∈ U.

With these definitions, if U , V , W are kG-modules,

Homk(U,Homk(V,W )) ∼= Homk(U ⊗k V,W )

is an isomorphism of kG-modules. Taking G-fixed points on both sides, we get

HomkG(U,Homk(V,W )) ∼= HomkG(U ⊗k V,W )
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4. Exactness

If M is a right R-module and 0→ N → N ′ → N ′′ → 0 is a short exact sequence
of left R-modules, then the sequence

M ⊗R N → ⊗RN
′ → ⊗RN

′′ → 0

is exact.
If M is a left R-module and 0→ N → N ′ → N ′′ → 0 is a short exact sequence

of left R-modules, then the sequences

0→ HomR(M,N)→ HomR(M,N ′)→ HomR(M,N ′′)

0→ HomR(N ′′,M)→ HomR(N ′,M)→ HomR(N,M)

are exact.

Lemma 4.1. If 0 → M1 → M2 → M3 → 0 is a short exact sequence of finite
dimensional kG-modules (k a field) and M2

∼= M1 ⊕M3, then the sequence splits.

Remark 4.2. The finite dimensional condition is essential.

Proof. 0 → HomkG(M3,M1) → HomkG(M3,M2) → HomkG(M3,M3) is exact.
Dimensions add, so the rightmost map is surjective. Take a preimage of idM3 .
It’s a splitting! �

5. The Jacobson Radical

Let R be a ring with 1.
The Jacobson radical of R is

J(R) =
⋂

maximal left ideals in R

If m is a maximal left ideal, then R/m is a simple left R-module and m is the
annihilator of [1] in R/m. Conversely, if S is simple module and 0 6= x ∈ S, then
RR→ S given by r 7→ rx is surjective. If m is the kernel, then S ∼= R/m. So

J(R) =
⋂

annihilators of simple left R-modules

A 2-sided ideal I in a ring R is left primitive if R/I has a faithful simple left
module. The ring R is left primitive if (0) is a left primitive ideal of R.

Warning. left primitive is different from right primitive. (Bergman, 1964)

Lemma 5.1. J(R) =
⋂

left primitive 2-sided ideal

As a consequence, J(R) is a 2-sided ideal.

Example 5.2. Let V be an infinite dimensional vector space over a field k, R =
Endk(V ). This is a (left) primitive ring, but (0) is not maximal because

I = {endomorphisms with finite dimensional image}

is a nonzero proper ideal. Thus, in general, the concept of maximal ideals is different
from that of primitive ideals. They coincide for finitely generated algebras.

Theorem 5.3. J(R) = {x ∈ R | ∀a, b ∈ R, 1− axb has a 2-sided inverse}.



6 DAVE BENSON (NOTES BY KAY JIN LIM AND SEJONG PARK)

Proof. If x ∈ J(R), then 1−x is not in any maximal left ideal, so there exists t ∈ R
such that

t(1− x) = 1
Then 1 − t = −tx ∈ J(R) so t has a left inverse which must be 1 − x. Applying
this to axb ∈ J(R) instead of x, 1− axb has a 2-sided inverse.

Conversely, suppose ∀a, b ∈ R, 1−axb has a 2-sided inverse. If x 6∈ m a maximal
left ideal, then there exist a, b with b ∈ m such that

ax+ b = 1

but then 1− ax = b ∈ m does not have a 2-sided inverse, so x ∈ m. �

Corollary 5.4. J(R) =
⋂

maximal right ideals of R

Lemma 5.5 (Nakayama’s Lemma). If M is a finitely generated R-module and
J(R)M = M , then M = 0.

Proof. Let m1, . . . ,mn be generators of M with n minimal. Let

mn =
n∑

j=1

ajmj

with aj ∈ J(R), then (1− an)mn =
n−1∑
j=1

ajmj . But 1 − an has a 2-sided inverse

b ∈ R, then

mn = b(1− an)mn =
n−1∑
j=1

bajmj

So m1, . . . ,mn−1 generates M , a contradiction. �

Example 5.6. If S is a simple R-module, J(R)S = 0. Note that S is necessarily
finitely generated.

An R-module M is semisimple or completely reducible if

M =
⊕

possibly infinite

simples

We also have J(R)M = 0 in this case.

Proposition 5.7 (Properties of semisimple modules). (1) Every submodule of
a semisimple module is semisimple and is a direct summand.

(2) Every quotient of a semisimple module is semisimple.

Remark 5.8. In fact a module M is semisimple if and only if every submodule of M
is a direct summand. (For a proof, see Farb and Dennis, Noncommutative Algebra,
Exercise 17, p. 50.)

Theorem 5.9. Suppose that R satisfies descending chain condition on left ideals
(left Artinian), i.e., if

I1 ⊇ I2 ⊇ . . .
are left ideals of R, then there exists n such that for all m ≥ n, Im = In. Then the
following are equivalent:

(i) J(R) = 0
(ii) Every R-module is semisimple
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(iii) Every finitely generated R-module is semisimple.

Remark 5.10. Z, J(Z) = 0, but not all Z-module are semisimple.

Proof. Suppose J(R) = 0. Let M ⊆ RR be minimal such that intersection of a
finite set of maximal left ideals, we claim M is in every maximal left ideal, if not
we can intersect to get a smaller M . So M = (0) since J(R) = (0). Hence

(0) =
n⋂

i=1

mi

We have an injection

RR ↪→
n⊕

i=1

RR/mi =
n⊕

i=1

Si

so RR is semisimple. Note that we need the Artinian condition to have finite direct
sum, instead of infinite direct product.

Conversely, if RR is semisimple, then J(R) considered as a submodule of RR is
a direct summand

RR = J(R)⊕ RR/J(R)
apply J(R) to both sides J(R) = J(R)J(R) Since J(R) is a quotient of RR, it is
finitely generated so by Nakayama’s lemma J(R) = (0). �

6. Wedderburn Structure Theorem

In general, J(R/J(R)) = 0.

Theorem 6.1. Let R be a finite dimensional algebra over a field k and suppose
that J(R) = 0, then

R =
m∏

i=1

Matdi(∆i)

where ∆i is a division ring containing k in its centre and finite dimensional over
k.

Proof. Step 1: For any ring R, R ∼= EndR(RR)op given by r 7→ (x 7→ xr).

Step 2: RR =
n⊕

i=1

diSi since J(R) = 0, so RR is semisimple.

Step 3: Schur’s Lemma: EndR(Si) is a division ring ∆i
op.

Step 4: EndR

(
n⊕

i=1

M

)
= Matn(EndR(M))

EndR(RR) =
n∏

i=1

End(diSi)

=
n∏

i=1

Matdi(EndR(Si))

=
n∏

i=1

Matdi(∆i
op)

So R ∼=
n∏

i=1

Matdi
(∆i). �
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End(M1 ⊕M2) looks like(
End(M1) Hom(M1,M2)

Hom(M2,M1) End(M2)

)
Remark 6.2. (1) If k is algebraically closed, then each ∆i = k. For example,

CG is semisimple, so CG =
∏

Matni
(C)

CS3 = C× C×Mat2(C)

(2) If k = R, then ∆i
∼= R,C,H (Frobenius-Schur Indicator).

(3) If k is a finite field, another theorem of Wedderburn shows that each ∆i is
a finite field.

(4) |∆i : Z(∆i)| is a perfect square.
(5) Take G = Z/7 o Z/9 = 〈g, h | g7 = 1, h9 = 1, hgh−1 = g2〉 and let S

be a simple QG-module on which G acts faithfully. Then EndQG(S) is
9-dimensional over its centre.

7. Brauer Characters I

Let M be a CG-module. Then we have a class function

χM : {conjugacy classes of G} → C

given by g 7→ Tr(g,M).

Proposition 7.1 (Properties of ordinary characters). Let M , M ′ be CG-modules.
(1) χM⊕M ′ = χM + χM ′

(2) χM⊗M ′ = χMχM ′

(3) If χM = χM ′ , then M ∼= M ′.

Goal: Develop character theory for modular representations in such a way that
(1) and (2) hold and

(3)’ χM = χM ′ if and only if M and M ′ have the same composition factors with
the same multiplicities.

Problem: If M is a direct sum of p-copies of M ′, then ∀g ∈ G, Tr(g,M) =
pTr(g,M ′) = 0.

Theorem 7.2. Let k be algebraically closed of characteristic p, then the following
are equivalent:

(i) For any g ∈ G, Tr(g,M) = Tr(g,M ′).
(ii) For each simple kG-module S the multiplicity of S as a composition factor

of M and of M ′ are congruent modulo p.

Proof. For 0 // M1
// M2

// M3
// 0 , we have

M2 =
(
M1 ∗
0 M3

)
so Tr(g,M2) = Tr(g,M1) + Tr(g,M3), and if M,M ′ have the same composition
factors, then ∀g ∈ G,

Tr(g,M) = Tr(g,M ′)
Without lost of generality, suppose M,M ′ are semisimple. Since Tr(g, p ·S) = 0,

then (ii) implies (i).
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Conversely, if Tr(g,M) = Tr(g,M ′) for all g ∈ G, then Tr(x,M) = Tr(x,M ′) for
all x ∈ kG. Use Wedderburn structure theorem to find elements xi ∈ kG such that

Tr(xi, Sj) =
{

1 i = j
0 i 6= j

So Tr(xi,M) = number of copies of Si as a composition factor of M modulo p �

8. p-elements and p′-elements

A p-element is one whose order is pa for some a and a p′-element is one whose
order is prime to p.

Lemma 8.1. Given g ∈ G we can write g = xy = yx so that
(i) x an p-element.
(ii) y an p′-element.
(iii) every element of G that commutes with g commute with x, y.

The elements x, y are unique and called the p-part and p′-part of g, respectively.

Proof. If g has order n = pam with p - m, choose integers s, t such that spa+tm = 1,
then g = gtmgspa

. �

9. Jordan Canonical Forms

Let G be a finite group and let k be a field of characteristic p. If g ∈ G and
M is a finite dimensional kG-module, g induces a k-linear map on M which is
annihilated by the polynomial X |G| − 1 over k. Since X |G| − 1 = (X |G|p′ − 1)|G|p

and X |G|p′ − 1 is a product of linear factors in k[X], g has a Jordan canonical form
and every eigenvalue of g is a |G|p′ -th root of unity. For example, let

λ 1
λ 1

λ 1
λ


be a Jordan block of g. It is conjugate to

λ λ
λ λ

λ λ
λ


︸ ︷︷ ︸

g1

=


1 1

1 1
1 1

1


︸ ︷︷ ︸

x1


λ

λ
λ

λ


︸ ︷︷ ︸

y1

The matrix x1 is a p-element because it is the sum of the identity matrix I and a
nilpotent element u. That is, we have upn

= 0 for some n, and so xpn

1 = (I+u)pn

=
I + upn

= 0 because char k = p. The matrix y1 is a p′-element because λ must be
a root of X |G|p′ − 1. Also x1 and y1 commute with any matrix commuting with g1
because x1 is a scalar multiple of g1 and y1 is in the center of the matrix group.
Thus x1 is the p-part and y1 is the p′-part of g1. The upshot is that if g = xy is the
decomposition of g into its p-part x and p′-part y, then x has all diagonal entries in
the Jordan canonical form equal to 1 and yM is diagonalizable. Therefore we have

Tr(g,M) = Tr(y,M)

Tr(x,M) = dimk M
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10. Brauer Characters II

Let G be a finite group and let k be a field of characteristic p. Assume that k
has all |G|p′ -th roots of unity. These form a cyclic group of order |G|p′ -th under
multiplication. All eigenvalues of elements of G belong to this cyclic group. Choose
once and for all an isomorphism of cyclic groups

ψ : { |G|p′ -th roots of unity in k× } → { |G|p′ -th roots of unity in C× }.
If g is a p′-element of G and M is a finite dimensional kG-module, then

gM ∼

λ1

. . .
λd

 , d = dimk M.

Define χM (g) =
∑d

i=1 ψ(λi). Note that χM (g) is a cyclotomic integer. It gives a
map

χM : { conjugacy classes of p′-elements of G } → C

Theorem 10.1 (Brauer). For finite dimensional kG-modules M and M ′, the fol-
lowings are equivalent:

(1) χM = χM ′ .
(2) The multiplicities of each simple kG-module as composition factors of M

and M ′ are equal.

Proof. Without loss of generality, we may assume that M , M ′ are semisimple. (2)
⇒ (1) is obvious, so we’ll prove (1) ⇒ (2). Look at a counterexample of smallest
dimension. If M and M ′ have a composition factor in common, we can remove it
and get a smaller example. So assume that they don’t. If χM = χM ′ , by reducing
back to k we have Tr(g,M) = Tr(g,M ′) for all g ∈ G, so the multiplicities are
congruent modulo p. So all multiplicities are divisible by p. So we have M =
p.M1, M ′ = p.M ′1, and χM = pχM1 , χM ′ = pχM ′

1
. Hence M1, M ′1 give a smaller

counterexample. �

11. Choice of ψ and Brauer Character Table

Let G be a finite group with |G| = pam, p - m and let k be a field of characteristic
p. Suppose that k has all m-th roots of unity. Let C, Ĉ be the group of m-th roots
of unity in k, C, respective. Let K = Q[Ĉ]. Then we have

Gal(K/Q) ∼= Aut(Ĉ) ∼= Z/ϕ(m)

where ϕ denotes the Euler function.
Let OK be the ring of integers in K. Then OK = Z[Ĉ]. Note that OK is a

Dedekind domain; in particular, every prime ideal in OK is maximal. Choose a
prime ideal p of OK lying over p, i.e. p ∩ Z = pZ. Then

Proposition 11.1. OK/p is the smallest finite field containing the m-th roots of
unity: if pr is the smallest power of p such that m | pr − 1, then

OK/p ∼= Fpr ↪→ k

Ĉ + p ∼= C

and
Gal(Fpr/Fp) ∼= Stabilizer of p in Gal(K/Q) ∼= Z/r.
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Note that since (m, p) = 1, we have m | pϕ(m) − 1, and so r | ϕ(m).

Proof. Let ζ be a primitive m-th root of unity in C. Then OK/p is the extension
field of Fp generated by the image ζ + p. Since

Xm − 1
X − 1

= Xm−1 +Xm−2 + · · ·+ 1 =
m−1∏
j=1

(X − ζj),

setting X = 1, we see that 1 − ζj | m in OK for all j = 1, . . . ,m − 1. Now if
1− ζj ∈ p, then m ∈ p∩Z = pZ, contradicting (m, p) = 1. Thus ζ+p is a primitive
m-th root of unity, so OK/p ∼= Fpr and Ĉ + p ∼= C. �

The Brauer character table of G (modulo p) is a table whose rows and columns
are indexed by simple kG-modules S and conjugacy classes of p′-elements g of G,
respectively, and whose entries are the values of the Brauer characters χS(g).

Note that once fixing an isomorphism ψ : C → Ĉ, all other isomorphisms C → Ĉ

are obtained by applying elements of Gal(K/Q) to Ĉ. Rows of the Brauer character
table for G are the irreducible Brauer characters

χS , S a simple kG-module;

columns of the Brauer character table for G are the ring homomorphisms

χ−(g) : R(G)→ C, g a p′-element of G.

Proposition 11.2. (1) If we apply an element of Gal(K/Q) to a column of
the Brauer character table, we get another column.

(2) If we apply an element of the stablizer of p of Gal(K/Q) to a row of the
Brauer character table, we get another row.

Proof. (1) Let ζ be a primitive m-th root of unity in C. Then K = Q(ζ) and an
element σ of Gal(K/Q) sends ζ to ζt for some t such that (t,m) = 1. Then for
each p′-element g of G, we have χσ

−(g) = χ−(gt).
(2) σ stablizes p precisely when t is a power of p. Let S be a simple kG-module

with corresponding representation ρ : G→ GLn(k). Then Sσ is a kG-module with
corresponding representation

ρσ : G
ρ−→ GLn(k) → GLn(k)

g 7→ (λij(g)) 7→ (λij(g)t)

�

Therefore, the Brauer character table is determined by the choice of p up to
permutations of rows and columns.

Warning. If we apply an element of Gal(K/Q) which does not stablize p to a row
of the Brauer character table, we don’t necessarily get another row.

Example 11.3. Let p = 2, m = 7. 7-th roots of unity in k have two possible minimal
polynomials X3 +X2 + 1, X3 +X + 1. Let ζ be a 7-th root of unity in C. Then
there are two prime ideals in Z[ζ]

p1 = (2, ζ3 + ζ2 + 1), p2 = (2, ζ3 + ζ + 1)

lying over 2 such that
Z[ζ]/p1

∼= F8
∼= Z[ζ]/p2.
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12. Grothendieck Groups I

Given G and k as in the previous section, we form an abelian group R(G):
• generators: symbols of the form [M ] where M is an isomorphism class of

finite dimensional kG-modules
• relations: if 0 → M1 → M2 → M3 → 0 is a short exact sequence of
kG-modules, then

[M2] = [M1] + [M3]

Remark 12.1. We take equivalence relations over isomorphism classes of finite di-
mensional kG-modules rather than over all finite dimesional kG-modules because
all finite dimensional kG-modules does not form a set.

R(G) is a free abelian group with basis [Si], Si simple, by Jordan-Hölder theorem.
We make R(G) into a commutative ring by introducing the mulitplication

[M ][N ] = [M ⊗k N ]

where the kG-module structure of M ⊗k N is given by diagonal action of G. Note
that the multiplication is well defined because over a field k every module is flat; it is
commutative because the tensor product over k is commutative. The multiplicative
identity element of R(G) is [k] where k is the trivial kG-module.

Proposition 12.2 (Properties of Brauer characters). (1) If 0→M1 →M2 →
M3 → 0 is a short exact sequence of finite dimensinoal kG-modules, then
χM2 = χM1 + χM3 .

(2) χM⊗kN = χMχN .

Consequence: for every conjugacy class of p′-element g of G, the map

χ−(g) : R(G) → C
[M ] 7→ χM (g)

is a (well-defined) ring homomorphism.

Theorem 12.3. The product of these maps

R(G) →
∏

conj classes of
p′-elts g ∈ G

C

[M ] 7→ (g 7→ χM (g))

is injective.

Proof. If [M ]− [N ] and [M ′]− [N ′] go to the same place, then we have χM −χN =
χM ′ − χN ′ , so χM + χN ′ = χM ′ + χN . Then χM⊕N ′ = χM ′⊕N , so [M ⊕ N ′] =
[M ′ ⊕N ]. Thus [M ] + [N ′] = [M ′] + [N ], and hence [M ]− [N ] = [M ′]− [N ′]. �

13. Grothendieck Groups II

In this section, we show

Theorem 13.1. The map

C⊗Z R(G)
χ−→

∏
conj classes of

p′-elements of G

C

is an algebra isomorphism.

which yields immediately:
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Corollary 13.2. The number of simple kG-modules is equal to the number of
conjugacy classes of p′-elements of G.

The injectivity of the map follows from

Lemma 13.3. The irreducible Brauer characters χSi
are linearly independent

over C.

Proof. Let K ⊆ C be the field of |G|p′ -th roots of unity. Let O be the ring of
integers in K. Let p be a prime ideal in O containing (p). Op ⊆ K consists of the
fractions x

y with x, y ∈ O, y /∈ p. Pp, consisting of the fractions x
y with x, y ∈ O,

x ∈ p, y /∈ p, is the unique maximal ideal in Op and

Op/Pp
∼= O/p ↪→ k.

Moreover, Op is a PID. Write Pp = (π).
If there is a linear relation over C among the irreducible Brauer characters, then

there’s one over K, since all character values are in K. Clear denominators to get
a linear relation with coefficients in O. If all the coefficients of the linear relation
lie in p, divide by a suitable power of π so that they don’t. Now reduce mod Pp to
get a linear relation in k between the traces:∑

j

αiTr(x, Sj) = 0 ∀x ∈ kG.

By Wedderburn structure theorem, for each i there exists xi ∈ kG such that
Tr(xi, Sj) = δij . Therefore αi = 0 ∀ i. �

To prove the surjectivity, for each p′-element g of G, we’ll find elements of C⊗Z
R(G) such that χ−(g) sends it to 1 and χ−(h) sends it to 0 for all h �G g.

First consider the case G = 〈g〉, |g| = m, (m, p) = 1. The irreducible represen-
tations of G over k are of the form

g 7→ (ε), εm = 1 in k.

So the irreducible Brauer characters are of the form

χj(g) = e2πij/m

with corresponding simple kG-module Sj for j = 1, . . . ,m. Then

x =
1
m

m∑
j=1

e−2πij/m[Sj ] ∈ C⊗Z R(G)

has Brauer character

gt 7→ 1
m

m∑
j=1

e2πij(t−1)/m =

{
1, if gt = g

0, if gt 6= g

In the general case, we’ll take this Brauer character for some cyclic subgroup of
G and induce it up.

Proposition 13.4 (Brauer characters of induced modules). If H ≤ G and M is a
kH-module, then for g ∈ G,

χM↑G(g) =
∑

ccls of h ∈ H
s.t. h ∼G g

|CG(h) : CH(h)|χM (h).
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Proof. We have
M ↑G= kG⊗kH M =

⊕
gi∈G/H

gi ⊗M.

If g ∈ G, m ∈ M , then g(gi ⊗m) = gj ⊗ hm where ggi = gjh, h ∈ H. Thus the
matrix representing the action of g on M ↑G decomposes into blocks corresponding
to G-orbits of G/H, and the blocks corresponding to G-orbits of G/H of length
> 1 are of the form 

0 0 0 ∗
∗ 0 0 0
0 ∗ 0 0
0 0 ∗ 0

 ,

hence their eigenvalues are 0. On the other hand, if the singleton {gi} is a G-orbit
of G/H, then the corresponding block represents the action of g−1

i ggi ∈ H on M .
Thus

χM↑G(g) =
∑

g−1
i ggi∈H

χM (g−1
i ggi).

If h ∈ H, how many i satisfy g−1
i ggi ∼H h? Count the pairs

{ (i, h′) | (gih
′)−1g(gih

′) = h }

to get |CG(h)| = # i’s · |CH(h)|. Thus we get the desired equality. �

Now we finish off the proof of surjectivity. If H ≤ G, define

IndH,G : R(H) → R(G)
[M ] 7→ [kG⊗kH M ]

and extend linearly to get

IndH,G : C⊗Z R(H)→ C⊗Z R(G).

Given any p′-element g ∈ G, let H = 〈g〉 and take x ∈ C⊗Z R(H) such that

χx(gi) =

{
1, if gi = g;
0, if gi 6= g.

Then for g′ ∈ G,

χIndH,G(x)(g′) =
∑

ccls of h ∈ H
s.t. h ∼G g′

|CG(h) : CH(h)|χx(h)

=

{
|CG(g) : 〈g〉|, if g′ ∼G g;
0, if g′ �G g.

We give another corollary of Theorem 13.1:

Corollary 13.5. Every ring homomorphism R(G) → C is of the form χ−(g) for
some p′-element g ∈ G.

For this we need the following lemma.

Lemma 13.6. Let R be a commutative ring and let D be an integral domain. Then
every set of distinct ring homomorphisms R→ D is linearly independent over D.
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Proof. Suppose we have a linear relation of smallest size
n∑

i=1

αiϕi = 0 where ϕi : R→ D,αi ∈ D.

In particular αi 6= 0 for all i = 1, . . . , n. Choose x0 ∈ R such that ϕ1(x0) 6= ϕn(x0).
Then for all x ∈ R

n∑
i=1

αiϕi(x0x) =
n∑

i=1

αiϕi(x0)ϕi(x) = 0.

Also for all x ∈ R
n∑

i=1

αiϕn(x0)ϕi(x) = 0.

Subtract:
n−1∑
i=1

αi(ϕi(x0)− ϕn(x0))ϕi(x) = 0

for all x ∈ R. Since D is an integral domain, αi(ϕi(x0)−ϕn(x0)) 6= 0, a contradic-
tion. �

Proof of Corollary 13.5. Let ϕ : R(G)→ C be a ring homomorphism. Extend this
linearly to get an algebra homomorphism ϕ : C⊗Z R(G)→ C. Do the same thing
for χ−(g)’s. Theorem 13.1 and Lemma 13.6 show that the algebra homomorphisms
χ−(gi) where the gi are representatives of conjugacy classes of p′-elements of G form
a C-basis for the space of C-linear maps from C⊗ZR(G) to C. Now if ϕ 6= χ−(gi)
for all i, then by Lemma 13.6 ϕ, χ−(gi) are linearly independent, contradicting
Theorem 13.1. �

14. p-modular system

A discrete valuation ring (d.v.r.) is a principal ideal domain with a unique
nonzero maximal ideal.

If O is a d.v.r. with the maximal ideal p = (π), we can write any nonzero element
x as yπa for some a ∈ N, y a unit: if x ∈ p, we can do factorization x = y1π. Since
π is a prime and O a principal ideal domain, the factorization terminates. Define
vp(x) = a.

If K = fof(O) is the field of fraction of O, then for any x ∈ K, x = yπa with
a ∈ Z.

A p-modular system (K,O, k) consists of a d.v.r. O, K = fof(O) of characteristic
0 and k = O/p of characteristic p.

Remark 14.1. Every finitely generated torsion free O-module is free.

A p-modular system (K,O, k) is splitting for G if for any subgroup H ≤ G, we
have

(i) KH =
∏

Matdi(K)
(ii) kH/J(kH) =

∏
Matci

(k)

Example 14.2. Let K be an algebraic number field and O be the ring of integers in
K, then fof(O) = K. Since O is integral over Z, then there exists a prime ideal p
(and hence maximal) of O that lying above (p), i.e., p ∩ Z = (p). The localization
Op at p is a d.v.r. and hence (K,Op,O/p) is a p-modular system.
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Remark 14.3. If K contains |G|-th roots of unity, then (K,Op,O/p) is a splitting
p-modular system for G.

Remark 14.4. Later, we will want that O is complete, i.e.,

O −→ lim←−
n

O/pn

is an isomorphism.

15. Decomposition Numbers

Let (K,O, k) be a p-modular system.
Consider an irreducible representation V ofG overK. Choose aK-basis v1, . . . , vd

for V . Look at the O-span W of

{gvi | 1 ≤ i ≤ d, g ∈ G}

This is a finitely generated torsion free O-module and hence O-free on which G
acts: the O-span of W is a subset of V and fof(O) = K.

If w1, . . . , wn is an O-basis. Clearly, w1, . . . , wn span V : v1, . . . , vd ∈W . If there
is a linear relation between w1, . . . , wn over K, then clearing denominators, there
is one over O. So, there is no relation between w1, . . . , wn over K. So, w1, . . . , wn

is a K-basis for V and n = d.
Changing basis from the vi’s to wi’s, all the entries in the matrix representations

of G are in O, not just in K and we have

V = K ⊗O W

The set W is an O-form for the KG-module V .

Theorem 15.1. Assume (K,O, k) is a splitting p-modular system. If W,W ′ are
O-forms of V , then the kG-modules k⊗OW = W/pW and k⊗OW ′ have the same
Brauer character, hence the same composition factors.

Proof. The Brauer character of k⊗OW is just the values on the p′-elements of the
ordinary character of V . �

The decomposition matrix D has row indexed by the irreducible KG-modules,
columns indexed by the irreducible kG-modules. The entry dij tells you the follow-
ing: choose an O-form Wi for Vi and

dij = multiplicity of Sj as composition factors of k ⊗O Wi

Example 15.2. The ordinary character table for A5,

X =

1 2 3 5 5
1 1 1 1 1
3 −1 0 1+

√
5

2
1−
√

5
2

3 −1 0 1−
√

5
2

1+
√

5
2

4 0 1 −1 −1
5 1 −1 0 0
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and the modular character table for A5 when the characteristic of k is 2, we have

B =

1 3 5 5
1 1 1 1
2 −1 −1+

√
5

2
−1−

√
5

2

2 −1 −1−
√

5
2

−1+
√

5
2

4 1 −1 −1

The decomposition matrix D is

D =

1 2 2 4
1 1 0 0 0
3 1 1 0 0
3 1 0 1 0
4 0 0 0 1
5 1 1 1 0

If X2 is the 5× 4-matrix where the second column of X deleted, then we see that

DB = X2

The i-th row of D is interpreted as the composition factors of the irreducible kG-
module M/pM where M is the KG-module corresponding the i-th row of X.

16. Projective and Injective Modules

In this section, M is not necessary a finitely generated R-module assuming R is
a ring with 1.

An R-module P is projective if for every surjective homomorphism M ′ →M of
R-modules and homomorphism P → M , there exists a homomorphism P → M ′

making the triangle commutes

P

}}{
{

{
{

��
M ′ // M // 0

Theorem 16.1. The following are equivalent:
(i) P is projective.
(ii) Every surjective homomorphism M

α // P // 0 splits, i.e., there ex-
ists a homomorphism ε : P →M such that α ◦ ε = idP .

(iii) P is isomorphic to a direct summand of a free module.

An R-module I is injective if

0 // M //

��

M ′

}}{
{

{
{

I

Lemma 16.2. Let k be a field and G a finite group, then every kG-module embeds
into a free kG-module.
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Proof. Define φ : M → kG⊗k M = M ↓{1}↑G by

m 7→
∑
g∈G

g ⊗ g−1m

In this case, the action of G on kG⊗k M is g′(g ⊗m) = g′g ⊗m.
There is a vector space splitting ψ : kG⊗k M →M of φ where

ψ(g ⊗m) :=
{
m ; g = 1
0 ; g 6= 1

so φ is injective.
Let h ∈ G and m ∈M , then

φ(hm) =
∑
g∈G

g ⊗ g−1(hm)

=
∑
g′∈G

hg′ ⊗ (g′)−1m

= h

∑
g′∈G

g′ ⊗ (g′)−1m


= hφ(m)

where we have used g′ = h−1g (and hence (g′)−1 = g−1h, g = hg′). So φ is a
kG-homomorphism.

Since k is a field, then M ↓{1} is a free k-module and we can write M =
⊕
k.

So

kG⊗k M = M ↓{1}↑G

=
⊕

k{1} ↑G

=
⊕

kG

thus M is a free kG-module. �

Theorem 16.3. Let k be any field, G be a finite group M be a kG-module, then
the following are equivalent:

(i) M is projective.
(ii) M is injective.
(iii) (D. Higman’s criterion) there exists a k-linear map α : M →M such that∑

g∈G

gαg−1 = idM

Proof. (ii)⇒ (i): If M is injective, look at

0 // M
β // kG⊗k M

α

zzu
u

u
u

u

M

The splitting α of β shows that M is a summand of the free kG-module kG⊗k M ,
so M is projective.
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(iii)⇒(ii): The proof can be dualised to get (iii)⇒(i)). Consider the diagram

0 // M1
β //

α

��

M2

γ
}}z

z
z

z

M
g LL

Choose a k-linear map γ (not necessary a G-map) such that γβ = α and set

γ′ :=
∑
g∈G

g(θγ)g−1

This is a kG-module homomorphism:

γ′β =
∑
g∈G

g(θγ)g−1β

=
∑
g∈G

g(θγβ)g−1 β is a kG-module homomorphism

=
∑
g∈G

g(θα)g−1

=

∑
g∈G

gθg−1

α

= idMα = α

(i)⇒(iii): If M = kG, take

θ

∑
g∈G

αgg

 := α11G

So

∑
h∈G

hθh−1

∑
g∈G

αgg

 =
∑
h∈G

hθ

∑
g∈G

αgh
−1g


=

∑
h∈G

h(αh1G)

=
∑
h∈G

αhh

So
∑

h∈G hθh
−1 = idkG. If M =

⊕
kG, use this θ on each factor. If M is a

summand of a free module F , then define θM = πθF ι where

MθM 66

ι //
F

π
oo θFff
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We check that θM satisfies the desired property:∑
g∈G

g(θM )g−1 =
∑
g∈G

g(πθF ι)g−1

=
∑
g∈G

π(gθF g
−1)ι

= π

∑
g∈G

gθF g
−1

 ι

= πidF ι = idM �

17. Projective Indecomposable Modules and Idempotents

Theorem 17.1 (Krull-Schmidt Theorem). Let R be a finite dimensional k-algebra,
M be a finitely generated R-module and

M = M1 ⊕ . . .⊕Ms = M ′1 ⊕ . . .⊕M ′t
be two indecomposable decompositions of M , i..e, Mi’s and M ′i’s are all indecom-
posable R-modules, then s = t and after reordering if necessary, Mi

∼= M ′i for all
1 ≤ i ≤ s.

Remark 17.2. The theorem is also true for finitely generated OG-modules.

Warning. It is not true for finitely generated ZG-modules.

Corollary 17.3. If M is indecomposable and M is a summand of M1 ⊕ . . .⊕Ms,
then M is isomorphic to a summand of some Mi.

Corollary 17.4. Every finitely generated projective indecomposable R-module is
isomorphic to a summand of RR.

Write RR = P1 ⊕ . . . ⊕ Ps where Pi’s are projective indecomposable. Since
R ∼= End(RR)op, the endomorphism πi : RR // // Pi

� � //
RR projecting onto Pi

is a right multiplication by some ei ∈ R and hence Pi = Rei, then 1R = e1+. . .+es.
These are idempotents ei

2 = ei. Two idempotents ei, ej are orthogonal if eiej = 0 =
ejei, i 6= j. An idempotent e is primitive if e 6= 0 and we cannot write e = e′ + e′′

with e′ orthogonal to e′′ and both nonzero.
There is one-to-one correspondence between direct sum decomposition RR =

P1 ⊕ . . . ⊕ Ps with Pi’s indecomposable and the expression 1 = e1 + . . . + es with
ei’s primitive orthogonal idempotents.

Recall Wedderburn theorem:

R/J(R) ∼=
t∏

i=1

Matdi(∆i)

If Ti = Matdi(∆i), then

Ti
Ti =

⊕
columns

and these are simple and isomorphic to each other. Let eij be the (di × di)-matrix
with (j, j)-entry 1 and zero elsewhere. For the matrix ring Ti, we have

1Si
= ei1 + . . .+ eidi
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and hence

1R/J(R) = e11 + . . .+ e1d1 + e21 + . . .+ e2d2 + . . .+ et1 + . . .+ etdt

Let R× be the group of invertible elements in the ring R.

Lemma 17.5. If e, e′ are idempotents in R, then the following are equivalent:
(i) e is conjugate to e′ by an element of R×.
(ii) Re ∼= Re′ and R(1− e) ∼= R(1− e′).

Proof. If e ∼ e′, say eµ = µe′ with µ invertible, then Reµ = Rµe′ = Re′ gives
Re ∼= Re′. Similarly, (1− e)µ = µ(1− e′), so R(1− e) ∼= R(1− e′).

Conversely, suppose Re θ∼=−−→ Re′ and R(1−e) γ∼=−−→ R(1−e′) be the isomorphism.
Note that for any R-module M we have

HomR(Re,M) ∼=φ eM

where φ : β = β(e) as β(e) = eβ(e). Let µ1 ∈ eRe′ ∼= HomR(Re,Re′) corresponding
to the isomorphism θ; similarly, µ2 ∈ e′Re, µ3 ∈ (1 − e)R(1 − e′) and µ4 ∈ (1 −
e′)R(1− e) correspond to the isomorphisms θ−1, γ and γ−1 respectively. It is clear
that we have

µ1µ2 = e, µ2µ1 = e′ and µ3µ4 = 1− e, µ4µ3 = 1− e′

Also,
(µ1 + µ3)(µ2 + µ4) = e+ 0 + 0 + (1− e) = 1

and similarly, (µ2 +µ4)(µ1 +µ3) = 1, i.e., µ1 +µ3 ∈ R× with the two sided inverse
µ2 + µ4. Finally,

(µ2 + µ4)e(µ1 + µ3) = µ2eµ1 = µ2µ1 = e′ �

Remark 17.6. For the matrix ring, eir is conjugate to eis for any 1 ≤ r, s ≤ di.

Lemma 17.7. If R is a finite dimensional algebra, then J(R) is a nilpotent ideal.

Proof. Look at the descending chain of ideal J(R), J2(R), J3(R), . . ., so there exists
n > 0 such that Jn(R) = Jn+1(R) = J(R)Jn(R). By Nakayama’s lemma, Jn(R) =
0. �

Theorem 17.8 (Idempotent Refinement). Let R be a ring and N a nilpotent ideal
of R, we have

(i) if e is an idempotent in R/N , then there exists an idempotent f ∈ R such
that f +N = e.

(ii) if e ∼ e′ in R/N , then f ∼ f ′ in R.

Proof. (i): Without lost of generality, suppose N2 = 0: there is a lift at each stage
for the ring R/N2m

and the nilpotent ideal N2m−1
/N2m

; furthermore, R/N2n

= R
for some n. Choose a preimage x of e in R, i.e., x + N = e. Set f = 3x2 − 2x3,
then (3x2 − 23) +N = (3x− 2x) +N = x+N = e, i.e., f is another lift of e. Also,
since f − 1 = (x− 1)2(−2x− 1) and x(x− 1) +N = N , then

f2 − f = f(f − 1)
= x2(3− 2x)(x− 1)2(−2x− 1)

= (x(x− 1))2 (3− 2x)(−2x− 1) = 0

as N2 = 0.
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Comment on the choice of f : we want

f ≡ x mod (x2 − x) and f ≡ 0 mod (x− 1)2

then use Chinese Remainder theorem.
Comment: if R has characteristic p with p a prime, i.e., p · 1R = 0, then f = xp

will do:
f2 − f = x2p − xp = (x2 − x)p ∈ Np

(ii): Suppose we are given invertible µ ∈ R/N such that eµ = µe′. Let β be a
lift of µ to R and set

µ̂ = fβf ′ + (1− f)β(1− f ′)
Claim: µ̂ is invertible and fµ̂ = µ̂f ′. We compute fµ̂ = fβf ′ and µ̂f ′ = fβf ′

and hence they are equal. Let λ be any lift of µ−1 to R, i.e., 1 − µ̂λ ∈ N . So,
(1− µ̂λ)n = 0 for some n and hence

(1− (1− µ̂λ))(1 + (1− µ̂λ) + (1− µ̂λ)2 + . . .) = 1

So
µ̂ λ(1 + (1− µ̂λ) + (1− µ̂λ)2 + . . .)︸ ︷︷ ︸

right inverse for µ̂

= 1

Similarly, it is a left inverse of µ̂. �

Remark 17.9. An idempotent in R which lifts any primitive idempotent in R/N is
again primitive.

Theorem 17.10 (Idempotent Refinement (full version)). Let N be a nilpotent ideal
of R and 1 = e1 + . . .+ es be a decomposition of 1 into orthogonal idempotents in
R/N , then there is a decomposition 1 = f1 + . . .+fs of 1 in orthogonal idempotents
in R such that fi +N = ei for all 1 ≤ i ≤ s.

Proof. We inductively define idempotents f ′i in R lifting ei + . . . + es and then
will set fi = f ′i − f ′i+1. Let f ′1 = 1R and suppose f ′i is an idempotent in R lifting
ei + . . .+ es. �

Now we restrict our attention to a finite dimensional algebra R over some field
k. Recall that, for a finitely generated R-module M ,

RadM = the intersection of all maximal submodules of M
= the smallest submodule of M with semisimple quotient

= J(R)M

and

SocM = the sum of all simple submodules of M
= the largest semisimple submodule of M

= {m ∈M | J(R)m = 0 }
By Wedderburn structure theorem, we have

R/J(R) ∼=
s∏

i=1

Matdi
(∆i),

so we have a primitive orthogonal idempotent decomposition

1R/J(R) = e11 + · · ·+ e1d1︸ ︷︷ ︸+ · · ·+ es1 + · · ·+ esds︸ ︷︷ ︸
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where eij is the matrix in Matdi
(∆i) whose only nonzero entry is the (j, j)-entry 1.

Moreover, idempotents in each brace form a conjugacy class of idempotents. Lifting
to R, we get a primitive orthogonal idempotent decomposition

1R = e11 + · · ·+ e1d1︸ ︷︷ ︸+ · · ·+ es1 + · · ·+ esds︸ ︷︷ ︸
where idempotents in each brace form a conjugacy class of idempotents. Thus we
get a decomposition into projective indecomposable R-modules

RR = Re11 ⊕ · · · ⊕Re1d1︸ ︷︷ ︸⊕ · · · ⊕Res1 ⊕ · · · ⊕Resds︸ ︷︷ ︸
where projective indecomposables in each brace form an isomorphism class of mod-
ules. Moreover, for each i, j,

Reij/Rad(Reij) = Reij/J(R)eij = (R/J(R))eij
∼= Si

where Si is a simple R-module. Write PSi
= Pi for a module isomorphic to Reij

for some j.
Consequence: There are s isomorphism classes of projective indecomposable R-

modules Pi (i = 1, · · · , s) and each Pi has a unique maximal submodule J(R)Pi.
We say that Pi is the projective cover of Si. In general, if M is any finitely

generated R-module, we have M/Rad(M) = M/J(R)M ∼=
⊕

i Si. Then by the
projectivity of

⊕
i Pi we get the following commutative diagram of R-modules⊕

i Pi

zzt
t

t
t

t

��
M // M/Rad(M) // 0

The map
⊕

i Pi → M is surjective because it is surjective modulo Rad(M): de-
noting the image of

⊕
i Pi in M by N , we have N + J(R)M = M , which implies

N = M by Nakayama’s lemma. It induces an isomorphism⊕
i

Pi/Rad(
⊕

i

Pi) ∼= M/Rad(M).

We say that
⊕

i Pi is the projective cover of M . The kernel of the map
⊕

i Pi →M
is written Ω(M):

0→ Ω(M)→
⊕

i

Pi →M → 0.

On the other hand, injective modules are vector space duals of projective mod-
ules.

Duality: If M is a left R-module, then

M∗ = Homk(M,k)

is a right R-module via (fr)(m) = f(rm) for f ∈ M∗, r ∈ R, m ∈ M . Similarly,
if M is a right R-module, then M∗ is a left R-module. Since Homk(−, k) is an
exact functor from the category of finitely generated left(right) R-modules to the
category of finitely generated right(left) R-modules, we have

M f.g. proj. left(right) R-module ⇔ M f.g. inj. right(left) R-module
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Note that, if R = kG for some finite group G, a left R-module M can be made into
a right R-module via

mg = g−1m, g ∈ G,m ∈M.

Consequence: If I is an injective indecomposable R-module, then I has a unique
minimal(i.e. simple) submodule.

Write ISi = Ii for the injective indecomposable R-module that has Si as a unique
simple submodule; that is, Soc(Ii) ∼= Si. Ii is called the injective hull of Si. In
general, if M is any finitely generated R-module, we have Soc(M) ∼=

⊕
i Si. Then

by the injectivity of
⊕

i Ii we get the following commutative diagram of R-modules

0 // Soc(M) //

��

M

{{x
x

x
x

x

⊕
i Ii

The map M →
⊕

i Ii is injective because it is injective on Soc(M): if its kernel
K is nontrivial, then the intersection K ∩ Soc(M) is nontrivial, contradicting the
injectivity of Soc(M)→

⊕
i Ii. It induces an isomorphism

Soc(M) ∼= Soc(
⊕

i

Ii).

We say that Ii is the injective hull of M . The cokernel of the map M →
⊕

i Ii is
written Ω−1(M):

0→M →
⊕

i

Ii → Ω−1(M)→ 0.

Remark 17.11. Ω and Ω−1 are not inverse to each other on the category of finitely
generated R-modules.

Theorem 17.12. Let G be a finite group and let k be a field. If P is a projective
indecomposable kG-module, then P/Rad(P ) ∼= Soc(P ).

Proof. We have P = kGe for some primitive idempotent e of kG. Let 0 6= x ∈
Soc(P ), x =

∑
g∈G αgg. There exists h ∈ G such that αh 6= 0. Set y = h−1x =∑

g∈G βgg. Then β1 6= 0. Since y = ye has nonzero coefficient for 1G, so ey has
nonzero coefficient for 1G. In particular, ey 6= 0, so eSoc(P ) 6= 0. Thus

HomkG(P,Soc(P )) = HomkG(kGe,Soc(P )) ∼= eSoc(P ) 6= 0.

Recall that P is also an injective indecomposable kG-module, so Soc(P ) is a simple
kG-module. It follows that P/Rad(P ) ∼= Soc(P ). �

Remark 17.13. This is a special property of symmetric algebras.

Lemma 17.14. Let R be a finite dimensional algebra over a field k. Assume that
k be a splitting field for R. Then, for a finitely generated R-module M , we have

dimk HomR(PS ,M) = multiplicity of S as a comp. factor of M

Proof. Induction on composition length of M . If M is simple, this is true because
k is a splitting field. If M is not simple, choose a maximal submodule M ′ of M :

0→M ′ →M →M ′′ → 0.
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Since PS is projective, HomR(PS ,−) is an exact functor, inducing

0→ HomR(PS ,M
′′)→ HomR(PS ,M)→ HomR(PS ,M

′)→ 0.

Dimensions add and number of compostion factors add, so we’re done. �

18. The Cartan Matrix

Let G be a finite group and let k be a field of characteristic p. We use the
notation in the previous section: simple kG-modules are denoted by Si and their
projective covers by PSi

. Define

cij = multiplicity of Si in PSj
.

The matrix (cij) is called the Cartan matrix. We will show:

Theorem 18.1. (1) If k is a splitting field for G, then cij = cji.
(2) If (K,O, k) is a splitting p-modular system for G, then cij =

∑
l dlidlj.

(3) det(cij) is a power of p; in particular it is nonzero.

We will prove (2) in this section; (1) follows immediately from (2). (3) will be
proven later using the psi operator.

Lifting to char 0: Let O be a complete DVR with unique maximal ideal p such
that O/p ∼= k. Then we have

(∗) OG = lim←−
n

OG/pnOG.

Since the canonical surjection

OG/p2OG � OG/pOG = kG

has kernel pOG/p2OG which squares to zero, a primitive orthogonal decomposition

1 = e1 + · · ·+ es

in kG lifts to a primitive orthogonal decomposition

1 = e21 + · · ·+ e2s

in OG/p2OG. Similarly, through the canonical surjection

OG/p3OG � OG/p2OG

we get a lift
1 = e31 + · · ·+ e3s

in OG/p3OG of 1 = e21 + · · · + e2s. Continuing this way, we get a primitive
orthogonal decomposition

1 = en1 + · · ·+ ens

in OG/pnOG such that enj + pn−1 = en−1,j for every n and j. By (∗), we get
elements ej ∈ OG such that ej + pn = enj for every n. e2j defines the same inverse
system of elements as ej does, so e2j = ej . By similar argument one can show that

1 = e1 + · · ·+ es

is a primitive orthogonal decomposition of in OG. In summary, we have the fol-
lowing theorem:
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Theorem 18.2. If 1 = e1+· · ·+es is a decomposition of 1 into primitive orthogonal
idempotents in kG, then we can lift to

1 = e1 + · · ·+ es in OG.
Moreover, given another lift 1 = e′1 + · · ·+ e′s in OG, we have e′i ∼ ei ∀i.

It follows that the decomposition of kG into projective indecomposables

kG = PS1 ⊕ · · · ⊕ PS1︸ ︷︷ ︸
d1

⊕ · · · ⊕ PSn
⊕ · · · ⊕ PSn︸ ︷︷ ︸

dn

lifts to the decomposition of OG into projective indecomposables

OG = P̂S1 ⊕ · · · ⊕ P̂S1︸ ︷︷ ︸
d1

⊕ · · · ⊕ P̂Sn ⊕ · · · ⊕ P̂Sn︸ ︷︷ ︸
dn

.

Now let us prove part (2) of Theorem 18.1. Let (K,O, k) be a splitting p-modular
system for G and denote the simple KG-modules by Vi and their O-forms by Wi.
What is the multiplicity of Vi as a composition factor of K ⊗O P̂Sj

? We have

multiplicity of Vi as a comp. factor of K ⊗O P̂Sj

= dimK HomKG(K ⊗O P̂Sj
, Vi)

= dimK HomKG(K ⊗O P̂Sj ,K ⊗O Wi)

= dimK K ⊗O HomOG(P̂Sj
,Wi)(1)

= rankOHomOG(P̂Sj ,Wi)

= dimk HomkG(PSj , k ⊗O Wi)(2)
= multiplicity of Sj as a comp. factor of k ⊗O Wi

= dij .

(1): Since O is a PID, P̂Sj
, Wi, and HomOG(P̂Sj

,Wi) are all O-free. Moreover,
given any KG-homomorphism K⊗O P̂Sj

→ K⊗OWi, some nonzero multiple sends
P̂Sj into Wi by finite generation. Thus the map

K ⊗O HomOG(P̂Sj
,Wi) → HomKG(K ⊗O P̂Sj

,K ⊗O Wi)
λ⊗ ϕ → λϕ

is an isomorphism.
(2): Taking k ⊗O − induces the map

HomOG(P̂Sj ,Wi)→ HomkG(PSj , k ⊗O Wi)

which is surjective because P̂Sj
is projective, and has kernel pHomOG(P̂Sj

,Wi).
Hence

cij = dimk HomkG(PSi
, PSj

)

= rankOHomOG(P̂Si
, P̂Sj

)

= dimK HomKG(K ⊗O P̂Si ,K ⊗O P̂Sj )

=
∑

l

dlidlj .

Example 18.3. G = A5, p = 2: K ⊗O P̂k = 1⊕ 3⊕ 3′ ⊕ 5.
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19. Blocks

Let G be a finite group and R any commutative ring. Then the center Z(RG)
of RG is the free R-module with basis the conjugacy class sums in G: if

∑
αgg ∈

Z(RG), then whenever g ∼ g′, αg = αg′ . Consequently, the ring homomorphism

Z(OG)→ Z(kG)

induced by the canonical surjection O → k is surjective.
If R is a ring, a central idempotent in R is an idempotent in Z(R). A centrally

primitive idempotent is an idempotent in Z(R) that is primitive in Z(R). A block
of R is an indecomposable two sided ideal direct factor of R.

By Krull-Schmidt Theorem, if R is a finite dimensional algebra, we can write R
as a product of blocks

R = B1 × . . .×Bs

Such a decomposition corresponds to an expression

1 = e1 + . . .+ es

where the ei’s are orthogonal, centrally primitive idempotents in R: note that
Bi = eiR. Those ei’s lie inside the center Z(R): for any x ∈ R, as eixej ∈ Bi, Bj ,
then

eix = ei(xe1 + . . .+ xes)
= eixei

= (e1x+ . . .+ xsx)ei

= xei

If also 1 = e′1 + . . . + e′t where e′i’s orthogonal, centrally primitive idempotents,
then

ei = ei · 1 = eie
′
1 + . . .+ eie

′
t

where each eie
′
j is orthogonal, centrally idempotent in Z(R):

(eie
′
j)(eie

′
l) = eie

′
jeie

′
l = ei

2e′je
′
l =

{
eie
′
j ; j = l

0 ; j 6= l

Since ei is primitive, there exists a unique j such that ei = eie
′
j = e′j where the

second equality follows from the same reason. So s = t and after reordering, we
have ei = e′i.

If M is any R-module, then M = e1M ⊕ . . .⊕ esM as submodules of M . If M
is indecomposable, then there exists a unique i such that M = eiM and ejM = 0
if j 6= i. We say M “lies in the block Bi”. In particular, each simple module lies in
some block.

In case R = kG, we can refine 1 = e1 + . . .+ es in Z(kG) to 1 = ê1 + . . .+ ês in
Z(OG). So indecomposable OG-modules also lie in blocks.

If V is an irreducible KG-module, choose an O-form M of V , then there exists
a unique i such that êiM 6= 0. Since OG ⊆ KG we can think of êi as lying in KG,
then êiV 6= 0 and êjV = 0 for j 6= i.

Remark 19.1. We can think of a block as a big bucket into which we put:
(i) indecomposable kG-modules
(ii) indecomposable OG-modules
(iii) simple KG-modules
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Let Vi be a simple KG-module and Sj a simple kG-module, if Vi lies in a different
block to Sj , then dij = 0 where dij is the corresponding entry in the decomposition
matrix.

If e is the block idempotent for Vi, then

êiVi = Vi, êiMi = Mi, e(k ⊗O Mi) = k ⊗O Mi

where Mi is an O-form of Vi.

Lemma 19.2. If R is a commutative finite dimensional algebra, then R is a product
of local rings.

Proof. By Wedderburn structure theorem, R/J(R) is a product of Matdi(∆i). Since
R is commutative, then each Matdi

(∆i) is a field, i.e., R/J(R) = k1× . . .× ks. We
have 1 = e1 + . . .+ es. As J(R) is a nilpotent ideal, use idempotent refinement in
R, then 1 = e1 + . . .+ es in R. So R = R1 × . . .×Rs where Ri = eiR. Also,

Ri/J(Ri) = eiR/eiJ(R) ∼= ei (R/J(R)) = ki

so Ri is local (J(Ri) is the maximal ideal of Ri). �

If R is a commutative finite dimensional k-algebra such that k is a splitting field,
i.e., R/J(R) =

∏
Matdi(k), then

R/J(R) =
∏

k

So we have k-algebra homomorphisms λi : R→ k.
If R is a finite dimensional algebra, a central character of R is a ring homomor-

phism Z(R)→ k.

Example 19.3. Let R be a finite dimensional k-algebra and S be a simple R-module
such that EndR(S) = k (for instance, k is a splitting field for R), then each element
z ∈ Z(R) acts on S by some scalar λS(z) and this gives a central character of R.

Theorem 19.4. If k is a splitting field for R, then k is a splitting field for Z(R).

Proof. Without lost of generality, we assume R is indecomposable: if R decomposes
into indecomposable R1× . . .×Rs, then k is a splitting field for each Ri, then since
we have k is a splitting for Z(Ri), then k is also a splitting field for

Z(R) = Z(R1)× . . .× Z(Rs)

Let S be a simple R-module. Since k is a splitting field for R, we have EndR(S) = k.
So by the above example we obtain a central character Z(R)→ k. �

Example 19.5. Let K be a splitting field for KG, we construct a central character
of KG with respect to a simple KG-module. Let Ĉi =

∑
g∈Ci

g, we can calculate
Tr(Ĉi, V ) in two ways:

• if Ĉi acts via multiplication by λ ∈ K, then Tr(Ĉi, V ) = λ dimk V .
• since χV (g) = χV (h) if g ∼ h, then Tr(Ĉi, V ) = |Ci|χV (g) = |G : CG(g)|χV (g)

for some g ∈ Ci.
So λ = |G : CG(g)|χV (g)/dimk V and we have the central character λV : Z(KG)→
K defined by

λV : Ĉi 7−→
|G : CG(g)|χV (g)

dimk V
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Theorem 19.6. The numbers λV

(
Ĉ
)

are algebraic integers.

Proof. Note that Z(ZG) has a Z-basis consisting of the class sums Ĉi. Suppose

ĈiĈj =
∑

k

aijkĈk

with aijk ∈ Z. As λV is a ring homomorphism, then

λV

(
Ĉi
)
λV

(
Ĉj
)

=
∑

k

aijkλV

(
Ĉk
)

So the image of λV : Z(ZG) → K is a subring of K which is finitely generated
abelian group.

Since α = λV

(
Ĉ
)

is in the image of this map, look at the chain of subgroups

〈1〉 ⊆ 〈1, α〉 ⊆ 〈1, α, α2〉 ⊆ . . .
which eventually terminates and so α ∈ 〈1, α, . . . , αn−1〉 for some n ∈ N. Thus
αn + an−1α

n−1 + . . .+ a0 = 0 with ai ∈ Z. �

Recall: Let (K,O, k) be a p-modular system, then all the algebraic integers in K
lie in O. So indeed, we get a ring homomorphism

λV : Z(OG)→ O

Reducing mod p, we get λV : Z(kG) → k: if ai ∈ p, then
∑
aiλV

(
Ĉi
)
∈ p and so

λV is well-defined.
If V is in block B with block idempotent e ∈ Z(kG), ê ∈ Z(OG), ê acts as

identity on V , i..e, λV (ê) = 1, then λV (e) = 1. If M is an O-form of V , then every
simple composition factor of k ⊗O M say S satisfying λS = λV .

Theorem 19.7. Let V, V ′ be irreducible KG-modules, then V and V ′ are in the
same block if and only if λV ≡ λV ′ mod p, i.e., λV = λV ′ , i.e., for each g ∈ G, we
have

|G : CG(g)|χV (g)
dimK V

≡ |G : CG(g)|χV ′(g)
dimK V ′

Example 19.8. We give an example of the previous theorem which G = A5. Note
that there are 5 conjugacy classes inA5, i.e., represented by g1 = 1, g2 = (12)(34), g3 =
(123), g4 = (12345) and g5 = (12354) respectively. It is not hard to compute the
cardinality of each conjugacy class

g1 g2 g3 g4 g5
|A5 : CA5(gi)| 1 15 20 12 12

Let V1, . . . , V5 be representatives of the classes of non-isomorphic simple KG-
modules as in Example 15.2, we construct the following table such that its (i, j)-
entry is λVi

(
ĈG(gj)

)
= |G : CG(gj)|χVi(gj)/dimK Vi

dimK Vi g1 g2 g3 g4 g5
V1 1 1 15 20 12 12
V2 3 1 −5 0 2(1 +

√
5) 2(1−

√
5)

V3 3 1 −5 0 2(1−
√

5) 2(1 +
√

5)
V4 4 1 0 5 −3 −3
V5 5 1 3 −4 0 0
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For different primes p, Vi’s are classified into blocks, for example:
(i) if p = 2, then V1, V2, V3, V5 |V4.
(ii) if p = 3, then V1, V4, V5 |V2 |V3.
(iii) if p = 5, then V1, V2, V3, V4 |V5.

Remark 19.9. Note that the function λV is independent of the prime ideal p chosen,
see Theorem 15.18 [I].

Note that V, V ′ reduced modulo p have a common composition factor if and only
if V, V ′ are in the same block.

20. Defect Groups

If C is a conjugacy class in G, then a defect group of C is a Sylow p-subgroup of
CG(g) for some g ∈ C. This defines a conjugacy class of p-subgroups associate with
C. If P is a p-subgroup of G, we say C is P -defective if P centralises some element
of C.
Lemma 20.1. Suppose ĈiĈj =

∑
aijkĈk in Z(ZG). Fix i, j, k, if aijk 6≡ 0 mod p

and Ck is P -defective, then so are Ci and Cj.
Proof. Choose z ∈ Ck commuting with P and look at the set

Ω = {(x, y) ∈ Ci × Cj |xy = z}
This set has aijk elements. Let P act by conjugation on this set, i.e., g(x, y) =
(gxg−1, gyg−1) for all g ∈ P and (x, y) ∈ Ω. Since p - aijk and aijk is the sum of
the cardinalities of the P -orbits of Ω, which are divisible by p if it is not 1, there
exists a fixed point (x, y) ∈ Ci×Cj , i.e., gxg−1 = x and gyg−1 = y. So both Ci and
Cj are P -defective. �

If P is a p-subgroup of G, let Z(OG)P be the set consisting of all sums
∑
aiĈi

such that ai ∈ O and if a defect group of Ci is not conjugate to a subgroup of P ,
then ai ∈ p. Note that if P ≤G P ′, namely if P is G-conjugate to a subgroup of
P ′, then Z(OG)P ⊆ Z(OG)P ′ .

Lemma 20.2. Z(OG)P is an ideal of Z(OG).

This is a consequence of the following proposition.

Proposition 20.3. If P1, P2 are p-subgroups of a group G, then

Z(OG)P1Z(OG)P2 ⊆
∑

P≤GP1
P≤GP2

Z(OG)P .

Proof. Let I denote the right hand side. Since pZ(OG) ⊆ Z(OG)P for any p-
subgroup P of G, it suffices to show that whenever Ci is a conjugacy class whose
defect group is conjugate to a subgroup of P1 and Cj is a conjugacy class whose
defect group is conjugate to a subgroup of P2, ĈiĈi is contained in I. Write

ĈiĈj =
∑

k

aijkĈk.

If aijk ≡ 0 mod p, then aijkCk ∈ pZ(OG) ⊆ I. If aijk 6≡ 0 mod p, let P be a
defect group of Ck. Clearly Ck ∈ Z(OG)P ; by Lemma 20.1, both Ci and Cj are
P -defective, and hence P ≤G P1, P ≤G P2. So Ck ∈ I. Therefore ĈiĈi ∈ I, as
desired. �



MODULAR REPRESENTATION THEORY AUTUMN SESSION 2007, ABERDEEN 31

Proof of Lemma 20.2. If P is a Sylow p-subgroup of G, then Z(OG)P = Z(OG).
Now apply Proposition 20.3 with P1 or P2 a Sylow p-subgroup of G. �

If e is a block idempotent in Z(OG), then a defect group of e is the minimal
p-subgrop P of G such that e ∈ Z(OG)P .

Lemma 20.4. The defect groups of a block are all conjugate

To prove this lemma, we need:

Lemma 20.5 (Rosenberg’s Lemma). Let R be a ring and e an idempotent of R
such that eRe has a unique maximal 2-sided ideal. (e.g. R = Z(OG), e a block
idempotent) If e ∈

∑
α Iα where the Iα are ideals of R, then there exists an α such

that e ∈ Iα.

Proof. Since e is an idempotent, e ∈
∑

α eIαe. eRe has a unique maximal 2-sided
ideal, so not all the eIαe can be in it. So there exists an α such that eIαe = eRe.
So e ∈ Iα. �

Proof of Lemma 20.4. If e ∈ Z(OG)P1 , e ∈ Z(OG)P2 , then by Proposition 20.3,

e = e2 ∈
∑

P≤GP1
P≤GP2

Z(OG)P .

So by Rosenberg’s lemma, there exists a p-subgroup P of G such that P ≤G P1,
P ≤G P2, and e ∈ Z(OG)P . If P1, P2 are minimal, then P1 ∼G P ∼G P2. �

21. The Transfer Map

Let G act by conjugation on OG. The fixed points are (OG)G = Z(OG). If
H ≤ G, then (OG)H has an O-basis consisting of the H-conjugacy class sums in
G. (x ∼H y iff ∃ h ∈ H s.t. hxh−1 = y) If x ∈ ((OG)H , we define

TrH,G(x) =
∑

g∈G/H

gxg−1

where G/H denotes a set of representatives of left cosets ofH in G; it is independent
of the choice of left coset representatives because x is H-invariant. Let

(OG)G
H = Im(TrH,G : (OG)H → (OG)G).

Lemma 21.1. (OG)G
H is an ideal in Z(OG).

Proof. If x ∈ (OG)H , y ∈ (OG)G, then TrH,G(x)y = TrH,G(xy). �

Lemma 21.2. If P is a Sylow p-subgroup of H, then (OG)G
H = (OG)G

P .

Proof. If x ∈ (OG)H , then x = TrP,H

(
1

|H:P |x
)
, so

TrH,G(x) = TrH,GTrP,H

(
1

|H : P |
x

)
= TrP,G

(
1

|H : P |
x

)
.

�

Theorem 21.3. If P is a p-subgroup of G, then Z(OG)P = (OG)G
P + pZ(OG).
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Proof. Take a P -conjugacy class sum in G and transfer to G. If g is an element of
the P -conjugacy class,

TrP,G

 ∑
x∈P/CP (g)

xgx−1

 =
∑

x∈G/CP (g)

xgx−1 = |CG(g) : CP (g)|Ĉg

where Cg denotes the G-conjugacy class containing g. Now |CG(g) : CP (g)| is not
divisible by p iff CP (g) is a defect group of Cg iff P contains a defect group of Cg. �

Theorem 21.4. If e is a primitive idempotent in Z(OG) with defect group D, then

e ∈ (OG)G
D

i.e. ∃ x ∈ (OG)D s.t.
∑

g∈G/D gxg−1 = e.

Proof. This follows from Theorem 21.3 and Rosenberg’s lemma. �

Corollary 21.5. If M is an indecomposable OG-module in a block with defect
group D, then ∃ θ ∈ EndOD(M) s.t.∑

g∈G/D

gθg−1 = idM .

Proof. Let e be the block idempotent. By Theorem 21.4, we have∑
g∈G/D

gxg−1 = e.

for some x ∈ (OG)D. Now e acts on M as the identity map and x acts on M as an
OD-module endomorphism θ. �

22. Relative Projectivity

Let R be any commutative ring. Let H ≤ G and M an RG-module. We say
that M is relatively H-projective if

M

}}z
z

z
z

��
M1

// M2
// 0

whenever the dotted arrow exists as an RH-module homomorphism making the
diagram commute, then it also exists as an RG-module homomorphism. Dually,
M is relatively H-injective if

0 // M1
//

��

M2

}}z
z

z
z

M

whenever the dotted arrow exists as an RH-module homomorphism making the
diagram commute, then it also exists as an RG-module homomorphism.

We have a relative version of Theorem 16.3:

Theorem 22.1. Let H ≤ G and M an RG-module. Then the followings are
equivalent:

(1) M is relatively H-projective;
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(2) M is relatively H-injective;
(3) ∃ θ ∈ EndRH(M) s.t.

∑
g∈G/H gθg−1 = idM ; (D.Higman’s criterion)

(4) M is isomorphic to a direct summand of M ′ ↑G for some RH-module M ′;
(5) M is isomorphic to a direct summand of M ↓H↑G;
(6) The natural surjetive RG-module homomorphism

M ↓H↑G � M
g ⊗m 7→ gm

splits;
(7) The natural injective RG-module homomorphism

M ↪→ M ↓H↑G
m 7→

∑
g∈G/H g ⊗ g−1m

splits;

Proof. Clearly (6), (7)⇒ (5)⇒ (4).
(1)⇒ (6): The map in (6) has a H-splitting map

M ↪→ M ↓H↑G
m 7→ 1⊗m

(2)⇒ (7): The map in (7) has a H-splitting map

M ↓H↑G � M

g ⊗m 7→

{
gm, if g ∈ H;
0, otherwise.

(3)⇒ (1): Consider the diagram

M
ρ

}}z
z

z
z

γ

��

θ

ss

M1
α // M2

// 0

where ρ is an RH-module homomorphism such that γ = αρ. Set

ρ′ =
∑

g∈G/H

gρθg−1.

Then ρ′ is an RG-module homomorphism and αρ′ = γ.
(3)⇒ (2): Similar.
(4)⇒ (3): If M = M ′ ↑G, define θ′ ∈ EndRH(M) by

θ′(g ⊗m) =

{
gm, if g ∈ H;
0, otherwise.

If M |M ′ ↑G,

θ : M ↪→M ′ ↑G θ′−→M ′ ↑G� M

does the work. �

Consequence: If B is a block of OG with defect group D and block idempotent
e, and if M is an OG-module such that e.M = M , then M is a direct summand of
a module induced from D.
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23. Blocks of Defect Zero

If B is a block with defect group D and |D| = pa, then we say that B is a block
of defect a.

Suppose that B is a block of defect zero, i.e. D = {1}. Look at kG-modules
in B; an induced kG-module from {1} is a free module, so every kG-module in
B is projective. An easy inductive argument shows that every finitely generated
kG-module in B is semisimple. So J(e.kG) = 0. By Wedderburn structure theorem

e.kG ∼=
∏

i

Matni
(∆i).

Since e.kG is indecomposable as an algebra,

e.kG ∼= Matn(∆).

Consequently, there’s only one isomorphism class of simple kG-module S and S is
projective.

Since S is a projective kG-module, the idempotent refinement theorem shows:
this lifts uniquely (up to isomorphism) to a projective OG-module Ŝ. Then K⊗O Ŝ
is a simple KG-module. Since the column of the decomposition matrix tells us the
composition factor of K ⊗O Ŝ, it follows that the decomposition matrix is

(1).

The Cartan matrix is also
(1).

Theorem 23.1. If B is a block of defect zero, then the simple modules in B has
dimension divisible by the p-part |G|p of |G|.

Proof. Let P be a Sylow p-subgroup of G and look at S ↓P . This is a projective
kP -module since S is a projective kG-module. We claim that the only projective
indecomposable kP -module is kP itself. So, S ↓P is a direct sum of copies of kP
and we get |P | divides dimk S. �

Lemma 23.2. kP has only one simple module, i.e., the trivial module k.

Proof. Let S be a simple kP -module. We claim that P has a nonzero fixed point
in S.

Choose 0 6= x ∈ S and look at the abelian group additively generated by {gx | g ∈
P}. This is a finite p-group with a P -action. The identity element 0 is fixed, and
the remaining orbits have length 1 or divisible by p. So there is a nonzero fixed
point. The abelian group additively generated by the fixed points form a submodule
of S which is nonzero and has trivial P -action, hence S is the submodule. �

Decomposition matrix D for kP has only one column with each entry dimV
corresponding to the simple KP -module V : let W be an O-form for V , the com-
position factors for k ⊗O W is k of multiplicity dimV .

D =


...

dimV
...


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So the Cartan matrix DtD is the 1× 1-matrix (|P |) since

|P | =
∑

(dimV )2

as V runs over representatives of non-isomorphic classes of simple KP -modules.
Alperin’s Conjecture :

# simple kG-modules =
∑

conjugacy classes
of p-subgroups D ≤ G,

including D = 1

# blocks of defect zero of NG(D)/D

24. Blocks with cyclic defect

Representation of Z/pn in characteristic p: Look at the Jordon canonical form
for a generator. For an indecomposable representation, there is a single Jordon
block. Since

xpn

− 1 = (x− 1)pn

the eigenvalues have to be 1. The Jordon block has the form

J =



1 1

1
. . .
. . .

1 1
1


︸ ︷︷ ︸

d

The order of this matrix is the smallest pa ≥ d: the entries appear in Jn are
(
n
i

)
for some 0 ≤ i ≤ n with n always appears above the diagonal. Hence the order of
J is pa for some a. If pa < d, then some entry strictly above the diagonal is 1. So
pa ≥ d. Clearly, for any 1 ≤ d ≤ pn, we have Jpn

= 1. We conclude:

Theorem 24.1. There are pn isomorphism classes of indecomposable k (Z/pn)-
module, and they correspond to the Jordon blocks of length d with 1 ≤ d ≤ pn.

Theorem 24.2. If a block of kG has cyclic defect group, then there are only a
finite number of indecomposable kG-modules in the block.

Proof. Every indecomposable is a direct summand of (Jordon block for D) ↑G
where D is the defect group of the given block. �

Example 24.3. Let G = Z/p × Z/p = 〈g, h〉 and k be an infinity field. For each
α ∈ k, we construct an indecomposable kG-module Mα with a representation

g 7→
(

1 1
0 1

)
; h 7→

(
1 α
0 1

)
If α 6= β, a direct calculation shows that Mα 6∼= Mβ . Hence we have infinite number
of non-isomorphic indecomposable kG-modules.
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25. The Brauer Homomorphism

Goal: Brauer First Main Theorem: There is a natural one-to-one correspondence
between blocks of G with defect group D and blocks of NG(D) with defect group
D.

Lemma 25.1. (kG)D = kCG(D)⊕
∑

D′<D

(kG)D
D′ as a sum of a subring and a 2-

sided ideal.

Proof. (kG)D has a k-basis consisting of D-conjugacy class sums Ĉg,D :=
∑

x∼Dg x.

If the orbit has one element, then Ĉg,D ∈ kCG(D); otherwise, let D′ = CD(g) < D
with left coset representatives d1, . . . , ds of D/D′. So,

Ĉg,D =
s∑

i=1

digdi
−1 ∈ (kG)D

D′

as Cg,D is precisely the set {d1gd1
−1, . . . , dsgds

−1}. In characteristic p, kCG(D) ∩∑
D′<D(kG)D

D′ = {0}. �

The Brauer Homomorphism is the ring homomorphism given by projection

BrD : (kG)D → kCG(D)

Theorem 25.2. Let G be a finite group with a normal p-subgroup D, then every
block idempotent in Z(kG) lies in kCG(D).

Proof. If S is a simple kG-module, then SD is a nontrivial submodule of S: S ↓D
has a nontrivial submodule isomorphic to the trivial module k. So SD = S, and
hence D acts trivially on S. Since kG/J(kG) is semisimple, then D acts trivially. In
characteristic p, we have (kG/J(kG))D

D′ = 0 for any D′ < D, i.e., (kG)D
D′ ≤ J(kG).

Let e be a block idempotent in kG, namely e = x + y with x ∈ kCG(D) and
y ∈

∑
D′<D(kG)D

D′ . As
x2 + xy = xe = ex = x+yx

then xy = yx. So
e = epn

= (x+ y)pn

= xpn

+ ypn

for all n. For large n, ypn

= 0 (as J(kG) is a nilpotent ideal). So e = xpn ∈
kCG(D). �

Corollary 25.3. If CG(D) ≤ D CG, then G has only one block.

Proof. CG(D) is a p-group, so kCG(D) has only one idempotent namely 1 since
there is only one projective indecomposable for kCG(D). The result follows from
the previous theorem. �

Theorem 25.4. The following diagram commutes:

(kG)D BrD // //

TrD,G

����

kCG(D)

TrD,NG(D)
����

(kG)G
D

BrD // (kCG(D))NG(D)
D

with all arrows are surjective.
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Proof. Note that (kG)G
D ⊆ (kG)D, kCG(D) = (kCG(D))D. For any x ∈ (kG)D,

TrD,G(x) =
∑

g∈D\G/D

TrD∩gDg−1,NG(D)(gxg−1)

(for each double coset representative g of D,D in G, take a set of left coset represen-
tatives {βg,1, . . . , βg,n(g)}of D∩ gDg−1 in D, then the set {βg,ig} forms a left coset
representatives of D in G). If D ∩ gDg−1 < D, then BrDTrD∩gDg−1,D(gxg−1) = 0.
So

BrDTrD,G(x) =
∑

g∈D\NG(D)/D

BrDTrD,D(gxg−1) =
∑

g∈NG(D)/D

BrD(gxg−1)

Since NG(D) acts on both kCG(D) and
∑

D′<D(kG)D
D′ respectively, then

BrD(gxg−1) = gBrD(x)g−1 for all g ∈ NG(D). So we have

BrDTrD,G(x) =
∑

g∈NG(D)/D

gBrD(x)g−1 = TrD,NG(D)BrD(x) �

Theorem 25.5. BrD induces a one-to-one correspondence between block idempo-
tents in Z(kG) with defect group D and primitive idempotents in (kCG(D))NG(D)

D .

Proof. The correspondence is given by{
block idempotent in
Z(kG) with defect group D

}
↔

{
primitive idempotents
in kCG(D)NG(D)

D

}
(kG)G

D 3 e 7→ BrD(e)

Note that a central idempotent e lies in (kG)G
D if and only if its defect group

D(e) ≤G D: follows from the definition of defect group of e and the fact that
Z(kG)D(e) ⊆ Z(kG)D if D(e) ≤G D.
BrD(e) 6= 0: By definition e 6∈ (kG)G

D′ for any D′ <G D, it is equivalent to e 6∈∑
D′<D(kG)G

D′ by Rosenberg’s lemma. As ker BrD∩ (kG)G
D =

∑
D′<D(kG)G

D′ , then
BrD(e) 6= 0. This proves also BrD(e) = 0 if D(e) <G D.
BrD(e) is a primitive idempotent: It is clearly an idempotent since BrD(e) 6= 0
and BrD is a ring homomorphism. To show that BrD(e) is primitive, we use the
idempotent refinement theorem:
Let A,B be finite dimensional k-algebras, I, J be ideals of A,B respectively and
f : A → B be an algebra homomorphism such that f(I) = J , we have if e is
a primitive idempotent of A contained in I such that f(e) 6= 0, then f(e) is a
primitive idempotent of B contained in J .
The map is injective and it is also surjective by Theorem 25.4. �

Corollary 25.6 (Brauer’s first main theorem). If H is a subgroup of G containing
NG(D), then there is a one-to-one correspondence between blocks of G with defect
group D and blocks of H with defect group D.
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Proof. Since NG(D) ≤ H ≤ G, then CH(D) = CG(D) and NH(D) = NG(D). So
we have {

block idempotent in
Z(kG) with defect group D

}
44

tti i i i i i i i i

{
block idempotent in
Z(kH) with defect group D

}
oo //

{
primitive idempotents in
kCG(D)NG(D)

D = kCH(D)NH(D)
D

}��

OO

using previous theorem twice. �

26. Module Categories

Let G be a finite group and k a field.
mod(kG) is a category whose objects are finitely generated kG-modules and

whose arrows are kG-module homomorphisms. Mod(kG) is a category whose ob-
jects are all kG-modules and whose arrows are kG-module homomorphisms.

We have a block decomposition

kG = B0 × · · · × Bs

1 = e0 + · · · + es

If M is any kG-module, then

M = e0M ⊕ · · · ⊕ esM

HomkG(eiM, ejM) = 0 if i 6= j

So
Mod(kG) ∼= Mod(B0) × · · · × Mod(Bs)
mod(kG) ∼= mod(B0) × · · · × mod(Bs)

Warning: In general, tensor products do not preserve blocks.

27. The Stable Module Category

The category stmod(kG) has the same objects as mod(kG), but arrows are:

HomkG(M,N) = HomkG(M,N)/PHomkG(M,N)

where PHomkG(M,N) consists of those homomorphisms which factor through some
projective module.

Lemma 27.1. If PN � N and M ↪→ IM with PN , IM projective(i.e. injective),
then the followings are equivalent:

(1) f : M → N factors through some projective
(2) f factors through PN � N
(3) f factors through M ↪→ IM
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Proof. Dashed arrows exist in the following commutative diagram because P is
projective(i.e. injective).

PN

����
M //

� _

��

P //

>>|
|

|
|

~~}
}

}
}

N

IM

�

As a consequence, we get

Proposition 27.2. If M , N are finitely generated kG-modules and f : M → N
factors through a projective kG-module, then it factors through a finitely generated
projective kG-module. Hence the canonical functor

stmod(kG)→ StMod(kG)

induces an isomorphism on each Hom sets; in other words, it is a full embedding
of categories.

Warning: There are examples of module homomorphisms which factor through
finitely generated modules and also through projective modules, but not through
finitely generated projective modules.

Remark 27.3. Projective modules are isomorphic to the zero module in StMod(kG).

Lemma 27.4 (Schanuel’s Lemma). If we have short exact sequences of kG-modules

0→M1 → P1 →M → 0
0→M2 → P2 →M → 0

with P1, P2 projective, then M1 ⊕ P2
∼= M2 ⊕ P1

Consequence: M1
∼= M2 in StMod(kG).

Proof. The short exact sequences embed into the following commutative diagram

0

��

0

��
M2

��

M2

��
0 // M1

// X //

��

P2
//

β

��

0

0 // M1
// P1

α //

��

M //

��

0

0 0

where X = { (a, b) ∈ P1 × P2 | α(a) = β(b) }. Now since P1, P2 are projective, the
middle row and the middle column split, yielding M1 ⊕ P2

∼= X ∼= M2 ⊕ P1. �
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For a kG-module M , let

Ω(M) = Ker(P � M)

for some projective kG-module P . By Schanuel’s lemma, Ω(M) is well-defined up
to isomorphism in StMod(kG). We may define Ω(M) canonically by choosing P as
the free kG-module having M as a basis.

Dually, if

0→M → I1 →M1 → 0
0→M → I2 →M2 → 0

with I1, I2 injective, then M1 ⊕ I2 ∼= M2 ⊕ I1. So if M is a kG-module,

Ω−1(M) = Coker(M ↪→ I)

where I is injective, is well-defined up to isomorphism in StMod(kG).

Theorem 27.5. Ω and Ω−1 are inverse self-equivalences on the category StMod(kG)

Proof. In the following commutative diagram

0 // ΩM
γ //

���
�
�

���
�
� PM

α //

g

���
�
�

f

���
�
�

u

||y
y

y
y

M //

��

0

0 // ΩN
δ // PN

β // N // 0

we have β(f − g) = 0, so there exists u : PM → ΩN such that f − g = δu; hence

(f − g)|ΩM = uγ.

This shows that Ω is a functor on StMod(kG). Dual argument shows that Ω−1 is
also a functor and

Ω−1ΩM ∼= M, ΩΩ−1M ∼= M

in StMod(kG). �

28. Tate Cohomology

Let M , N be kG-modules. For i ∈ Z, define the i-th Tate cohomology group by

Êxt
i

kG(M,N) = HomkG(ΩiM,N)

Ĥi(G,M) = Êxt
i

kG(k,M)

Products are given by

Êxt
i

kG(M,N) × Êxt
j

kG(L,M) → Êxt
i+j

kG (L,N)

(ΩiM
α−→ N , Ωi+jL

β−→ ΩiM) 7→ Ωi+jL
αβ−−→ N

Taking L = M = N , we get a graded ring Êxt
∗
kG(M,M). In particular, if M = k

Ĥ∗(G, k)

is called the Tate cohomology ring.
Fact: Ĥ∗(G, k) is a graded commutative ring: if x ∈ Ĥm(G, k), y ∈ Ĥn(G, k),

yx = (−1)mnxy.

Warning: Even if M is simple, there are examples where Êxt
∗
kG(M,M) surjects

onto Mat2(k).
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For i ≥ 0, the i-th (ordinary) cohomology group is defined by

Exti
kG(M,N) =

{
Êxt

i

kG(M,N), if i > 0
HomkG(M,N), if i = 0.

29. Triangulated Categories

What kind of category StMod(kG) is? In this category, we can make any homo-
morphism represented by an injective homomorphism in Mod(kG):

M // M ′

∼=
��

M
� � // IM ⊕M ′

or by a surjective homomorphism in Mod(kG):

M //

∼=
��

M ′

M ⊕ PM ′ // // M ′

So StMod(kG) is not an abelian category. Instead, it is a triangulated category.
A triangle in StMod(kG) is a sequence of objects and maps of the form

M →M ′ →M ′′ → Ω−1M.

such that the composite of each pair of consecutive maps is zero. Two triangles

M →M ′ →M ′′ → Ω−1M

N → N ′ → N ′′ → Ω−1N

are said to be isomorphic if there is a commutative diagram

M //

��

M ′ //

��

M ′′ //

��

Ω−1M

��
N // N ′ // N ′′ // Ω−1N

where all the vertical maps are isomorphisms.
Given a morphism f : M →M ′, there exists a commutative diagram

0 // M
α //

f

��

IM //

β

��

Ω−1M // 0

0 // M ′
γ // M ′′ // Ω−1M // 0

where M ′′ = M ′ ⊕ IM/{(f(m), α(m)) | m ∈M}. We have a triangle

M →M ′ →M ′′ → Ω−1M.

Note that we also have a short exact sequence in Mod(kG)

0→M

α
f


−−−−→ IM ⊕M ′

(
β, −γ

)
−−−−−−−→M ′′ → 0.
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A distinguished triangle is a triangle which is isomorphice to one coming from the
above construction.

Proposition 29.1 (Properties of the distinguished triangles). (1)

A
f−→ B

g−→ C
h−→ Ω−1A

is a distinguished triangle iff

B
g−→ C

h−→ Ω−1A
−Ω−1f−−−−−→ Ω−1B

is a distinguished triangle.
(2) Every morphism M →M ′ can be embedded in a distinguished triangle

M →M ′ →M ′′ → Ω−1M.

extends to a map of triangles
(3) Every commutative diagram in StMod(kG)

M //

f

��

M ′

g

��
N // N ′

extends to a map of triangles

M //

f

��

M ′ //

g

��

M ′′ //

h

��

Ω−1M

Ω−1f

��
N // N ′ // N ′′ // Ω−1N

(4) (Oxtahedral Axiom) Given composable maps A → B, B → C, there exists
a distinguished triangle X → Y → Z → Ω−1X which embedds in the
following commutative diagram of distinguished triangles

A //

''OOOOOOOOOOOOOO B //

��@
@@

@@
@@

X

���
�
�
�
�
�
�

C

&&NNNNNNNNNNNNN

��=
==

==
==

==
==

==
==

==

Y

���
�
�

Z

(5) For any M , M id−→M → 0→ Ω−1M is a distinguished triangle.

Remark 29.2. (1) In (3), M ′′ is determined uniquely but not up to unique
isomorphism; in other words, the assignment M 7→M ′′ is not functorial.

(2) The oxtahedral axiom is an analogue of the third isomorphism theorem for
modules: if X ∼= B/A, Y ∼= C/A, and Z ∼= Y/Z, then Z ∼= C/B.

A triangulated category is an additive category C with a self-equivalence τ : C → C
(e.g. τ = Ω−1) together with a class of distinguished triangles

A→ B → C → τA
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such that every triangle isomorphic to a distinguished triangle is distinguished and
satisfying (1)–(5) above.

Lemma 29.3. If M is an object of a triangulated category (C, τ) and

A→ B → C → τA

is a distinguished triangle, given a map M
f−→ B such that the composite M

f−→
B → C is zero, there exists a map M → A such that M → A→ B is zero:

M

~~}
}

}
}

f

��

0

  A
A

A
A

A // B // C

Proof. By the properties of the distinguished triangles, we have a map of distin-
guished triangles

M
id //

���
�
� M //

f

��

0 //

��

τM

���
�
�

A // B // C // τA

�

Similarly, given a map B
g−→ M such that A → B

g−→ M is zero, we can extend
to C →M :

A //

0   A
A

A
A B //

g

��

C

~~}
}

}
}

M

As a consequence we get:

Corollary 29.4. Given a distinguished triangle A→ B → C → τA and an object
M , we get exact sequences of Hom sets

· · · → HomC(M,A)→ HomC(M,B)→ HomC(M,C)→ HomC(M, τA)→ · · ·
· · · → HomC(τA,M)→ HomC(C,M)→ HomC(B,M)→ HomC(A,M)→ · · ·

In StMod(kG),

Êxt
i

kG(M,N) = HomkG(ΩiM,N) = HomkG(M,Ω−iN).

So given a distinguished triangle A → B → C → Ω−1A and an object M in
StMod(kG), we get long exact sequences

· · · → Êxt
i

kG(M,A)→ Êxt
i

kG(M,B)→ Êxt
i

kG(M,C)→ Êxt
i+1

kG (M,A)→ · · ·

· · · → Êxt
i

kG(C,M)→ Êxt
i

kG(B,M)→ Êxt
i

kG(A,M)→ Êxt
i+1

kG (C,M)→ · · ·

In ordinary cohomology, given a short exact sequence 0 → A → B → C → 0 and
an object in Mod(kG), we get

0→ HomkG(M,A)→ HomkG(M,B)→→ HomkG(M,C)→ Ext1kG(M,A)→ · · ·
0→ HomkG(C,M)→ HomkG(B,M)→→ HomkG(A,M)→ Ext1kG(C,M)→ · · ·
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Theorem 29.5. Given any projective resolution of M

. . .→ P2 → P1 → P0 →M → 0

Take homomorphisms Hom(−, N):

0→ HomkG(P0, N)→ HomkG(P1, N)→ HomkG(P2, N)→ . . .

This is a complex, i.e., the composition of any adjacent pair of maps is zero. We
have

Extn
kG(M,N) ∼=

Ker (HomkG(Pn, N)→ HomkG(Pn+1, N))
Im (HomkG(Pn−1, N)→ HomkG(Pn, N))

Proof. For n > 0, consider the diagram

Ωn+1M##

##H
HHHHHHHH ΩnM

fα

rr

�

�
�

�
�

vi

##

##H
HH

HH
HH

HH

��5
55

55
55

55
55

55
55

5

Pn+1

:: ::ttttttttt
δn ////

0

**TTTTTTTTTT Pn

<< <<yyyyyyyy
//

α

��

Pn−1

ξ

���
�
�

N P
βoo

Define a map Φn as follows: for any α : Pn → N such that αδn = 0, then Φn(α) =
fα + PHomkG(ΩnM,N) where fα : ΩnM → N is given by x 7→ αw if δn−1w = x.
If fα factors through a projective P , then it factors through Pn−1 as P is also an
injective kG-module. So, α = (βξ)δn−1 ∈ KerΦn.
For n = 0, we have an exact sequence

0→ HomkG(M,N)→ HomkG(P0, N)→ HomkG(P1, N)

So Ext0kG(M,N) = HomkG(M,N). �

Dually, we have

Theorem 29.6. Given any injective resolution of N

0→ N → I0 → I1 → I2 → . . .

Take homomorphisms Hom(M,−):

0→ HomkG(M, I0)→ HomkG(M, I1)→ HomkG(M, I2)→ . . .

This gives a complex whose cohomology is

Extn
kG(M,N)

We use Extn
kG(M,N) = HomkG(M,Ω−nN) for the proof of the above theorem

instead.

30. Tensor Products

Lemma 30.1. If P is kG-projective and M is any kG-module, then P ⊗k M is
projective.

Proof. Without lost of generality, we assume P is free of rank 1, i.e., P ∼= kG.
We claim that there is an isomorphism between the tensor product with diagonal
action kG⊗k M and the induced module M ↓k↑G= kG⊗M

φ : kG⊗k M → kG⊗M
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given by x⊗m 7→ x⊗ x−1m if x ∈ G and m ∈M . The action of G on the induced
module is g(x⊗m) = gx⊗m. One can check that φ is a kG-homomorphism with
the inverse map φ−1 : x⊗m 7→ x⊗ xm. As a k-module M is a sum of copies of k,
so kG⊗k M is a sum of copies of kG. �

Lemma 30.2. For any kG-module M , we have Ω(k)⊗k M ∼= ΩM in StMod(kG).

Proof. Take the exact sequence 0 // Ω(k) // Pk
// k // 0 and tensor

with M :

0 // Ω(k)⊗k M // Pk ⊗k M // M // 0

It is an exact sequence (tensor product of vector spaces). Since

0 // Ω(M) // PM
// M // 0

then by Schanuel’s Lemma, we have

Ω(M)⊕ (Pk ⊗k M) ∼= (Ω(k)⊗k M)⊕ PM �

Consequence: Ωnk⊗kM ∼= ΩnM in StMod(kG) (by induction). Taking M = Ωmk,
then Ωnk ⊗k Ωmk ∼= Ωn+mk.

Lemma 30.3. The diagram commutes in StMod(kG):

Ω(k)⊗k Ω(k) τ //

∼=

&&MMMMMMMMMM
Ω(k)⊗k Ω(k)

∼=

xxqqqqqqqqqq

Ω2k

where τ(x⊗y) = −y⊗x and the isomorphisms are given by the Schanuel’s Lemma.

Proof. Consider the chain complex(
0→ Ω(k)→ Pk

π−→ k → 0
)
⊗
(
0→ Ω(k)→ Pk

π−→ k → 0
)

then we have two rows of exact sequences and φi’s extending id : x ⊗ y 7→ y ⊗ x
making the diagram commutes

0 // Ω(k)⊗k Ω(k) //

φ3

���
�
�

Pk ⊗k Pk

(
1⊗ π
−π ⊗ 1

)
//

φ2

���
�
�
�

(Pk⊗kk)
⊕(k⊗kPk)

(π⊗1,1⊗π) //

φ1

���
�
�

k ⊗k k //

id

��

0

0 // Ω(k)⊗k Ω(k) // Pk ⊗k Pk
// (Pk⊗kk)
⊕(k⊗kPk)

// k ⊗k k // 0

where

φ1 : (a⊗ 1, 1⊗ b) 7→ (b⊗ 1, 1⊗ a)
φ2 : a⊗ b 7→ −b⊗ a
φ3 : a⊗ b 7→ −b⊗ a

�
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Lemma 30.4. The diagram commutes in StMod(kG):

Ωm ⊗k Ωnk
τ //

∼=

&&NNNNNNNNNNN Ωnk ⊗k Ωmk
∼=

wwppppppppppp

Ωm+nk

where τ : x⊗ y 7→ (−1)mny ⊗ x.

Proof. Think of Ωmk ⊗k Ωnk as

(Ω(k)⊗k . . .⊗k Ω(k))︸ ︷︷ ︸
m copies

⊗k (Ω(k)⊗k . . .⊗k Ω(k))︸ ︷︷ ︸
n copies

The results now follows from previous lemma. �

Given a kG-module M , we have a map

−⊗k idM : Êxt
n

kG(k, k)→ Êxt
n

kG(M,M)

as HomkG(Ωnk ⊗k M,k ⊗k M) ∼= HomkG(ΩnM,M) = Êxt
n

kG(M,M). We denote
the image of ζ ∈ Êxt

n

kG(k, k) under the map −⊗k idM by ζ.

Theorem 30.5. Given a map f : ΩmM → N in StMod(kG) we have

ζf = (−1)mnfζ

for all ζ ∈ Êxt
n

kG(k, k), i.e., the following diagram commutes up to the sign (−1)mn

Ωm+nM
Ωnf //

ζ

��

ΩnN

ζ

��
ΩmM

f // N



MODULAR REPRESENTATION THEORY AUTUMN SESSION 2007, ABERDEEN 47

P
ro

of
.

A
ll

m
ap

s
of

th
e

fo
llo

w
in

g
co

m
m

ut
in

g
di

ag
ra

m
ar

e
in

St
M

od
(k
G

).

Ω
m

+
n
M

Ω
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1
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n
ζ

��

Ω
n
N ζ ��
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n
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⊗

k
Ω

m
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⊗
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M

1
⊗

f
//

∼ =
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1
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1
⊗

1

��
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n
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⊗

k
N
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ζ
⊗

id
N

��
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k
Ω
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k
M
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1
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(1
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ζ
⊗

1
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a
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Consequence: We write Ĥ∗kG(G, k) for Êxt
∗
kG(k, k):

(i) Taking M = N = k, then Ĥ∗(G, k) is graded commutative, i.e., xy =
(−1)|x||y|yx for all x, y ∈ Ĥ∗(G, k).

(ii) The image of the map −⊗k idM : Êxt
∗
kG(k, k)→ Êxt

∗
kG(M,M) lies in the

graded centre.
The Centre of a category C:

The centre Z(C) of a category C is the natural transformations from the identity
functor to itself.

Example 30.6. Let C = Mod(R), we claim Z(C) = Z(R).

Proof. A natural transformation ρ assigns to each object M an arrow M
ρM−−→ M

in such a way that if f : M → N , then the diagram commutes

M

f

��

ρM // M

f

��
N

ρN // N

If M = N = RR, then ρR is a right multiplication by an element r ∈ R such that
r ∈ Z(R) (as 1 ∈ R). If M is any module and m ∈ M , then ρM = r· by the
commuting diagram

RR
·r //

φm

��

RR

φm

��
M

ρM // M
where φm : 1 7→ m. �

Consequence: If Mod(R) is equivalent to Mod(R′), then Z(R) ∼= Z(R′).
If T is a triangulated category with a shift operator τ , define

Zn(T ) = {natural transformations from idT to τn}

Example 30.7. Let T = StMod(kG) and τ = Ω−1, then ρ ∈ Zn(StMod(kG)) assigns
to each M

ρM : M → Ω−nM

or equivalently ΩnM →M . So we have a ring homomorphism

Êxt
∗
kG(k, k)→ Z∗(StMod(kG))

Explicitly, ζ ∈ Êxt
n

kG(k, k) is mapped to the natural transformation assigning M
the map ζ ⊗k idM : ΩnM →M .

Open Question: What does Z∗(StMod(kG)) look like?

Remark 30.8. There is an injection H∗(G, k) // // Ĥ∗(G, k) . So H∗(G, k) acting

on H∗(G,M) := Ext∗kG(M,M) via the ring homomorphism

Ĥ∗(G, k) −⊗kidM−−−−−→ Êxt
∗
kG(M,M)

restricted to its subring H∗(G,M) as Êxt
∗
kG(M,M) is a graded Ĥ∗(G, k)-module

induced by the ring homomorphism.
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Theorem 30.9 (Finite Generation Theorem). H∗(G, k) is a finitely generated k-
algebra. If M is a finitely generated kG-module, then H∗(G,M) is a finitely gen-
erated H∗(G, k)-module.

The nilradical Nrad(R) of a ring R is the sum of all the nilpotent 2-sided ideals,
i.e.,

Nrad(R) = {x ∈ R | for all y, z ∈ R, yxz is nilpotent}

Lemma 30.10. If H∗ is a graded commutative ring, i.e., yx = (−1)|x||y|xy for all
x, y ∈ H∗, then H∗/Nrad(H∗) is strictly commutative.

Proof. Let x ∈ H∗, then xx = (−1)|x||x|xx. If x has odd degree, then x2 = −x2,
i.e., 2x2 = 0. For any y, z ∈ R, (y · 2x · z)2 = 0, so 2x ∈ Nrad(H∗). Hence

x ≡ −x mod Nrad(H∗)

and so for any y ∈ R such that |y| is odd, then xy ≡ −yx ≡ yx mod Nrad(H∗). If
either x or y has even degree, then they already commute. �

So H∗(G, k)/Nrad(H∗(G, k)) is a finitely generated commutative k-algebra and
it is isomorphic to k[x1, . . . , xn]/I such that xi’s are homogeneous elements of
H∗(G, k).

We define the variety VG corresponding to H∗(G, k) as

VG = {maximal ideals in H∗(G, k)}
= {maximal ideals in H∗(G, k)/Nrad(H∗(G, k))}
= {maximal ideals in k[x1, . . . , xn] containing the ideal I}
⊆ {maximal ideals in k[x1, . . . , xn]}

where the set of all maximal ideals in k[x1, . . . , xn] has one-to-one correspondence
with the set of all points in the affine space An(k) provided k is an algebraically
closed field (Hilbert’s Nullstellensatz Theorem).

Example 30.11. Let G be the Mathieu group M11, k has characteristic 2. We have
|G| = 7920 and

H∗(G, k) ∼= k[x, y, z]/(x2y − z2)

where deg x = 3, deg y = 4 and deg z = 5. So VG is the subset of A3(k) containing
all vectors (v1, v2, v3) such that v12v2 = v3

2 and dimVG = 2.

Example 30.12. Let G be the cyclic group of order p and the characteristic of k is
p.

(i) p = 2: H∗(G, k) = k[x] with deg x = 1 and hence VG = A1(k).
(ii) p odd: in the proof of Lemma 30.10 we have seen that odd degree elements

square to zero. Indeed H∗(G, k) = k[x, y]/(x2) with deg x = 1 and deg y =
2. So VG = A1(k).

Example 30.13. If p - |G| and characteristic of k is p, then H∗(G, k) = k. So
VG = {a point}.

Example 30.14. Let G = Z/p× Z/p, then

H∗(G, k) =

{
k[x1, x2] ; p = 2
Λ(x1, x2)⊗ k[y1, y2] ; p odd
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where in both cases we have deg xi = 1 and in the second case we have deg yi = 2
such that x1

2 = x2
2 = 0, x1x2 = −x2x1 and xiyj = yjxi. So VG = A2(k) as

Λ(x1, x2) ⊆ Nrad(H∗(G, k)) for p odd.

Example 30.15. Let Q8 = {±1,±i,±j,±k} be the quarternion group, which lies in
the quarternion numbers H. SU(2) is the unit sphere S3 in H and Q8 acts freely
on S3. Cut up S3 along the 4 “equators” into 16 3-cells permuted by Q8 and form
the complex of cellular chains with coefficients in a field k of characteristic 2:

0→ C3 → C2 → C1 → C0 → 0

where Ci is the k-vector space with i-cells as basis. Since this complex has nonzero
homology k in degrees 0 and 3 and nowhere else, we get an exact sequence

0→ k → C3 → C2 → C1 → C0 → k → 0.

The free action of Q8 on Ci make it a free kQ8-module. So by splicing the above
exact sequence to itself we get a free resolution of k as a module for kQ8:

· · · // C1
// C0

//

  @
@@

@@
C3

// C2
// C1

// C0
// k // 0

k

  A
AA

AA

>>~~~~~

0

>>}}}}}
0

Theorem 30.16. Let k be a field of characteristic 2.
(1) H∗(Q8, k) is periodic with period 4
(2) There is an element z ∈ H4(Q8, k) such that

·z : Hn(Q8, k)
∼=−→ Hn+4(Q8, k)

for all n ≥ 0.
(3) We have H∗(Q8, k)/〈z〉 ∼= H∗(HomkQ8(C∗, k)).

Theorem 30.17. Suppose that a finite group G acts freely on an n-sphere Sn.
Then G has periodic cohomology with any (field) coeffients.

Corollary 30.18. Z/p× Z/p cannot act freely on any sphere.

Corollary 30.19. If a finite group G acts freely on a sphere, then every abelian
subgroup of G is cyclic. More generally, if G acts freely on a compact manifold
homotopic equivalent to a sphere, then every abelian subgroup of G is cyclic.

Example 30.20. Let G = (Z/p× Z/q) oQ8 where p, q are distinct primes and the
action of Q8 on (Z/p × Z/q) is given as follows: the center Z of Q8 acts trivially
and writing Q8/Z = 〈x, y〉 ∼= Z/2 × Z/2, x, y invert the generators of Z/p, Z/q,
respectively. One can show that every abelian subgroup of G is cyclic, but that G
cannot act freely on S3. Can G act freely on a homotopy S3? If so, it provides a
counterexample to the Poincaré conjecture.

31. Varieties for Modules

The theory of varieties for modules were developed by Jon Carlson. Let k be an
algebraically closed field and let M be a finitely generated kG-module. Consider
the map of graded k-algebras

H∗(G, k) = Ext∗kG(k, k) −⊗kidM−−−−−→ Ext∗kG(M,M).
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Denote by JM the kernel of this map. Then we define VG(M) as the maximal ideal
spectrum of H∗(G, k)/JM . Note that VG(M) is a homogenious subvariety of VG.

Proposition 31.1. Let M , M1, M2 be finitely generated kG-modules where k is
an algebraically closed field. Then

(1) M is projective if and only if VG(M) = {0}.
(2) VG(M1 ⊕M2) = VG(M1) ∪ VG(M2).
(3) VG(M1 ⊗k M2) = VG(M1) ∩ VG(M2). (Avrunin, Scott)
(4) VG(ΩM) = VG(M) = VG(Ω−1M).
(5) VG(M∗) = VG(M) where M∗ = Homk(M,k).
(6) If 0 6= ζ ∈ H∗(G, k) ∼= HomkG(Ωnk, k) with a short exact sequence

0→ Lζ → Ωnk
ζ̂−→ k → 0

where ζ̂ is a representative of ζ in HomkG(Ωnk, k), then VG(Lζ) = VG〈ζ〉,
the hypersurface of VG where ζ vanishes. Consequently, every closed ho-
mogenious subvariety W of VG is of the form

VG(Lζ1 ⊗ · · · ⊗ Lζs
),

i.e. W is the subvariety of the ideal generated by ζ1, . . . , ζs.
(7) VG(M) is 1-dimensional if and only if M ∼= ΩnM in stmod(kG) for some

n > 0. Such M is called a periodic module.
(8) dimVG(M) tells how fast the minimal projective resolution of M grows: if

· · · → P1 → P0 →M → 0

is a minimal projective resolution of M , then there exists C > 0 such that

dimPn ≤ C · ndim VG(M)−1

for all n > 0. Moreover, for every ε > 0 there is no C > 0 such that

dimPn ≤ Cndim VG(M)−1−ε

for all n > 0.

Part (8) is a consequence of Hilbert-Serré theorem:

p(M, t) =
∑
n≥0

dimPn · tn

is a rational function of t and the order of the pole at t = 1 is equal to dimVG(M).

32. Rank Varieties

Theorem 32.1 (Chouinard). Let k be any field of characteristic p and let M be
any (not necessarily finitely generated) kG-module. Then M is projective if and
only if for every elementary abelian p-subgroup E of G, M ↓E is projective.

More generally, VG(M) only depends on VE(M ↓E) for elementary abelian p-
subgroups E of G. (Alperin, Evens)

Therefore, to compute VG(M), the case where G = E is an elementary abelian
p-group (char k = p) is crucial. Let

E = 〈g1, · · · , gr〉 ∼= (Z/p)r.
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Set xi = gi − 1 ∈ kE. Then

xp
i = gp

i − 1 = 0
xixj = xjxi

So we have a k-algebra homomorphism

k[X1, · · · , Xr]/(X
p
1 , · · · , Xp

r ) → kE
Xi 7→ xi

Comparing dimension, we see that the above map is in fact an isomorphism.
Now

J(kE) = 〈x1, · · · , xr〉
J2(kE) = 〈x2

i , xixj〉

so J(kE)/J2(kE) has k-basis x1 + J2(kE), · · · , xr + J2(kE); in particular it has
dimension r. We’re going to identify this with VE .

If 0 6= α = (α1, · · · , αr) ∈ Ar(k), look at the element uα = 1+α1x1 + · · ·+αrxr.
Then up

α = 1, so 〈uα〉 is a cyclic subgroup of order p in (kE)×. If M is a finitely
generated kE-module, define the rank variety of M by

V r
E(M) = {0 6= α ∈ Ar(k) |M ↓〈uα〉 is not a free k〈uα〉-module} ∪ {0}.

Remark 32.2. A k〈uα〉-module M is free
⇐⇒ all Jordan blocks of M have length p
⇐⇒ dimMuα = dim M

p .

Example 32.3 (“Jon Carlson’s favorite example”). Let E = 〈g1, g2, g3〉 ∼= (Z/2)3,
char k = 2. For a, b, c ∈ k, let Ma,b,c be a 4-dimensional kE-module given by

g1 7→


1

1
1 1

1 1

 , g2 7→


1

1
a 1

b 1

 , g3 7→


1

1
c 1

1 1

 .

Then

x1 7→

1
1

 , x2 7→

a
b

 , x3 7→

 c
1

 ,

and

1 + α1x1 + α2x2 + α3x3 7→


1

1
α1 + aα2 cα3 1

α3 α1 + bα2 1

 .

This is non-projective if and only if (α1 + aα2)(α1 + bα2) = cα2
3. Thus V r

E(Ma,b,c)
consists of the points (x1, x2, x3) such that

(x1 + ax2)(x1 + bx2) = cx2
3

Lemma 32.4 (Dade). A finitely generated kE-module M is projective if and only
if V r

E(M) = {0}.

Theorem 32.5 (Carlson, Avrunin, Scott). There is a natural isomorphism VE
∼=

Ar(k) which sends VE(M) to V r
E(M) for all finitely generated kE-module M .
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Warning: For p odd, this isomorphism sends (α1, · · · , αr) to (αp
1, · · · , αp

r).

Example 32.6. Let E = 〈g1, g2〉 ∼= (Z/2)2, char k = 2. Let M = k(t) ⊕ k(t) be a
kE-module via

g1 7→
(
I 0
I I

)
, g2 7→

(
I 0
T I

)
where T denotes multiplication by t. Then

1 + α1(g1 − 1) + α2(g2 − 1) 7→
(

I 0
α1I + α2T I

)
.

So
V r

E(M) = {0}.
Now extend k to k(x). Note k(t)⊗k k(x) � k(t, x). Setting α1 = x, α2 = 1, we

see that x+ t is not invertible in k(t)⊗k k(x). Thus

V r
E(k(x)⊗k M) 6= {0}.

Theorem 32.7. Let M be any (not necessarily finitely generated) kE-module.
Then M is projective if and only if for every finitely generated extension K of
k and for all shifted subgroup uα of KE,

(K ⊗k M)↓〈uα〉

is free.

We have J(kE)/J2(kE) ∼= H1(E, k)∗. If p = 2, this is isomorphic to VE . If p is
odd, we have

H∗(E, k) ∼= Λ(x1, · · · , xr)⊗k k[y1, · · · , yr]
where deg xi = 1, deg yi = 2 and the Bokstein map

H1(E, k)
β−→∼= H2(E, k)

xi 7→ yi

is semi-linear: β(λxi) = λpyi for λ ∈ k. Thus

H1(E, k)∗
β∗←−∼= (H2/H1H1)∗(p) ∼= V

(p)
E .

References

[I] I. Martin Isaacs Chacracter Theory of Finite Groups, Academic Press, New York, San

Francisco, London 1976.


