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DAVE BENSON
(NOTES BY KAY JIN LIM AND SEJONG PARK)

1. REPRESENTATIONS AND MODULES

Let G be a finite group and let & be a commutative ring of coefficients. A
representation of G over k is a group homomorphism G — GL(n, k) for some
n. The group algebra kG consists of linear combinations of elements of G with
coefficients in k. With addition and multiplication defined as follows

(D aug) + (D Bug) = D (e + g

geG geG geG
(Z agg) ( > ﬁgg) =y ( > ahﬁh/)g
9eG geG geCG  hhi—g

kG is a ring, even a k-algebra.
Given a representation p: G — GL(n, k), we make V = k™ into a kG-module

(Z%g) w=Y agp(g)v), weV.

Se geG
Conversely, provided that a kG-module M, when regarded as a k-module via k —
kG, is finitely generated and free, we get a representation ¢: G — GL(n, k) by
choosing a k-basis for M and setting

w(g9)(v) =g, geGveV.

FEzample 1.1. If k is a field, then representations of G over k correspond to finite
dimensional kG-modules.

Given two representations p: G — GL(n, k), ¢: G — GL(m, k), they are similar
if n = m and there exists X € GL(n, k) such that Xp(g)X ! =1(g) for all g € G.
This corresponds to an isomorphism of kG-modules. In general, an intertwining
operator is an n X m matrix X with the property that

p(g)X = XY(9) Vgeai.

This corresponds to a homomorphism between the corresponding kG-modules.

Ezample 1.2. For G =7Z/2 ={1,t}, k = Fy, define ¢: G — GL(2, k) by

=g 7). e0=(g 1)
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Then the corresponding kG-module structure is given by

(@-1+8-1) (g) = <(aa@%;ﬁy> a, B, 2,y € k.

2. REDUCIBILITY AND DECOMPOSABILITY

A representation ¢: G — GL(n, k) is reducible if it is similar to a representation
1 such that

w(g)z(o I) Vg€ G.

The subspace spanned by the first ¢ basis vectors is an invariant subspace. (W <V
is invariant if gw € W Vg € G Yw € W.) A representation is irreducible if it is
nonzero and not reducible.

A kG-module V is reducible if there is a submodule W with 0 # W # V.
Provided that k is a field, this concept corresponds to the reducibility of the repre-
sentation. A kG-module is irreducible or simple if it is nonzero and not reducible.

A representation ¢: G — GL(n, k) is decomposable if it is similar to a represen-
tation 1 such that

w<g>=((’; O) Vg€ G,

This says V = W & W, dim Wi = ¢, dim W5 = j with Wy, W5 invariant subspaces.
A kG-module is decomposable if V.= W71 & Wy with Wy, W5 nonzero submodules
of V. If V is nonzero and not decomposable, then it is indecomposable.
A short exact sequence of kG-modules is a sequence of kG-modules and kG-
module homomorphisms of the form

0—-Vi—->Vo—>V3—-0

such that for each pair of composable arrows the image of the left one is the kernel
of the right one.

FEzxzample 2.1. In matrix notation:
B CO > L () —
0— (¥) ( 0 () (¥) — 0.

A short exact sequence 0 — Vi = Vj LR V3 — 0 is split if there is a map
Vs - Vi (a splitting) such that 5o~ = idy,. In this case, we have

Va=a(Vi)oy(Vs) = V1@ Vs,

FEzample 2.2. Example 1.2 gives a nonsplit short exact sequence in which V; and
V3 have dimension 1 and V5 has dimension 2.

Theorem 2.3 (Maschke’s Theorem). If |G| € k* and 0 — Vi = V; LR Vi —0is
a short exact sequence of kG-modules that splits as a sequence of k-modules, then
it splits as a short exact sequence of kG-modules.

Proof. Given a k-splitting ¢: V5 — V5, set v = ﬁ dec g Yog. If 2 € V3,

_ 1 1, L -1 _
Pr(@) = g > B9 ogr = @ > g Begr = .

9geG geG
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If h € G, then

1 B
~v(ha) |G| Zg 'oghz = @Z(gh) Yoghs = hy(z).

geqG

3. HoMSs AND TENSORS

Let R be a ring, and let M be a right R-module and N be a left R-module. The
abelian group M ®pr N has generators the symbols m @ n, m € M, n € N and
relations:

(m+m)en=men+m' @n
m@nm+n)=men+men
mr@@n=maern
where me M, ne N, r € R.

Let A be an abelian group. A bilinear map f: M x N — A is called R-balanced
if it satisfies

f(mr,n) = f(m,rn)
formeM,ne N, re€R.
Theorem 3.1 (Universal Property of Tensor Products). There is a R-balanced
bilinear map 7: M X N — M ®gr N such that given any abelian group A and an

R-balanced bilinear map o: M x N — A we have a unique group homomorphism
B: M®r N — A

MxN—=A4
| s
u -
_ 7 3B
M ®r N
such that oo = BorT.
Example 3.2. If R is a commutative ring, then left and right modules over R are

equivalent. Given any two (left) R-modules M, N, we can form M ®gr N and this
is again an R-module via

rim®n)=rmen=m®Qrn, re RmeMneN.

If R, S are two rings, we say M is an R-S-bimodule if it is a left R-module and
a right S-module in such a way that

(rm)s = r(ms), meM,reRseS.
If M is an R-S-bimodule and N is a left S-module, then M ®g N is a left R-module
via
r(m®n)=rm®n, me M,ne N,r € R.
FEzample 3.3. If R is a ring, then we can regard R as an R-R-bimodule via left

and right multiplication. If S is a subring of R, we can similiarly regard R as an
R-S-bimodule.
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If H is a subgroup of G, then we regard kH as a subring of kG and look at kG
as a kG-kH-bimodule. If M is a kH-module,

kG Qg M

is a left kG-module called the induced module M 1€.

Hom(N,Hom(M, A)) corresponds bijectively to the set of bilinear maps M x
N — A. The right action of R on M gives a left action of R on Hom(M, A) by
(rp)(m) = @(mr) where ¢ € Hom(M,A), m € M, r € R. So it makes sense to
look at Homp (N, Hom(M, A)). It corresponds bijectively to the set of R-balanced
bilinear maps M x N — A. Hence the universal property of tensor product gives
an isomorphism of abelian groups

Homp(N,Hom(M, A)) 2 Hom(M ®g N, A).

If M is an S-R-bimodule and A is a left S-module, then this isomorphism restricts
to

| Hom (N, Homg(M, A)) = Homg(M @ N, A) |

In particular, we have
Homy g (U, Homyi (kG,V)) = Homyg (kG Qry U, V).

Since kG is viewed as a kG-kH-bimodule, Homyg(kG, V) is V regarded as a left
kH-module by restriction, V' | 7. Thus we have

Homyz (U, V | ) = Hompq (U 19, V)

This is called the Frobenius reciprocity or the Nakayama isomorphism.
If U and V are two kG-modules, then U ®j V becomes a kG-module via

g(u®v) = gu® gv, geGuelUwvelV.

Warning. Elements of the group algebra kG acts in a way extended linearly from
this:

(g+h)(u®v)=gu®gv+hu® hv
#(g+hu®(g+ h)v.

where g,h € G,uecU,veV.
Similarly, Homy (U, V') becomes a kG-module: if f € Hom(U,V) and g € G,
(9f)(w)=gf(g~ w), wel.
With these definitions, if U, V, W are kG-modules,
Homy, (U, Homy, (V, W) 2 Homy (U @, V. W)

is an isomorphism of kG-modules. Taking G-fixed points on both sides, we get

| Homy, (U, Homy (V, W) = Homye (U &4 V, W) |
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4. EXACTNESS

If M is a right R-module and 0 — N — N’ — N’ — 0 is a short exact sequence
of left R-modules, then the sequence

M@RN—>®RN/—>®RN”—>O

is exact.
If M is a left R-module and 0 — N — N’ — N” — 0 is a short exact sequence
of left R-modules, then the sequences

0 — Hompg (M, N) — Hompg (M, N') — Homg(M,N")
0 — Hompg(N", M) — Hompg(N’, M) — Hompg (N, M)
are exact.

Lemma 4.1. If 0 — My — My — Ms — 0 is a short exact sequence of finite
dimensional kG-modules (k a field) and My =2 My & Ms, then the sequence splits.

Remark 4.2. The finite dimensional condition is essential.

Proof. 0 — Homyg(Ms, M) — Hompg(Ms, Ms) — Homyg(Ms, Ms) is exact.

Dimensions add, so the rightmost map is surjective. Take a preimage of idjy,.

It’s a splitting! O
5. THE JACOBSON RADICAL

Let R be a ring with 1.
The Jacobson radical of R is

J(R) = () maximal left ideals in R

If m is a maximal left ideal, then R/m is a simple left R-module and m is the
annihilator of [1] in R/m. Conversely, if S is simple module and 0 # x € S, then
rR — S given by r — rz is surjective. If m is the kernel, then S = R/m. So

J(R) = ﬂ annihilators of simple left R-modules

A 2-sided ideal I in a ring R is left primitive if R/I has a faithful simple left
module. The ring R is left primitive if (0) is a left primitive ideal of R.

Warning. left primitive is different from right primitive. (Bergman, 1964)
Lemma 5.1. J(R) = () left primitive 2-sided ideal
As a consequence, J(R) is a 2-sided ideal.

FEzxample 5.2. Let V be an infinite dimensional vector space over a field k, R =
End (V). This is a (left) primitive ring, but (0) is not maximal because

I = {endomorphisms with finite dimensional image}

is a nonzero proper ideal. Thus, in general, the concept of maximal ideals is different
from that of primitive ideals. They coincide for finitely generated algebras.

Theorem 5.3. J(R) = {z € R|Va,b € R,1 — axb has a 2-sided inverse}.
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Proof. If x € J(R), then 1 —x is not in any maximal left ideal, so there exists ¢t € R
such that
tl—xz)=1
Then 1 —t = —tx € J(R) so t has a left inverse which must be 1 — z. Applying
this to axb € J(R) instead of x, 1 — axb has a 2-sided inverse.
Conversely, suppose Va,b € R, 1 —azb has a 2-sided inverse. If z ¢ m a maximal
left ideal, then there exist a,b with b € m such that

ar+b=1
but then 1 — ax = b € m does not have a 2-sided inverse, so x € m. O

Corollary 5.4. J(R) = () mazimal right ideals of R

Lemma 5.5 (Nakayama’s Lemma). If M is a finitely generated R-module and
J(R)M = M, then M = 0.

Proof. Let my,...,m, be generators of M with n minimal. Let
n
my, = Z ;MM ;
j=1
n—1
with a; € J(R), then (1 —a,)m, = Zajmj. But 1 — a,, has a 2-sided inverse
j=1
b € R, then
n—1
my, =b(1 —ay)m, = Z ba;jm;
j=1
So my,...,m,_1 generates M, a contradiction. (I

Ezample 5.6. If S is a simple R-module, J(R)S = 0. Note that S is necessarily
finitely generated.

An R-module M is semisimple or completely reducible if

M = EB simples

possibly infinite

We also have J(R)M = 0 in this case.

Proposition 5.7 (Properties of semisimple modules). (1) FEvery submodule of
a semisimple module is semisimple and is a direct summand.
(2) Every quotient of a semisimple module is semisimple.

Remark 5.8. In fact a module M is semisimple if and only if every submodule of M
is a direct summand. (For a proof, see Farb and Dennis, Noncommutative Algebra,
Exercise 17, p. 50.)

Theorem 5.9. Suppose that R satisfies descending chain condition on left ideals
(left Artinian), i.e., if
ILD2,D...
are left ideals of R, then there exists n such that for all m > n, I, = I,,. Then the
following are equivalent:
(i) J(R)=0
(ii) Fvery R-module is semisimple
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(iii) Ewvery finitely generated R-module is semisimple.
Remark 5.10. Z, J(Z) = 0, but not all Z-module are semisimple.

Proof. Suppose J(R) = 0. Let M C rR be minimal such that intersection of a
finite set of maximal left ideals, we claim M is in every maximal left ideal, if not
we can intersect to get a smaller M. So M = (0) since J(R) = (0). Hence

0) = () mi
i=1
We have an injection
rR — @ rR/m; =P S
i=1 i=1

so rR is semisimple. Note that we need the Artinian condition to have finite direct
sum, instead of infinite direct product.
Conversely, if grR is semisimple, then J(R) considered as a submodule of rR is
a direct summand
rR=J(R)® rR/J(R)
apply J(R) to both sides J(R) = J(R)J(R) Since J(R) is a quotient of gR, it is
finitely generated so by Nakayama’s lemma J(R) = (0). O

6. WEDDERBURN STRUCTURE THEOREM
In general, J(R/J(R)) = 0.

Theorem 6.1. Let R be a finite dimensional algebra over a field k and suppose
that J(R) = 0, then

m
R = [[Matq,(A))
i=1
where A; is a division ring containing k in its centre and finite dimensional over
k.

Proof. Step 1: For any ring R, R = Endg(gR)°P given by r — (2 +— xr).
Step 2: RR = @disi since J(R) =0, so rR is semisimple.

i=1
Step 3: Schur’s Lemma: Endg(S;) is a division ring A;°P.

Step 4: Endg (é M) = Mat,, (Endg(M))

=1

EndR(RR) = f[ End(dzsz)

i=1

= H Matg, (Endgr(S;))

i=1
= H Matdi (AiOp)
i=1

So R = HMatdi(Ai). O

i=1
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End(M; @ My) looks like

( End(M;) Hom(M1,M2))
Hom(My, M;)  End(Ms)

Remark 6.2. (1) If k is algebraically closed, then each A; = k. For example,
CG is semisimple, so CG = [] Mat,,, (C)

C&5 = C x C x Mat,(C)

(2) If k =R, then A; 2 R, C,H (Frobenius-Schur Indicator).

(3) If k is a finite field, another theorem of Wedderburn shows that each A; is
a finite field.

(4) |A;: Z(A;)] is a perfect square.

(5) Take G = Z/T X Z/9 = {(g,h|g" = 1,h% = 1,hgh™! = ¢?) and let S
be a simple QG-module on which G acts faithfully. Then Endgg(S) is
9-dimensional over its centre.

7. BRAUER CHARACTERS I
Let M be a CG-module. Then we have a class function
X : {conjugacy classes of G} — C
given by g — Tr(g, M).
Proposition 7.1 (Properties of ordinary characters). Let M, M’ be CG-modules.

(1) xmem = X+ XM
(2) xmem = XmXmr
(3) If xar = X, then M = M.

Goal: Develop character theory for modular representations in such a way that
(1) and (2) hold and

(3) xm = xm if and only if M and M’ have the same composition factors with
the same multiplicities.
Problem: If M is a direct sum of p-copies of M’, then Vg € G, Tr(g,M) =
PTr(g, M) = 0.

Theorem 7.2. Let k be algebraically closed of characteristic p, then the following
are equivalent:
(i) For any g € G, Tr(g, M) = Tr(g, M").
(ii) For each simple kG-module S the multiplicity of S as a composition factor
of M and of M' are congruent modulo p.

Proof. For 0 My My M; 0, we have
_ M1 *
My = ( 0 M )
so Tr(g, M2) = Tr(g, M1) + Tr(g, M3), and if M, M’ have the same composition
factors, then Vg € G,

Tr(g, M) = Tr(g, M")

Without lost of generality, suppose M, M’ are semisimple. Since Tr(g,p-S) =0,
then (ii) implies (i).
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Conversely, if Tr(g, M) = Tr(g, M’) for all g € G, then Tr(z, M) = Tr(x, M) for
all x € kG. Use Wedderburn structure theorem to find elements z; € kG such that
1 =y
Tr(x;, S;) = { 0 i4]

So Tr(x;, M) = number of copies of S; as a composition factor of M modulop O

8. p-ELEMENTS AND p/-ELEMENTS

A p-element is one whose order is p® for some a and a p’-element is one whose
order is prime to p.

Lemma 8.1. Given g € G we can write ¢ = xy = yx so that

(i) = an p-element.
(ii) y an p’-element.
(iii) every element of G that commutes with g commute with x,y.

The elements x,y are unique and called the p-part and p’-part of g, respectively.

Proof. If g has order n = p®m with p f m, choose integers s, t such that sp®+tm = 1,
then g = g'™g"". (I

9. JORDAN CANONICAL FORMS

Let G be a finite group and let k be a field of characteristic p. If ¢ € G and
M is a finite dimensional kG-module, g induces a k-linear map on M which is
annihilated by the polynomial X !¢l — 1 over k. Since XI¢1 — 1 = (X/Cl» — 1)IGI»
and X!C¢l» —1 is a product of linear factors in k[X], g has a Jordan canonical form
and every eigenvalue of g is a |G|, -th root of unity. For example, let

Al
Al
Al
A
be a Jordan block of g. It is conjugate to
AA 1 1 A
A A _ 11 A
A A o 11 A
A 1 A

g1 x1 Y1

The matrix x; is a p-element because it is the sum of the identity matrix I and a
nilpotent element u. That is, we have u?" = 0 for some n, and so m’l’n = (I—i—u)p” =
I +uP" =0 because char k = p. The matrix y; is a p’-element because A must be
a root of XIl» —1. Also 7 and y; commute with any matrix commuting with g,
because x; is a scalar multiple of g; and y; is in the center of the matrix group.
Thus 1 is the p-part and y; is the p’-part of g;. The upshot is that if g = xy is the
decomposition of g into its p-part z and p’-part y, then z has all diagonal entries in
the Jordan canonical form equal to 1 and yj; is diagonalizable. Therefore we have

Tr(g, M) = Tr(y, M)
Tr(z, M) = dimy M
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10. BRAUER CHARACTERS 11

Let G be a finite group and let k be a field of characteristic p. Assume that k
has all |G|,-th roots of unity. These form a cyclic group of order |G|,-th under
multiplication. All eigenvalues of elements of G belong to this cyclic group. Choose
once and for all an isomorphism of cyclic groups

¢: {|G|p-th roots of unity in £* } — {|G|,-th roots of unity in C* }.
If g is a p’-element of G and M is a finite dimensional kG-module, then
A1
gn ~ , d = dimy, M.
Ad

Define xp(g) = Zle ¥(A;). Note that xar(g) is a cyclotomic integer. It gives a
map
X : { conjugacy classes of p’-elements of G} — C

Theorem 10.1 (Brauer). For finite dimensional kG-modules M and M’, the fol-
lowings are equivalent:
(1) XM = xm--
(2) The multiplicities of each simple kG-module as composition factors of M
and M’ are equal.

Proof. Without loss of generality, we may assume that M, M’ are semisimple. (2)
= (1) is obvious, so we’'ll prove (1) = (2). Look at a counterexample of smallest
dimension. If M and M’ have a composition factor in common, we can remove it
and get a smaller example. So assume that they don’t. If x5 = xa, by reducing
back to k we have Tr(g, M) = Tr(g, M’) for all g € G, so the multiplicities are
congruent modulo p. So all multiplicities are divisible by p. So we have M =
p-My, M" = p.Mj, and xar = pxas,, XM = pXa- Hence My, My give a smaller
counterexample. ([

11. CHOICE OF ¥ AND BRAUER CHARACTER TABLE

Let G be a finite group with |G| = p®m, p1m and let k be a field of characteristic
p. Suppose that k has all m-th roots of unity. Let C', C be the group of m-th roots
of unity in k, C, respective. Let K = Q[C]. Then we have

~

Gal(K/Q) = Aut(C) = Z/p(m)

where ¢ denotes the Euler function.

Let Ok be the ring of integers in K. Then Oy = Z[CA'] Note that Ok is a
Dedekind domain; in particular, every prime ideal in O is maximal. Choose a
prime ideal p of Ok lying over p, i.e. pNZ = pZ. Then

Proposition 11.1. Ok /p is the smallest finite field containing the m-th roots of
unity: if p” is the smallest power of p such that m | p" — 1, then

OK/]J Fpr — k
C+p

It

C

and
Gal(F,-/F,) = Stabilizer of p in Gal(K/Q) = Z/r.
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Note that since (m,p) = 1, we have m | p#(™) — 1, and so 7 | ¢(m).

Proof. Let ¢ be a primitive m-th root of unity in C. Then O /p is the extension
field of F,, generated by the image ¢ +p. Since

Xm—1 m_t
o xmlyxm2 4 1= X — (I

setting X = 1, we see that 1 — ¢/ | m in O for all j = 1,...,m — 1. Now if
1—¢7 € p, then m € pNZ = pZ, contradicting (m,p) = 1. Thus ¢ +p is a primitive
m-th root of unity, so Ox /p ZF,r and C+p = C. O

The Brauer character table of G (modulo p) is a table whose rows and columns
are indexed by simple kG-modules S and conjugacy classes of p’-elements g of G,
respectively, and whose entries are the values of the Brauer characters xs(g).

Note that once fixing an isomorphism ¢: C' — C , all other isomorphisms C' — C
are obtained by applying elements of Gal(K/Q) to C'. Rows of the Brauer character
table for G are the irreducible Brauer characters

XS, S a simple kG-module;
columns of the Brauer character table for G are the ring homomorphisms
x_(g9): R(G) — C, g a p’-element of G.

Proposition 11.2. (1) If we apply an element of Gal(K/Q) to a column of
the Brauer character table, we get another column.
(2) If we apply an element of the stablizer of p of Gal(K/Q) to a row of the
Brauer character table, we get another row.

Proof. (1) Let ¢ be a primitive m-th root of unity in C. Then K = Q(¢) and an
element o of Gal(K/Q) sends ¢ to ¢* for some ¢ such that (t,m) = 1. Then for
each p’-element g of G, we have x? (9) = x_(g*).

(2) o stablizes p precisely when t is a power of p. Let S be a simple kG-module
with corresponding representation p: G — GL, (k). Then S is a kG-module with
corresponding representation

p°: G L GL.(k) — GLu(k)
g = (Nl9) = (Nilg))
O

Therefore, the Brauer character table is determined by the choice of p up to
permutations of rows and columns.

Warning. If we apply an element of Gal(K/Q) which does not stablize p to a row
of the Brauer character table, we don’t necessarily get another row.

Ezample 11.3. Let p = 2, m = 7. 7-th roots of unity in k£ have two possible minimal
polynomials X3 + X2 + 1, X3+ X + 1. Let ¢ be a 7-th root of unity in C. Then
there are two prime ideals in Z[(]
pL=02C+C+1), p=020C+0+)
lying over 2 such that
Z[C]/p1 = Fs = Z[(]/pa-



12 DAVE BENSON (NOTES BY KAY JIN LIM AND SEJONG PARK)

12. GROTHENDIECK GROUPS I

Given G and k as in the previous section, we form an abelian group R(G):
e generators: symbols of the form [M] where M is an isomorphism class of
finite dimensional kG-modules
e relations: if 0 — M; — My — Mz — 0 is a short exact sequence of
kG-modules, then
[Ma] = [M] + [M3]

Remark 12.1. We take equivalence relations over isomorphism classes of finite di-
mensional kG-modules rather than over all finite dimesional kG-modules because
all finite dimensional kG-modules does not form a set.

R(G) is a free abelian group with basis [S;], S; simple, by Jordan-Holder theorem.
We make R(G) into a commutative ring by introducing the mulitplication
[M][N] = [M @, N]

where the kG-module structure of M ®j; N is given by diagonal action of G. Note
that the multiplication is well defined because over a field k every module is flat; it is
commutative because the tensor product over k is commutative. The multiplicative
identity element of R(G) is [k] where k is the trivial kG-module.

Proposition 12.2 (Properties of Brauer characters). (1) If0 — M; — My —
Ms — 0 is a short exact sequence of finite dimensinoal kG-modules, then
XM, = XM; T XMs;-
(2) Xme.N = XMXN-
Consequence: for every conjugacy class of p’-element g of GG, the map
x-(9): R(G) — C
M] = xm(g)

is a (well-defined) ring homomorphism.

Theorem 12.3. The product of these maps
R(G) - Hconj classes of(c

p'-elts g € G
M] = (g—xm(9))
18 injective.
Proof. If [M] — [N] and [M’] — [N’] go to the same place, then we have xpr — xn =

XM — XN', 80 Xm + XN = xamr + xn- Then xypen = xamren, so [M & N'] =
(M’ @ N]. Thus [M] + [N] = [M"] + [N], and hence [M] — [N] = [M] — [N]. O

13. GROTHENDIECK GROUPS II
In this section, we show
Theorem 13.1. The map
CozR(G) S5 11 C

conj classes of
p’-elements of G

is an algebra isomorphism.

which yields immediately:
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Corollary 13.2. The number of simple kG-modules is equal to the number of
conjugacy classes of p'-elements of G.

The injectivity of the map follows from

Lemma 13.3. The drreducible Brauer characters xs, are linearly independent
over C.

Proof. Let K C C be the field of |G|, -th roots of unity. Let O be the ring of
integers in K. Let p be a prime ideal in O containing (p). O, C K consists of the

x

fractions m with z,y € O, y ¢ p. B,, consisting of the fractions % with z,y € O,
x €p, y ¢ p, is the unique maximal ideal in O, and

Op/By = O/p — k.

Moreover, O, is a PID. Write B, = ().

If there is a linear relation over C among the irreducible Brauer characters, then
there’s one over K, since all character values are in K. Clear denominators to get
a linear relation with coefficients in O. If all the coefficients of the linear relation
lie in p, divide by a suitable power of 7 so that they don’t. Now reduce mod B3, to
get a linear relation in k between the traces:

ZaiTr(x, S;)=0 Ve kG.
J

By Wedderburn structure theorem, for each i there exists z; € kG such that
Tr(z;, S;) = 0;5. Therefore a; =0 V1. O

To prove the surjectivity, for each p’-element g of G, we’ll find elements of C ®z
R(G) such that x_(g) sends it to 1 and x_(h) sends it to 0 for all h =g g.

First consider the case G = (g), |g| = m, (m,p) = 1. The irreducible represen-
tations of G over k are of the form

g (e), g™ =1ink.
So the irreducible Brauer characters are of the form
xig) = 2/

with corresponding simple kG-module S; for j =1,...,m. Then

m

z=— Zef%ij/m[sj] € C®z R(G)
j=1

has Brauer character

m . t
gt — 1 ZeQTrij(t—l)/m _ Lifg'=yg
m 0,ifg" #g

In the general case, we’ll take this Brauer character for some cyclic subgroup of
G and induce it up.

Jj=1

Proposition 13.4 (Brauer characters of induced modules). If H < G and M is a
kH-module, then for g € G,
xare(g) = Y. |Ca(h): Cu(h)lxar(h).

ccls of h € H
s.t. h ~g g
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Proof. We have
M1°=kGeruM= @ g®M.
9:i€G/H
If g € G, m € M, then g(¢g; ® m) = g; ® hm where gg; = g;jh, h € H. Thus the
matrix representing the action of g on M 1¢ decomposes into blocks corresponding
to G-orbits of G/H, and the blocks corresponding to G-orbits of G/H of length
> 1 are of the form

O O x O
O ¥ OO
*x O O O
O O O ¥

hence their eigenvalues are 0. On the other hand, if the singleton {g;} is a G-orbit
of G/H, then the corresponding block represents the action of gi_lggi € H on M.
Thus

xane(9) = > xulgi'99:).
97 tg9:€H

If h € H, how many ¢ satisfy g; Y9g; ~g h? Count the pairs
{(@,1') | (g:il") " g(gih") = h}
to get |Ca(h)| = #1’s- |Cr(h)|. Thus we get the desired equality. O
Now we finish off the proof of surjectivity. If H < G, define

Indge: R(H) — R(G)
[M] +— [kG®kg M]

and extend linearly to get
Indgg: C®z R(H) — C®z R(G).
Given any p’-element g € G, let H = (g) and take z € C ®z R(H) such that

(i)_ 1, ifgi:g;
0, g £
Then for ¢’ € G,

Xtndo@ (@)= Y. |Ca(h): Cu(h)|xa(h)
cclsof h € H
st. h~g g’
_)ICal(g) = {g)l, ifg ~cg;
0, if ¢ g g.

We give another corollary of Theorem 13.1:

Corollary 13.5. Every ring homomorphism R(G) — C is of the form x_(g) for
some p'-element g € G.

For this we need the following lemma.

Lemma 13.6. Let R be a commutative ring and let D be an integral domain. Then
every set of distinct ring homomorphisms R — D is linearly independent over D.
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Proof. Suppose we have a linear relation of smallest size
n
Zai%:o where ¢;: R — D,«a; € D.
i=1

In particular a; # 0 for all : = 1,...,n. Choose zg € R such that ¢1(xg) # @n(xo)-
Then for all z € R

S aupilwor) = 3 cii (o) i) = 0.
Also for all z € R - . -
Z aion(20)pi(z) = 0.
Subtract: o -
> ai(pi(wo) — pn(x0))pi(x) = 0
i=1

for all z € R. Since D is an integral domain, a;(v;(zo) — ¢n(x0)) # 0, a contradic-
tion. g

Proof of Corollary 13.5. Let ¢: R(G) — C be a ring homomorphism. Extend this
linearly to get an algebra homomorphism ¢: C ®z R(G) — C. Do the same thing
for x_(g)’s. Theorem 13.1 and Lemma 13.6 show that the algebra homomorphisms
X—(g;) where the g; are representatives of conjugacy classes of p’-elements of G form
a C-basis for the space of C-linear maps from C ®z R(G) to C. Now if v # x_(g;)
for all ¢, then by Lemma 13.6 ¢, x_(g;) are linearly independent, contradicting
Theorem 13.1. g

14. p-MODULAR SYSTEM

A discrete valuation ring (d.v.r.) is a principal ideal domain with a unique
nonzero maximal ideal.

If Oisad.v.r. with the maximal ideal p = (7), we can write any nonzero element
x as yr® for some a € N, y a unit: if x € p, we can do factorization x = y; 7. Since
7 is a prime and O a principal ideal domain, the factorization terminates. Define
vp(x) = a.

If K = fof(O) is the field of fraction of O, then for any x € K, z = yn® with
a€Z.

A p-modular system (K, O, k) consists of a d.v.r. O, K = fof(O) of characteristic
0 and k = O/p of characteristic p.

Remark 14.1. Every finitely generated torsion free O-module is free.

A p-modular system (K, O, k) is splitting for G if for any subgroup H < G, we
have
(i) KH =[] Matgy, (K)
(ii) kH/J(kH) = [[Mat,, (k)

Example 14.2. Let K be an algebraic number field and O be the ring of integers in
K, then fof (O) = K. Since O is integral over Z, then there exists a prime ideal p
(and hence maximal) of O that lying above (p), i.e., pNZ = (p). The localization
O, at p is a d.v.r. and hence (K, O,, O/p) is a p-modular system.
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Remark 14.3. If K contains |G|-th roots of unity, then (K, O,,O/p) is a splitting
p-modular system for G.

Remark 14.4. Later, we will want that O is complete, i.e.,

O — 1limO/p"
n
is an isomorphism.

15. DECOMPOSITION NUMBERS

Let (K, O, k) be a p-modular system.
Consider an irreducible representation V of GG over K. Choose a K-basis v1,...,vq
for V. Look at the O-span W of

This is a finitely generated torsion free O-module and hence O-free on which G
acts: the O-span of W is a subset of V' and fof(O) = K.

If wy,...,w, is an O-basis. Clearly, wy,...,w, span V: v1,...,vq € W. If there
is a linear relation between wy, ..., w, over K, then clearing denominators, there
is one over O. So, there is no relation between wy,...,w, over K. So, wy,...,w,
is a K-basis for V and n = d.

Changing basis from the v;’s to w;’s, all the entries in the matrix representations
of G are in O, not just in K and we have

V=Ko W
The set W is an O-form for the KG-module V.

Theorem 15.1. Assume (K, O, k) is a splitting p-modular system. If W, W' are
O-forms of V', then the kG-modules k @0 W = W/pW and k @0 W' have the same
Brauer character, hence the same composition factors.

Proof. The Brauer character of k ®» W is just the values on the p’-elements of the
ordinary character of V. g

The decomposition matriz D has row indexed by the irreducible K G-modules,
columns indexed by the irreducible kG-modules. The entry d;; tells you the follow-
ing: choose an O-form W; for V; and

d;; = multiplicity of S; as composition factors of k ®p W;

Ezample 15.2. The ordinary character table for As,

1 2 3 5 5
1 1 1 1 1
14V 1=V
S PRt e ¢
2 2
4 0 1 -1 -1
5 1 ~—1 0 0
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and the modular character table for A5 when the characteristic of k is 2, we have

1 3 5 5
1 1 1 1
B=|2 -1 =86 146
2 -1 715\/5 715\/5
4 1 -1 -1
The decomposition matrix D is
1 2 2 4
111 0 0 O
3/1 1 0 0
D= 3/1 01 0
410 0 0 1
5|11 1 1 0

If X5 is the 5 x 4-matrix where the second column of X deleted, then we see that
DB = X,

The i-th row of D is interpreted as the composition factors of the irreducible kG-
module M/pM where M is the K G-module corresponding the i-th row of X.

16. PROJECTIVE AND INJECTIVE MODULES

In this section, M is not necessary a finitely generated R-module assuming R is
a ring with 1.

An R-module P is projective if for every surjective homomorphism M’ — M of
R-modules and homomorphism P — M, there exists a homomorphism P — M’
making the triangle commutes

Ve
Ve
’ \L
y

M —M——0
Theorem 16.1. The following are equivalent:
(i) P is projective.
(ii) Every surjective homomorphism M ——= P —=( splits, i.c., there ex-

ists a homomorphism ¢ : P — M such that coe = idp.
(iii) P is isomorphic to a direct summand of a free module.

An R-module I is injective if
0——M ——M'
L
Ve
»
1

Lemma 16.2. Let k be a field and G a finite group, then every kG-module embeds
into a free kG-module.
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Proof. Define ¢ : M — kG @ M = M l{l}TG by
e Y gogn
geG

In this case, the action of G on kG ®; M is g'(g @ m) = g'g @ m.
There is a vector space splitting ¢ : kG ®; M — M of ¢ where

vem={ o921

so ¢ is injective.
Let h € G and m € M, then

¢(hm) = > g®g '(hm)

geaG

= Y hd®(g)'m

g'eG

= n| > gdel@)'m
g'eG

= ho(m)

where we have used ¢ = h™!g (and hence (¢')~! = g~ 'h, g = hg'). So ¢ is a
kG-homomorphism.

Since k is a field, then M |} is a free k-module and we can write M = k.
So

kGoyM = M |(;31¢
= Dkw ¢
o

thus M is a free kG-module. O

Theorem 16.3. Let k be any field, G be a finite group M be a kG-module, then
the following are equivalent:
(i) M is projective.
(il) M is injective.
(iii) (D. Higman’s criterion) there exists a k-linear map o« : M — M such that

Z gag~! =idy

geG

Proof. (ii)= (i): If M is injective, look at

0—> ML kGonM
7

e
A

M

The splitting « of 3 shows that M is a summand of the free kG-module kG ®; M,
so M is projective.
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(iii)=-(ii): The proof can be dualised to get (iii)=(i)). Consider the diagram

0*>M1L>M2

/7
\LO‘ /;
2

M
s

Choose a k-linear map v (not necessary a G-map) such that 78 = a and set

Y= g0y)g"

geG

This is a kG-module homomorphism:

VB o= > g0y)g's

geaqG
= Z g(0v3)g~* B is a kG-module homomorphism
geG
= > g(0a)g™"
9eqd
= | D9ty |a
geqG
= dya=«a

(i)=(iii): If M = kG, take

0 Z g9 | = ailg
geG

So

Z hOh~1 Z Qg9 = Z ho Z aghflg

hea geG hea geG

= Z h(ahlg)

heG

= Z Ozhh

heG

S0 Y peqhbh™t = idpg. If M = @kG, use this 6 on each factor. If M is a
summand of a free module F', then define 8;; = w0t where

9MCM = FQeF
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We check that 6, satisfies the desired property:

> gm)g™t = > g(wbri)g!

geG geG
= > wlgbrg™" )
geG
Sy
gea

= 7TidFL = ldM O

17. PROJECTIVE INDECOMPOSABLE MODULES AND IDEMPOTENTS

Theorem 17.1 (Krull-Schmidt Theorem). Let R be a finite dimensional k-algebra,
M be a finitely generated R-module and

M=M®®&.. ®My=M,®...® M|

be two indecomposable decompositions of M, i..e, M;’s and M'i’s are all indecom-
posable R-modules, then s =t and after reordering if necessary, M; = M for all
1<i<s.

Remark 17.2. The theorem is also true for finitely generated OG-modules.
Warning. It is not true for finitely generated ZG-modules.

Corollary 17.3. If M is indecomposable and M is a summand of M1 & ... M,
then M is isomorphic to a summand of some M;.

Corollary 17.4. FEvery finitely generated projective indecomposable R-module is
isomorphic to a summand of rR.

Write RR = P ® ... ® Ps; where P;’s are projective indecomposable. Since
R = End(gR)°P, the endomorphism 7; : gR —> P,;*—— rR projecting onto P;
is a right multiplication by some e; € R and hence P; = Re;, then 1p = e +...+¢;.
These are idempotents e;?> = e;. Two idempotents e;, e; are orthogonal if e;e; = 0 =
eje;, i # j. An idempotent e is primitive if e # 0 and we cannot write e = €’ + €”
with e’ orthogonal to ¢’ and both nonzero.

There is one-to-one correspondence between direct sum decomposition R =
P, ®...® P, with P;’s indecomposable and the expression 1 = e; + ... + e with
e;’s primitive orthogonal idempotents.

Recall Wedderburn theorem:

R/J(R) = H Matg, (Az)

If T; = Matg, (4;), then
7,1 = @columns

and these are simple and isomorphic to each other. Let e;; be the (d; x d;)-matrix
with (4, j)-entry 1 and zero elsewhere. For the matrix ring 7T}, we have

1Si:€i1+...+6idi
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and hence
lR/J(R) =eqnnt+...+€q e +...+€q + ...+ €1+ ...+ €y,
Let R* be the group of invertible elements in the ring R.

Lemma 17.5. If e, e are idempotents in R, then the following are equivalent:

(i) e is conjugate to €' by an element of R*.

(ii) Re = Re' and R(1 —e) 2 R(1 —¢').
Proof. If e ~ €', say eq = pe’ with p invertible, then Rey = Rue’ = Re’ gives
Re = Re'. Similarly, (1 —e)u = pu(l —¢'),s0 R(1 —e) 2 R(1—¢).

Conversely, suppose Re =, Re’ and R(1—e) == R(1—¢) be the isomorphism.
Note that for any R-module M we have
Homp(Re, M) =% eM

where ¢ : 6 = ((e) as B(e) = ef(e). Let uy € eRe’ =2 Homp(Re, Re') corresponding
to the isomorphism 6; similarly, uo € ¢'Re, ps € (1 —e)R(1 —¢€’) and pg € (1 —
¢'YR(1 — e) correspond to the isomorphisms =1, v and y~! respectively. It is clear
that we have

papy = e, popy = € and pgpg =1 —e, pypuz =1—¢

Also,

(1 + ps)(p2 +pa) =e+0+04+(1—€) =1
and similarly, (ug + pa)(pu1 + ps) = 1, ie., p1 + pg € R* with the two sided inverse
o + pg. Finally,

(2 + pa)e(pr + p3) = poepn = popy = ¢’ O
Remark 17.6. For the matrix ring, e;. is conjugate to e;s for any 1 < r,s < d;.
Lemma 17.7. If R is a finite dimensional algebra, then J(R) is a nilpotent ideal.
Proof. Look at the descending chain of ideal J(R), J2(R), J3(R), ..., so there exists

n > 0 such that J*(R) = J"*1(R) = J(R)J"(R). By Nakayama’s lemma, J"(R) =
0. O

Theorem 17.8 (Idempotent Refinement). Let R be a ring and N a nilpotent ideal
of R, we have

(i) if e is an idempotent in R/N, then there exists an idempotent f € R such
that f + N = e.
(ii) if e ~ €' in R/N, then f ~ f' in R.
Proof. (i): Without lost of generality, suppose N2 = 0: there is a lift at each stage
for the ring R/N2" and the nilpotent ideal N2 /N2"; furthermore, R/N?" = R
for some n. Choose a preimage x of e in R, i.e., z + N = e. Set f = 3z — 223,
then (322 —23)+ N = (32 —22) + N =2+ N =, i.e., f is another lift of e. Also,
since f — 1= (x —1)?(—2x — 1) and x(x — 1) + N = N, then
fP=f = f(f-1
= 223 —-22)(z —1)*(—2x — 1)
= (z(x—1)*B-2z)(-22-1)=0
as N2 = 0.
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Comment on the choice of f: we want
f=2z mod (2> —z)and f =0 mod (z — 1)?

then use Chinese Remainder theorem.

Comment: if R has characteristic p with p a prime, i.e., p-1g =0, then f = 2P
will do:

f2P—f=2a% 2P = (2% —x)P € NP

(ii): Suppose we are given invertible p € R/N such that ey = pe’. Let 3 be a

lift of u to R and set
fo=fBf" + 1 - B~ f)

Claim: [i is invertible and fi = ff’. We compute fii = fBf" and pf’ = f8f’
and hence they are equal. Let A be any lift of p=! to R, i.e., 1 — g\ € N. So,
(1 — i\)™ = 0 for some n and hence

A=A =pA))A+T =)+ (1 —aN2+..)=1
So
AANLI+ (T =g\ + (1= )2 +..)=1
right inverse for fi

Similarly, it is a left inverse of ji. O

Remark 17.9. An idempotent in R which lifts any primitive idempotent in R/N is
again primitive.

Theorem 17.10 (Idempotent Refinement (full version)). Let N be a nilpotent ideal
of Rand 1 =-ey+ ...+ es be a decomposition of 1 into orthogonal idempotents in
R/N, then there is a decomposition 1 = f1+...4+ fs of 1 in orthogonal idempotents
in R such that f; + N =¢; for all1 <i <s.

Proof. We inductively define idempotents f; in R lifting e; + ... 4+ es and then
will set f; = f{ — fi;1. Let f{ = 1g and suppose f; is an idempotent in R lifting
e+ ...+ e;s. O

Now we restrict our attention to a finite dimensional algebra R over some field
k. Recall that, for a finitely generated R-module M,

RadM = the intersection of all maximal submodules of M
= the smallest submodule of M with semisimple quotient
=J(R)M
and
SocM = the sum of all simple submodules of M
= the largest semisimple submodule of M
={meM|JRmMm=0}

By Wedderburn structure theorem, we have
S
R/J(R) = [ [ Matq, (As),
i=1
so we have a primitive orthogonal idempotent decomposition

lr/yry =€+ +€d, - +€1+ -+ €,
— —
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where €;; is the matrix in Matg, (A;) whose only nonzero entry is the (7, j)-entry 1.
Moreover, idempotents in each brace form a conjugacy class of idempotents. Lifting
to R, we get a primitive orthogonal idempotent decomposition

1R:611JF"'JFeldl+"'+€sl+"'+€sds
— —

where idempotents in each brace form a conjugacy class of idempotents. Thus we
get a decomposition into projective indecomposable R-modules

RR:R€11@"'@Reldl@"'@Resl@"'@Resds

where projective indecomposables in each brace form an isomorphism class of mod-
ules. Moreover, for each i, 7,

Reij/Rad(Re,-j) = Reij/J(R)eij = (R/J(R))E” =~ S,

where S; is a simple R-module. Write Ps, = P; for a module isomorphic to Re;;
for some j.
Consequence: There are s isomorphism classes of projective indecomposable R-
modules P; (i =1,---,s) and each P; has a unique maximal submodule J(R)PF;.
We say that P; is the projective cover of S;. In general, if M is any finitely
generated R-module, we have M/Rad(M) = M/J(R)M = @, S;. Then by the
projectivity of €, P; we get the following commutative diagram of R-modules

®, P

£~ i
M — M/Rad(M) ——0
The map €, P, — M is surjective because it is surjective modulo Rad(M): de-

noting the image of @, P; in M by N, we have N + J(R)M = M, which implies
N = M by Nakayama’s lemma. It induces an isomorphism

P P./Rad(EP P.) = M/Rad(M).

We say that €, P; is the projective cover of M. The kernel of the map @, P, — M
is written Q(M):

0—>Q(M)—>@Pi—>M—>0.

On the other hand, injective modules are vector space duals of projective mod-
ules.
Duality: If M is a left R-module, then

M* = Homy (M, k)

is a right R-module via (fr)(m) = f(rm) for f € M*, r € R, m € M. Similarly,
if M is a right R-module, then M* is a left R-module. Since Homy(—, k) is an
exact functor from the category of finitely generated left(right) R-modules to the
category of finitely generated right(left) R-modules, we have

M f.g. proj. left(right) R-module < M f.g. inj. right(left) R-module
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Note that, if R = kG for some finite group G, a left R-module M can be made into
a right R-module via

mg =g 'm, geG,me M.

Consequence: If I is an injective indecomposable R-module, then I has a unique
minimal(i.e. simple) submodule.

Write Ig, = I; for the injective indecomposable R-module that has S; as a unique
simple submodule; that is, Soc(I;) = S;. I; is called the injective hull of S;. In
general, if M is any finitely generated R-module, we have Soc(M) = @, S;. Then
by the injectivity of @, I; we get the following commutative diagram of R-modules

0——Soc(M) ——= M

e
Ve
Ve
7
A
@i I;

The map M — @, I; is injective because it is injective on Soc(M): if its kernel
K is nontrivial, then the intersection K N Soc(M) is nontrivial, contradicting the
injectivity of Soc(M) — @, I;. It induces an isomorphism

Soc(M) = Soc(@ L).

We say that I; is the injective hull of M. The cokernel of the map M — @, I; is
written Q=1 (M):
0—>M—>@I¢ — Q7 Y(M) — 0.

3

Remark 17.11. Q and Q™! are not inverse to each other on the category of finitely
generated R-modules.

Theorem 17.12. Let G be a finite group and let k be a field. If P is a projective
indecomposable kG-module, then P/Rad(P) = Soc(P).

Proof. We have P = kGe for some primitive idempotent e of kG. Let 0 # x €
Soc(P), x = 3 c gg. There exists h € G such that oy, # 0. Set y = hle =
deG Bgg. Then B; # 0. Since y = ye has nonzero coeflicient for 1g, so ey has
nonzero coefficient for 1¢. In particular, ey # 0, so eSoc(P) # 0. Thus

Homyg (P, Soc(P)) = Homyg(kGe, Soc(P)) = eSoc(P) # 0.

Recall that P is also an injective indecomposable kG-module, so Soc(P) is a simple
kG-module. It follows that P/Rad(P) = Soc(P). O

Remark 17.13. This is a special property of symmetric algebras.

Lemma 17.14. Let R be a finite dimensional algebra over a field k. Assume that
k be a splitting field for R. Then, for a finitely generated R-module M, we have

dimg Hompg (Ps, M) = multiplicity of S as a comp. factor of M

Proof. Induction on composition length of M. If M is simple, this is true because
k is a splitting field. If M is not simple, choose a maximal submodule M’ of M:

0—-M —-M-—M'—D0.
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Since Pg is projective, Hompg(Pg, —) is an exact functor, inducing
0 — Hompg(Ps, M") — Hompg(Ps, M) — Hompg(Ps, M') — 0.

Dimensions add and number of compostion factors add, so we’re done. (Il

18. THE CARTAN MATRIX

Let GG be a finite group and let k be a field of characteristic p. We use the
notation in the previous section: simple kG-modules are denoted by S; and their
projective covers by Ps,. Define

¢;j = multiplicity of S; in Pg;.
The matrix (c;;) is called the Cartan matriz. We will show:

Theorem 18.1. (1) If k is a splitting field for G, then c;; = cj;.
(2) If (K, 0, k) is a splitting p-modular system for G, then c¢;; =Y, diidy;.
(3) det(cij) is a power of p; in particular it is nonzero.

We will prove (2) in this section; (1) follows immediately from (2). (3) will be
proven later using the psi operator.

Lifting to char 0: Let O be a complete DVR with unique maximal ideal p such
that O/p = k. Then we have

(%) OG = lim OG/p" OG.

Since the canonical surjection
OG/p?0OG — OG /pOG = kG
has kernel pOG/p?OG which squares to zero, a primitive orthogonal decomposition
1=¢ +--+¢

in kG lifts to a primitive orthogonal decomposition

I=eo1+ - +es
in OG/p?OG. Similarly, through the canonical surjection

OG/p>0G - OG/p?0G

we get a lift

I=e31 4+ +ess
in OG/p30G of 1 = ey + -+ + ezs. Continuing this way, we get a primitive
orthogonal decomposition

l=ep1+ - +ens
in OG/p"OG such that e,; + p"~' = e,_1; for every n and j. By (), we get
elements e; € OG such that e; + p™ = e, for every n. e? defines the same inverse
system of elements as e; does, so €5 = ;. By similar argument one can show that

l=e1+--+es

is a primitive orthogonal decomposition of in OG. In summary, we have the fol-
lowing theorem:
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Theorem 18.2. If1 =e1+---+€;, is a decomposition of 1 into primitive orthogonal
idempotents in kG, then we can lift to

l=e1+---+es in OG.
Moreover, given another lift 1 =€} + -+ + €l in OG, we have € ~ e; Vi.
It follows that the decomposition of kG into projective indecomposables
kG =Ps, ®---®Ps, &---®Ps, ®---® Ps,
dy dn
lifts to the decomposition of OG into projective indecomposables
OG=Ps,® - ®Ps,® - -®Ps, ®---®Ps, .
d1 dn

Now let us prove part (2) of Theorem 18.1. Let (K, O, k) be a splitting p-modular
system for G and denote the simple K G-modules by V; and their O-forms by W;.
What is the multiplicity of V; as a composition factor of K ®o Ps,? We have

multiplicity of V; as a comp. factor of K ®¢ ng
= dimg Homgg(K ®0 st,Vi)
= dlmK HOHlKg(K ®o pgj,K Ko Wz)

(1) = dimy K ®o Homog(Ps,, W)
= rank@Homog(ij, W)

(2) = dimy, Homgg(Ps;, k @0 W;)
= multiplicity of S; as a comp. factor of k ®o W;
=d;;.

(1): Since O is a PID, ]55],, Wi, and Homog(ng,Wi) are all O-free. Moreover,
given any K G-homomorphism K ®¢ IE’SJ — K ®p W;, some nonzero multiple sends
st into W; by finite generation. Thus the map
K ®o Homog (Ps;, W;) — Homge(K @0 Ps;, K @0 W)
A® @ — Ap

is an isomorphism.
(2): Taking k ®» — induces the map

Homog(st R WZ) — Homyg (st Lk ®o Wi)

which is surjective because PSJ. is projective, and has kernel pHomog(ng , Wi).
Hence

Cij = dlmk HOIH]CG(PSHPSJ')
= rankoHOHlOG (Psi ) PS;‘)

= dimy Homgg (K ®0 Ps,, K ®0 Ps,)
= didy;.
]

Ezample 183. G=A5,p=2: K®@o P, =1®333 &5.
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19. BLOCKS

Let G be a finite group and R any commutative ring. Then the center Z(RG)
of RG is the free R-module with basis the conjugacy class sums in G: if )" agzg €
Z(RG), then whenever g ~ ¢’, ag = ags. Consequently, the ring homomorphism

Z(0G) — Z(kG)
induced by the canonical surjection O — k is surjective.

If R is a ring, a central idempotent in R is an idempotent in Z(R). A centrally
primitive idempotent is an idempotent in Z(R) that is primitive in Z(R). A block
of R is an indecomposable two sided ideal direct factor of R.

By Krull-Schmidt Theorem, if R is a finite dimensional algebra, we can write R
as a product of blocks

R=B; x...x B
Such a decomposition corresponds to an expression
l=e1+...4+¢€s

where the e;’s are orthogonal, centrally primitive idempotents in R: note that
B; = e;R. Those e;’s lie inside the center Z(R): for any € R, as e;ze; € B;, Bj,
then

eix = ej(re; + ...+ xeg)

= e;xre;

=(e1z+ ... +x2)e;

= xe;

If also 1 = ¢} + ... + €} where e}’s orthogonal, centrally primitive idempotents,
then
ei=¢e;-1=eie] +...+ e

where each e;e); is orthogonal, centrally idempotent in Z(R):

el ii—1]
(ei€))(eie]) = esefiese; = e elje; = { 0Z / ’j "y
b

Since e; is primitive, there exists a unique j such that e; = eie; = e; where the
second equality follows from the same reason. So s = ¢ and after reordering, we
have e; = ;.

If M is any R-module, then M = ey M & ... ® esM as submodules of M. If M
is indecomposable, then there exists a unique 4 such that M = e;M and e;M =0
if 7 # 4. We say M “lies in the block B;”. In particular, each simple module lies in
some block.

In case R=kG, wecanrefine l =e; +...+esin Z(kG)tol=¢€1 + ...+ é; in
Z(OG@). So indecomposable OG-modules also lie in blocks.

If V is an irreducible KG-module, choose an O-form M of V', then there exists
a unique 4 such that ¢; M # 0. Since OG C KG we can think of é; as lying in KG,
then &V # 0 and €;V =0 for j # i.

Remark 19.1. We can think of a block as a big bucket into which we put:

(i) indecomposable kG-modules
(ii) indecomposable OG-modules
(ili) simple K G-modules
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Let V; be a simple K G-module and S; a simple kG-module, if V; lies in a different
block to S;, then d;; = 0 where d;; is the corresponding entry in the decomposition
matrix.

If e is the block idempotent for V;, then
where M; is an O-form of V.

Lemma 19.2. If R is a commutative finite dimensional algebra, then R is a product
of local rings.

Proof. By Wedderburn structure theorem, R/J(R) is a product of Matg, (A;). Since

R is commutative, then each Maty, (A;) is a field, i.e., R/J(R) = k1 X ... x ks. We

have 1 =e1 + ...+ ¢€;. As J(R) is a nilpotent ideal, use idempotent refinement in

R,thenl=e¢;+...+¢e5in R. So R =Ry X ... X R, where R; = ¢; R. Also,
Rl/J(Rz) = ezR/ezJ(R) = €; (R/J(R)) = k‘i

so R; is local (J(R;) is the maximal ideal of R;). O

If R is a commutative finite dimensional k-algebra such that k is a splitting field,
ie., R/J(R) =] Matg,(k), then

R/J(R)=]]*

So we have k-algebra homomorphisms \; : R — k.
If R is a finite dimensional algebra, a central character of R is a ring homomor-
phism Z(R) — k.

Example 19.3. Let R be a finite dimensional k-algebra and S be a simple R-module
such that Endr(S) = k (for instance, k is a splitting field for R), then each element
z € Z(R) acts on S by some scalar Ag(z) and this gives a central character of R.

Theorem 19.4. If k is a splitting field for R, then k is a splitting field for Z(R).

Proof. Without lost of generality, we assume R is indecomposable: if R decomposes
into indecomposable R X ... X R, then k is a splitting field for each R;, then since
we have k is a splitting for Z(R;), then k is also a splitting field for

Z(R) = Z(Ry) x ... x Z(Ry)
Let S be a simple R-module. Since k is a splitting field for R, we have End(S) = k.

So by the above example we obtain a central character Z(R) — k. O

Example 19.5. Let K be a splitting field for KG, we construct a central character
of KG with respect to a simple KG-module. Let C; = deci g, we can calculate
Tr(C;, V) in two ways:
o if C: acts via multiplication by A € K, then Tr((?i, V) = Adim; V.
o since xv(9) = xv(h) if g ~ h, then Te(C;, V) = [Cilxv (9) = |G = Ca(9)Ixv (9)
for some g € C;.

So A= |G : Ca(9)|xv(g)/ dimg V and we have the central character Ay : Z(KG) —
K defined by

A |G : Ca(9)xv(9)
Av i Cir— dimg V
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Theorem 19.6. The numbers \y (CA> are algebraic integers.

Proof. Note that Z(ZG) has a Z-basis consisting of the class sums CAZ Suppose
CiC; = aijuCr
k
with ay;, € Z. As Ay is a ring homomorphism, then
Av (@) Av (CA]) = Zaijk/\v (@)
k

So the image of Ay : Z(ZG) — K is a subring of K which is finitely generated
abelian group.

Since a = Ay ((?) is in the image of this map, look at the chain of subgroups

(1) C{l,@) C(L,a,0%) C ...
which eventually terminates and so a € (1,q,...,a" ) for some n € N. Thus

o 4 ap_10™ 4 ...+ ag =0 with a; € Z. ]

Recall: Let (K, O, k) be a p-modular system, then all the algebraic integers in K
lie in O. So indeed, we get a ring homomorphism

v Z(0OG) - O
Reducing mod p, we get Ay : Z(kG) — k: if a; € p, then > a;\y ((Z) € p and so

Ay is well-defined.

If V is in block B with block idempotent e € Z(kG), € € Z(OG), € acts as
identity on V, i..e, Ay (€) = 1, then Ay (e) = 1. If M is an O-form of V, then every
simple composition factor of k ®o M say S satisfying Ag = Ay-.

Theorem 19.7. Let V, V' be irreducible KG-modules, then V' and V' are in the
same block if and only if Ay = Ays mod p, i.e., Ay = Ay, i.e., for each g € G, we

have
|G Ca(g)lxv(g) _ |G : Calg)lxv(9)

dimg V. dimg V/
Example 19.8. We give an example of the previous theorem which G = As. Note
that there are 5 conjugacy classes in As, i.e., represented by g1 = 1, go = (12)(34), 93 =
(123),94 = (12345) and g5 = (12354) respectively. It is not hard to compute the
cardinality of each conjugacy class

‘91 92 g3 94 Gs
[As : Cas(ga)] | 1 15 20 12 12

Let Vi,...,V5 be representatives of the classes of non-isomorphic simple KG-
modules as in Example 15.2, we construct the following table such that its (4, j)-

entry is M, (Calg)) = |G+ Calgy)lxvi (g5)/ dimc Vi

dimg Vi |91 g2 g3 94 g5
Vi 1 1 15 20 12 12
Va 3 1 =5 0 2(1++v5) 2(1-+5)
V3 3 1 -5 0 2(1-+v5) 2(1++5)
Vi 4 1 0 5 -3 -3
Vs 5 1 3 —4 0 0
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For different primes p, V;’s are classified into blocks, for example:
(i) if p = 2, then Vi, Vo, V3, V5 | V.
(i) if p = 3, then V1, V4, Vs | Vo | V3.
(iii) if p =5, then V4, Vo, V3, V4 | V.
Remark 19.9. Note that the function Ay is independent of the prime ideal p chosen,
see Theorem 15.18 [I].

Note that V, V' reduced modulo p have a common composition factor if and only
if V, V'’ are in the same block.

20. DEFECT GROUPS

If C is a conjugacy class in G, then a defect group of C is a Sylow p-subgroup of
Ca(g) for some g € C. This defines a conjugacy class of p-subgroups associate with
C. If P is a p-subgroup of G, we say C is P-defective if P centralises some element

of C.

Lemma 20.1. Suppose é;é; = Zaijka in Z(ZG). Fizi,jk, if a;jrz Z0 mod p
and Cy, is P-defective, then so are C; and C;.

Proof. Choose z € C;, commuting with P and look at the set

Q={(z,y) €Ci xCj|ay =z}
This set has a;jx elements. Let P act by conjugation on this set, ie., g(z,y) =
(gzgt,gyg™") for all g € P and (z,y) € Q. Since p { a;j;x and a;;), is the sum of
the cardinalities of the P-orbits of €2, which are divisible by p if it is not 1, there
exists a fixed point (z,y) € C; x Cj, i.e., grg~' = x and gyg~' = y. So both C; and
C; are P-defective. O

If P is a p-subgroup of G, let Z(OG)p be the set consisting of all sums ) ai@
such that a; € O and if a defect group of C; is not conjugate to a subgroup of P,
then a; € p. Note that if P <5 P’, namely if P is G-conjugate to a subgroup of
P’ then Z(OG)p C Z(OG)p:.

Lemma 20.2. Z(OG)p is an ideal of Z(OG).
This is a consequence of the following proposition.
Proposition 20.3. If P, P, are p-subgroups of a group G, then
Z(0G)p, Z(0G)p, Y Z(OG)p.

P<gP
P<gP;

Proof. Let I denote the right hand side. Since pZ(OG) C Z(OG)p for any p-
subgroup P of G, it suffices to show that whenever C; is a conjugacy class whose
defect group is conjugate to a subgroup of P, and C; is a conjugacy class whose
defect group is conjugate to a subgroup of P, (/7;52 is contained in I. Write

é\lé_\j = Z aijkCAk.
k

If a;j5 = 0 mod p, then a;;xCr € pZ(OG) C I. If a;5, # 0 mod p, let P be a
defect group of Cj. Clearly C;, € Z(OG)p; by Lemma 20.1, both C; and C; are
P-defective, and hence P <g P, P <g P»>. So C; € I. Therefore @@ €1, as
desired. O
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Proof of Lemma 20.2. If P is a Sylow p-subgroup of G, then Z(OG)p = Z(OG).
Now apply Proposition 20.3 with P; or P, a Sylow p-subgroup of G. d

If e is a block idempotent in Z(OG), then a defect group of e is the minimal
p-subgrop P of G such that e € Z(OG)p.

Lemma 20.4. The defect groups of a block are all conjugate
To prove this lemma, we need:

Lemma 20.5 (Rosenberg’s Lemma). Let R be a ring and e an idempotent of R
such that eRe has a unique maximal 2-sided ideal. (e.g. R = Z(OG), e a block
idempotent) If e € ) I, where the 1, are ideals of R, then there exists an o such
that e € 1.

Proof. Since e is an idempotent, e € ) el,e. eRe has a unique maximal 2-sided
ideal, so not all the el e can be in it. So there exists an « such that el,e = eRe.
Soee€ I,. O

Proof of Lemma 20.4. If e € Z(OG)p,, e € Z(OG)p,, then by Proposition 20.3,
e=e’¢c Z Z(OG)p.

P<gh
P<g P>
So by Rosenberg’s lemma, there exists a p-subgroup P of G such that P <g P,
P <g P,and e € Z(OG)p. If Py, P, are minimal, then P; ~g P ~¢ Ps. O
21. THE TRANSFER MAP

Let G act by conjugation on OG. The fixed points are (0G)% = Z(OG). If
H < G, then (OG)H has an O-basis consisting of the H-conjugacy class sums in
G. (x~yyiff Ih € H st. hah™t =y) If x € (OG)H, we define

Trya(e) = > gug™'
geG/H

where G/H denotes a set of representatives of left cosets of H in G} it is independent
of the choice of left coset representatives because x is H-invariant. Let

(0G)G =Im(Try g: (OG)" — (0G)Y).
Lemma 21.1. (OG)$ is an ideal in Z(OG).
Proof. If z € (OG)H, y € (OG)®, then Try ¢ (x)y = Tri.c(zy). O
Lemma 21.2. If P is a Sylow p-subgroup of H, then (OGS = (0G)&.

Proof. If z € (OG)H | then z = Trp g (ﬁx), SO

1 1
TrH,G(,T) = ’I‘I‘H7GT‘I’P’H (M(L‘> = TI‘P7G (MII;) .

O

Theorem 21.3. If P is a p-subgroup of G, then Z(OG)p = (OGS + pZ(OG).
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Proof. Take a P-conjugacy class sum in G and transfer to G. If g is an element of
the P-conjugacy class,

Trpa Z zgr~t | = Z zgr~' =|Ca(g) : Cp(g)|5g
z€P/Cp(g) z€G/Cp(g)

where C, denotes the G-conjugacy class containing g. Now |Cg(g) : Cp(g)| is not
divisible by p iff Cp(g) is a defect group of C, iff P contains a defect group of C;. O

Theorem 21.4. If e is a primitive idempotent in Z(OG) with defect group D, then
ec (0G)G

i.e. 32 € (OG)p s.t. 3, cq/pgrg ' =e.

Proof. This follows from Theorem 21.3 and Rosenberg’s lemma. (|

Corollary 21.5. If M is an indecomposable OG-module in a block with defect
group D, then 3 6 € Endpop(M) s.t.

Z g9~ = idyy.
geG/D
Proof. Let e be the block idempotent. By Theorem 21.4, we have
Z gz‘(fl =e.
geG/D
for some z € (OG)P. Now e acts on M as the identity map and x acts on M as an

OD-module endomorphism 6. O

22. RELATIVE PROJECTIVITY

Let R be any commutative ring. Let H < G and M an RG-module. We say
that M is relatively H-projective if

|

Ve

Ve

Ve
M1*>M2*>0

whenever the dotted arrow exists as an RH-module homomorphism making the
diagram commute, then it also exists as an RG-module homomorphism. Dually,
M is relatively H -injective if

0—— M, —— M,

Ve
J/ .
7/
»
M
whenever the dotted arrow exists as an RH-module homomorphism making the

diagram commute, then it also exists as an RG-module homomorphism.
We have a relative version of Theorem 16.3:

Theorem 22.1. Let H < G and M an RG-module. Then the followings are
equivalent:
(1) M is relatively H-projective;
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(2) M is relatively H-injective;
(3) 30 € Endru(M) s.t. X c/n g9t =idy;  (D.Higman’s criterion)
(4) M is isomorphic to a direct summand of M' 1€ for some RH-module M’';
(5) M is isomorphic to a direct summand of M | i€
(6) The natural surjetive RG-module homomorphism,
M|y - M
gem — gm

splits;
(7) Y?he natural injective RG-module homomorphism
M = M | 1€
mo= a9 ® g~ 'm
splits;

Proof. Clearly (6),(7) = (5) = (4).
(1) = (6): The map in (6) has a H-splitting map

M <— MLHTG
m 1®m

(2) = (7): The map in (7) has a H-splitting map
Mm% — M

gom o gm, ifge H;
0, otherwise.

(3) = (1): Consider the diagram

M1 *a> M2 —0
where p is an RH-module homomorphism such that v = ap. Set
p= > gpig".
9€G/H

Then p' is an RG-module homomorphism and ap’ = 7.
(3) = (2): Similar.
(4) = (3): If M = M’ 1Y define ¢’ € Endry (M) by

gm, if g€ H;
O (gem) =
(g ) {0, otherwise.
If M | M'16,
0: M — M 162 M/ 16— M
does the work. O

Consequence: If B is a block of OG with defect group D and block idempotent
e, and if M is an OG-module such that e.M = M, then M is a direct summand of
a module induced from D.
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23. BLOCKS OF DEFECT ZERO

If B is a block with defect group D and |D| = p%, then we say that B is a block
of defect a.

Suppose that B is a block of defect zero, i.e. D = {1}. Look at kG-modules
in B; an induced kG-module from {1} is a free module, so every kG-module in
B is projective. An easy inductive argument shows that every finitely generated
kG-module in B is semisimple. So J(e.kG) = 0. By Wedderburn structure theorem

e.kG = H Mat,,, (A;).

Since e.kG is indecomposable as an algebra,
e.kG = Mat, (A).

Consequently, there’s only one isomorphism class of simple kG-module S and S is
projective.

Since S is a projective kG-module, the idempotent refinement theorem shows:
this lifts uniquely (up to isomorphism) to a projective OG-module S. Then K®0 S
is a simple K G-module. Since the column of the decomposition matrix tells us the
composition factor of K ®¢ S , it follows that the decomposition matrix is

(1).
The Cartan matrix is also
(1).

Theorem 23.1. If B is a block of defect zero, then the simple modules in B has
dimension divisible by the p-part |G|, of |G|.

Proof. Let P be a Sylow p-subgroup of G and look at S |p. This is a projective
kP-module since S is a projective kG-module. We claim that the only projective
indecomposable kP-module is kP itself. So, S |p is a direct sum of copies of kP
and we get |P| divides dimy, S. O

Lemma 23.2. kP has only one simple module, i.e., the trivial module k.

Proof. Let S be a simple kP-module. We claim that P has a nonzero fixed point
in S.

Choose 0 # x € S and look at the abelian group additively generated by {gz | g €
P}. This is a finite p-group with a P-action. The identity element 0 is fixed, and
the remaining orbits have length 1 or divisible by p. So there is a nonzero fixed
point. The abelian group additively generated by the fixed points form a submodule
of S which is nonzero and has trivial P-action, hence S is the submodule. O

Decomposition matrix D for kP has only one column with each entry dim V'
corresponding to the simple K P-module V: let W be an O-form for V', the com-
position factors for k ®» W is k of multiplicity dim V.

D=| dmV
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So the Cartan matrix D'D is the 1 x 1-matrix (| P|) since

Pl =) (dimV)?

as V runs over representatives of non-isomorphic classes of simple K P-modules.
Alperin’s Conjecture :

# simple kG-modules = E # blocks of defect zero of Ng(D)/D
conjugacy classes
of p-subgroups D < G,
including D =1

24. BLOCKS WITH CYCLIC DEFECT

Representation of Z/p™ in characteristic p: Look at the Jordon canonical form

for a generator. For an indecomposable representation, there is a single Jordon
block. Since

' —1=(z—1)""

the eigenvalues have to be 1. The Jordon block has the form

d

The order of this matrix is the smallest p* > d: the entries appear in J" are (7)
for some 0 < i < n with n always appears above the diagonal. Hence the order of
J is p® for some a. If p® < d, then some entry strictly above the diagonal is 1. So
p® > d. Clearly, for any 1 < d < p", we have J?" = 1. We conclude:

Theorem 24.1. There are p™ isomorphism classes of indecomposable k (Z/p™)-
module, and they correspond to the Jordon blocks of length d with 1 < d < p™.

Theorem 24.2. If a block of kG has cyclic defect group, then there are only a
finite number of indecomposable kG-modules in the block.

Proof. Every indecomposable is a direct summand of (Jordon block for D) 1¢
where D is the defect group of the given block. O

Ezample 24.3. Let G = Z/p x Z/p = (g, h) and k be an infinity field. For each
a € k, we construct an indecomposable kG-module M, with a representation

(1Y, (1 e
97\ o 1)’ 0 1

If a # 3, a direct calculation shows that M, 2 Mg. Hence we have infinite number
of non-isomorphic indecomposable kG-modules.
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25. THE BRAUER HOMOMORPHISM

Goal: Brauer First Main Theorem: There is a natural one-to-one correspondence
between blocks of G with defect group D and blocks of Ng (D) with defect group
D.

Lemma 25.1. (kG)? = kCq(D) @ Z (kG5 as a sum of a subring and a 2-
D'<D
sided ideal.

Proof. (kG)P has a k-basis consisting of D-conjugacy class sums C/gjg =2 empg T

If the orbit has one element, then C/g:) € kCq(D); otherwise, let D' = Cp(g) < D
with left coset representatives dy,...,ds of D/D’. So,

Cop =Y digd; " € (kG)D,
i=1

as Cq4,p is precisely the set {dlgdlfl, A dsgdsfl}. In characteristic p, kCq(D) N
ZD’<D(kG)B’ = {0}. O
The Brauer Homomorphism is the ring homomorphism given by projection
Brp : (kG)P — kCq(D)

Theorem 25.2. Let G be a finite group with a normal p-subgroup D, then every
block idempotent in Z(kG) lies in kCq (D).

Proof. If S is a simple kG-module, then SP is a nontrivial submodule of S: S |p
has a nontrivial submodule isomorphic to the trivial module k. So SP” = S, and
hence D acts trivially on S. Since kG/J(kG) is semisimple, then D acts trivially. In
characteristic p, we have (kG/J(kG))g, =0 for any D’ < D, i.e., (kG)B, < J(kG).
Let e be a block idempotent in kG, namely e = = + y with € kCg(D) and
Y€ Xp<pkG)p- As
x2—|—:l:y :xe:ex::ﬁyx
then zy = yx. So
e= e = @ty = o 4y

for all n. For large n, y*" = 0 (as J(kG) is a nilpotent ideal). So e = a?" €
kCq(D). O

Corollary 25.3. If Cq¢(D) < D <G, then G has only one block.

Proof. Ce(D) is a p-group, so kCg(D) has only one idempotent namely 1 since
there is only one projective indecomposable for kCg (D). The result follows from
the previous theorem. ([l

Theorem 25.4. The following diagram commutes:

Brp

(kG)P kCa(D)

iTrD,c iTrD,Nc(D)

Brp
(kG)§ —> (kCqa(D))Ne™

with all arrows are surjective.
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Proof. Note that (kG)% C (kG)P, kCs(D) = (kCg(D))P. For any = € (kG)P,

Trp.g(z) = Z TrDﬁngfl,Ng(D)(gxgil)
geD\G/D

(for each double coset representative g of D, D in G, take a set of left coset represen-
tatives {8g,1,- .., Bgn(g) tof DNgDg™" in D, then the set {3,,9} forms a left coset
representatives of D in G). If DNgDg™' < D, then BrpTrpn,pg-1,p(grg~") = 0.
So

BrpTrp g(x) = Z BrpTrp p(grg™t) = Z Brp(gzg™)
gED\Ng(D)/D g€Na(D)/D

Since Ng(D) acts on both kC¢(D) and Y-, 5 (kG)B, respectively, then
Brp(grg—t) = gBrp(x)g~! for all g € Ng(D). So we have

BrpTrp g(x) = Z gBrp(z)g~! = Trp ng(p)Brp(z) O
geNa(D)/D

Theorem 25.5. Brp induces a one-to-one correspondence between block idempo-

tents in Z(kG) with defect group D and primitive idempotents in (kCq (D))gG(D).

Proof. The correspondence is given by

block idempotent in - primitive idempotents
Z(kG) with defect group D in kCG(D)gG(D)

(k@)% 3e +— Brple)

Note that a central idempotent e lies in (kG)% if and only if its defect group
D(e) <g D: follows from the definition of defect group of e and the fact that
Z(kG)p(e) € Z(kG)p if D(e) <¢ D.

Brp(e) # 0: By definition e ¢ (kG)$, for any D' < D, it is equivalent to e ¢
> b <p(kG)%, by Rosenberg’s lemma. As ker BrpN (kG)% =3, p(kG)S,, then
Brp(e) # 0. This proves also Brp(e) =0 if D(e) <g D.

Brp(e) is a primitive idempotent: It is clearly an idempotent since Brp(e) # 0

and Brp is a ring homomorphism. To show that Brp(e) is primitive, we use the
idempotent refinement theorem:

Let A, B be finite dimensional k-algebras, I1,J be ideals of A, B respectively and
f+ A — B be an algebra homomorphism such that f(I) = J, we have if e is
a primitive idempotent of A contained in I such that f(e) # 0, then f(e) is a
primitive idempotent of B contained in J.

The map is injective and it is also surjective by Theorem 25.4. O

Corollary 25.6 (Brauer’s first main theorem). If H is a subgroup of G containing
Ng (D), then there is a one-to-one correspondence between blocks of G with defect
group D and blocks of H with defect group D.
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Proof. Since Ng(D) < H < G, then Cy(D) = Cg(D) and Ny (D) = Ng(D). So

we have

block idempotent in
Z(kG) with defect group D
_ 7
=z ~ - 1
block idempotent in primitive idempotents in
Z(kH) with defect group D k;CG(D)gG(D) = kCH(D)gH(D)

using previous theorem twice. [

26. MODULE CATEGORIES

Let G be a finite group and k a field.

mod(kG) is a category whose objects are finitely generated kG-modules and
whose arrows are kG-module homomorphisms. Mod(kG) is a category whose ob-
jects are all kG-modules and whose arrows are kG-module homomorphisms.

We have a block decomposition

kG = By x -+ X By
1 = e + -+ 4+ e
If M is any kG-module, then
M=eM@---DeM
Homyg(e;M,e;M) =0 ifi#j
So

Mod(kG) = Mod(By) x -+ x Mod(Bs)
mod(kG) = mod(Bp) x --- x mod(By)

Warning: In general, tensor products do not preserve blocks.

27. THE STABLE MODULE CATEGORY

The category stmod(kG) has the same objects as mod(kG), but arrows are:
Hom,~(M,N) = Homyg(M, N)/PHomyg (M, N)

where PHomyg (M, N) consists of those homomorphisms which factor through some
projective module.

Lemma 27.1. If Py - N and M — Iy with Py, Ip projective(i.e. injective),
then the followings are equivalent:

(1) f: M — N factors through some projective
(2) f factors through Pny — N
(3) f factors through M — I,
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Proof. Dashed arrows exist in the following commutative diagram because P is
projective(i.e. injective).

Py

As a consequence, we get

Proposition 27.2. If M, N are finitely generated kG-modules and f: M — N
factors through a projective kG-module, then it factors through a finitely generated
projective kG-module. Hence the canonical functor

stmod(kG) — StMod(kG)

induces an isomorphism on each Hom sets; in other words, it is a full embedding
of categories.

Warning: There are examples of module homomorphisms which factor through
finitely generated modules and also through projective modules, but not through
finitely generated projective modules.

Remark 27.3. Projective modules are isomorphic to the zero module in StMod(kG).
Lemma 27.4 (Schanuel’s Lemma). If we have short exact sequences of kG-modules
0O—-M —-PL—-M-—0
0—->My —>P,—>M—0
with Py, Py projective, then My @& Po = My & Py

Consequence: M; = My in StMod(kG).

Proof. The short exact sequences embed into the following commutative diagram

0 0
My =—— M,
0 M, X Py 0
ﬁ
0 M, P —2sM 0
0 0

where X = {(a,b) € P, x Py | a(a) = B(b) }. Now since Py, Py are projective, the
middle row and the middle column split, yielding M7 @ P, = X = M> @ P;. [
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For a kG-module M, let
Q(M) =Ker(P — M)

for some projective kG-module P. By Schanuel’s lemma, Q(M) is well-defined up
to isomorphism in StMod(kG). We may define (M) canonically by choosing P as
the free kG-module having M as a basis.

Dually, if

0—- M-I —>M —0
0—-M—1I, — My —0
with Iy, I injective, then My & Is = Mo & I. So if M is a kG-module,
Q (M) = Coker(M — I)
where I is injective, is well-defined up to isomorphism in StMod(kG).

Theorem 27.5. Q and Q! are inverse self-equivalences on the category StMod(kG)

Proof. In the following commutative diagram

8l a

0 QM Py M 0
I 71
RGN AT J/
VYL 5 VY g

0 QN Py N 0

we have B(f — g) = 0, so there exists u: Ppy — QN such that f — g = du; hence
(f = 9lam = uy.
This shows that €2 is a functor on StMod(kG). Dual argument shows that Q=1 is
also a functor and
Q'OM >~ M, QO M~ M
in StMod(kG). O
28. TATE COHOMOLOGY
Let M, N be kG-modules. For i € Z, define the i-th Tate cohomology group by
Ext, (M, N) = Hom, ("M, N)
HY(G, M) = Extyg(k, M)
Products are given by
Bxtyg(M,N) x  Extyg(LM) — Bxiyg (L,N)
@MAN , otip Loy — ot AN
Taking L = M = N, we get a graded ring E/);t,:G(M, M). In particular, if M =k
H*(G, k)

is called the Tate cohomology ring.
Fact: H*(G, k) is a graded commutative ring: if x € H™(G, k), y € H"(G, k),

yr = (—1)""zy.

Warning: Even if M is simple, there are examples where E/b?cZG(M , M) surjects
onto Matsg (k).
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For i > 0, the i-th (ordinary) cohomology group is defined by

Exty(M,N), ifi>0

BExt(M,N) =
k(M ) {HomkG(M,N), if i = 0.

29. TRIANGULATED CATEGORIES

What kind of category StMod(kG) is? In this category, we can make any homo-
morphism represented by an injective homomorphism in Mod(kG):

M—— M
M—— Iy oM
or by a surjective homomorphism in Mod(kG):
M

lz

M@PM’HM/

M/

So StMod(kG) is not an abelian category. Instead, it is a triangulated category.
A triangle in StMod(kG) is a sequence of objects and maps of the form

M—M - M —Q M.

such that the composite of each pair of consecutive maps is zero. Two triangles
MMM —-Q M
N—-N =N —-Q'N

are said to be isomorphic if there is a commutative diagram

M M M QM
N N’ N" QN

where all the vertical maps are isomorphisms.
Given a morphism f: M — M’, there exists a commutative diagram

0 M —2> Iy QM 0
o)
0 M — = A Q1M 0

where M" = M' & I /{(f(m),a(m)) | m € M}. We have a triangle
M— M — M —Q M.
Note that we also have a short exact sequence in Mod(kG)
)
f

OHMﬁ—»IMEBM'u»

M" — 0.
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A distinguished triangle is a triangle which is isomorphice to one coming from the
above construction.
Proposition 29.1 (Properties of the distinguished triangles). (1)
ALlBpLolata
s a distinguished triangle iff
-1
BLotaota=ttgp

18 a distinguished triangle.
(2) Ewvery morphism M — M’ can be embedded in a distinguished triangle

M- M - M- QM.

extends to a map of triangles
(3) Every commutative diagram in StMod(kQG)

M—M
b
N —N'
extends to a map of triangles
M M’ M QO 'M
fi lg ih lﬂlf
N N’ N QN

(4) (Oaxtahedral Aziom) Given composable maps A — B, B — C, there exists
a distinguished triangle X — Y — Z — Q7'X which embedds in the
following commutative diagram of distinguished triangles

.
\}vf

(5) For any M, M M M—-0-0'Misa distinguished triangle.
Remark 29.2. (1) In (3), M" is determined uniquely but not up to unique
isomorphism; in other words, the assignment M — M" is not functorial.

(2) The oxtahedral axiom is an analogue of the third isomorphism theorem for
modules: if X ¥ B/A, Y 2 C/A, and Z =Y /Z, then Z = C/B.

A triangulated category is an additive category C with a self-equivalence 7: C — C
(e.g. 7 = Q7 1) together with a class of distinguished triangles

A—-B—-C—rT1A
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such that every triangle isomorphic to a distinguished triangle is distinguished and
satisfying (1)—(5) above.

Lemma 29.3. If M is an object of a triangulated category (C,T) and
A—-B—->C—T1A

is a distinguished triangle, given a map M 1. B such that the composite M ER
B — C is zero, there exists a map M — A such that M — A — B is zero:

/ N 0
e N
s/ lf N
s N\

A—=B—>C(C

Proof. By the properties of the distinguished triangles, we have a map of distin-
guished triangles

M—Ys pr 0 M
| |
. lf l |
Y Y
A B C TA

O

Similarly, given a map B % M such that A — B % M is zero, we can extend
to C — M:

As a consequence we get:

Corollary 29.4. Given a distinguished triangle A — B — C' — TA and an object
M, we get exact sequences of Hom sets

- — Hom¢ (M, A) — Home (M, B) — Home (M, C) — Home (M, 7A) — - -+
- — Home(7A, M) — Home(C, M) — Home (B, M) — Home(A, M) — - -
In StMod(kG),

Fxty.(M, N) = Homy (' M, N) = Hom, (M, Q7'N).

So given a distinguished triangle A — B — C — Q7 !A and an object M in
StMod(kG), we get long exact sequences

- Bxtyg (M, A) — Extyg (M, B) — Bxtyg(M, C) — Extyg (M, A) — -
. . . i
- EXt;G(C, M) — Ext;G(B,M) — Extpo(4, M) — Ext:g (C,M) — ---

In ordinary cohomology, given a short exact sequence 0 - A — B — C' — 0 and
an object in Mod(kG), we get

0 — Homyg (M, A) — Homyg (M, B) —— Homyg(M,C) — Extjo(M, A) — - -
0 — Homye(C, M) — Homye (B, M) —— Homyg(A, M) — Extyo(C, M) — - -
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Theorem 29.5. Given any projective resolution of M
.= P,—-P—-Py—>M—0
Take homomorphisms Hom(—, N):
0 — Homyg(Py, N) — Homyg (P, N) — Hompg (P, N) — ...

This is a complex, i.e., the composition of any adjacent pair of maps is zero. We

have
 Ker (Homg (P, N) — Homyg(Prt1,N))

Extpq(M,N) =
xtrg (M, N) Im (Homgg(P,_1, N) — Homyg(P,, N))

Proof. For n > 0, consider the diagram

Qn+1

Q’ﬂ
/ ,K
s /
Pn+1\ = Pn 7 Pn—l
=~ |
~ /
o . J{a e \m
~ _ P 5 Y

SN< P
Define a map ®,, as follows: for any « : P, — N such that ad,, = 0, then ®,(a) =
fo + PHomyg(Q" M, N) where f, : Q"M — N is given by z — aw if d,_1w = z.
If f, factors through a projective P, then it factors through P,_; as P is also an
injective kG-module. So, a = (8£)d,—1 € Ker®,,.
For n = 0, we have an exact sequence

0— Homkg(M, N) — Homkg(Po, N) — Homkg(Pl, N)
So Extlo (M, N) = Homyg (M, N). O

Dually, we have

Theorem 29.6. Given any injective resolution of N
0—->N—->Iyg—11 > 1, — ...
Take homomorphisms Hom(M, —):
0 — Homyqg (M, Iy) — Homype(M, I;) — Homyg (M, Iz) — ...
This gives a complex whose cohomology is
Extro (M, N)

We use Extlo(M,N) = Hom,~(M,Q~"N) for the proof of the above theorem

instead.
30. TENSOR PRODUCTS

Lemma 30.1. If P is kG-projective and M is any kG-module, then P ®y M is
projective.

Proof. Without lost of generality, we assume P is free of rank 1, i.e., P = kG.
We claim that there is an isomorphism between the tensor product with diagonal
action kG ®; M and the induced module M |,1%= kG @ M

b kGO M — kG® M
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given by r @ m +— x ® x~'m if x € G and m € M. The action of G on the induced
module is g(x ® m) = gr ® m. One can check that ¢ is a kG-homomorphism with
the inverse map ¢~ ' : 2 ® m — z ® xm. As a k-module M is a sum of copies of k,
so kG ®; M is a sum of copies of kG. O

Lemma 30.2. For any kG-module M, we have Q(k) @i M = QM in StMod(kG).

Proof. Take the exact sequence 0 Q(k) Py k 0 and tensor
with M:

0—=Qk)opr M —= P, @y M —= M —0

It is an exact sequence (tensor product of vector spaces). Since

0 Q(M) Py M 0
then by Schanuel’s Lemma, we have

Consequence: Q"k®, M = Q"M in StMod(kQG) (by induction). Taking M = Q™k,
then Q"k @ Q™k = Q™.

Lemma 30.3. The diagram commutes in StMod(kG):
k) @1 Ak) —— > Q(k) @5 k)
\ /
0%k
where T(x®y) = —y @ and the isomorphisms are given by the Schanuel’s Lemma.
Proof. Consider the chain complex
<0HQ(k)HPkLkﬂO)@(OHQ(k)HPkLk%())

then we have two rows of exact sequences and ¢;’s extending id : z Ry — y® x
making the diagram commutes

()
—T®1 (Pe@ik) (m®1,1®)

0 — Q(k) @ QUk) — P, @) P, ———— @ (kk Py) k@ k
| ‘ [
3 | P2 } é1 | idl
v v P : k
0 — Q(k) @ Qk) —= P, @k P ———= S5 ko k

where
1 (a®1,10b)— (b®1,1®a)
Ps 1 a®Rb— —bRa
3  a®Rb— —bRa
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Lemma 30.4. The diagram commutes in StMod(kG):

T

Q™ R Ok Q"k @, Q™k

R
R

Qming
where 71z @y — (—1)"™"y ® x.
Proof. Think of Q™k @, Q"k as
(QE) @k ... Ok QEK)) @k (2E) @5 ...k QE))

m copies n copies

The results now follows from previous lemma. O
Given a kG-module M, we have a map
— @p idys ¢ Bxtyg(k, k) — Extyg (M, M)

as Hom, ~(Q"k @ M,k @, M) = Hom,(Q"M, M) = E/);tZG(M, M). We denote
the image of ¢ € Exty.g(k, k) under the map — ®y idy; by C.

Theorem 30.5. Given a map f: Q"M — N in StMod(kG) we have
Cf=(=D""f¢
forallC € E}RZG (k, k), i.e., the following diagram commutes up to the sign (—1)™"

Qmn iy L qriy
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Consequence: We write ﬁ,’:G(G, k) for EX\tZG(kZ, k):
(i) Taking M = N = k, then H*(G,k) is graded commutative, i.e., zy =
(=1)l=ll¥lyz for all z,y € H*(G, k).
(ii) The image of the map — ®j, idps : E;czg(k:, k) — E}RZG(M, M) lies in the
graded centre.

The Centre of a category C:
The centre Z(C) of a category C is the natural transformations from the identity
functor to itself.

Ezample 30.6. Let C = Mod(R), we claim Z(C) = Z(R).

Proof. A natural transformation p assigns to each object M an arrow M 25 M
in such a way that if f: M — N, then the diagram commutes

/| . |

N——N

If M = N = rR, then pg is a right multiplication by an element r € R such that
r € Z(R) (as 1 € R). If M is any module and m € M, then py; = r- by the
commuting diagram

RRL>RR

on Jo-
PM

M—M
where ¢y, : 1 — m. ([

Consequence: If Mod(R) is equivalent to Mod(R'), then Z(R) = Z(R/).
If 7 is a triangulated category with a shift operator 7, define

Z™(T) = {natural transformations from idz to 7"}

Ezample 30.7. Let T = StMod(kG) and 7 = Q~1, then p € Z"(StMod(kG)) assigns
to each M

pm:M— Q"M
or equivalently Q"M — M. So we have a ring homomorphism

Extyg(k, k) — Z*(StMod(kG))

Explicitly, ¢ € E/)x\tZG(k’, k) is mapped to the natural transformation assigning M
the map ( ® idy; : Q"M — M.

Open Question: What does Z*(StMod(kG)) look like?
Remark 30.8. There is an injection H*(G,k)>——> f[*(G, k) . So H*(G, k) acting
on H*(G, M) := Ext} (M, M) via the ring homomorphism

H* (G, k) =252 Bxty (M, M)

restricted to its subring H*(G, M) as E}RZG(M, M) is a graded H*(G, k)-module
induced by the ring homomorphism.
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Theorem 30.9 (Finite Generation Theorem). H*(G, k) is a finitely generated k-
algebra. If M is a finitely generated kG-module, then H*(G, M) is a finitely gen-
erated H*(G, k)-module.

The nilradical Nrad(R) of a ring R is the sum of all the nilpotent 2-sided ideals,
ie.,
Nrad(R) = {z € R|for all y,z € R, yxz is nilpotent}

Lemma 30.10. If H* is a graded commutative ring, i.e., yr = (—1)|’J“y|xy for all
x,y € H*, then H* /Nrad(H*) is strictly commutative.

Proof. Let @ € H*, then 2z = (—1)I*l*lzz. If 2 has odd degree, then 22 = —z2,
i.e., 202 = 0. For any y,z € R, (y-2x-2)? =0, so 2x € Nrad(H*). Hence

x=—x mod Nrad(H™)

and so for any y € R such that |y| is odd, then zy = —yz = yx mod Nrad(H*). If
either = or y has even degree, then they already commute. ]

So H*(G,k)/Nrad(H*(G,k)) is a finitely generated commutative k-algebra and

it is isomorphic to k[z1,...,z,]/I such that z;’s are homogeneous elements of
H*(G,k).
We define the variety Vi corresponding to H*(G, k) as
Ve = {maximal ideals in H*(G,k)}

= {maximal ideals in H*(G, k)/Nrad(H*(G, k))}

= {maximal ideals in k[z1,...,z,] containing the ideal I}

C  {maximal ideals in k[z1,...,z,]}
where the set of all maximal ideals in k[x1, ..., z,] has one-to-one correspondence

with the set of all points in the affine space A™(k) provided k is an algebraically
closed field (Hilbert’s Nullstellensatz Theorem).

Ezxample 30.11. Let G be the Mathieu group M1, k has characteristic 2. We have
|G| = 7920 and

H*(G, k) = k[z,y,2]/(z%y — 2°)
where degx = 3, degy = 4 and deg z = 5. So Vi is the subset of A3(k) containing
all vectors (v, v, v3) such that vi2vy = v3? and dim Vg = 2.

FEzample 30.12. Let G be the cyclic group of order p and the characteristic of k is
p.
(i) p=2: H*(G,k) = k[z] with degxz = 1 and hence Vg = Al(k).
(ii) p odd: in the proof of Lemma 30.10 we have seen that odd degree elements
square to zero. Indeed H*(G, k) = k[z,y]/(2?) with degz = 1 and degy =
2. So VG = Al(k)

Ezample 30.13. If p t |G| and characteristic of k is p, then H*(G,k) = k. So
Ve = {a point}.

Ezample 30.14. Let G = Z/p x Z/p, then

klz1, o] ip=2

H*(G, k) =
(G4 {A(zl,fcz)@@k[yhyz] ;p odd



50 DAVE BENSON (NOTES BY KAY JIN LIM AND SEJONG PARK)

where in both cases we have degz; = 1 and in the second case we have degy; = 2
such that 212 = 222 = 0, 120 = —x9x; and Ty = Y. So Vg = A%(k) as
A(z1,22) C Nrad(H*(G, k)) for p odd.

Ezample 30.15. Let Qg = {+1, +i, -5, £k} be the quarternion group, which lies in
the quarternion numbers H. SU(2) is the unit sphere S3 in H and Qg acts freely
on S3. Cut up S2 along the 4 “equators” into 16 3-cells permuted by Qg and form
the complex of cellular chains with coefficients in a field k of characteristic 2:

0—>03—>02—>01—>Co—>0

where C; is the k-vector space with i-cells as basis. Since this complex has nonzero
homology k in degrees 0 and 3 and nowhere else, we get an exact sequence

0—-k—>0C3—-0Cy—C,—Cy—k—0.

The free action of Qg on C; make it a free kQg-module. So by splicing the above
exact sequence to itself we get a free resolution of k£ as a module for kQg:

/ k \
0 0
Theorem 30.16. Let k be a field of characteristic 2.

(1) H*(Qs, k) is periodic with period 4
(2) There is an element z € H*(Qs, k) such that

20 H"(Qs, k) = H"4(Qs, k)

--%C&%CO 036024)019004)]64)()

for allm > 0.
(3) We have H*(Qs, k)/(z) = H*(Homyq, (Cs, k)).

Theorem 30.17. Suppose that a finite group G acts freely on an n-sphere S™.
Then G has periodic cohomology with any (field) coeffients.

Corollary 30.18. Z/p x Z/p cannot act freely on any sphere.

Corollary 30.19. If a finite group G acts freely on a sphere, then every abelian
subgroup of G is cyclic. More generally, if G acts freely on a compact manifold
homotopic equivalent to a sphere, then every abelian subgroup of G is cyclic.

Ezample 30.20. Let G = (Z/p x Z/q) x Qs where p, g are distinct primes and the
action of Qg on (Z/p x Z/q) is given as follows: the center Z of Qg acts trivially
and writing Qs/Z = (x,y) &2 Z/2 X Z/2, x, y invert the generators of Z/p, Z/q,
respectively. One can show that every abelian subgroup of G is cyclic, but that G
cannot act freely on S3. Can G act freely on a homotopy S3? If so, it provides a
counterexample to the Poincaré conjecture.

31. VARIETIES FOR MODULES

The theory of varieties for modules were developed by Jon Carlson. Let k be an
algebraically closed field and let M be a finitely generated kG-module. Consider
the map of graded k-algebras

H* (G, k) = Extl o (k, k) —2H90 Bxtr (M, M).
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Denote by Jjs the kernel of this map. Then we define Viz(M) as the maximal ideal
spectrum of H*(G, k)/Jpr. Note that V(M) is a homogenious subvariety of V.

Proposition 31.1. Let M, My, M> be finitely generated kG-modules where k is
an algebraically closed field. Then

(1) M is projective if and only if Vo(M) = {0}.

(2) Va(My @ M) = V(M) U Ve(Ms).

(3) Vo(My @k Ma) = Vg(My) NVg(Ms). (Avrunin, Scott)

(4) Va(QM) = Vg(M) = Vg(Q~tM).

(5) Va(M*) = Vg(M) where M* = Homy (M, k).

(6) If0+# ¢ € H*(G,k) 2 Hom;~(Q"k, k) with a short exact sequence

0—>LC—>Q"k£>k—>O

where C is a representative of ¢ in Hom, (Q"k, k), then Va(Le) = Va(Q),
the hypersurface of Vg where ¢ vanishes. Consequently, every closed ho-
mogenious subvariety W of Vg is of the form

Ve(Le ® -+ ® L, ),

i.e. W is the subvariety of the ideal generated by (y,...,Cs.

(7) Va(M) is 1-dimensional if and only if M = Q"M in stmod(kG) for some
n > 0. Such M is called a periodic module.

(8) dim V(M) tells how fast the minimal projective resolution of M grows: if

P, Py—M—0
s a minimal projective resolution of M, then there exists C > 0 such that
dim P, < C - pdimVe(M)=1
for all n > 0. Moreover, for every € > 0 there is no C > 0 such that
dim P, < Cpdim Ve(M)—1-<
for all n > 0.
Part (8) is a consequence of Hilbert-Serré theorem:
p(M,t) =) dimP, - "
n>0

is a rational function of ¢ and the order of the pole at ¢ = 1 is equal to dim Vi (M).

32. RANK VARIETIES

Theorem 32.1 (Chouinard). Let k be any field of characteristic p and let M be
any (not necessarily finitely generated) kG-module. Then M is projective if and
only if for every elementary abelian p-subgroup E of G, M | g is projective.

More generally, V(M) only depends on V(M |g) for elementary abelian p-
subgroups E of G. (Alperin, Evens)

Therefore, to compute Vg(M), the case where G = E is an elementary abelian
p-group (char k = p) is crucial. Let

E={g1,---,9) = (Z/p)".



52 DAVE BENSON (NOTES BY KAY JIN LIM AND SEJONG PARK)

Set ©; =g; — 1 € kE. Then
7 =g, —1=0
TikTj = TjT4
So we have a k-algebra homomorphism
KXy, X/ (XY, XT) — kE
X; — X

Comparing dimension, we see that the above map is in fact an isomorphism.
Now

J(kE) = (1, - ,x)

JA(kE) = (af, zix))
so J(kE)/J*(kE) has k-basis 1 + J?(kE),--- ,x, + J?(kE); in particular it has
dimension r. We're going to identify this with V.

If0# a=(ar, - ,a.) € A"(k), look at the element uy, = 1+ 121+ - - + @, 2.
Then u?, = 1, so (uq) is a cyclic subgroup of order p in (kE)*. If M is a finitely
generated kFE-module, define the rank variety of M by

Ve(M)={0#acA"(k) | M|, isnot a free k{uq)-module} U {0}.

Remark 32.2. A k{uy)-module M is free
<= all Jordan blocks of M have length p

dim M %e = dim M
< Y

Example 32.3 (“Jon Carlson’s favorite example”). Let E = (g1, g2,93) = (Z/2)3,
char k = 2. For a,b,c € k, let M, . be a 4-dimensional kE-module given by

1 1 1
. 1 . 1 . 1
91 1 1 ) 92 a 1 ) U3 c 1
1 1 b 1 1 1
Then
Ty = 1 ) T2 — a ) T3 — c )
1 b 1
and
1
1+ + + - !
Q121 QX9 Qa3x3 o1 + ao cas 1
Qs o1 + ba2 1

This is non-projective if and only if (a; + aaz)(aq + bag) = caZ. Thus VE(Map.c)
consists of the points (21, z2,23) such that

(z1 + axy)(xy + bas) = cxd
Lemma 32.4 (Dade). A finitely generated kE-module M is projective if and only
if V(M) = {0}.
Theorem 32.5 (Carlson, Avrunin, Scott). There is a natural isomorphism Vg =
A" (k) which sends Vg(M) to VE(M) for all finitely generated kE-module M.
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Warning: For p odd, this isomorphism sends (aq, -+ ,a;) to (af, -+, aP).

Example 32.6. Let E = (g1,92) = (Z/2)?, char k = 2. Let M = k(t) ® k(t) be a

kE-module via
. I 0 . I 0
g1 I 1)’ g2 T I

where T' denotes multiplication by ¢. Then
I 0
1+a1(g1—1)+ax(g2—1)— <a1]+a2T I) .
So
Vi (M) = {0}.
Now extend k to k(z). Note k(t) @k k(x) 2 k(t,x). Setting a1 =z, ag = 1, we

see that = + ¢ is not invertible in k(t) ® k(x). Thus

Vig(k(x) @, M) # {0}

Theorem 32.7. Let M be any (not necessarily finitely generated) kE-module.
Then M s projective if and only if for every finitely generated extension K of
k and for all shifted subgroup u, of KF,

(K @k M) |(u,)
is free.
We have J(kE)/J?(kE) = H'(E,k)*. If p = 2, this is isomorphic to V. If p is
odd, we have
H*(E k) = Aw1, - 20) @k K[y, - 5 yr]
where degx; = 1, degy; = 2 and the Bokstein map

HY(E,k) 2 HE,k)
Z; = Yi
is semi-linear: B(Az;) = APy; for A € k. Thus
Hl(E, k)* (B_; (HZ/HlHl)*(p) ~ VE(‘p)
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