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An Erdős problem for ‘Epsilons’

Given a sequence of n integers (a1, . . . , an) there exists a nontrivial
subsequence of these integers whose sum equals zero modulo n.

This is tight: (1, . . . , 1)︸ ︷︷ ︸
n−1 times

does not have a nontrivial zero sum

subsequence.
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Zero sum problems in finite abelian groups

Suppose G = G(+, 0) is a finite abelian group.

I G-sequence of length m: (x1, . . . , xm) with xi ∈ G for each i.

I Zero-sum G-sequence: G-sequence (x1, . . . , xm) such that∑
i xi = 0.

Definition
The Davenport constant D(G) of the group G is the smallest m
such that every G-sequence of length m contains a non-trivial
zero-sum G-subsequence.

The Erdős problem ⇔ D(Zn) = n.
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The Davenport constant in Algebraic Number theory

The Davenport constant is an important invariant of the ideal class
group:

If R is the ring of integers of an algebraic number field and G its
ideal class group, then D(G) is the max no. of prime ideals
occurring in the prime ideal decomposition of an irreducible in R.

Niranjan Balachandran Zero Sum Problems



Other (Combinatorial) Invariants:

I Erdős-Ginzburg-Ziv constant (EGZ), s(G): minm ∈ N such
that every sequence of elements from G of length m contains
a zero-sum subsequence of length exp(G).

I Harborth constant, g(G): min m such that every subset of
size m of G admits a zero-sum subsequence of size exp(G).
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A Weighted Davenport constant

Notation: Suppose x = (x1, . . . , xm) is a G-sequence and
a = (a1, . . . , am) is a sequence of integers. Let
0m = (0, . . . , 0)︸ ︷︷ ︸

m times

∈ Zm.

〈a,x〉 :=
∑
i

aixi.

Here nx := x+ · · ·+ x︸ ︷︷ ︸
n times

if n > 0, and for n negative,

nx := (−n)(−x).

An equivalent description of the Davenport constant: Least m
such that for every G-sequence x = (x1, . . . , xm), there exists
e = (ε1, . . . , εm) ∈ {0, 1}m with e 6= 0m (nontrivial e) such that

〈e,x〉 = 0.
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A Weighted Davenport constant - contd.

Theorem
(Adhikari, et al, 2006) Let m = blog2 nc+ 1. Then every
Zn-sequence x = (x1, . . . , xm) admits a nontrivial
e = (ε1, . . . , εm) with εi ∈ {−1, 0, 1} such that

〈e,x〉 = 0.

This is also tight: Consider x = (1, 2, 22, . . . , 2r−1) where
2r ≤ n < 2r+1.

D±1(Zn) = blog2 nc+ 1.
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Weighted Davenport constant w.r.t weight set A

Suppose A ⊂ N be a non-empty subset of the integers.

Definition
Suppose G is an abelian group. The Weighted Davenport constant
of G w.r.t A, denoted DA(G), is the least k such that:

For any G-sequence (x1, . . . , xk), there exists a nontrivial
a ∈ (A ∪ {0})k such that

〈a,x〉 = 0.

We may always assume A ⊂ [1, n− 1] where n = exp(G).
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Weighted Davenport constant DA(G)

An interpretation of this for G = Fnp :

If A = [1, p− 1], then this is precisely the dimension n.

For arbitrary A ⊂ [1, p− 1], DA(G) measures how large a sequence
of vectors in Fnp can be, if the sense of ‘independence’ restricts the
coefficients of the vectors to A.
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Some known results

I D±(Zn) = blog2 nc+ 1. (Adhikari et al, 2006)

I DA(Zn) = 2 for A = Zn \ {0}. (Adhikari et al, 2006)

I DA(Zn) = a+ 1 for A = Z∗n where a =

k∑
i=1

ai and

n = pa11 · · · p
ak
k . (Griffiths, 2008)

I DA(Zn) = dnr e if A = {1, . . . , r} for 1 ≤ r ≤ n− 1.
(Adhikari, David, Urroz, 2006; Adhikari, Rath, 2008)
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A related extremal problem

Suppose G is a finite abelian group with exp(G) = n, and suppose
k ≥ 2 is an integer.

Definition

f
(D)
G (k) := min

{
|A| : ∅ 6= A ⊆ [1, n− 1] satisfies DA(G) ≤ k

}
,

:= ∞ if there is no such A.

Notation: If G = Zn, then denote f
(D)
G (k) by f (D)(n, k).

Natural extremal problem: Given a finite abelian group G, and
k ≥ 2,

Determine f
(D)
G (k).
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The function f
(D)
G (k)

Proposition

If G = Zp ×H is a finite abelian group with p - |H|, then for any

integer k, f
(D)
G (n, k) ≤ f (D)(p, k). More generally, if

G = H1 × · · · ×Hr where Hi is a pi-group with p1 < · · · < pr,
then for all k,

f
(D)
G (k) ≤ min

{
f
(D)
Hi

(k) : 1 ≤ i ≤ r
}
.

Proposition

Let k ≥ 2. Suppose G and H are finite abelian groups with

H = G×G′ and exp(G) = exp(H). Then f
(D)
G (k) ≤ f (D)

H (k).

If Gn = (Zp)n, fn := f
(D)
G (k), then f1 ≤ f2 ≤ · · ·
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f
(D)
G (·) for G = Zpm

Theorem
Let p be a prime and m ≥ 1, k ≥ 2 be positive integers., Then for
G = Zpm ,

p1/k − 1 ≤ f (D)
G (k) = f (D)(p, k).

Thus for all k,

f (D)(p, k) = f
(D)
Zp2

(k) = f
(D)
Zp3

(k) = · · ·
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Concrete Upper bounds for f
(D)
G (k)

Theorem
Let G = Zn1 × · · · × Zns , where 1 < n1 | · · · | ns. Let
1 ≤ r < (n− 1)/2, and let A = {±1,±2, . . . ,±r}. Then

1 +

s∑
i=1

⌈
logr+1 ni

⌉
≥ DA(G) ≥ 1 +

s∑
i=1

⌊
logr+1 ni

⌋
for s ≥ 2

DA(Zn) =
⌊
logr+1 n

⌋
+ 1.

Consequently, p1/k − 1 ≤ f (D)(p, k) ≤ 2(p1/(k−1) − 1).
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Almost tight upper bound for f (D)(p, k)

Theorem
Let k ≥ 2. There exists an integer p0(k) and an absolute constant
C = C(k) > 0 such that for all prime p > p0(k)

f (D)(p, k) ≤ C(p log p)1/k.

So we have

p1/k − 1 ≤ f (D)(p, k) ≤ C(p log p)1/k for all sufficiently large p.
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A better upper bound for k = 2 and k = 4

Theorem
Let p be an odd prime.

I f (D)(p, 2) ≤ 2
√
p− 1. Our general bound gives O(

√
p log p).

I If p = q2 + q + 1 for some prime q then

f (D)(p, 2) = d
√
p− 1e.

I There exists an absolute constant C > 0 such that

f (D)(p, 4) ≤ Cp1/4.
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Something about the proofs

f (D)(p, k) ≥ p1/k − 1:

Consider G = (V,E) with V = X ∪ Y, where
X = {a ∈ (A ∪ {0})k \ {0k} and Y = {x : xi 6= 0, xi ∈ Zp} and
a↔ x in G if and only if 〈a,x〉 = 0. Let A be an optimal sized set.

By the hypothesis on A: Every x ∈ Y has degree at least one in G.
So e(G) ≥ (p− 1)k.

Fix a ∈ X , and wlog let a1 6= 0. For any x2, . . . , xk ∈ Z∗p, the
equation a1x1 = −(a2x2 + · · ·+ akxk) admits a unique solution
for x1 ∈ Zp, so a ∈ X has degree at most (p− 1)k−1. Hence
|X |(p− 1)k−1 ≥ |E| ≥ (p− 1)k. Now use

|X | = (|A|+ 1)k − 1.
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About the proofs

f (D)(p, k) ≤ O((p log p)1/k):

Theorem
Suppose p� 0 is a prime and A is a θ-random subset of [1, p− 1].
Let ω(p), ω′(p) be arbitrary functions satisfying ω(p), ω′(p)→∞
as p→∞.

1. If θ >
√

2 log p+ω(p)
p , then whp DA(Zp) = 2.

2. If k ≥ 3 is an integer and θ satisfies

(3kp(log p+ ω(p)))1/k

p
< θ <

p1/(k−1)

p ω′(p)
,

then whp DA(Zp) = k.

Janson’s Inequality.
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About the proofs: Why is the upper bound harder?

For sets A,B ∈ Zp with 0 6∈ B, A
B := {ab : a ∈ A, b ∈ B}.

To prove a good upper bound for f (D)(p, 2), we need a ‘small’
A ⊆ Z∗p such that A

A = Z∗p. Here Z∗p = Zp \ {0}.

A Difference Base in a finite abelian group G is a set B ⊆ G \ 0
such that for every g 6= 0, g = b− b′ for some b, b′ ∈ B. An upper
bound for f (D)(p, 2) comes from a ‘small’ difference base for Zp.

A difference base D is said to be Perfect if for every g 6= 0, there
exists a unique pair (b, b′) ∈ D ×D s.t. g = b− b′.
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bound for f (D)(p, 2) comes from a ‘small’ difference base for Zp.

A difference base D is said to be Perfect if for every g 6= 0, there
exists a unique pair (b, b′) ∈ D ×D s.t. g = b− b′.

Niranjan Balachandran Zero Sum Problems



About the proofs: Why is the upper bound harder?

For sets A,B ∈ Zp with 0 6∈ B, A
B := {ab : a ∈ A, b ∈ B}.

To prove a good upper bound for f (D)(p, 2), we need a ‘small’
A ⊆ Z∗p such that A

A = Z∗p. Here Z∗p = Zp \ {0}.

A Difference Base in a finite abelian group G is a set B ⊆ G \ 0
such that for every g 6= 0, g = b− b′ for some b, b′ ∈ B. An upper
bound for f (D)(p, 2) comes from a ‘small’ difference base for Zp.

A difference base D is said to be Perfect if for every g 6= 0, there
exists a unique pair (b, b′) ∈ D ×D s.t. g = b− b′.

Niranjan Balachandran Zero Sum Problems



About the proofs: Why is the upper bound harder?

For sets A,B ∈ Zp with 0 6∈ B, A
B := {ab : a ∈ A, b ∈ B}.

To prove a good upper bound for f (D)(p, 2), we need a ‘small’
A ⊆ Z∗p such that A

A = Z∗p. Here Z∗p = Zp \ {0}.

A Difference Base in a finite abelian group G is a set B ⊆ G \ 0
such that for every g 6= 0, g = b− b′ for some b, b′ ∈ B. An upper
bound for f (D)(p, 2) comes from a ‘small’ difference base for Zp.

A difference base D is said to be Perfect if for every g 6= 0, there
exists a unique pair (b, b′) ∈ D ×D s.t. g = b− b′.

Niranjan Balachandran Zero Sum Problems



Upper bound for f (D)(p, 2)

Singer’s theorem: There exists a Perfect Difference Set for
Zp2+p+1 of order p+ 1 for p prime.

The best known upper bound for a size of a difference base in Zn
is 2√

3

√
n ≤ 1.15471

√
n for n� 0. (Banakh-Gavrylkiv, 2017)
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Upper bound for f (D)(p, 2k)

For A,B ⊆ Zp, and α ∈ Z∗p, αA := {αa : a ∈ A}, and
A+B := {a+ b : a ∈ A, b ∈ B}.

Towards an optimal upper bound for f (D)(p, 2k): A set A ⊆ Z∗p of
‘optimal’ size such that for any α1, . . . , αk−1, β1, . . . , βk−1 ∈ Z∗p,

Z∗p ⊆
A+ α1A+ · · ·+ αk−1A

(A+ β1A+ · · ·+ βk−1A)∗
.

Theorem
There exists a set A ⊆ Z∗p with |A| ≤ Cp1/4 for some absolute
constant C > 0 s.t. for all α, β ∈ Z∗p

Z∗p ⊆
A+ αA

(A+ βA)∗
.

Niranjan Balachandran Zero Sum Problems



Upper bound for f (D)(p, 2k)

For A,B ⊆ Zp, and α ∈ Z∗p, αA := {αa : a ∈ A}, and
A+B := {a+ b : a ∈ A, b ∈ B}.

Towards an optimal upper bound for f (D)(p, 2k): A set A ⊆ Z∗p of
‘optimal’ size such that for any α1, . . . , αk−1, β1, . . . , βk−1 ∈ Z∗p,

Z∗p ⊆
A+ α1A+ · · ·+ αk−1A

(A+ β1A+ · · ·+ βk−1A)∗
.

Theorem
There exists a set A ⊆ Z∗p with |A| ≤ Cp1/4 for some absolute
constant C > 0 s.t. for all α, β ∈ Z∗p

Z∗p ⊆
A+ αA

(A+ βA)∗
.

Niranjan Balachandran Zero Sum Problems



Upper bound for f (D)(p, 2k)

For A,B ⊆ Zp, and α ∈ Z∗p, αA := {αa : a ∈ A}, and
A+B := {a+ b : a ∈ A, b ∈ B}.

Towards an optimal upper bound for f (D)(p, 2k): A set A ⊆ Z∗p of
‘optimal’ size such that for any α1, . . . , αk−1, β1, . . . , βk−1 ∈ Z∗p,

Z∗p ⊆
A+ α1A+ · · ·+ αk−1A

(A+ β1A+ · · ·+ βk−1A)∗
.

Theorem
There exists a set A ⊆ Z∗p with |A| ≤ Cp1/4 for some absolute
constant C > 0 s.t. for all α, β ∈ Z∗p

Z∗p ⊆
A+ αA

(A+ βA)∗
.

Niranjan Balachandran Zero Sum Problems



Another related extremal problem

Suppose G is a finite abelian group with exp(G) = n, and suppose
k ≥ 2 is an integer. Determine

max {DA(G) : |A| = k,A ⊂ [1, n− 1]} .

We know DA(Zn) = dn/ke if A = {1, . . . , k} for 1 ≤ k ≤ n− 1,
so this maximum is at least dn/ke.
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Another related extremal problem

Theorem

I

max {DA(Zp) : |A| = k,A ⊂ [1, p− 1]} = dp/ke

for p prime.

I

max{DA(Zn) : |A| = k} ≤ max

{⌈
pi√
k

⌉
n

pi
: 1 ≤ i ≤ r

}
.

Combinatorial Nullstellensatz. Also works for a ‘list version’ of this
result.
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The Harborth Constant

Harborth constant, g(G) : min m such that every subset of size
m of G admits a zero-sum subsequence of size exp(G).

This is not always well defined: If G = Z2n, exp(G) = 2n. But∑
x∈Z2n

x = n.

In these cases, we adopt the convention: g(G) = |G|+ 1.
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Some known results on the Harborth constant

Theorem
(Marchan, Ordaz, Ramos, Schmid, 2013) Let n ∈ N. We have

I

g(Z2 ⊕ Z2n) =

{
2n+ 2 if 2 | n,
2n+ 3 otherwise.

I

g±1(Zn) =

{
n+ 1 if n ≡ 2 (mod 4),
n otherwise.

I If n ≥ 3, then g±1(Z2 ⊕ Z2n) = 2n+ 2.
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Harborth constant for the dihedral groups

Recall
D2n = 〈x, y | x2 = yn = (xy)2 = 1〉.

Theorem
(B., Mazumdar, Zhao, 2018)
For any integer n ≥ 3 and G = D2n,

g(G) =

{
n+ 2 if 2 | n,
2n+ 1 otherwise.
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Main ingredient lemmas

Lemma
Suppose n is even and let s ≥ 2. Let S = {xyα1 , . . . , xyα2s} with
αi 6= αj . Then ∣∣∣∏

2s
(S)
∣∣∣ ≥ s.

If equality holds, then 2s divides n and {α1, . . . , α2s} is a coset of
the subgroup of Zn of order 2s.

Lemma
Suppose n is even and let S = {xyα1 , . . . , xyα2s+1} with αi 6= αj .
Then ∣∣∣∏

2s+1
(S)
∣∣∣ ≥ s+ 1.

If equality holds then 2s+ 2 divides n and there is a coset K of the
subgroup H of Zn of order 2s+ 2 such that {α1, . . . , α2s+1} ⊂ K.
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Open Questions

I Our conjecture:

Conjecture

f (D)(p, k) = Θ(p1/k) for all sufficiently large p.

Stronger conjecture:

f (D)(p, k) ≤ (1 + o(1))p1/k.

I We believe

max{DA(G) : |A| = k,A ⊂ [1, exp(G)− 1]} =

⌈
|G|
k

⌉
holds for G = Zn, and also for G = (Zn)` for all n and all `.
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THANK YOU
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