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1. Introduction

These notes are based one Chapter 11 of the Springer’s [Sp] book and are meant to be back-

ground material needed for the theory of algebraic groups over base field.

In this note we denote k a field and F a subfield of it. Mostly k denotes an algebraically closed

field. To be consistent with the notation from theory of algebraic groups over algebraically closed

field k we will mean X to be a variety over k though strictly speaking it should be X(k) and

similarly a vector space V will mean a k-vector space but a vector space W over F will be called

an F -vector space W or W a F -space.

1.1. F -Functors and Affine Schemes. An F -functor is a functor from category of F -algebras to

the category of sets. For any F -algebraR, we can define an F -functor SpFR through (SpFR)(A) =

HomF−alg(R,A). We call SpFR the spectrum of R. Any F -functor isomorphic to some SpFR

is called an affine scheme over F . Or equivalently a functor X is called representable or
1
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represented by R if it is an affine scheme, i.e., X(A) = HomF−alg(R,A). We also have Yonenda’s

Lemma: For any F -algebra R and any F -functor X, there is a bijection

Mor(SpFR,X) ∼= X(R).

We define F [X] := Mor(X,A1) which is the corresponding affine algebra in case X is an affine

scheme. For two F -schemes X and X ′ we have Mor(X,X ′) ∼= HomF−alg(F [X], F [X ′]).

This way we think of any affine algebraic varietyX defined over F as an affine scheme SpFF [X].

For an F -algebra E we have base-change from F to E for a scheme X which is denoted as XE

given by XE(A) = X(A).

2. F-structures

In this section we define F -structures on algebraic objects. The philosophy is as follows: to

study algebraic objects over algebraically closed fields (k) are simpler and hence to study the same

property/question over arbitrary fields (F ) we try to push down the property/question from k to

F .

2.1. F-structures on Vector Spaces. Let k be a field (not necessarily algebraically closed).

Let V be a (k-space) vector space.

Definition 2.1.1. An F -structure on V is a subspace V0 of F -vector space V such that the

canonical homomorphism k ⊗F V0 → V is a k-isomorphism.

We shall denote V (F ) := V0. A vector space with F -structure will be called an F -vector space.

A liner map f : V →W of F -vector spaces is defined over F if f maps V (F ) to W (F ). A subspace

W of V is an F -subspace if it has a basis whose elements lie in V (F ).

Example 2.1.2. M2(C) is a 4-dimensional vector space over C. M2(R) and

H =

{(
z −w

w̄ z̄

)

| z, w ∈ C

}

are R structures on M2(C). As a vector spaces they are isomorphic but not as an algebra.

Exercise 2.1.3. Let V has an F -structure V0. Prove that V has a basis consisting of elements

of V0. Moreover show that with this appropriate basis the k-linear maps correspond to matrices

over k and F -maps correspond to the matrices over F .

Exercise 2.1.4. Prove following:

(1) Let W be an F -subspace of V . Then V/W is an F -space.

(2) Show also that direct sum and tensors of F -spaces are F -space again.

(3) Let V (F ) be an F -structure on V . Suppose E ⊂ k is a field extension of F . Then

V (E) := E ⊗F V (F ) is an E-structure.

Exercise 2.1.5 (11.1.2 Springer). V and W are F -vector spaces and f : V → W is a k-linear

map.

(1) If f is defined over F then ker(f) and Im(f) are defined over F as well.

(2) The converse is false.

(3) f is defined over F if and only if its graph is an F -subspace of V ⊕W .
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2.2. F-structures on Varieties. Let X ⊂ kn be a variety (closed set) with ideal I(X). We say

that F is a field of definition of X if I(X) is generated by polynomials over F . However this

is not an intrinsic definition. Let A = k[X] be an affine algebra. An F -structure on X is an F -

subalgebraA0 ofA which is of finite type over F and which is such that the homomorphism induced

by multiplication k⊗F A0 → k[X] is an isomorphism. We then denote A0 = F [X]. For the given

F -structure on X the set of F -rational points X(F ) is given by X(F ) = HomF−alg(F [X], F ).

Obviously X(k) = X.

Example 2.2.1. Let k = C and F = R. Let k[X] = C[T1,T2]
<T 2

1
+T 2

2
−1>

and let a, b be the image of T1

and T2 in k[X]. Then R[a, b] and R[ia, ib] defines two different R-structures on X. Notice that

the first one correspond to the equation T 2
1 + T 2

2 = 1 and the second one to T 2
1 + T 2

2 = −1.

Example 2.2.2. Let k = C and F = R. Let k[X] = C[T11,T12,T22,T21]
<T11T22−T12T21−1> and let a11, a12, a21, a22 be

the image of the corresponding variables in k[X]. Then R[a11, a12, a21, a22] and R[a11 + ia22, a11−

ia22, ia12 + a21, ia12 − a21] defines two different R-structures on X. The first one correspond to

the group SL2(R) and the second one to SU2.

2.3. Action of the Galois Group. Let V be an F -vector space. Let Γ be a group of automor-

phisms of k such that the fixed points of Γ is F = {a ∈ k | γ.a = a ∀γ ∈ Γ}. Then Γ acts on

V = k⊗F V (F ) by γ(a⊗v) = (γ.a)⊗v. We check that for a ∈ F and v, v′ ∈ V the action satisfies

γ.(av) = a(γ.v) and γ.(v + v′) = γ.v + γ.v′, moreover V (F ) = V Γ, the fix point set.

Proposition 2.3.1. A subspace W of V is defined over F if and only if Γ.W = W .

Proof. Suppose Γ.W = W . We claim that W (F ) = WΓ. Clearly WΓ ⊂ V Γ = V (F ). Write

V (F ) = WΓ ⊕W ′. We need to show that WΓ generates W . If not, there exists 0 6= x ∈ W

such that x =
∑n

i=1 aixi with ai ∈ k and xi ∈ W ′. Suppose x is such an element with minimal

expression. Without loss of generality we may assume, a1 = 1. Then for any γ ∈ Γ, we have

γ.x − x =
∑n

i=2(γai − ai)xi. From the asumption this is again an element of W contradiction

minimality of such an expression in W .

The other part of the proof is obvious. �

Exercise 2.3.2. (1) Let V and W be two F -vector spaces and let f : V → W be a k-linear

map. Then f is defined over F if and only if fγ = γf ∀γ ∈ Γ.

(2) Let (aij) be the matrix of f written with respect to the basis chosen for V (F ) and W (F ).

Show that γ.(aij) = (γ.aij), i.e, the action is entrywise. What is the criteria, with such a

nice basis, for a map to be defined over F?

Now we assume that k is a Galois extension of F (finite or infinite) and Γ = Gal(k/F ). We recall

that Γ is a profinite group (i.e., a compact, totally disconnected, topological group) with Krull

toplogy. We assume that V is a vector space with discrete topology and Γ acts on it continuously.

Proposition 2.3.3. With the notation as above, suppose Γ action satisfies γ.(av) = a(γ.v) and

γ.(v+ v′) = γ.v+ γ.v′ for a ∈ F, v, v′ ∈ V . Then V (F ) = V Γ, the fixed points of the action, is an

F -structure on V .

Proof. With the generality about Krull topology, we may assume that V is a finite dimensional

vector space and Γ is a finite group corresponding to a finite extension E/F of degree d. We

consider EndF (k) ∼= Md(F ). Claim: EndF (k) = {
∑

γ∈Γ cγγ | cγ ∈ k}. This follows from strong

linear independence of Galois automorphisms and noting that F dimension on both side is d2.

Now, since Γ acts on V ∼= E ⊗F V (F ) we use this to get an F -representation of Γ on V , i.e., we
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get a map EndF (k) → EndF (V ). Since EndF (k) ∼= Md(F ) is a simple F -algebra any module has

to be direct sum of a simple (unique) module. In this case k is such a module and hence V ∼= kn

for some n. In fact, we know that the action is componentwise. This proves that the V Γ is an

F -structure. �

Notice that this gives a one-one correspondance between Γ-action on V (with certain properties)

to F -structures on V . The above criterion could be generalised to algebras as well. Let A be a

k-algebra with Γ acting on it by ring automorphisms. Then AΓ is an F -structure on it.

Exercise 2.3.4 (Hilbert 90). Let k/F be a finite Galois extension with Γ = Gal(k/F ). Then Γ

acts on GLn(k) entrywise. Let c : Γ → GLn(k) be a map such that c(γδ) = c(γ)γ(c(δ)) (1-cocycle).

Then there exists g ∈ GLn(k) with c(γ) = g−1γ(g).

Hints: We take V = kn (with standard basis {e1, . . . , en}) and define action of Γ satisfying the

properties in the above Proposition. Define γ.v = c(γ)(γ(v)) where γ(v) is the entrywise action

of Γ on V . From the Proposition it follows that V Γ is an F -structure. Let v1, v2, . . . , vn be an

F -basis of V Γ. Take g ∈ GLn(k), a matrix which maps vi to ei. Then,

g−1ei = vi = γ.vi = c(γ)(γ(vi)) = c(γ)γ(g−1ei) = (c(γ)γ(g−1))(ei).

Hence we get g−1 = c(γ)γ(g−1), i.e., c(γ) = g−1γ(g).

2.4. Derivations and F-structure. The set of derivations on k is DerF (k) := DerF (k, k) =

{D : k → k | D is F linear, D(ab) = aD(b) +D(a)b}. It is a k vector space and an F -Lie algebra

with [D,D′] = DD′ − D′D (bilinearity of [, ] is over F only). Let L ⊂ DerF (k, k) be a Lie

subalgebra such that F = {a ∈ k | Da = 0∀D ∈ L} = Ann(L). A connection of the F -Lie

algebra L which is a k-space on a k-vector space V is a k-linear map c : L→ EndF (V ) such that

c(D)(ax) = (Da)x+a(c(D)x) for a ∈ k, x ∈ V . The connection c is called flat if c is a Lie algebra

homomorphism also.

Now suppose V is an F -space and {x1, . . . , xn} is a basis of V (F ) extended to a basis of V Then

there exist a unique flat connection denoted as c = cV on V which is given by c(D)(
∑

i aixi) =
∑

i(D.ai)xi for ai ∈ k,D ∈ L.

Proposition 2.4.1. A subspace W of V is defined over F if and only if c(L)W ⊂W .

Corollary 2.4.2. Let V and W be two F -vector spaces and let f : V →W be a linear map. Then

f is defined over F if and only if fcV (D) = cW (D)f∀D ∈ L.

Exercise 2.4.3. Show that DerF (k) is a k vector space and an F -Lie algebra with [D,D′] =

DD′ −D′D (not a k Lie algebra).

Exercise 2.4.4. Prove the Proposition and Corollary above.

Exercise 2.4.5. Show that DerF (k) is non-trivial in following cases:

(1) transcendental case : k = F (x) is a transcendental extension of F .

(2) purely inseparable case : char(F ) = p and k = F (x)/ < xp − a > is a degree p

extension with a ∈ F .

The F -Lie subalgebras of DerF (k) which are k-vector spaces play the similar role in case of

transcendental extensions and insperable extensions as Galois group does in the case of separable

extensions (see Jacobson, Basic Algebra II, Section 8.15 and 8.16). We will show this in the case

of purely inseparable extension below.
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2.5. F-structure over Inseparable Extensions. Let char(k) = p > 0.

Definition 2.5.1 (p-Lie algebra). A p-Lie algebra L, is a Lie algebra with a map L→ L denoted

as D 7→ D[p] satisfying:

(1) (aD)[p] = apD[p]

(2) ad(D[p]) = (adD)p

(3) Jacobson’s Formula: (D + D′)[p] = D[p] + D′[p] +
∑p−1

i=1 i
−1si(D,D

′) where ad(aD +

D′)p−1(D′) =
∑

i si(D,D
′)ai.

A p-connection of the p-Lie algebra L on a vector space V is a connection that satisfies, in

addition, c(D[p]) = c(D)p.

Example 2.5.2. (1) Let L = Mn(k) be the Lie algebra with [A,B] = AB − BA. With the

p-operation defined as A[p] := Ap, it is a p-Lie algebra.

(2) DerF (k) is a p-Lie algebra with the p-operation D[p] := Dp.

Now we take k/F a finite purely inseparable extension such that kp ⊂ F . We denote by

J = Jk/F the p-Lie algebra of F -derivations of k. With Lie product as commutator and p-

operation the ordinary pth power, J is a p-Lie algebra over F and is a vector space over k. Choose

x1, . . . , xd in k such that k = F (x1, . . . , xd) with minimal such d and xpi = ai ∈ F (1 ≤ i ≤ d).

Lemma 2.5.3. With notation as above,

(1) {xn1

1 · · ·xnd

d | 1 ≤ ni < p, 1 ≤ i ≤ d} is a basis of k over F .

(2) There exists ∂i ∈ J with ∂ixj = δijxi. We have ∂
[p]
i = ∂i, [∂i, ∂j ] = 0 for all 1 ≤ i, j ≤ d.

(3) {∂i | 1 ≤ i ≤ d} is a k-basis of J . We have [k : F ] = pdimk J .

(4) The annihilator of J is F .

Proof. Suppose the set of elements are dependent. Then we have k/E/F where k = E(x1) and

E = F (x2, . . . , xd). The dependence relation implies that [k : E] < p however x1 satisfies a

polynomial of degree p over F . Hence [k : E] must divide some p power hence [k : E] = 1, a

contradiction. This proves linear dependence.

We do it for one variable first. Let k = F [T ]/ < T p − a >. Any derivation on F [T ] is given by

α ∂
∂T for α ∈ k. We observe that T ∂

∂T is a derivation on k.

In general we have k = F [T1, . . . , Td]/ < T p1 −a1, . . . , T
p
d −ad >. And the derivations ∂i = Ti

∂
∂Ti

give the space of derivation over k. Notice that this derivation satisfies ∂pi = ∂i (if we take ∂i = ∂
∂Ti

then it doesn’t satisfy this property). �

Proposition 2.5.4. Let V be a vector space over k with a flat p-connection c of the p-Lie algebra

Jk/F . Then V (F ) = Ann(Jk/F ) = {x ∈ V | c(D).x = 0∀D ∈ Jk/F } is an F -structure on V .

Proof. We have a Lie algebra homomorphism c : DerF (k) → EndF (V ) which is a k-linear map.

The elements of the set {c(∂i)} are Fp-linear maps and form a commutating set (thanks to [∂i, ∂j ] =

0) of semisimple elements (their action on basis of k/F is such). Hence they can be simultaneously

diagonalised and gives following decomposition:

V =
⊕

n1,...,nd

Vn1,...,nd

where Vn1,...,nd
= {x ∈ V | c(∂i)x = nix, 1 ≤ i ≤ d}. We claim that V (F ) = V0,...,0 = Ann(c).

This follows from Vn1,...,nd
= xn1

1 · · ·xnd

d V0,...,0. �

We further go on to generalise the main theorem of Galois theory for inseparable extensions.
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Theorem 2.5.5 (Jacobson). With notation as above,

(1) Let J1 be a p-Lie subalgebra of Jk/F , which is a vector space over k. Then F1 = Ann(J1)

is a subfield of k containing F and [k : F1] = pdimk J1.

(2) This defines a bijection of the set of p-Lie algebras of J that are k-vector spaces onto the

subfields of k containing F . The inverse map is given by F1 7→ Jk/F1
.

Proof. See Basic Algebra volume 2, N. Jacobson, section 8.16, page 533. �

3. Density Criteria for Ground fields

In this section k denotes an algebraically closed field with F a subfield. We denote F̄ and Fs
for the algebraic closure and separable closure, respectively. Moreover Fs is a Galois extension of

F with Galois group Γ. The action of the group Γ can be extended to F̄ and the fixed subfield is

Fi = {x ∈ F̄ | xp
m

∈ F for some m ≥ 0}, purely inseparable extension. In case of char = 0 we

have Fi = F and F̄ = (Fi)s = (Fs)i.

3.1. Criteria for a Variety to be defined over F . Let X be an affine variety over k. Recall

that an F -structure on X is equivalent to giving a subalgebra F [X] of k[X] which is k-isomorphic

to k[X] after base-change to k.

Lemma 3.1.1. Let A be an F -algebra. Then there is an affine F -variety X with A ∼= F [X] if

and only if

(1) A is of finite type over F .

(2) For any algebraic extension E of F the algebra E ⊗F A is reduced.

Theorem 3.1.2 (Density Theorem). Let X be an F -variety.

(1) X(F̄ ) is dense in X. If Y is a closed subvariety of X such that X(F ) ∩ Y is dense in Y ,

then Y is defined over F .

(2) The irreducible components of X are defined over Fs and X(Fs) is dense in X.

Proposition 3.1.3. (1) Let Y be a closed subveriety of X. Then Y is defined over F if and

only if

(a) Y is defined over Fs,

(b) there is a subset of Y (Fs) that is dense in Y and is stable under the Γ-action on

X(Fs).

(2) Let Y be an open subvariety of X. The Y is defined over F if and only if

(a) Y is defined over F̄ ,

(b) Y (F̄ ) is a Γ-stable subset of X(F̄ ).

3.2. Intersection and Fibre defined over F .

Theorem 3.2.1. Let X be an F -variety and let Y and Z be closed F -subvarieties with a non-

empty intersection. Then Y ∩ Z is a closed subvariety, which is defined over F if and only if

(1) F is perfect,

(2) there is a dense open subset U of Y ∩ Z such that for x ∈ U we have Tx(Y ∩ Z) =

Tx(Y ) ∩ Tx(Z).

Corollary 3.2.2. Let φ : X → Y be an F -morphism of irreducible F -varieties. Let y ∈ Y (F ) ∩

Im(φ).

(1) If F is perfect then the fiber φ−1(y) is defined over F ,
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(2) Assume that all irreducible components of φ−1(y) have dimension dimX−dimY and that

in each component C of φ−1(y) there exists a simple point x such that the tangent map

dφx : TxC → TyY is surjective. Then φ−1(y) is defined over F .

4. Forms and Cohomology

Here we define commutative cohomology first and then define non-commutative 1-cohomology

group. This topic is an important part of the classification of algebraic group which we will see

as the workshop progresses. However a warning is on hand that cohomology just keeps track of

the forms, it doesn’t say anything about its existence.

4.1. Commutative Cohomology. Let G be a group and let A be a set on which G acts. We

denote s(a) = sa for s ∈ G and a ∈ A. We call A is a G-set. If A is a group and the action of

G is via homomorphisms then we call A is a G-group. Let A be an Abelian G group. We define

C0(G,A) = A and Ci(G,A) = {a : G× . . .×G
︸ ︷︷ ︸

i

→ A} which is set of all maps from G× . . .×G
︸ ︷︷ ︸

i

to

A. We also write a(s1, . . . , si) as as1,...,si
. We define maps δ0 : C0 → C1 by δ0(a)(s) = sa− a and

δi : Ci → Ci+1

δi(a)(s1, . . . , si+1) = s1a(s2, . . . , si+1)

+
i∑

j=1

(−1)ja(s1, . . . , sjsj+1, . . . , si+1) + (−1)i+1a(s1, . . . , si)

Then

0 → C0 δ0
→ C1 δ1

→ C2 δ2
→ . . .

δi−1

→ Ci
δi

→ Ci+1 δi+1

→ . . .

is a chain-complex. Moreover, check that δi+1δi = 0 for all i. We define Zi(G,A) = ker(δi)

called cocycles and Bi(G,A) = Im(δi−1) called coboundaries. As Bi(G,A) ⊂ Zi(G,A) we define

H i(G,A) = Zi(G,A)
Bi(G,A)

called i-th cohomology group. The cohomology groups are Abelian groups.

We write down first few cohomology groups explicitly.

H0(G,A) : Let A be an Abelian G-group. Then H0(G,A) = AG = {a ∈ A|sa = a∀s ∈ G},

set of fixed points of A by the action of G.

H1(G,A) : A map a : G→ A is called a 1-cocycle if

ast = as + sat.

For any c ∈ A, define, a : G → A by as = sc − c, is a 1-coboundary. We define an equivalence

relation on 1-cocycles as follows: two cocycles a, b are related if there exists c ∈ A such that

bs = −c+ as + sc. The 1-cocycles modulo this equivalence relation form first cohomology group.

H2(G,A) : A map a : G×G→ A is called a 2-cocycle if

as1s2,s3 = s1as2,s3 + as1,s2s3 − as1,s2 .

A map a : G × G → A such that as,t = sbt − bst + bs for some map b : G → A, is called a

2-coboundary. The quotient group is called 2nd cohomology group.

Remark : Sometimes we will write the commutative group A multiplicatively. We have used

here additive notation.

Example 4.1.1. Let E be a finite Galois extension of a field F . Let G = Gal(E/F ) be the Galois

group. Then G acts on additive group E by evaluation. Then H0(G,E) = F and H i(G,E) = 0

for all i ≥ 1. Proof uses “Normal Basis Theorem” and “Shapiro’s Lemma”.
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4.2. Cohomology and Central Simple Algebras. Let E be a Galois extension of a field F .

Let Γ denote the Galois group Gal(E/F ). Then Γ acts on the Abelian group E∗ as follows :

Γ × E∗ → E∗ given by (σ, α) 7→ σ(α). Then,

Proposition 4.2.1. With above notations, the cohomology groups are :

(1) H0(Γ, E∗) = F ∗.

(2) H1(Γ, E∗) = {1} (Hilbert’s Theorem 90).

(3) H2(Γ, E∗) = Br(E/F ).

Proof. To prove H1(Γ, E∗) = 0, we let a : Γ → E∗ is a 1-cocycle. Then ast = as
sat for any s, t ∈ Γ.

We have to prove that there exists c ∈ E∗ such that as = scc−1. We claim that there exists α ∈ E∗

such that
∑

σ∈Γ aσσ(α) 6= 0 (follows from lemma below). Put d =
∑

σ∈Γ aσσ(α). Then,

s(d) =
∑

σ∈Γ

saσsσ(α) =
∑

σ∈Γ

a−1
s asσsσ(α) = a−1

s d.

Now we take c = d−1 and we get the result.

Lemma 4.2.2. Let E be a field extension. Let {σ1, . . . , σn} be distinct field automorphisms of E.

Suppose there exists ai ∈ E such that
∑

i aiσi(x) = 0 for all x ∈ E then ai = 0 for all i.

To prove last part we need to know the theory of central simple algebras. �

Exercise 4.2.3. Let E/F be a Cyclic (Galois) extension and Γ =< σ >. Let α ∈ E∗ such that

N(α) = 1. Then there exists β ∈ E∗ such that α = β
σ(β) .

Let F be a field. Let A be a finite dimensional algebra over F . Then A is called simple if

it (is a nontrivial semisimple ring and) has no two sided ideals other than {0} and A. A finite

dimensional algebra is called central simple if it is simple and Z(A) = F . From Wedderburn’s

structure theorem it follows that a central simple algebra A is isomorphic to Mn(D) where D is a

central division algebra over F . We define an equivalence relation on the set of finite dimensional

central simple algebras over field F as follows. We call A and B, both finite dimensional central

simple algebras over field F , are equivalent if any one of the following equivalent conditions are

satisfied :

(1) If A ∼= Mn(D) and B ∼= Mm(D′) then D ∼= D′.

(2) There exist m,n such that A⊗Mm(F ) ∼= B ⊗Mn(F ).

The Brauer group of a field F is the set of equivalence classes of finite dimensional central

simple algebras over F with multiplication defined by tensor product. It is denoted as Br(F ). It

is an abelian group. We give few examples here.

(1) Br(Fq) = {0}, for any finite field Fq.

(2) Br(k) = {0}, for any algebraically closed field k. In fact, Br(F ) = {0}, for any field F of

transcendence degree one over an algebraically closed field.

(3) Br(R) = Z/2Z.

(4) Br(Qp) ∼= Q/Z, where Qp is the field of p-adic numbers.

Let E/F be a field extension. Then we have a map Br(F ) −→ Br(E) defined by A 7→ A⊗E. The

kernel of this map is called relative Brauer group, denoted as Br(E/F ). Let A be a central

simple algebra. Let E ⊂ A be a subfield containing F such that ZA(E) = E, then E is called a

maximal subfield of A.

Theorem 4.2.4. Let A be a central simple algebra over field F of dimension n2. Then any

maximal subfield E of A is a splitting field for A, and [E : F ] = [A : E] = n. Conversely, given
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any finite field extension E of F of degree n, any element of Br(E/F ) has a unique representative

A of degree n2 which contains E as a maximal subfield.

If D is a central division algebra over F of dimension n2 then there exists a finite Galois

extension E of F which is a splitting field for D. Hence

Br(F ) =
⋃

E

Br(E/F )

where union is taken over all finite Galois extensions of F . Here we determine the structure of

any central simple algebra in context of Brauer group.

Lemma 4.2.5. Let E/F be a Galois extension of fields with Galois group Γ. Let n be the degree of

field extension E/F . Let A be a central simple algebra over F containing E as its maximal subfield.

Then there exists xσ ∈ A,∀σ ∈ Γ and a : Γ × Γ → E∗, a 2-cocycle, such that A = ⊕σ∈ΓExσ and

the multiplication is given by

αxσ.βxτ = ασ(β)aσ,τxστ .

Proof. For each σ ∈ Γ, by Skolem-Noether theorem, there exists xσ ∈ A such that xσax
−1
σ = σ(a)

for all a ∈ E. These xσ’s are unique up to a scalar multiplication by elements of E. Moreover, as

E is maximal subfield, we get xσxτ = aσ,τxστ for some aσ,τ ∈ E∗. This gives a map a : Γ×Γ → E∗.

As the algebra is associative we have xρ(xσxτ ) = (xρxσ)xτ which gives ρ(aσ,τ )aρ,στ = aρ,σaρσ,τ .

Hence a is a 2-cocycle. We know that xσ’s differ by a scalar multiple by elements of E. Suppose

x′σ = fσxσ. We get bσ,τ ∈ E∗ such that bσ,τx
′
σ,τ = fσσ(fτ )xσxτ . This gives following relation,

bσ,τfστ = fσσ(fτ )aσ,τ .

Hence the map c : Γ × Γ → E∗ defined by c(σ, τ) = fσσ(fτ )
fστ

is a 2-coboundary. The maps a

and b differ by c. The set {xσ} forms a basis for A over E. This defines a map from Br(F ) to

H2(G,E∗). �

Conversely we have,

Lemma 4.2.6. Let E/F be a Galois extension of fields with Galois group Γ. Let n be the degree

of field extension E/F . Let a : Γ × Γ → E∗ be a 2-cocycle. We put A = ⊕σ∈ΓEσ and define

multiplication as follows :

αxσ.βxτ = ασ(β)aσ,τxστ .

Then A is a central simple algebra over F containing E as maximal subfield.

The algebra obtained in this lemma is denoted by [E,Γ, a]. Lemma gives a surjective map form

Z2(Γ, E∗) → Br(E/F ) defined by a 7→ [E,Γ, a]. In fact one can show that the kernel of this map

is coboundaries. Hence this proves the remaining part of the proposition. In fact, this map is a

group isomorphism.

4.3. Cohomology and Group Extension. Let G be a group and A be an abelian group. We

will write the group operation in A additively.

Definition 4.3.1. A group E is called a group extension of G by A if there is an exact sequence

as follows:

1 → A
i
→ E

π
→ G→ 1.
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Notice that giving an extension also defines a G-module structure on A as follows: choose

eg 7→ g (in fact, egA 7→ g). Now define g.a = egae
−1
g (as A is a normal subgroup of E).

We call two extensions E1 and E2 are equivalent if there exists β : E1 → E2, an isomorphism

such that following diagram commutes:

1 // A

Id

��

// E1

β
��

// G

Id

��

// 1

1 // A // E2
// G // 1

Verify that two equivalent extensions define isomorphic G-module structure on A.

Now we wish to see how to write all of the group extensions. This we do by using cohomology.

Let E be an extension then we have G ∼= E/A. Fix a section (equivalent to fixing a quotient

representative) µ : G → E (i.e., πµ = Id). Each element of E can be written as a.µ(g) for some

a ∈ A and g ∈ G. Consider µ(g) ∈ Ag and µ(h) ∈ Ah as element of E. Then µ(g)µ(h) ∈ Agh

hence we can write

µ(g)µ(h) = f(g, h)µ(gh)

for some f(g, h) ∈ A. This defines a map f : G × G → A (also called factor sets) which has

following properties:

(1) The map f is a 2-cocycle. This is equivalent to associativity of µ(g), µ(h) and µ(k) in A.

(2) Choice of a different section µ′ instead of µ gives equivalent cocycles, i.e., f and f ′ are

equivalent.

(3) The extension is split (i.e., section µ is a group homomorphism) if and only if the corre-

sponding cocycle is trivial if and only if E ∼= A⋊G.

This way we show that an extension gives rise to a G-module structure and a 2-cocycle. Next we

show the converse.

Let G acts on A and f : G×G→ A be a 2-cocycle. We wish to construct Ef , an extension of

G by A. We define Ef = A×G and

(a1, g).(a2, h) = (a1 + g.a2 + f(g, h), gh).

Then (f(1, 1), 1) is the identity element and (a, x)−1 = (−x−1.a− f(x−1, x) − f(1, 1), x−1).

Theorem 4.3.2. Let G be a group and A an abelian group. Then the set of all group extensions

of G by A, i.e., Ext(G,A), is in bijection with H2(G,A).

4.4. Non-Commutative Cohomology. Let G be a (profinite) group and A be a set (with

discrete topology) on which G acts (continuously). We denote s(a) = sa for s ∈ G and a ∈ A.

We call A, a G-set. If A is a group and the action of G is via homomorphisms then we call A, a

G-group. We define cohomology groups as follows.

H0(G,A) : Let A be a G-set. Then H0(G,A) = AG = {a ∈ A | sa = a∀s ∈ G}, set of fixed

points of A by the action of G.

H1(G,A) : Let A be a G-group. A map a : G→ A is called a 1-cocycle if

ast = as
sat.

Two 1-cocycles a, b are equivalent if there exists c ∈ A such that bs = c−1as
sc. This is an

equivalence relation on the set of 1-cocycles and the quotient group is H1(G,A). The set H1(G,A)

need not be group in general but it always has a distinguished element namely the class of 1-

cocycles of the form b−1sb for b ∈ A.
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If A is a commutative group we can define higher cohomology groups as we did in the last

section 4.1.

Proposition 4.4.1 (Hilbert 90). Let E be a finite Galois extension of F with Galois group Γ. Let

Γ acts on the group GLn(E) entrywise. Then H0(Γ, GLn(E)) = GLn(F ) and H1(Γ, GLn(E)) =

{1}.

Proof : Let a : Γ → GLn(E) be a 1-cocycle. If we take d =
∑

σ∈Γ aσσ(A) for some A ∈Mn(E).

Then s(d) = a−1
s d. If we can get d invertible, we will be done. Put b =

∑

σ∈Γ aσσ and consider

W a subspace generated by {b(x)|x ∈ En}. Then W = En. For f ∈ En∗ suppose we have

f(b(x)) = 0 for all x ∈ En. Then 0 = f(b(λx)) =
∑

σ∈Γ f(aσσ(λx)) =
∑

σ∈Γ f(aσσ(x))σ(λ) for

all λ ∈ E. But this gives f(aσσ(x)) = 0 for all x ∈ En. Hence f = 0. This proves that W = En.

Choose {x1, . . . , xn} ⊂ En such that yi = b(xi) are linearly independent. Let A be the matrix

with columns {x1, . . . , xn} then b = (b(x1), . . . , b(xn)) = (y1, . . . , yn) is the required invertible

matrix. �

Example 4.4.2 (Kummer Theory). Let n be an integer coprime to the characteristic of k, and

assume that k contains the group µn of the n-th roots of unity. Let K be the separable closure

of k. Then we have the short exact sequence of G-groups

{1} −→ µn −→ K∗ u
−→ K∗ −→ {1}

with u(x) = xn. This gives rise to a long cohomology sequence and H1(G,K∗) = {1} implies

that H1(G,µn) = k∗/k∗n. Considering H1(G,µn) corresponds to looking at cyclic extensions of k

with Galois group Z/nZ. Any element a ∈ k∗ such that a 6∈ k∗n defines such a field extension by

taking splitting field of the polynomial Xn−a. And this is the only way to get such an extension.

4.5. Forms. Let X be an F -variety and E a subfield of k containing F .

Definition 4.5.1. An E-form of X is an F -variety Y which is E isomorphic to X, i.e., X(E) ∼=E

Y (E).

We denote by Φ(E/F,X) the set of F -isomorphism classes of E-forms of X, i.e.

Φ(E/F,X) = {Y | Y an F − variety , X(E) ∼=E Y (E)}.

We will take E/F a Galois extension. Let Γ = Gal(E/F ) and moreover assume that X be an

affine F -variety. The group Γ acts on E[X] = E ⊗ F [X] as ring automorphism where action is

given by γ.(a ⊗ v) = γ(a) ⊗ v. This action is continuous relative to Krull topology on Γ and

discrete topology on E[X]. Let A := AutE(X) = AutE−algE[X] (the algebra automorphisms of

E[X] can be thought of variety automorphisms of X over E). Then Γ acts on A continuously as

γ.φ = γφγ−1.

Theorem 4.5.2. We assume E/F is a Galois extension and X an affine F -variety. There is a

bijection Φ(E/F,X) → H1(Γ,AutE(X)) such that the class of X corresponds to 1.

Proof. We follow the conventions defined above. First we wish to define the map which gives the

above bijection. Let Y be an E-form of X, i.e., there exists an E-isomorphism φ : E[Y ] → E[X].

Using this we define c := cφ : Γ → A by c(γ) = φγφ−1γ−1. Since

c(γδ) = φγδφ−1(γδ)−1 = φγ(φ−1γ−1γφ)δφ−1δ−1γ−1 = (φγφ−1γ−1)γ.(φδ) = c(γ)γ.c(δ).

This defines a map Φ(E/F,X) → Z1(Γ,AutE(X)) → H1(Γ,AutE(X)) by φ 7→ cφ. We need to

check whether this map is well defined, i.e., it doesn’t depend on the isomorphism φ. Suppose
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φ, φ′ : E[Y ] → E[X] are E-isomorphisms. Then we claim that cφ and cφ′ are equivalent cocycles.

We check this:

cφ(γ) = φγφ−1γ−1 = φ(φ′−1φ′)γ(φ′−1γ−1γφ′)φ−1γ−1 = (φ′φ−1)−1cφ′(γ)γ.(φ
′φ−1).

Now we show that the map is injective. Let Y and Z be two E-forms of X, i.e., there exists

E-isomorphisms φ : E[Y ] → E[X] and ψ : E[Z] → E[X]. Suppose the respective cocycles c =

cφ, d = cψ are equivalent, i.e., there exists a ∈ AutE(X) such that d(γ) = a−1c(γ)γ.a∀γ ∈ Γ.

Then we claim that E[y] and E[Z] are F -equivalent. For this we note that:

aψγψ−1γ
−1 = ad(γ) = c(γ)γ.a = φγφ−1γ−1γaγ−1

which gives φ−1aψγ = γφ−1aψ. Hence the map φ−1aψ is an isomorphism of E[Z] to E[Y ] defined

over F , i.e., Y and Z are F -isomorphic forms of X.

Now we need to prove that the map is surjective. Let c : Γ → AutE(X) be a 1-cocycle. We

define an action of Γ on E[X] using this cocycle as follows: (γ, a) 7→ c ∗ γ = c(γ)γ.a. This action

satisfies the property of the Proposition 2.3.3 hence E[X]Γ is an F -structure which we denote by

F [X]c (the corresponding variety Xc is said to be obtained from X by twisting with cocycle c).

This gives the required F -form. �

Next we give some applications of this theorem.

Exercise 4.5.3. Let E/F be a Galois extension with group Γ.

(1) H1(Γ, GLn(E)) = 1.

(2) H1(Γ, Sp2n(E)) = 1.

(3) For char(k) 6= 2, H1(Γ, On(E)) is in one-one correspondence with non-degenerate sym-

metric bilinear forms on Fn that are E-isomorphic.

(4) H1(Γ, E) is trivial.

Example 4.5.4 (Classical Groups). Central simple algebras with involutions have automorphism

groups as classical groups. Also most of the classical groups have there automorphism group as

themselves. The theorem above implies that the central simple algebras with involutions over

field F (char(F ) 6= 2) are in one-one correspondence with F -forms of classical groups (with few

exceptions).

Example 4.5.5 (Groups of type G2). Octonion algebras over field F are in one-one correspon-

dence with the forms of groups of type G2 over F .

5. Restriction of the Ground Field

5.1. What do we want! Let E/F be a field extension of degree n. We have base change

functor E⊗F defined from category of F algebras to category of E algebras by B 7→ E ⊗F B.

Let us fix an E-algebra A. Then SpE(A) is an affine E-functor. This gives us an F -functor

SpF (A) defined by SpF (A)(B) := SpE(A)(E ⊗F B) = HomE−alg(A,E ⊗F B). Now the question

is whether this F -functor is representable, i.e., does there exists RA an F -algebra such that

SpF (A)(B) = HomF−alg(RA,B). In that case RA is adjoint to E⊗F . The next construction

answers this question.

We explain the above problem in the language of affine variety. Let X be an affine variety

defined over E. Does there exists an F variety RX such that RX(F ) = X(E)? This way we

reduce the questions about X to a variety defined over F , though the variety RX itself may be

more complicated.
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Example 5.1.1. Let Am be affine m-space over E. Then RAm = Amn. Intuitively for each basis

vector we replace it with n independent basis vectors.

Example 5.1.2. Let us take field extension C/R and the variety Gm(C) = C∗ given by XY = 1.

To obtain RGm we substitute X = X1 + iX2 and Y = Y1 + iY2. And the equation XY = 1 gives

us X1Y1 −X2Y2 = 1 and X1Y2 +X2Y1 = 0. Hence RGm is the variety given by zeros of these two

equations in R4. Observe that as a set it is just C∗.

Exercise 5.1.3 (A silly doubt!). Does RA = A works?

5.2. Existence of Restriction. Let E/F be field extension of degree n. We fix an F -bilinear

pairing <,> between F -vector spaces E and E′ (dual of E). We fix {x1, . . . , xn} as an F -

basis of the vector space E and {x′1, . . . , x
′
n} that for E. Let A be an E-algebra. Denote S =

symF (E′ ⊗F A), the symmetric algebra. Let I be an ideal of S generated by elements:

x′ ⊗ ab =
∑

i,j

< xixj , x
′ > (x′i ⊗ a)(x′j ⊗ b) and x′ ⊗ x =< x, x′ >

where x ∈ E, x′ ∈ E′ and a, b ∈ A. If I 6= S we say that restriction of A over F exists and denote

the F -algebra RA = RE/FA = S/I. The algebra RA satisfies certain universal property if it

exists.

Proposition 5.2.1 (Universal Property of RA). With notation as above, suppose RA exists.

Then,

(1) There exists an E-homomorphism ρ : A → E ⊗F RA such that the pair (RA, ρ) satisfies

following universal property: for any pair (B, σ) with B an F -algebra and σ : A→ E⊗F B

and E-homomorphism there exists a unique F -homomorphism τ : RA → B such that

σ = (1 ⊗ τ)ρ.

(2) Suppose there exists an F -algebra B with an E-homomorphism σ : A→ E ⊗F B then the

restriction of A exists.

Proof. We first define an F -bilinear map u : E′ × A → RA by (x′, a) 7→ x′ ⊗ a. This amounts to

looking at the F -linear map E′ ⊗F A→ symF (E′ ⊗F A) → RA. Moreover u satisfies following:

u(x′, ab) =
∑

i,j

< xixj , x
′ > u(x′i, a)u(x

′
j , b) and u(x′, x) =< x, x′ >

where x ∈ E. Now using this we define the map ρ : A→ E ⊗F RA as follows:

ρ(a) =
∑

i

xi ⊗ u(x′i, a).

The above properties of u are equivalent to saying ρ is an E-homomorphism.

Now let (B, σ) be the F -algebra with E-homomorphism σ : A → E ⊗F B. We define F -linear

maps σi : A→ B such that

σ(a) =
∑

i

xi ⊗ σi(a).

Then σi satisfies the following relations:

σi(ab) =
∑

r,s

< xrxs, x
′
i > σr(a)σs(b) and σi(x) =< x, x′i >

which reflects the relations for u. Now to define a map τ : RA→ B first we define a map τ̄ : S → B

by x′i ⊗ a 7→ σi(a). Verify that I is contained in the kernel of this map hence we get the required

map τ .
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For the proof of second part, suppose we have such a B and an homomorphism σ. Then we

can define a map from S → B as above whose kernel contains I. Hence I 6= S and RA exists. �

Exercise 5.2.2. Show that the map ρ defined in the proof of the proposition above is an E-algebra

homomorphism.

Corollary 5.2.3. The universal property is equivalent to the following map being bijection:

HomE−alg(A,E ⊗F B) → HomF−alg(RE/FA,B).

This corollary can also be expressed as A(E ⊗F B) = RA(B). If we take B = k we get

RA(k) = A(E⊗F k) ∼= A(kn) which gives support to our intuitive idea for substituting n-variables

for a variable of A to get RA points.

Corollary 5.2.4. The restriction RA exists if one of the following holds:

(1) there exists an E-homomorphism A→ E.

(2) A is an affine E-algebra.

Proof. In first case we take B = F and σ as the given map. �

Example 5.2.5 (RA need not exist). Let char(F ) = p > 0 and E = F (x) with xp ∈ F

be degree p extension. Consider E-algebra A = E(a) = E(x
1

p ) where ap = x. Suppose we

have (B, σ) with and E-homomorphism σ : A → E ⊗F B. Suppose σ(a) =
∑

i xi ⊗ bi. Then

σ(ap) = (σ(a))p = 1 ⊗
∑

i x
p
i b
p
i , on other hand, σ(ap) = σ(x) = x(1 ⊗ 1) = x ⊗ 1. This implies

x⊗ 1 = 1 ⊗
∑

i x
p
i b
p
i , a contradiction.

Example 5.2.6. Let A = E[T ]. We claim that RA = symF (E′) and the map ρ is given by

T 7→
∑

i xi⊗x
′
i. For this we follow the construction and observe that x′⊗xT =

∑

i,j < xixj , x
′ >

(x′i ⊗ x)(x′j ⊗ T ) where x′i ⊗ x ∈ F . We define the map RA→ sym(E′) by x′i ⊗ T 7→ x′i.

In above example we can also do following: RA(k) = A(E ⊗F k) = HomE−alg(E[T ], E ⊗F k).

Any such homomorphism is defined by T 7→
∑

i xi ⊗ αi = (α1, . . . , αn).

5.3. Restriction of Ground Field for a Variety. Let A = E[X] be an affine E-algebra. Then

RA exists and is an F -algebra of finite type. But RA need not be an affine F -algebra. We consider

two special cases in more detail:

a. E is separable over F .

b. p = char(F ) > 0 and E = F (x) with xp ∈ F .

Let us look at separable case first. Let F̄ be the separable closure of F in k. Denote by

Σ = {σ | σ : E → F̄ , F -isomorphism}. We denote the field containing all σE by Ẽ (in case it’s

Galois extension Ẽ = E). For σ ∈ Σ we define an E-algebra structure on Ẽ denoted by Ẽσ as

E × Ẽσ → Ẽσ given by (x, y) 7→ σ(x)y (note that Ẽ1 is usual Ẽ). Now we take E-algebra

Bσ = Ẽσ ⊗E A.

Proposition 5.3.1. There is an isomorphism

α : Ẽ ⊗F RA→ ⊗Ẽ,σ∈ΣBσ

such that α(1 ⊗ ρ) is the canonical injection of B1 into the tensor product.

Proof. To define the isomorphism we first write a set of generators for Ẽ ⊗F RA. We take

elements ũ(σ, a) =
∑

i σ(xi) ⊗ u(x′i, a) ∈ F̄ ⊗F RA for σ ∈ Σ and a ∈ A. We claim that
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ũ(σ, ab) = ũ(σ, a)ũ(σ, b) and ũ(σ, x) = σ(x) ⊗ 1 and the set {ũ(σ, a) | σ ∈ Σ, a ∈ A} generates

Ẽ ⊗F RA.

Now we define the map α be ũ(σ, a) 7→
⊗

i(σxi ⊗ a). �

Corollary 5.3.2. If E/F is separable then any E-algebra admits restriction of the ground field.

The second case of inseparable extension involves considerable amount of analysis. Interested

reader may look at the book. Finally we come to the main theorem.

Theorem 5.3.3. (1) Let X be an irreducible, smooth, affine E-variety. There exists an irre-

ducible, smooth, affine F -variety
∏
X or

∏

E/F X, together with a surjective E-morphism

π :
∏
X → X such that the following universal property holds for (

∏
X,π): for any (Y, φ),

Y an affine F -variety with E-morphism φ : Y → X there exists a unique F -morphism

ψ : Y →
∏
X with φ = πψ. Moreover, the pair (

∏
X,π) is unique up to isomorphism.

(2) If E/F is separable then smoothness and irreducibility may be omitted from assumption

and conclusion both.

Corollary 5.3.4. dim
∏

E/F X = [E : F ] dimX.
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