Annual Foundational School Part II May 7 - June 2, 2007 Indian Statistical Institute 8th Mile Mysore Road Bangalore 560 059.

Lectures on complex analysis Gadadhar Misra Schwarz Lemma: Let $f : B(0,1) \to B[0,1]$ be holomorphic with f(0) = 0, where $B(0,1) = \{z \in \mathbb{C} : |z| < 1\}$ and $B[0,1] = \{z \in \mathbb{C} : |z| \le 1\}$. Then

(
$$\alpha$$
) $|f(z)| \le |z|$ for all $z \in B(0,1)$ and $|f'(0)| \le 1$;

(β) if there exists $z_0 \in B(0,1) \setminus \{0\}$ such that $|f(z_0)| = |z_0|$ or if |f'(0)| = 1, then f has the form f(z) = cz for all $z \in B(0,1)$, where |c| = 1.

Proof: The function

$$g(z) := \begin{cases} f(z)/z, \ z \in B(0,1) \setminus \{0\} \\ f'(0), \ z = 0 \end{cases}$$

has a removable singularity at 0. Hence g is holomorphic on B(0,1). For |z| < r < 1, we infer from the weak maximum principle:

$$|g(z)| \le \sup_{|w|=r} \{|g(w)|\} = \sup_{|w|=r} \left\{ \frac{|f(w)|}{r} \right\} \le \frac{1}{r},$$

and letting $r \to 1_-$, we get $|g(z)| \le 1$. Clearly, $|f'(0)| \le 1$.

In each of the two cases in (β) , |g| assumes its supremum in B(0, 1). So, by the maximum modulus theorem, g is a constant.

Theorem: For a fixed $\alpha \in B(0,1)$, the fractional linear transformation $\varphi_{\alpha}(z) := \frac{z-\alpha}{1-\bar{\alpha}z}$ is a one-one map, which maps the unit circle \mathbb{T} onto \mathbb{T} , and B(0,1) onto B(0,1) and α to 0. The inverse of φ_{α} is $\varphi_{-\alpha}$. We also have

$$\varphi'_{\alpha}(0) = 1 - |\alpha|^2, \ \varphi'_{\alpha}(\alpha) = (1 - |\alpha|^2)^{-1}.$$

Proof: The map φ_{α} is holomorphic in the whole plane except for $z = 1/\bar{\alpha}$ which is outside B[0, 1]. We see that $\varphi_{-\alpha}(\varphi_{\alpha}(z)) = z$. Thus φ_{α} is one-one and $\varphi_{-\alpha}$ is its inverse. Since for real t,

$$\left|\frac{e^{it}-\alpha}{1-\bar{\alpha}e^{it}}\right| = \left|\frac{e^{it}-\alpha}{e^{-it}-\bar{\alpha}}\right| = 1;$$

 φ_{α} maps \mathbb{T} onto \mathbb{T} . The same is true of $\varphi_{-\alpha}$ hence $\varphi_{\alpha}(\mathbb{T}) = \mathbb{T}$. Now, maximum modulus principle shows that $\varphi_{\alpha}(B(0,1)) \subseteq B(0,1)$. So is $\varphi_{-\alpha}(B(0,1)) \subseteq B(0,1)$.

Suppose $\alpha \in B(0,1)$. How large can $|f'(\alpha)|$ be if $f : B(0,1) \to B(0,1)$ is holomorphic?

Put $g = \varphi_{\beta} \circ f \circ \varphi_{\alpha}$, where $f(\alpha) = \beta$. Since φ_{β} and φ_{α} map B(0,1) onto itself, we see that g is a holomorphic map from B(0,1) into B(0,1). Also, g(0) = 0. Thus $|g'(0)| \leq 1$. But, using chain rule, we have

$$g'(0) = \varphi'_{\beta}(\beta) f'(\alpha) \varphi'_{-\alpha}(0)$$

which then gives the inequality

$$|f'(\alpha)| \le \frac{1 - |f(\alpha)|^2}{1 - |\alpha|^2}.$$

Equality occurs in this inequality if and only if g(z) = cz, for some c : |c| = 1.

A remarkable feature: Thus the extremal solution $F_{\alpha,\beta}$ to the problem

 $\sup\{|f'(\alpha)| | f: B(0,1) \to B(0,1) \text{ is holomorphic and } f(\alpha) = \beta\},\$

 $F_{\alpha,\beta}(z) = \varphi_{-\beta}(c\varphi_{\alpha}(z))$, is a rational function, although, no continuity assumption was made on f near the boundary.

Let Hol(B(0,1)) denote the space of all holomorphic functions defined on the open unit disc B(0,1).

Theorem: Suppose f is in Hol(B(0,1)), it is one to one, and onto, $f(\alpha) = 0$ for some $\alpha \in B(0,1)$. Then there exists a constant c : |c| = 1 such that

$$f(z) = c \varphi_{\alpha}(z), \ z \in B(0,1).$$

Proof: Let g be the inverse of f, defined by g(f(z)) = z, $z \in B(0, 1)$. Since f is one-one, f' has no zero in B(0, 1), so $g \in \text{Hol}(B(0, 1))$. By the chain rule, $g'(0) f'(\alpha) = 1$. We have $|f'(\alpha)| \leq \frac{1}{1-|\alpha|^2}$, and therefore $|g'(0)| \leq 1 - |\alpha|^2$. Since $g'(0) f'(\alpha) = 1$, it follows that equality must hold in these inequalities. As in the previous problem (with $\beta = 0$) this forces f to be of the form $c \varphi_{\alpha}$.

Lemma: Let $f : B(0,1) \to B(0,1)$ be holomorphic. Then for any $a, b \in B(0,1)$.

$$\left|\frac{f(a) - f(b)}{1 - \overline{f(a)}f(b)}\right| \le \left|\frac{a - b}{1 - \overline{a}b}\right|.$$

In particular, $\frac{|f'(z)|}{1-|f(z)|^2} \le \frac{1}{1-|z|^2}$ for all $z \in B(0,1)$.

Proof: The function,

$$g(z) := \left(\frac{f(z) - f(b)}{1 - \overline{f(b)}f(z)}\right) / \left(\frac{z - b}{1 - \overline{b}z}\right)$$

is defined on $B(0,1)\setminus\{b\}$ is holomorphic at b as well. As in the usual Schwarz Lemma, $|g| \leq 1$ on B(0,1) by the maximum principle, since $\left|\frac{z-b}{1-bz}\right| \to 1$ as $|z| \to 1$, while $\left|\frac{f(z)-f(b)}{1-\overline{f(b)}z}\right| \leq 1$ for all $z \in B(0,1)$.

Riemannian Metric: Put on D, the Riemannian metric $ds = \varphi(z)|dz|$, $\varphi > 0$ and twice continuously differentiable. If $f : B(0,1) \to B(0,1)$ is holomorphic, then define the pull-back of $ds = \varphi(z)|dz|$ under f to be the metric

$$f^*(\varphi(z)|dz|) = |f'(z)|(\varphi \circ f)(z)|dz|$$

Then the Schwarz Lemma amounts to saying: A holomorphic map f: $B(0,1) \to B(0,1)$ is distance decreasing, that is, $f^*(ds) \leq ds$, where $ds = \frac{|dz|}{1-|z|^2}$.

Ahlfors Lemma: Let us start with a computation. For a holomorphic function f on an open set $\Omega \subseteq \mathbb{C}$ with $|f(z)| \leq M$,

$$\begin{split} \Delta \log(M^2 - |f|^2)^{-1} &= -4 \frac{\partial^2}{\partial \bar{z} \partial z} \cdot \log(M^2 - |f|^2) \\ &= 4 \frac{\partial}{\partial \bar{z}} \left(\frac{\bar{f}f'}{M^2 - |f|^2} \right) \\ &= 4f' \left(\frac{\bar{f}'}{M^2 - |f|^2} + \frac{\bar{f}ff'}{(M^2 - |f|^2)^2} \right) \\ &= 4|f'|^2 \left(\frac{M^2 - |f|^2 + |f|^2}{(M^2 - |f|^2)^2} \right) \\ &= 4 \left(\frac{M|f'|}{M^2 - |f|^2} \right)^2. \end{split}$$

Near points where $f' \neq 0$, $\log |f'|$ is harmonic, that is, $\Delta \log |f'| = 0$. Hence

$$\Delta \log \frac{M|f'|}{M^2 - |f|^2} = 4 \left(\frac{M|f'|}{M^2 - |f|^2}\right)^2$$

on the open set $\{z : f'(z) \neq 0\}$.

In particular,

(i) $\Delta \log \frac{r}{r^2 - |z|^2} = 4 \left(\frac{r}{r^2 - |z|^2}\right)^2$ on B(0, r); (ii) $\Delta \log \frac{|f'|}{1 - |f|^2} = 4 \left(\frac{|f'|}{(1 - |f|^2)}\right)^2$ on $B(0, 1) \setminus \{z : f'(z) \neq 0\}$ for any holomorphic function $f : B(0, 1) \to B(0, 1)$.

Definition: The Gaussian curvature of a metric $ds = \varphi |dz|$, with $\varphi > 0$ and twice continuously differentiable on an open set $\Omega \subseteq \mathbb{R}^2 \cong \mathbb{C}$ is defined to be

$$K(z, \varphi) = -\varphi(z)^{-2} \Delta \log \varphi(z).$$

Thus any holomorphic function $f : \Omega \to B(0, M) = \{z : |z| < M\}$ provides a metric of constant negative curvature on $\Omega \setminus \{z : f(z) \neq 0\}$, namely

$$\frac{M|f'(z)|}{M^2 - |f(z)|^2} |dz|.$$

The basic observation of Ahlfors is the following.

Lemma: Let $\varphi \ge 0$ be a continuous function on $B(0,1) = \{z : |z| < 1\}$ which is twice differentiable on the open set $D_{\varphi} := \{z : \varphi(z) > 0\}$. Suppose $\Delta \log \varphi \ge 4\varphi^2$ on D_{φ} . Then

$$\varphi(z) \le \frac{1}{1 - |z|^2}, \text{ for all } z \in B(0, 1).$$

Proof: Fix $\alpha \in B(0,1)$, and let $r \in (|\alpha|, 1)$. Put $p_r(z) = \frac{r}{r^2 - |z|^2}$ on $B(0,r) = \{z : |z| < r\}$. Since $p_r(z) \to \infty$ as $|z| \to r$ and φ is continuous on $\{|z| < r\}$, it is clear that $\psi := \frac{\varphi}{p_r}$ attain its maximum on B(0,r) at some $q \in B(0,1)_r$. If $\varphi(q) = 0$, then $\varphi \equiv 0$. Hence we may assume that $q \in D_{\varphi}$. Then q is also a local maximum of $\log \psi$, hence $\Delta \log \psi \leq 0$ at q. Now, at q:

$$0 \ge \Delta \log \psi = \Delta \log \varphi - \Delta \log p_r$$

$$\ge 4(\varphi^2 - p_r^2),$$

that is, $\psi(q) \leq 1$. Thus $\varphi \leq p_r$ on D_r . Letting $r \uparrow 1$, we conclude that $\varphi(\alpha) \leq \frac{1}{1-|\alpha|^2}$ as observed.

To get some immediate corollaries of the Ahlfors' Lemma, it is convenient to have the following Definition. **Definition:** Let $\Omega \subseteq \mathbb{C}$ be an open set. Then $NC(\Omega)$ denotes the set of continuous functions $\varphi \geq 0$ on Ω such that φ is twice continuously differentiable on $D_{\varphi} := \{z : \varphi(z) > 0\}$ and $\Delta \log \varphi \geq 4\varphi^2$ on D_{φ} . Thus $NC(\Omega)$ consists of $\varphi \geq 0$ such that $\varphi |dz|$ is a metric whose Gaussian curvature is bounded by -4.

Remark: Let $f : \Omega \to \Omega'$ be a holomorphic maps of open sets in \mathbb{C} . Then $\varphi \in NC(\Omega')$ implies $|f'| \varphi(f) \in NC(\Omega)$. Ahlfors' Lemma has the following Corollaries.

Corollary: $NC(\mathbb{C}) = \{0\}.$

Proof: Let $\varphi \in NC(\mathbb{C})$. Fix $a \in \mathbb{C}$. Then for any r > |a|, Ahlfors' Lemma yields $\varphi(a) \leq \frac{r}{r^2 - |a|^2}$. Letting $r \to \infty$, we get $\varphi(a) = 0$ as asserted.

Corollary: Let $NC(\Omega) \neq \{0\}$. Then every holomorphic map $f : \mathbb{C} \to \Omega$ is constant.

Taking $\Omega = B(0,1)$, we get Liouville's theorem. Thus to prove Picard's theorem, for example, we need only show $NC(\Omega) \neq \{0\}$ for $\Omega = \mathbb{C} \setminus \{0,1\}$. This is rather easy to do. Consider

$$\varphi(z) = |z|^{\beta/2-1} |1 - z|^{\beta/2-1} (1 + |z|^{\beta}) (1 + |z - 1|)^{\beta}$$

for $\beta > 0$.

A straight-forward computation using the fact that

$$\Delta \log(1+|f|^2) = \frac{4|f'|^2}{(1+|f|^2)^2}$$

whenever f is a holomorphic function shows that $\varphi \in NC(\mathbb{C}\setminus\{0,1\})$ for $0 < \beta < \frac{2}{7}$. Thus we have proved Picard's theorem by elementary calculus!!

Here is another version of Ahlfors' Lemma which is easy to prove.

Ahlfors' Lemma Let $f : B(0,1) \to \Omega$ be a holomorphic function. Suppose ρ is a metric on Ω with $K(z, \rho) \leq -4$. Then

$$\varrho(f(z))|f'(z)| = f^*(\varrho)(z) \le \frac{1}{1-|z|^2} \text{ for } z \in B(0,1).$$

The following Proposition guarantees the existence of a metric in $\varphi \in NC(\mathbb{C}\setminus\{0,1\})$ with some additional properties which are essential to prove the Big Picard Theorem.

Proposition: There exists a metric ρ on $\mathbb{C} \setminus \{0, 1\}$ with the following properties:

(i) ρ has curvature at most - 1.

(ii) $\rho \ge c\sigma$ for some constant c > 0, where $\sigma(z) = (1 + |z|^2)^{-2}$.

Proof:

$$\begin{split} \Delta \log(1+|z|^{\alpha}) &= 4 \frac{\partial^2}{\partial z \partial \bar{z}} \log(1+|z|^{\alpha}), \ z \in \mathbb{C} \setminus \{0\} \\ &= 4 \frac{\partial}{\partial \bar{z}} \left(\frac{\frac{\alpha}{2} z^{\alpha/2-1} z^{-\alpha/2}}{1+|z|^{\alpha}} \right), \ z \in \mathbb{C} \setminus \{0\} \\ &= \alpha^2 \frac{|z|^{\alpha-2}}{(1+|z|^{\alpha})^2}, \ z \in \mathbb{C} \setminus \{0\}. \end{split}$$

Since $\Delta \log |z|^{\beta} = 0$, $z \in \mathbb{C}$, we have

$$\Delta \log \frac{1+|z|^{\alpha}}{|z|^{\beta}} = \alpha^2 \frac{|z|^{\alpha-2}}{(1+|z|^{\alpha})^2}, \ z \in \mathbb{C} \setminus \{0\}.$$

Similarly,

$$\Delta \log \frac{1+|z-1|^{\alpha}}{|z-1|^{\beta}} = \alpha^2 \frac{|z-1|^{\alpha-2}}{(1+|z-1|^{\alpha})^2}$$

for $z \in \mathbb{C} \setminus \{1\}$.

We consider the metric

$$\tau_{\alpha\beta}(z) = \frac{1+|z|^{\alpha}}{|z|^{\alpha}} \frac{1+|z-1|^{\alpha}}{|z-1|^{\beta}} \text{ for } z \in \mathbb{C} \setminus \{0,1\}.$$

Then the curvature $K(z, \tau_{\alpha\beta})$ is

$$K(z,\tau_{\alpha\beta}) = -\alpha^2 \frac{|z|^{\alpha+2\beta-2}}{(1+|z|^{\alpha})^4} \frac{|z-1|^{2\beta}}{(1+|z-1|^{\alpha})^2} -\alpha^2 \frac{|z-1|^{\alpha+2\beta-2}}{(1+|z-1|^{\alpha})^4} \frac{|z|^{2\beta}}{(1+|z|^{\alpha})^2}.$$

For $\alpha = 1/3$ and $\beta = 5/6$, we see that (i) $K(z,\tau) < 0$ for all $z \in \mathbb{C} \setminus \{0,1\}$ (ii) $\lim_{z \to 0} K(z,\tau) = -1/36$ (iii) $\lim_{z \to 1} K(z,\tau) = -1/36$

(iv)
$$\lim_{z \to \infty} K(z, \tau) = -\infty.$$

Also,
(1) $\lim_{|z| \to \infty} \tau(z) / \sigma(z) \to \infty.$

Combining, (ii), (iii) and (iv) with the fact that $K(z,\tau) < 0$, which is (i), we find that there is a constant k > 0 such that

$$K(z,\tau) \leq -k \text{ for } z \in \mathbb{C} \setminus \{0,1\}.$$

Thus if we define $\varrho(z) = \sqrt{k\tau}$ then $K(\varrho, z) \leq -1$. From (1), we see that $\lim_{z\to\infty} \varrho(z)/\sigma(z) = \infty$, which is the second property.

Chain Rule:

$$\begin{array}{lll} \frac{\partial}{\partial z}(f\circ g)(z) &=& \frac{\partial f}{\partial z}(g(z)) \ \frac{\partial g}{\partial z}(z) + \frac{\partial f}{\partial \bar{z}}(g(z)) \ \frac{\partial \bar{g}}{\partial z}(z) \\ \frac{\partial}{\partial \bar{z}}(f\circ g)(z) &=& \frac{\partial f}{\partial z}(g(z)) \ \frac{\partial g}{\partial \bar{z}}(z) + \frac{\partial f}{\partial \bar{z}}(g(z)) \ \frac{\partial \bar{g}}{\partial \bar{z}}(z). \end{array}$$

Suppose f is holomorphic and non-zero.

$$\Delta \log |f|^2 = 4 \frac{\partial^2}{\partial z \ \partial \overline{z}} \log |f|^2$$

= $4 \frac{\partial}{\partial z} \frac{\partial}{\partial \overline{z}} \log f + 4 \frac{\partial}{\partial \overline{z}} \frac{\partial}{\partial z} \log f$
= 0.

Proposition: If Ω_1 and Ω_2 are two planar domains, and $h: \Omega_1 \to \Omega_2$ is a conformal map, $(h' \neq 0)$ then

$$K(z, h^* \varrho) = K(h(z), \varrho), \ z \in \Omega_1,$$

where ρ is a metric on Ω_2 .

Proof: We need to calculate:

$$\begin{split} K(z,h^*\varrho) &= -\frac{\Delta \log(\varrho(h(z)|h'(z)|))}{(\varrho(h(z))|h'(z)|)^2} \\ &= -\frac{\Delta \log \varrho(h(z)) - \Delta \log |h'(z)|}{\varrho(h(z))^2|h'(z)|^2} \\ &= -\frac{\Delta \log \varrho(h(z)) |h'(z)|^2}{\varrho(h(z))^2 |h'(z)|^2} \\ &= -\frac{\Delta \log \varrho(h(z))}{\varrho(h(z))^2} = K(h(z),\varrho). \end{split}$$

Schottky's theorem: To each M > 0 and $r \in (0, 1)$, there exists C > 0 with the following property:

If $f:B(0,1)\to \mathbb{C}$ is holomorphic, f omits any two values, and $|f(0)|\leq M$ then

$$\sup |f(z)| \le C \text{ for } |z| \le r.$$

Proof: If f omits the two values a, b then consider F(z) = (f(z)-a)/(b-a) and assume without loss of generality, a = 0, b = 1. Let ρ be the metric on $\mathbb{C} \setminus \{0, 1\}$ we have constructed with $K(z, \rho) \leq -4$. By Ahlfors' Lemma:

$$C^{-1}f^*\varrho(z) \le C^{-1}\lambda(z), \ z \in B(0,1).$$

Let $\sigma(z) = z(1+|z|^2)^{-1}$ be a metric on \mathbb{C} with $K(z,\sigma) = 1$. Now, recall that

$$\varrho(z)/\sigma(z) \to \infty \text{ as } |z| \to \infty$$

and $\varrho \geq c\sigma$ on $\mathbb{C} \setminus \{0, 1\}$. So,

$$f^*(\sigma) \le c^{-1} f^*(\varrho) \le c^{-1} \lambda,$$

that is,

$$(1+|f(z)|^2)^{-1}|f'(z)| \le c^{-1}(1-|z|^2)^{-1}, \ z \in B(0,1).$$

So, $\frac{|f'(z)|}{1+|f(z)|^2} \leq C_1$, $z \in B(0,1)_r$ where $C_1 = c^{-1}(1-r^2)^{-1}$. Since f never takes the value zero, $t \to f(tz)$ is differentiable for any fixed $z \in B(0,r)$, and

$$\left|\frac{d}{dt}(\operatorname{arc}\tan|f(tz)|)\right| \le \frac{|f'(tz)||z|}{1+|f(tz)|^2} \le c_1.$$

So,

$$|\operatorname{arc}\tan f(z) - \operatorname{arc}\tan f(0)| \le \int_{0}^{1} |\frac{d}{dt} (\operatorname{arc}\tan f(tz)|)| dt.$$

Therefore, it follows that

$$\begin{aligned} \arctan|f(z)| &\leq c_1 + \arctan|f(0)| \\ &\leq c_1 + \arctan M. \end{aligned}$$

This proves the theorem with $c = c_1 + arc \tan M$.

Picard's theorem: If a holomorphic function f has an essential singularity then the range of f omits at most one complex number.

Proof: Assume that the singularity is at 0 and f is holomorphic on $B(0, e^{2\pi}) \setminus \{0\}$.

Case-1: If $|f(z)| \to \infty$ as $z \to 0$ then there is nothing to prove since 0 is a pole.

Case-II: There exists z_n such that $z_n \to 0$ and $|f(z_n)|$ is bounded as $n \to \infty$, say $|f(z_n)| \leq M$ for all n.

Passing to a subsequence, assume

$$1 > |z_1| > \ldots > |z_n| > |z_{n+1}| \ldots \to 0$$

For a fixed n, consider $F_n: \xi \mapsto f(z_n e^{2\pi i\xi})$.

Then F_n is holomorphic on B(0,1), omits the values $\{0,1\}$ and $|F_n(0)| = |f(z_n)| \leq M$. Thus there exists c > 0 such that

$$|F_n(\xi)| = |f(z_n e^{2\pi i \xi})| \le C$$
 for $\xi \in B(0, 1/2)$.

In particular,

$$|F_n(t)| \le C$$
 for all $t \in [-1/2, 1/2]$.

Thus f is bounded by M on $\{z : |z| = |z_n|\}$. It follows that f is bounded on $B(0, |z_1|) \setminus \{0\}$. This will force 0 to be a removable singularity which is a contradiction.

Bi-holomorphic equivalence: For $w \in \Omega \subseteq \mathbb{C}^m$, let us define the tangent space of Ω at w to be

$$T_w(\Omega) := \{ (w, v) : w \in \Omega \, v \in \mathbb{C}^m \} \cong \mathbb{C}^m.$$

Let $\operatorname{Hol}(\Omega, B[0, 1])$ be the set of holomorphic functions defined on $\Omega \subseteq \mathbb{C}^m$ which take values in the closed unit disc B[0, 1]. Define the Caratheodory metric C_{Ω} for Ω as

$$C_{\Omega}(w,v) = \sup\{|Df(w) \cdot v| : f \in Hol(\Omega, B[0,1]), f(w) = 0\}, (w,v) \in T_{w}(\Omega).$$

For nay holomorphic function $f: \omega \to \Omega'$, define the push-forward of the tangent vector (w, v) in $T_w(\Omega)$ under the function f to be $(f(w), Df(w) \cdot v)$ in $T_{f(w)}(\Omega')$.

Proposition : Suppose $\varphi : \Omega \to \Omega'$ is holomorphic. Then

$$C_{\Omega'}(\varphi(w),\varphi_*(v)) \le C_{\Omega}(w,v), \ (w,v) \in T_w(\Omega)$$

that is, $D\varphi(w): T_w(\Omega) \to T_{\varphi(w)}(\Omega')$ is a distance decreasing –

$$C_{\Omega'}(\varphi(w), D\varphi(w) \cdot v) \le C_{\Omega}(v).$$

Proof: By the definition of the Caratheodory metric, we have

$$C_{\Omega'}(\varphi(w),(\varphi_*(v)) = \sup\{|(Df)(\varphi(w)) \cdot \varphi_*(v)| : f \in \operatorname{Hol}(\Omega', B(0, 1)), f(\varphi(w)) = 0\}$$

Now,

$$((Df)(\varphi(w))) \cdot (D\varphi(w) \cdot v) = [Df(\varphi(w))D\varphi(w)] \cdot v = (D(f \circ \varphi)(w)) \cdot v$$

Since

$$\begin{array}{ccc} \Omega & \xrightarrow{f \circ \varphi} & \mathbb{D} \\ \varphi \searrow & & \swarrow_f \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ \end{array}$$

.

it follows that

 $\{f\circ\varphi\,:\,f\,\in\,\operatorname{Hol}(\Omega',B(0,1)),\,f(\varphi(w))=0\}\subseteq\{g\,:\,g\,\in\,\operatorname{Hol}(\Omega,B(0,1)),\,g(w)=0\}$

Remark: If φ is also invertible then

$$C_{\Omega}(\varphi^{-1}(\varphi(w)),(\varphi^{-1})_{*}(D\varphi(w)\cdot v)) \leq C_{\Omega'}(\varphi(w),(D\varphi(w)\cdot v).$$

But

$$\varphi_*^{-1}(D\varphi(w) \cdot v) = D\varphi^{-1}(\varphi(w)) D\varphi(w) \cdot v$$

= v.

Therefore,

$$C_{\Omega}(w,v) \le C_{\Omega^{p}rime}(\varphi(w), D\varphi(w)\dot{v}) \le C_{\Omega}(w,v).$$

Thus

$$C_{\Omega}(w,v) = C_{\Omega'}(\varphi(w), D\varphi(w) \cdot v).$$

This is the same as saying

$$D\varphi(w): T_w(\Omega) \cong (\mathbb{C}^m, C_\Omega(w) \to (\mathbb{C}^m, C_{\Omega'}(\varphi(w))) \cong T_{\varphi(w)}(\Omega')$$

is an isometry.

Lemma: Suppose $\Omega = \{ \alpha \in \mathbb{C}^m : \|\alpha\| < 1 \}$ for some choice of a norm $\|\cdot\|$ on \mathbb{C}^m . Then $C_{\Omega}(0, v) = \|v\|$.

Proof: For $||v|| \leq 1$, let us define $g_v : B(0,1) \to \Omega$ by $g_v(z) = z \cdot v$. Then $f \circ g_v$ defines a holomorphic map from B(0,1) to itself with $f \circ g_v(0) = 0$. Therefore, $|(f \circ g_v)'(0)| \leq 1$ and we have

$$(f \circ g_v)'(0) = f'(g_v(0))g'_v(0) = f'(0) \cdot v.$$

Hence

$$\sup\{|Df(0) \cdot v| : f \in \operatorname{Hol}(\Omega, B(0, 1)), f(0) = 0\} \le 1.$$

Thus the linear map $Df(0): T_w(\Omega) \cong \mathbb{C}^m \to \mathbb{C} \cong T_0(B(0,1))$ is in the unit ball of the dual space $(\mathbb{C}^m, \|\cdot\|)^*$.

Now, pick a linear functional ℓ on $(\mathbb{C}^m, \|\cdot\|)$, which is of norm at most 1, that is, $\ell \in (\mathbb{C}^m, \|\cdot\|)_1^*$. Then $\ell : \Omega \to B(0, 1)$ by definition. Therefore $D\ell(0) = \ell$. In other words,

$$\{Df(0) \mid f \in Hol(\Omega, B(0, 1)), f(0) = 0\} = (\mathbb{C}^m, \|\cdot\|)_1^*.$$

Let $\mathbb{B}^m := \{z \in \mathbb{C}^m : |z_1|^2 + \cdots |z_m|^2 < 1\}$ be the Euclidean ball and $(B(0,1))^m$ be the m- fold cartesian product of the open unit disc B(0,1). Suppose there exists a bi-holomorphic function $\varphi : \mathbb{B}^m \to (B(0,1))^m$. Then we may assume without loss of generality that $\varphi(0) = 0$. This will force $D\varphi(0)$ to be an isometry which is a contradiction.