ANNUAL FOUNDATIONAL SCHOOL, PART II PROBLEM SET

Instructor: GAUTAM BHARALI

COMPLEX ANALYSIS

* Problems on Lecture 1

1. (From Remark 1.2) Give an example of a region $\Omega \subset \mathbb{R}^2$, with $0 \in \Omega$, and a function $f : \Omega \to \mathbb{C}$ such that

*
$$\frac{\partial f}{\partial x}\Big|_{z=0}$$
, $\frac{\partial f}{\partial y}\Big|_{z=0}$ exist; but
* f is not continuous at 0.

True or false? Ω is an open set in C and f : Ω → C is complex-analytic on Ω. If f' ≡ 0, then f ≡ constant.

If the above statement is false, how should it be corrected ?

- 3. (From Theorem 1.6) Let $\Omega \subset \mathbb{C}$ be an open set, and let f be \mathbb{C} differentiable on Ω . Let $z_0 \in \Omega$. Show that if $f'(z_0) \neq 0$, $\exists r_0 > 0$ sufficiently small that $D(z_0; r_0) \subset \Omega$ and $f(z) \neq f(z_0) \forall z : 0 < |z_-z_0| < r_0$.
- 4. Let $\Omega \subset \mathbb{C}$ be a *domain* i.e. Ω is an open, connected subset of \mathbb{C} . Suppose $f : \Omega \to \mathbb{C}$ is complex-analytic and $f(\Omega) \subset \partial D(0; 1)$. What can you say about f?

* Problems on Lecture 2

1. (From Remark 2.1) For a given power series $\sum_{n=0}^{\infty} c_n (z-a)^n$, define $R = \left\{ \limsup_{n \to \infty} |c_n|^{1/n} \right\}^{-1}.$

Show that the series converges absolutely at each z : |z - a| < R and diverges at each z : |z - a| > R. Also show that for any $r \in (0, R)$, the series is uniformly convergent on $\overline{D(a; r)}$.

- 2. Give a rigorous proof that one *cannot* define an analytic branch of the logarithm on $\mathbb{C} \setminus \{0\}$.
- 3. Let $\Omega_1, \Omega_2 \subset \mathbb{C}$ be open subsets. Let $f \in \mathcal{C}(\Omega_1; \mathbb{C}), g \in \mathcal{O}(\Omega_2)$ and $f(\Omega_1) \subset \Omega_2$. Suppose

$$g[f(z)] = z \quad \forall z \in \Omega_1,$$

and $g'(w) \neq 0 \ \forall w \in \Omega_2$. Show that $f \in \mathcal{O}(\Omega_1)$ and that

$$f'(z) = \frac{1}{g'[f(z)]} \quad \forall z \in \Omega_1.$$

- 4. Propose a definition for the principal analytic branch of the nth root. Justify why your definition yields a holomorphic function.
- 5. Show that we can define an analytic branch, say S, of $(1 z^2)^{1/2}$ such that $S \in \mathcal{O}(\mathbb{C} \setminus \overline{D(0; 1)})$.
- 6. Using a slightly more sophisticated manipulation, show that the S in problem #5 can be so constructed that $S \in \mathcal{O}(\mathbb{C} \setminus [-1, 1])$.

Hint: You will have to consider a Möbius transformation.

* Problems on Lecture 3

1. Refer to the definition of reparametrisation (Definition 3.2). Show that if we replace " φ is strictly increasing" by " φ is non-decreasing", then the relation ~ such that $\gamma \sim \sigma \Leftrightarrow \sigma$ is a reparametrisation (suitably redefined) of γ — is not an equivalence relation.

* Problems on Lecture 4

1. Find the set of all points in \mathbb{C} at which the function

$$f(z) := \frac{1}{2i} \log\left(\frac{1+iz}{1-iz}\right)$$

is \mathbb{C} -differentiable. Is f holomorphic on the resulting set? Find a power-series expansion for f around z = 0.

2. Let $f \in \mathcal{O}(D(0;1)) \cap \mathcal{C}(D(0;1);\mathbb{C})$. DO NOT ASSUME that f is holomorphic on a larger domain containing $\overline{D(0;1)}$. Show that

$$\int_{\partial D(0;1)} f(z) \, dz = 0.$$

3. Let D be a bounded domain in \mathbb{R}^2 with piecewise-smooth boundary. Let $f = (u + iv) : D \to \mathbb{C}$ be continuously differentiable on D and assume that all first-order partial derivatives of u and v extend continuously to ∂D . Show that:

$$f(z) = \frac{1}{2\pi i} \int_{\partial D} \frac{f(w)}{w - z} dw - \frac{1}{2\pi} \int_{D} \int_{D} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) f(w) \frac{1}{w - z} \qquad dA(w)$$
$$\forall z \in D.$$

* Problems on Lecture 5

- 1. Let F be an entire function. Suppose there exist two positive constants M > 0 and $P \ge 1$ such that $|F(z)| \le M(1 + |z|^p) \ \forall z \in \mathbb{C}$. Describe all functions F that satisfy this growth estimate.
- 2. Let F be an entire function, and suppose that in every power-series expansion

$$F(z) = \sum_{n=0}^{\infty} c_n^{(a)} (z-a)^n,$$

as a varies in \mathbb{C} , at least one coefficient $c_n^{(a)} = 0$. Describe all functions F that satisfy this property.

3. Find all entire functions f such that $f(z) = \cos z \ \forall z \in [0, 2\pi]$.

* Problems on Lecture 6

1. Let $\Omega \subset_{\text{open}} \mathbb{C}$ and let $\gamma : [a, b] \to \Omega$ be a piecewise smooth curve. Suppose $f \in \mathcal{C}(\Omega; \mathbb{C})$ be such that it admits a primitive in F on Ω . Show that

$$\int_{\gamma} f(z) \, dz = F(\gamma(b)) - F(\gamma(a)).$$

- 2. Fix a point $w_0 \in \mathbb{C} \setminus (-\infty, 0]$. Let $\gamma : [0, 1] \to \mathbb{C}$ be a piecewise smooth path in \mathbb{C} from 1 to w_0 that avoids $0 \in \mathbb{C}$.
 - (a) Show that $\exists k_{\gamma} \in \mathbb{Z}$ such that

$$\int_{\gamma} \frac{1}{z} \, dz = \log(w_0) + 2\pi i k_{\gamma}.$$

(b) What is the geometric interpretation of k_{γ} ?

* Problems on Lecture 7

1. Let Ω be a simply-connected domain in \mathbb{C} , and suppose $f \in \mathcal{O}(\Omega)$. Show that f admits a primitive in Ω .

Hint: Fix $z_0 \in \Omega$. For each $z \in \Omega$, let γ^z represent some piecewise smooth path $\gamma^z : [0, 1] \to \Omega$ with $\gamma^z(0) = z_0$ and $\gamma^z(1) = z$. Consider the assignment

$$z \longmapsto \int_{\gamma^z} f(w) \ dw;$$

first examining whether it is well-defined.

2. Let $f \in \mathcal{C}(\Omega; \mathbb{C})$ and suppose $f \in \mathcal{O}(\mathbb{C} \setminus [a, b])$, where $[a, b] \subset \mathbb{R}$ is a closed, bounded interval. Show that f is entire.