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Lecture 1

Let Ω be an open subset of C. We recall that a function f : Ω → C is said
to be holomorphic if f is complex differentiable at all points of Ω. That is,
f ′(z) := lim

w→z
w∈Ω

f(w)−f(z)
w−z

exists for all z ∈ Ω. It is important to understand

that holomorphicity is defined on open sets. However, sometimes we find it
convenient to say that a function f : K → C on a compact set K ⊆ C is
holomorphic on K if there is an open set Ω ⊃ K such that f extends to a
holomorphic function on Ω.

Exercise 1: Define f : C→ C by

f(z) =

{
e−1/|z| if z 6= 0
0 if z = 0.

Show that f is complex differentiable at 0 but nowhere else. Thus f is not
holomorphic at 0 (or anywhere else, for that matter!)

If z0 ∈ C and {an : n = 0, 1, 2, . . .} is a sequence of complex numbers then

the series
∞∑

n=0

an(z − z0)
n is called a power series around z0. There is an

r ≥ 0, such that the series converges for |z − z0| ≤ r. The supremum of all
such r is called the radius of convergence of the power series. The radius of
convergence R is given by the formula due to Hadamard:
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R
= lim sup

n→∞
|an|1/n.

If Ω ⊆ C is an open set, then we shall say that a function f : Ω → C is
analytic if f is locally given by a power series. That is, for each z0 ∈ Ω there

is an r > 0 (depending on z0) and a power series
∞∑

n=0

an(z − z0)
n around z0

(again depending on z0) such that the disc {z ∈ C : |z−z0| < r} is contained

in Ω and we have f(z) =
∞∑

n=0

an(z − z0)
n whenever |z − z0| < r.

You may be surprised by the two notions: holomorphic and analytic. You
may even protest that these two notions are identical! And of course, you
would be right. But it is extremely difficult to see that these two defini-
tions yield the same class of functions. Indeed, all the mysterious tools one

2



encounters in a first course of complex analysis - path integrals, Cauchy’s fun-
damental theorem and integral formulae - are introduced in order to establish
this equivalence. But one direction is easy:

Exercise 2: Show that any (convergent) power series can be complex dif-
ferentiated term by term within its disc of convergence. Conclude that if
f : Ω → C is analytic then it is holomorphic, and for z0 ∈ Ω the mysterious
power series

∑
an(z − z0)

n, whose existence is asserted in the definition of

analyticity, is actually given by an = f (n)(z0)
n!

, n = 0, 1, 2, . . . .

The two definitions have their respective advantages. For instance, from the
definition of analyticity, it is easy and elementary to deduce most
(but not all !) of the strange properties of analytic functions that we have
learnt about. Try these (do not use Cauchy’s theorem!) :

Exercise 3:

Let Ω ⊆ C be a connected open set.

(a) If f : Ω → C is analytic then show that all the derivatives f (n), n =
0, 1, 2, . . . exist and are analytic.

(b) Also show that locally f has an analytic “primitive”. That is, for each
z0 ∈ Ω, there is a neighbourhood U ⊆ Ω of z0 and an analytic function
g : U → C such that g′ = f on U . Conclude that for any simple closed curve
γ in U ,

∫
γ

f = 0.

(c) Prove that either f ≡ 0 or the zeroes of f are isolated. That is, if f 6≡ 0 is
analytic on Ω and f(z0) = 0 for some z0 ∈ Ω then there is an r > 0 such that
the disc {z : |z−z0| < r} is contained in Ω and f(z) 6= 0 for 0 < |z−z0| < r.
Conclude that the zeroes of a non-constant analytic function are countable
in number.

(d) Use (c) to prove the principle of analytic continuation: if f1, f2 : Ω → C
are analytic functions and there is an open (or just uncountable) non-empty
set U ⊆ Ω such that f1 = f2 on U, then f1 = f2 on Ω. Thus, if U ⊂ Ω is
open, and g : U → C is analytic, then there is at most one analytic function
f : Ω → C which extends g. (f is called the analytic continuation of g to Ω).
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(e) If f : Ω → C is a non-constant analytic function then show that the
continuous function |f | has no local maximum (i.e, if z0 ∈ Ω and r > 0 such
that {|z − z0| ≤ r} ⊆ Ω then |f(z)| ≤ |f(z0)| whenever |z − z0| ≤ r implies
that f must be constant.) Deduce that if Ω is bounded and f is analytic on
Ω̄ (recall that this means f extends analytically to an open set containing
Ω̄) then |f | is maximised on the boundary ∂Ω = Ω̄\Ω. (Maximum Modulus
Principle).

Unfortunately, given a function, it is hard to verify (in general) whether f
is analytic. On the other hand, it is often easier to verify holomorphicity
of f. This makes it important to establish the equivalence of holomorphicity
with analyticity. In view of the above discussion, it suffices to show that
holomorphic ⇒ analytic.

Throughout, Ω is an open set in C. A curve in Ω is a continuously differen-
tiable function γ : [a, b] → Ω (for some a < b in R). γ(a) and γ(b) are called
the initial and end point of γ respectively. If f : Ω → C is continuous, then

the path integral
∫
γ

f is defined to be
b∫

a

f(γ(t))γ′(t)dt (Riemann Integral). A

path in Ω is a finite sequence γ1, . . . , γn of curves such that the end point of
γj coincides with the initial point of γj+1 for 1 ≤ j < n. If γ = (γ1, . . . , γn) is
a path and f : Ω → C is continuous, one defines the path integral

∫
γ

f to be

n∑
j=1

∫
γj

f. The initial point of γ1 (respectively, the end point of γn) is called the

initial (respectively, end) point of γ. A path is said to be closed if its initial
point and end point coincide.

If γ is a curve then the length of γ is defined to be the number
b∫

a

|γ′(t)|dt.

If γ is a path, its length is
n∑

j=1

length (γj).

(If the curve γ is thought of as describing a moving point which occupies
position γ(t) at time t, then |γ′(t)| is its speed at time t. This justifies our
definition of length).

Exercise 4: If γ is a path in Ω and f : Ω → C is continuous then show
that | ∫

γ

| ≤ length (γ) · ‖f‖γ when ‖f‖γ is the maximum of |f | on Im(γ) :=

4



⋃n
j=1 Im(γj).

By a “rectangle” we shall mean a rectangle with sides parallel to the axes,
including all points on the boundary and interior. Thus a rectangle is a
compact set with no holes. The path describing the boundary of a rectangle
R in an anti-clockwise manner will be denoted ∂R.

(Goursat’s) Lemma 1: If R is a rectangle and f is holomorphic on R then∫
∂R

f = 0.

Sketch of Proof: We inductively define a sequence {Rn} of rectangles in R
satisfying

(1) R = R1 ⊃ R2 ⊃ . . .

(2) Length of ∂Rn+1 = 1
2

length (∂Rn) ∀n (Hence length (∂Rn) = 2−n length
(∂R) → 0.

(3)| ∫
∂Rn+1

f | ≥ 1
4
| ∫
∂Rn

f | ∀n and hence | ∫
∂Rn

f | ≥ 1
4n |

∫
∂R

f | ∀n.

From (1) and (2) one sees that there is a point z0 ∈ R such that {z0} =
∞⋂

n=1

Rn.

Put g(z) = f(z) − f(z0) − (z − z0)f
′(z0) and observe that g is holomorphic

on R. Observe that
∫

∂Rn

(f(z0) + (z− z0)f
′(z0)) = 0 (why ?). Hence it suffices

to show that
∫

∂R

g = 0. Further, we have the estimates (2) and (3) with g in

place of f.

Now, since g′(z0) = g(z0) = 0, there is a neighbourhood U ⊂ R of z0 such
that |g(z)| ≤ ε|z − z0| for all z ∈ U.

Take n so large that Rn ⊆ U.

Then 1
4n |

∫
∂R

g| ≤ | ∫
∂Rn

g| ≤ length(R)

2n sup
z∈Rn

|z − z0|ε ≤ c
4n ε where c > 0 is an

absolute constant. Since ε > 0 was arbitrary, this completes the proof. ¤

Lemma 2: Let f : Ω → C be holomorphic. Then, locally, f has a holomor-
phic primitive. That is, for any closed disc D ⊂ Ω, there is a holomorphic
function g : D → C such that g′ = f on D.

5



Sketch of Proof: Say z0 is the centre of D. For z ∈ D, define g(z) =
z∫

z0

f

where the integral is along two of the sides of a rectangle whose opposite
vertices are z0 and z.

In view of Goursat’s lemma, it does not matter whether we go horizontal and
then vertical, or the other way round. Verify that g′ = f on D. ¤

Local Cauchy Theorem: For holomorphic f : Ω → C and any closed path
γ in a closed disc D ⊂ Ω, we have

∫
γ

f = 0.

Sketch of Proof: By Lemma 1, f = g′ on D. Hence
∫
γ

f =
∫
γ

g′ = 0. ¤

Local Cauchy Integral Formula: Let D be a closed disc in Ω and f :
Ω → C be holomorphic. Let ∂D denote the path traversing the boundary of
D in an anticlockwise manner.

Then f(w) = 1
2πi

∫
∂D

f(z)
z−w

for w ∈ D0.

Sketch of Proof: Define g on Ω by g(z) = f(z)−f(w)
z−w

if z 6= w and g(z) =
f ′(w) if z = w. It is easy to prove that g is continuous on Ω and analytic on
Ω\{w}. A limiting argument shows that the local Cauchy Theorem applies to
g (even though we do not know that g is analytic at w), and hence

∫
∂D

g = 0.

But f(z) = f(w) + (z − w)g(z) for z on ∂D, so that
∫

∂D

f(z)

z − w
= f(w)

∫

∂D

dz

z − w
+

∫

∂D

g

= 2πif(w).

¤

Theorem: Every holomorphic function is analytic. Thus holomorphicity
and analyticity are equivalent notions.

Proof: Given holomorphic f : Ω → C and w ∈ Ω, take any disc D with
center w such that D̄ ⊆ Ω. Then use the local integral formula, expand 1

z−w

in a power series in z, and integrate term by term to get a power series around
w which converges on D and represents f. ¤
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Lecture 2

Note that our proof of the equivalence of analyticity and holomorphicity
actually yields something more:

If f : Ω → C is holomorphic and z0 ∈ Ω then the power series around z0 which
represents f near z0 actually converges on (any and hence) the largest disc
centered at z0 and contained in Ω. In particular, recalling that a holomorphic
function on the whole of C is called entire, we have:

Corollary: If f : C → C is entire then the power series around any point
z0 ∈ C representing f converges on the whole of C. Thus, if f is entire, then

we have f(z) =
∞∑

n=0

anzn, z ∈ C.

Exercise 5: Use the above corollary to give an elementary proof of Liouville’s
theorem: Only bounded entire functions are constants.

(Hint: If f(z) =
∞∑

n=0

anzn, z ∈ C; and ak 6= 0 for some k, then show that

lim sup
|z|→∞

|f(z)|
|z|k > 0).

Exercise 6: Since holomorphic ⇒ analytic, it follows that if f : Ω → C is
holomorphic then f has local primitives. (For any disc D ⊆ Ω, ∃ g : D → C
such that g′ = f on D). Give an example to show that f need not have a
global primitive: there may not exist h : Ω → C such that h′ = f on Ω.

Winding numbers: If D is a disc with centre z0 and ∂D denotes the path
which surrounds the boundary of D once in the anticlockwise orientation,
then an elementary calculation shows that 1

2πi

∫
∂D

dz
z−z0

= 1. More generally,

if γ goes around the boundary n times in the anticlockwise direction, then
this integral equals +n, while if γ goes around the boundary n times in the
clockwise direction, then the integral equals−n. This motivates the following:

Definition: If γ is a closed path and z0 is a point outside Im(γ), then the
winding number W (γ, z0) is defined by

W (γ, z0) =
1

2πi

∫

γ

dz

z − z0

.
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Intuitively, this counts (with a sign for the direction), the net number of
times γ goes around z0. For this to be correct, the following lemma better be
correct:

Lemma 3: W (γ, z0) is an integer.

Proof: Let γ : [a, b] → C. Define F : [a, b] → C by F (t) =
t∫

a

γ′(t)
γ(t)−z0

.

Since γ is piecewise continuously differentiable, it follows that F is continuous
on [a, b] and F ′(t) = γ′(t)

γ(t)−z0
for all but finitely many points (where γ is not

differentiable) in the interval [a, b]. Now define G : [a, b] → C by G(t) =
eF (t)

γ(t)−z0
. Logarithmic differentiation yields G′(t)

G(t)
= F ′(t)− γ′(t)

γ(t)−z0
= 0 at all but

finitely many points. Thus G′(t) = 0 at all these points. So G is a piecewise
constant function. But G is continuous. So G is a constant function. In
particular, G(a) = G(b). That is, eF (a)

γ(a)−z0
= eF (b)

γ(b)−z0
. But we have γ(a) =

γ(b). Also, from its definition F (a) = 0, F (b) = 2πiW (γ, z0). Hence we get
e2πiW (γ,z0) = 1. Thus W (γ, z0) is an integer. ¤

Exercise 7: If γ is a closed path in C then show that the function z 7→
W (γ, z) from C\Im(γ) into Z is continuous. Hence conclude that W (γ, z)
is a constant on each connected component of C\Im(γ). Also show that
W (γ, z) = 0 for z in the unbounded component of C\Im(γ) [Hint: Fix
z0 ∈ C\Im(γ). Since Im(γ) is compact, the distance of z0 from points on
Im(γ) is bounded away from 0. That is, ∃ r > 0 such that |γ(t)−zn| ≥ r ∀ t.
It follows that if z is sufficiently close to z0 then |γ(t) − z ≥ r/2. Hence
bound the absolute difference between the two integrands defining W (γ, z)
and W (γ, z0).]

Definition: We shall say that two paths γ : [a, b] → Ω and η : [a, b] → Ω are
close together if they have the same initial point, same end point (i.e., γ(a) =
η(a), γ(b) = η(b)) and there is a partition a = a1 < a2 < . . . < an = b and
closed discs D1, . . . , Dn−1 ⊆ Ω such that γ([ai, ai+1]) ⊆ Di, η([ai, ai+1]) ⊆ Di

for 1 ≤ i < n.

Lemma 4: Let γ, η be two paths in Ω which are close together. Then for
any holomorphic function f : Ω → C, we have

∫
γ

f =
∫
η

f.

Proof: With notations as in the definition of “close together”, Lemma 2
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gives a primitive gi of f on Di, 1 ≤ i < n. Write γi for γ|[ai,ai+1], ηi for

η|[ai,ai+1], 1 ≤ i < n. Also put zi = γ(ai), wi = η(ai). Then
∫
γ

f =
n−1∑
i=1

∫
γi

f =

n−1∑
i=1

∫
γi

g′i =
n−1∑
i=1

(gi(zi+1) − gi(zi)) and similarly
∫
η

f =
n−1∑
i=1

(gi(wi+1) − gi(wi)).

But gi and gi+1 are both primitives of f on the connected open set Di∩Di+1.
Hence gi+1 − gi is a constant on Di ∩ Di+1. Also, Di ∩ Di+1 contains both
zi+1 and wi+1. Therefore gi+1(wi+1) − gi(wi+1) = gi+1(zi+1) − gi(zi+1). That
is gi+1(wi+1)− gi+1(zi+1) = gi(wi+1)− gi(zi+1) for 1 ≤ i < n.

Therefore,

∫

γ

f −
∫

n

f =
n−1∑
i=1

((gi(zi+1)− gi(zi))− (gi(wi+1)− gi(wi)))

=
n−1∑
i=1

((gi(zi+1)− gi(wi+1))− (gi(zi)− gi(wi)))

=
n−1∑
i=1

((gi+1(zi+1)− gi+1(wi+1))− (gi(zi)− gi(wi)))

=
n−1∑
i=1

(gi+1(zi+1)− gi(zi))−
n−1∑
i=1

(gi+1(wi+1)− gi(wi))

Hence, by telescoping.
∫

γ

f −
∫

η

f = gn(zn)− g1(z1)− gn(wn) + g1(w1)

= (gn(zn)− gn(wn))− (g1(z1)− g1(w1))

But zn = wn = the common end point of γ and η and z1 = w1 = the common
initial point of γ and η. Hence

∫
γ

f − ∫
η

f = 0. ¤

Definiton: Let γ, η : [a, b] → Ω be two paths in Ω with common initial
and end points. Then we say that γ and η are homotopic in Ω (with initial
and end points held fixed) if there is a “continuous” one parameter family
γs : [a, b] → Ω, 0 ≤ s ≤ 1 such that γs(a) = γ(a), γs(b) = γ(b) for all
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s ∈ [0, 1], and γ0 = γ, γ1 = η. (More precisely, the “continuity” requirement
means that the “homotopy map” (s, t) 7→ γs(t) from [0, 1] × [a, b] into Ω is
continuous.)

Exercise 8: If γ, η are homotopic in Ω then use the uniform continuity of
the homotopy map to show that there is an ε > 0 such that for s1, s2 ∈ [0, 1]
with |s1 − sn| < ε, γs1 and γs2 are close together. Hence conclude that there
is a partition 0 = s1 < s2 < . . . < sn = 1 such that γsi+1

and γsi
are close

together for 1 ≤ i < n. Therefore, Lemma 4 implies:

Homotopy Version of Cauchy’s Theorem: If γ, η are homotopic paths
in Ω then for any holomorphic f : Ω → C, we have

∫

γ

f =

∫

η

f.

A closed path γ in Ω is said to be null-homotopic if it is homotopic to a point
(constant path). It is easy to see that the above theorem is equivalent to:

Alternative homotopy version of Cauchy’s Theorem: If γ is a null-
homotopic closed path in Ω then for any holomorphic f : Ω → C,

∫
γ

f = 0.

Definition: Ω is said to be simply connected if every closed path in Ω is null
homotopic in Ω (intuitively, this means that Ω has no holes). An immediate
consequence of the theorem is:

Corollary: If Ω is simply connected, then for any closed path γ in Ω and
any holomorphic f : Ω → C, we have

∫
γ

f = 0.

Corollary: If Ω is simply connected then any holomorphic f : Ω → C has a
global primitive g : Ω → C such that g′ = f.

Exercise 9: Show that this conclusion is false if Ω is not simply connected.
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Lecture 3

Definition: Let γ and η be two paths in Ω with the same initial and end
points (γ(a) = η(a), γ(b) = η(b), where η, γ : [a, b] → C). We say that γ, η
are homologous in Ω if W (γ, z0) = W (η, z0)∀z0 6∈ Ω. If γ is a closed path
homologous to a point (constant path) then we say that γ is null-homologous.

For technical reasons, it is good to extend this definition as follows. We say
that γ is a chain if it is a formal sum of finitely many paths. If γ is a formal
sum of finitely many closed paths then we say that γ is a closed chain.

If γ = γ1 + . . . + γn, then Im(γ)
def
=

n⋃
i=1

Im(γi)). If z0 6∈ Im(γ), we define

W (γ, z0) :=
n∑

i=1

W (γi, z0). If each γi is a path in Ω we say that γ is a

chain in Ω. For a chain γ = γ1 + . . . + γn in Ω and f : Ω → C, we define∫
γ

f :=
n∑

i=1

∫
γi

f. Two chains γ, η in Ω are called homologous in Ω if W (γ, z0) =

W (η, z0) ∀ z0 6∈ Ω. A closed chain γ in Ω is called null-homologous in Ω if
W (γ, z0) = 0 ∀ z0 6∈ Ω.

With this definition, the most general version of Cauchy’s fundamental the-
orem is:

Global Cauchy Theorem: If γ is a null-homologous closed chain in Ω
then

∫
γ

f = 0 for all holomorphic f on Ω. Equivalently, if γ, η are homologous

closed chains in Ω then
∫
γ

f =
∫
η

f for all holomorphic f on Ω.

This is the most general version of Cauchy in the sense that if a closed chain
γ is not null-homologous in Ω then there is a holomorphic function f on Ω
such that

∫
γ

f 6= 0 (namely f(z) = 1
z−z0

for a suitable z0 6∈ Ω).

To prove Cauchy’s Global Theorem, we need the following two lemmas.

We shall say that a path is rectangular if it is a concentration (“union”) of
horizontal and vertical line segments.

Lemma 5: If γ is a path in Ω then there is a rectangular path η in Ω such
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that γ and η are close together in Ω. In consequence (Lemma 4) γ and η are
homologous, and

∫
γ

f =
∫
η

f for any holomorphic f on Ω.

In view of this Lemma, to prove the Global Cauchy Theorem, it is enough
to prove it for ”rectangular” closed chains (i.e, formal sums of rectangular
closed paths).

Proof of Lemma 5: Given γ : [a, b] → Ω take a partition a = a1 < an <
. . . < an = b of [a, b] such that γ([ai, ai+1]) ⊆ Di, a closed disc in Ω. Put
γi = γ|[ai,ai+1], zi = γ(ai). Take a rectangular path ηi lying inside Di and
joining zi to zi+1 (1 ≤ i < n). Let η be the concatenation of η1, . . . , ηn−1.
This clearly works.

If γ : [a, b] → C is a path and a = a1 < . . . < an = b, γi = γ|[ai,ai+1], 1 ≤ i < n
then the chain γ = γ1 + . . . + γn−1 will be called a subdivision of γ. More
generally, if η = n1 + . . . + nm is a chain, ni1 + . . . + nin is a subdivision of
the path ni for each i, then the chain

∑
i,j

nij will be called a subdivision of

the chain η. Clearly if the chain η′ is a subdivision of the chain η then η, η′

are homologous (in any domain Ω such that η, η′ are in Ω).

Lemma 6 (Artin) : If γ is a rectangular closed chain in Ω which is null-
homologous in Ω then there exist rectangles R1, . . . RN in Ω and integers

α1, . . . , αN such that the rectangular closed chain η =
N∑

i=1

di∂Ri is a sub-

division of γ. (Here ∂Ri is the closed path traversing the boundary of Ri

anticlockwise).

Sketch of Proof: Draw all the lines which contain one of the line-segments
constituting γ. These are (finitely many) horizontal and vertical lines. They
partition the complex plane into finitely many regions, some of which are
rectangles and others unbounded. If R is one of these rectangles then the
interior R0 is inside a connected component of Im(γ), and hence the winding
number W (γ, ·) is a constant, say αR, on R0. If αR 6= 0 for some R then
R0 ⊆ Ω (since W (γ, ·) is zero in the complement of Ω). Hence it is easy to
see that the closed chain η =

∑
R:αR 6=0

αR · ∂R is a subdivision of γ. ¤.

Now, Lemma 5 and Lemma 6 together show that: if γ is a null-homologous
closed chain in Ω then there are rectangles R1, . . . , RN in Ω and integers
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α1, . . . , αN such that
∫
γ

f =
∫P

αi∂Ri

=
N∑

i=1

αi

∫
∂Ri

f = 0, proving Cauchy’s

Global Theorem.

One application of Cauchy’s Global Theorem is to reduce the calculation
of integrals (of holomorphic functions) over complicated paths to those over
simple paths. Namely, we have:

Theorem: Let γ be a null-homologous closed chain in Ω. Let z1, . . . , zN be
finitely many distinct points in Ω and let D1, . . . , DN be pairwise disjoint
closed discs in Ω with centres z1, . . . , zN . Assume γ does not pass through
any of the points zi. Put mi = W (γ, zi) 1 ≤ i ≤ n. Then γ is homologous in

Ω\{z1, . . . , zN} to the chain
N∑

i=1

mi∂Di. Hence, for any holomorphic function

f : Ω \ {z1, . . . , zN} → C, we have

∫

γ

f =
N∑

i=1

mi

∫

∂Di

f.

Proof : If α 6∈ Ω then W (γ, α) = 0 and W (∂Di, α) = 0. Hence W (
∑

mi∂Di, α) =
0 = W (γ, α). On the other hand if α = zi for some i then W (γ, α) = mi, while
W (∂Dj, α) = δij. Hence W (

∑
mj∂Dj, α) =

∑
mj δij = mi = W (γ, α). Thus

W (γ, α) = W (
∑

mi∂Di, α) for all α outside Ω \ {z1, · · · , zN}. this proves
the first statement. The second statement follows from the global Cauchy
theorem. ¤

Another consequence is:

The Global version of Cauchy’s integral formula: Let γ be a null-
homologous closed chain in Ω. Let z0 ∈ Ω be such that γ does not pass
through z0. Then for any holomorphic f : Ω → C, we have 1

2πi

∫
γ

f(z)
z−z0

=

W (γ, z0)f(z0).

Proof: In view of the definition of W (γ, z0), this formula may be written

as 1
2πi

∫
γ

g(z)dz = 0 where g : Ω → C is defined by g(z) = f(z)−f(z0

z−z0
if z 6=

z0, g(z0) = f ′(z0). Since γ is null-homologous and g is (analytic and hence)
holomorphic, this follows from Global Cauchy Theorem. ¤
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If f is a complex-valued function defined on a subset of Ω and z0 ∈ Ω, we say
that z0 is a singular point (or singularity) of f if f is not holomorphic on any
neighbourhood of z0. We say that z0 is regular otherwise. Thus the set Ω0 of
regular points is the largest open subset of Ω on which f is holomorphic. A
point z0 ∈ Ω is said to be an isolated singularity of f if there is an open disc
B centred at z0 (B ⊆ Ω) such that f is holomorphic on B \ {z}. Then f has
a convergent Laurent expression on B \ {z0} :

f(z) =
∞∑

n=−∞
an(z − z0)

n, z ∈ B \ {z0}.

This statement is a special case of the following :

Theorem: Let A = {z ∈ C : r ≤ |z| ≤ R} be an annulus (0 < r < R). Let
f be holomorphic on A. Then f has a Laurent expansion which converges
absolutely and uniformly on A.

Proof: There is an open Ω ⊇ A on which f is holomorphic. Let Cr and CR

denote the bounding circles of A, oriented anti-clockwise. Then the closed
chain CR−Cr is null-homologous in Ω (easy calculation). Hence by Cauchy’s
integral formula, we have

f(z) =
1

2πi

∫

CR

f(w)

w − z
dw − 1

2πi

∫

Cr

f(w)

w − z
dw, z ∈ A0.

Now, for w ∈ CR, | z
w
| < 1 and for w ∈ Cr, |wz | < 1. Therefore we may

expand the first integrand as a power series in z
w

and the second as a power
series in w

z
. Interchanging sum and integral yields the Laurent expansion.

Definition: Let z0 be an isolated singularity of the function f. Let f(z) =
∞∑

n=−∞
an(z − z0)

n be the Laurent expansion of f around z0.

1) If an = 0 ∀n < 0 then we say that z0 is a removable singularity of f.

2) If ∃k < 0 such that ak 6= 0 but an = 0 ∀n < k then we say that z0 is a
pole of order |k| for f.

3) If an 6= 0 for infinitely many n < 0 then z0 is said to be an essential
singularity of f.

14



This is a mutually exclusive and exhaustive classification of isolated singu-
larities.

Exercise 10: Let z0 be an isolated singularity of f, holomorphic on Ω\{z0}.
Then

(a) show that z0 is removable iff f extends to a holomorphic function on Ω
iff f is bounded on some punctured neighbourhood of z0 in Ω.

(b) If z0 is an isolated essential singularity of f then show that for every
neighbourhood U of z0 in Ω, f(U \ {z0}) is dense in C.
(Hint : If α is a point outside the closure of f(U \ {z0}), then 1

f(z)−α
is

holomorphic and bounded on U \ {z0}.
(c) Use (b) to show that z0 is a pole of f iff lim

z→z0

|f(z)| = ∞.

15



Lecture 4

Definition:

Let z0 be an isolated singularity of f . Let f(z) =
∞∑

n=−∞
an(z − z0)

n (0 <

(z − z0| < ε) be the Laurent expansion of f around z0. Then the coefficient
a−1 is called the residue of f at z0 and is denoted Res (f, z0)

Residue Theorem: Let f be holomorphic on Ω except for finitely many
singularities z1, . . . , zN . Let γ be a null-homologous closed chain in Ω not

passing through any zi. Then
∫
γ

f = 2πi
N∑

j=1

W (γ, zj) Res (f, zj).

Proof : In view of a previous theorem, it suffices to show that if Dj is a
small disc with centre zj then

∫
∂Dj

f = 2πi Res (f, zj). This is easily seen by

plugging in the Laurent expansion for f around zj. ¤

If z0 is a zero or pole of f , then looking at the power series/Laurent series
expansion of f around z0, one sees that there is an integer k 6= 0 such that
we have f(z) = (z − z0)

kg(z) for some non-vanishing analytic function g in
a neighbourhood of z0. Then |k| is called the order or multiplicity of the
zero/pole. One thinks of a zero/pole of multiplicity m as a zero/pole which
is repeated m times.

Note that if f(z) = (z − z0)
kg(z) with g as above, then f ′(z)

f(z)
= k

z−z0
+ g′(z)

g(z)
.

and g′
g

is analytic in a neighbourhood of z0.

Hence Res
(

f ′
f
, z0

)
= k =

{
m if z0 is a zero
−m if z0 is a pole.

(Here m is the multiplicity of z0 as a zero/pole of f).

Recall that a function is called meromorphic if all its singularities are poles.
In view of the above observation, one applies the residue theorem to f ′

f
for a

meromorphic f, to obtain:

Theorem: Let γ be a null-homologous closed chain in Ω. Let f be a mero-
morphic function on Ω such that γ does not pass through any zero or pole

16



of f. Then

1

2πi

∫

γ

f ′

f
=

∑
z∈Ω, z zero

mult (z)W (γ, z)−
∑

w∈Ω, w pole

mult (w)W (γ, w).

Here mult(·) denotes the multiplicity of the zero or pole.

A simple and useful case of this theorem is where γ is a simple closed path
null-homotopic in Ω. Recall that γ : [a, b] → Ω is said to be a simple closed
path if γ(t1) = γ(t2) ⇔ (t1 = t2 or {t1, t2} = {a, b}). By a famous theorem
of Jordan, the complement of the image of a simple closed path has just two
components, one bounded and the other unbounded. Every point z0 in the
bounded (respectively unbounded) component has W (γ, z0) = 1 (respectively
W (γ, z0) = 0). Such a γ is null-homotopic in Ω precisely when Ω contains
the bounded component of C\Im(γ). In view of these results, a special case
of the above theorem is:

Theorem (The argument principle) : Let γ be a null-homotopic simple
closed curve in Ω and let f be a meromorphic function on Ω such that γ does
not pass through any zero or pole of f. Then 1

2πi

∫
γ

f ′
f

= Number of zeroes

of f enclosed by γ - Number of poles of f enclosed by γ (both counting
multiplicity).

Exercise 11: If g is a continuous function on an interval [a, b] with values
in C such that g(t) 6= 0 ∀ t, then show that there is a continuous branch of
arg g(t), i.e, a continuous function t 7→ arg(g(t)) where arg(·) denotes one of
the values of the usual (multi-valued) argument. Any two such continuous
branches differ by a constant (an integer multiple of 2πi). Applying this
observation to f ◦ γ = g where f & γ are as above, show that

∫
γ

f ′
f

=

arg f(γ(b))−arg f(γ(a)) = Net change in argument of f(w) as w goes around
the simple closed curve γ. This explains the name “Argument Principle”.
Notice that 1

2πi

∫
γ

f ′
f

= W (f ◦ γ, 0).

Let us recall:

Morera’s Theorem: Let f : Ω → C be a continuous function. Suppose for
every rectangle R ⊆ Ω,

∫
∂R

f = 0. Then f is holomorphic on Ω.

17



Proof: During the proof of equivalence of analyticity and holomorphicity,
we have seen that the hypothesis implies the existence of local primitives of
f. But each such local primitive is holomorphic (after all f is its complex
derivative!). But the derivative of a holomorphic function is holomorphic.
So f is holomorphic on each disc ⊆ Ω. Then f is holomorphic on Ω. ¤

Definition: Let {fn} be a sequence of complex-valued functions on Ω. Let
f be a complex-valued function on Ω. We shall say that fn → f locally
uniformly if for each z0 ∈ Ω, there is a neighbourhood U of z0 (U ⊆ Ω) such
that fn(z) → f(z) uniformly for z ∈ U.

Exercise 12 : Show that fn → f locally uniformly on Ω iff for every compact
set K ⊆ Ω, fn(z) → f(z) uniformly for z ∈ K.

Theorem: If fn, n = 1, 2, 3, . . . is a sequence of holomorphic functions on
Ω such that fn → f locally uniformly on Ω, then f is holomorphic on Ω.

Proof: Let R ⊆ Ω be any rectangle. Then fn → f uniformly on R. Hence∫
∂R

fn →
∫

∂R

f. But by local Cauchy theorem,
∫

∂R

fn = 0 ∀ n. So
∫

∂R

f = 0.

Hence by Morera’s theorem, f is holomorphic. ¤

In short, “local uniform” limits of holomorphic functions are holomorphic.
This shows that local uniform convergence is the right notion of convergence
for holomorphic functions. Another evidence for this is the following result,
which says that “complex differentiation” is a continuous function on the
space of holomorphic functions.

Theorem: If fn, f are holomorphic functions on Ω such that fn → f locally
uniformly on Ω as n →∞, then f ′n → f ′ locally uniformly on Ω.

Proof: Fix z0 ∈ Ω. Let D be a closed disc contained in Ω with centre z0.
Then we have the Cauchy integral formula f(w) = 1

2πi

∫
∂D

f(z)
z−w

dz, w ∈ D0.

Differentiating with respect to w, we get

f ′(w) =
1

2πi

∫

∂D

f(z)

(z − w)2
dz, w ∈ D0.

Similarly, f ′n(w) = 1
2πi

∫
∂D

fn(z)
(z−w)2

dz, w ∈ D0. Now, let E be a closed disc

with centre z0 such that E ⊆ D0. As fn → f locally uniformly, we have

18



fn(z)
(z−w)2

→ f(z)
(z−w)2

uniformly for z ∈ ∂D, w ∈ E (why ?). Integrating with

respect to z, we get f ′n(w) → f ′(w) uniformly for w ∈ E. ¤

Exercise 13 : Using this theorem and the argument principle, prove that if
{fn} is a sequence of holomorphic functions on Ω converging to f locally uni-
formly on Ω, and γ is a null-homotopic closed path not passing through any
zero of f then ∃N such that for n ≥ N, the number of zeroes of fn (counting
multiplicity) enclosed by γ equals the number of zeroes of f (counting mul-
tiplicity) enclosed by γ. Conclude that if all the fns are non-vanishing on Ω
and Ω is connected, then either f ≡ 0 or f is non-vanishing on Ω.
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Lecture 5

Recall that the usual stereographic projection provides a bijection between
the two-dimensional sphere S2 minus a point (north pole) and the complex
plane C. We may say that the north pole maps to ∞ under this projection.
Then we have a bijection between S2 and Ĉ = C ∪ {∞}. Using this bijec-
tion, we identify Ĉ with S2. Thus viewed, Ĉ is called the Riemann Sphere.
Using the stereographic projection, we transfer the topology (motion of con-
vergence, openness) from S2 to Ĉ. Note that a sequence {zn} in C (viewed
as a sequence in Ĉ) converges to ∞ iff |zn| → ∞. A typical neighbourhood
of ∞ in Ĉ is {z ∈ C : |z| > R} ∪ {∞}.
If f is a meromorphic function on Ω ⊆ C, then z0 ∈ Ω is a pole of f iff
lim
z→z0

|f(z)| = ∞, i.e, with the above understanding of convergence to ∞,

iff lim
z→z0

f(z) = ∞. Thus it is natural to put f(z0) = ∞ for all poles z0 of

f , and view a meromorphic function f on Ω as a “holomorphic” function
f : Ω → Ĉ.

If f is a meromorphic function on C, then we may think of ∞ as a singu-
lar point of f (where f is not defined, but f is defined on the punctured
neighbourhood C of ∞). We shall say that ∞ is a removable singularity, pole
or essential singularity of f accordingly as 0 is a removable singularity, pole
or essential singularity of the meromorphic function g(z) := f

(
1
z

)
. (We are

using the map z 7→ 1
z

on Ĉ to Ĉ to bring infinity to the point 0 in the “finite
part”. Bring infinity close and study the behaviour of f at ∞).

Exercise 14: If f is meromorphic on C then ∞ is a removable singular-
ity/ pole/essential singularity according as lim

z→∞
f(z) exists and is a complex

number, exists and is = ∞, or does not exist, respectively.

For any open set Ω ⊆ Ĉ, a meromorphic function f on Ω may be thought of as
a (everywhere defined) function f : Ω → Ĉ which takes the poles of f to ∞.
With this understanding a meromorphic function is a Ĉ-valued holomorphic
function. (This statement may be made precise by formally introducing a
complex structure - the structure of a Riemannian manifold - on the sphere
Ĉ).

What are the meromorphic functions f : Ĉ → Ĉ? Well, such a function
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can have only finitely many zeroes and poles in Ĉ (unless it is a constant
function) counting multiplicity - or else they would have a limit point which
would be an essential singularity of f. Hence we can find a rational function
R (ratio of two polynomials) with the same zeroes and poles of f , counting
multiplicity. Then f

R
is a meromorphic function on Ĉ with no zeroes or poles

Liouville’s Theorem then shows that f
R

is a constant function. Then f is
rational. This shows :

Theorem: The only meromorphic functions on the whole of Ĉ are rational
functions.

Exercise 15: If f is a rational function then show that, counting multiplicity,
number of zeros of f in Ĉ = number of poles of f in Ĉ and sum of residues
of the poles of f = 0. (Here the multiplicity of ∞ as a zero/pole of f is to
be defined as the multiplicity of 0 as a zero/pole of z → f

(
1
z

)
. Similarly the

residue of f at ∞ is the residue of z 7→ f
(

1
z

)
at 0.)

Definition: A biholomorphic automorphism of Ĉ is a meromorphic func-
tion f : Ĉ → Ĉ which is a bijection. Clearly the set of all biholomorphic
automorphisms of Ĉ form a group under composition, denoted bihol(Ĉ).

If f ∈ bihol (Ĉ), then in particular, f is a rational function. Hence we can
write f = P

Q
where P & Q are polynomials with no common zero. Since f

is a bijection, it takes the value 0 exactly once. Hence P is linear. Also f
takes the value infinity exactly once, hence Q takes the value 0 exactly once,
so that Q is linear. Thus f has the form f(z) = az+b

cz+d
. The numbers a, b, c, d

must satisfy ad− bc 6= 0, or else f would be constant.

Any function z 7→ az+b
cz+d

, with ad−bc 6= 0, is called a fractional linear transfor-

mation. Thus all elements of bihol(Ĉ) are fractional linear transformations.
Conversely, it is easy to see that any fractional linear transformation is a
biholomorphic automorphism of Ĉ. Thus,

Theorem: bihol(Ĉ) is the group of all fractional linear transformations, with
composition as the group operation.

Exercise 16: GL(2,C) is defined to be the group of all 2×2 non-singular ma-

trices with complex entries. Its centre is the subgroup

{(
λ 0
0 λ

)
: λ ∈ C\{0}

}
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of non-singular scalar matrices. The quotient is called PGL(2,C). Show that(
a b
c d

)
7→ az+b

cz+d
is a group homomorphism from GL(2,C) onto bihol(Ĉ)

and its kernel is precisely the centre of GL(2,C). Hence bihol(Ĉ) is isomor-
phic to PGL(2,C).

Exercise 17: The special fractional linear transformations z 7→ z + a are
called the translations, z 7→ bz(b 6= 0) are called the dilations and z 7→ 1

z
is

called the inversion (across the unit circle). Show that any fractional linear
transformation is a composition of finitely many of these special transforma-
tions. (In fact, four of them suffice). Also show that each of these special
transformations maps circles in Ĉ to circles in Ĉ (where a circle in Ĉ is de-
fined to be either a circle in C or a line in C together with ∞). Hence all
elements of bihol(Ĉ) map circles in Ĉ to circles in Ĉ.

Exercise 18: Show that bihol(Ĉ) is sharply 3-transitive on Ĉ in the sense
that if z1, z2, z3 are those distinct points in Ĉ and w1, w2, w3 are three distinct
points in Ĉ then there is a unique element g ∈ bihol (Ĉ) such that g(zi) =
wi, 1 ≤ i ≤ 3.

Let D denote the open unit disc {z : |z| < 1}. A holomorphic f : D → D
is called a biholomorphic automorphism of D if it is a bijection. The set
of all biholomorphic automorphisms of D form a group under composition,
denoted bihol(D). We wish to determine this group.

Exercise 19: A Möbius map is a fractional linear transformation of the form
z 7→ α · z−β

1−β̄z
where |α| = 1, |β| < 1. Show that the set of all Möbius maps

forms a subgroup of bihol(Ĉ), denoted Möb, and called the Möbius group.
Show that Möb maps D to D bijectively, and hence Möb is a subgroup of
bihol(D). (Enough to show that Möb maps ∂D to ∂D.) Finally, show that
Möb is transitive on D in the sense that if z1, z2 ∈ D, there is a g ∈ Möb
such that g(z1) = z2.

Theorem: bihol(D)=Möb. That is, the Möbius maps are the only biholo-
morphic automorphisms of D.

Proof: Take a biholomorphic automorphism ϕ : D→ D. Put α = ϕ(0) ∈ D.
By the exercise above, there is a ϕ1 ∈ Möb such that ϕ1(0) = α. Put ϕ2 =
ϕ−1

1 ◦ ϕ. Then ϕ2 ∈ bihol(D) and ϕ2(0) = 0. It is enough to show that ϕ2 ∈
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Möb (then ϕ = ϕ1 ◦ ϕ2 ∈ Möb since Möb is a group). Indeed, we shall show
that ϕ2(z) = αz for some α with |α| = 1.

Put

f(z) =
φ2(z)

z
, z ∈ D\{0},

f(0) = φ′2(0).

By the maximum modulus principle,

sup |f(z)| = lim sup
z→∂D

|f(z)| = lim sup
z→∂D

∣∣∣∣
ϕ2(z)

z

∣∣∣∣
= lim sup

z→∂D
|ϕ2(z)| = 1.

Thus |f(z)| ≤ 1 for all z ∈ D. That is, |ϕ2(z)| ≤ |z| for z ∈ D. Since ϕ−1
2 is

also in bihol(D) sending 0 to 0, the same argument applies to ϕ−1
2 , yielding

|ϕ−1
2 (w)| ≤ |w| for w ∈ D. Setting w = ϕ2(z), we get |z| ≤ |ϕ2(z)|, z ∈ D.

Thus |ϕ2(z)| = |z|, z ∈ D. So |f(z)| = 1 for z ∈ D. Hence f must be a
constant function α. So ϕ2(z) = αz, z ∈ D. Since ϕ2 ∈ bihol (D), must have
|α| = 1. So ϕ2 ∈ Möb. Then ϕ = ϕ1 ◦ ϕ2 ∈ Möb. ¤
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Lecture 6

A family F of complex valued functions on Ω is said to be normal (or pre-
compact) if every sequence {fn} ⊆ F has a subsequence which converges
locally uniformly on Ω (to some function on Ω). A family F is said to be
locally uniformly bounded (respectively locally uniformly equicontinuous) if
any point z0 ∈ Ω has a neighbourhood U ⊆ Ω on which F is uniformly
bounded : ∃ c > 0 3 |f(z)| ≤ c ∀ z ∈ U ∀ f ∈ F (respectively, on which
f is uniformly equicontinuous : ∀ z0 ∈ U , ∀ ε > 0, ∃ δ > 0 such that
|z − z0| < δ ⇒ |f(z)− f(z0)| < ε ∀ z ∈ U, ∀ f ∈ F .) Recall:

Arzela-Ascoli Theorem : If F is a locally uniformly bounded and locally
uniformly equicontinuous family of (continuous) complex-valued function on
Ω then F is normal.

Sketch of Proof: Fix a countable dense subset D ⊆ Ω (For instance, D
may consist of all points of Ω with rational real and imaginary parts.) Use
Cantor’s diagonal argument to show that any sequence {fn} ⊆ F has a
subsequence {gn} which converges at all points of D. Use local boundedness
and locally uniform equicontinuity of {gn} to conclude that {gn} converges
locally uniformly on Ω.

Montel’s Theorem: If F is a locally uniformly bounded family of holo-
morphic function on Ω, then F is normal.

Proof: By the Arzela-Ascoli theorem, it is enough to show that F is locally
uniformly equicontinuous. Fix z0 ∈ Ω. Let D ⊆ Ω be a closed disc with centre
z0. Then we have f(z) = 1

2πi

∫
∂D

f(w)
w−z

, z ∈ D0, for each f ∈ F . Differentiating

under the integral sign, we get

f ′(z) =
1

2πi

∫

∂D

f(w)

(w − z)2
z ∈ D0.

Therefore, if D1 is a slightly smaller disc with centre z0 then there is an
absolute constant c1 such that

|f ′(z)| ≤ c1 sup
w∈D

|f(w)|, z ∈ D1.

24



Now, as F is locally uniformly bounded there is a constant c2 such sup
w∈D

|f(w)| ≤
c2 for all f ∈ F . Hence we get |f ′(z)| ≤ c ∀ z ∈ D1, ∀ f ∈ F where c = c1c2.

Therefore |f(z)− f(z0)| = |
z∫

z0

f ′(w)dw| ≤ c|z − z0| ∀z ∈ D1, ∀f ∈ F . Then

F is locally uniformly equicontinuous on D1. ¤

If Ω1, Ω2 are open subsets of C, then a map f : Ω1 → Ω2 is said to be
a biholomorphic isomorphism if f is a bijection and both f and f−1 are
holomorphic.

Exercise 20: Let f : Ω → C be holomorphic and injective. Then show that
f ′(z) 6= 0 ∀ z ∈ Ω, and f is a biholomorphic isomorphism between Ω and
f(Ω).

Exercise 21: Let {fn} be a sequence of injective holomorphic functions from
Ω to C. Suppose fn → f locally uniformly on Ω. Then show that f is either
a constant function or injective. (Hint: Argument principle).

Exercise 22: If F is a normal family of holomorphic functions on Ω then
show that the family F ′ := {f ′ : f ∈ Ω} is again normal.

Let D denote the disc with radius 1 and centre 0.

Lemma: Let Ω be a simply connected, connected, proper, open subset of
C. Then there is an injective holomorphic function f : Ω → D.

Proof: Take α ∈ C\Ω. Since Ω is simply connected, there is a (global)
primitive g of z 7→ 1

z−α
on Ω. Then eg(z) = z−α. In consequence g is injective

on Ω, and further, for any z0 ∈ Ω, g does not assume the value g(z0) + 2πi.
Hence there is an r > 0 such that the closed disc D with centre z0 + 2πi
and radius r is disjoint from g(Ω). (Else there would be a sequence {zn} in Ω
such that g(zn) → g(z0) + 2πi, whence, exponentiating, zn → z0 and hence
g(zn) → g(z0). Hence g(z0) = g(z0) + 2πi and 2πi = 0, a contradiction.)
Therefore the function f(z) = 1

g(z)−g(z0)−2πi
on Ω is injective, holomorphic

and bounded. Scaling, f can be made to map into D. ¤

Riemann Mapping Theorem: Every simply connected and connected
proper open subset Ω of C is biholomorphically equivalent to D, i.e., there is
a biholomorphic isomorphism g : Ω → D.
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Proof: Without loss, we may assume that 0 ∈ Ω. By the lemma, there is a
holomorphic injection f : Ω → D. Since the Möbius group is transitive on D,
there is a Möbius map φ : D→ D such that φ takes f(0) to 0. Then f̃ = φ◦f
is a holomorphic injection from Ω to D such that f̃(0) = 0.

Then the family F = {f : Ω → D such that f is a holomorphic injection,
f(0) = 0} is non-empty. By Montel’s Theorem, F is a normal family. There-
fore, there is an f ∈ F which maximises |f ′(0)| among all elements of F . (If
α = sup

f∈F
|f ′(0)|, then there is a sequence {fn} ⊆ F such that |f ′n(0)| → α.

Since F is normal, we may replace {fn} by a suitable subsequence and as-
sume fn → f locally uniformly on Ω. Then f ′n → f ′ locally uniformly. In
particular, f ′n(0) → f ′(0). Thus |f ′n(0)| → |f ′(0)|. Hence |f ′(0)| = α > 0.
Since f ′(0) 6= 0, f is not a constant function. Therefore by Exercise 21, f is
injective. Since f is non-constant, the maximum modulus principle implies
that f maps Ω into D. So f ∈ F).

Thus we may choose f ∈ F which maximises |f ′(0)|. (This is a typical
application of compactness: F̄ is compact and f 7→ |f ′(0)| is a “continuous”
function on F̄ , hence is maximised somewhere in F̄ . Then the argument
principle comes in handy to show that the maximising “point” f is actually
in F .). We claim that this function f maps Ω onto D and hence is the
required biholomorphic isomorphism between Ω and D. Otherwise, there
exists α ∈ D such that f does not take the value α. Then there is a Möbius
map ϕ such that ϕ(α) = 0. Hence ϕ ◦ f is a holomorphic injection from
Ω into an open subset of D which does not contain 0. Since ϕ ◦ f is a
holomorphic injection onto its image, this subset is also simply connected.
Hence there is a holomorphic branch of the square root function on this subset
(z 7→ exp(1

2
logz)). Composing it with the function ϕ◦f, we get a holomorphic

function z 7→
√

ϕ(f(z)) from Ω into D\{0}. Let ψ be a Möbius map sending√
φ(f(0)) to 0. Let f̃(z) = ψ(

√
φ(f(z)), z ∈ Ω. Then f̃ is a holomorphic map

from Ω into D, such that f̃(0) = 0. Also, f̃ is an injection (f̃(z1) = f̃(z2) ⇒
ψ(

√
φ(f(z1))) = ψ(

√
φf(z2)) ⇒

√
φ(f(z1)) =

√
φ(f(z2)) ⇒ φ(f(z1)) =

φ(f(z2)) ⇒ f(z1) = f(z2) ⇒ z1 = z2.)

Then f̃ ∈ F . Let S be the squaring function. Then we have f = (ϕ−1 ◦
S ◦ ψ−1) ◦ f̃ . Hence |f ′(0)| = |(ϕ−1 ◦ S ◦ ψ−1)′(0)| · |f̃ ′(0)|. But the following
exercise shows that |(ϕ−1 ◦ S ◦ ψ−1)′(0)| < 1. Therefore |f ′(0)| < |f̃ ′(0)| and
f̃ ∈ F . This contradicts the choice of f. So f must have been a surjection.
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Exercise 23: If h : D⇒ D is a holomorphic map such that h(0) = 0 and h
is not an injection, then |h′(0)| < 1.

Remark: This theorem shows, in particular, that any connected and simply
connected proper open subset of C is homeomorphic to D.

Exercise 24: Show that D is homeomorphic to C but is not biholomorphi-
cally equivalent to C.

Exercise 25: If Ω ⊆ C, 0 6∈ Ω and Ω admits a holomorphic branch of the
square root function, then show that Ω is simply connected.
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