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We have already had many lectures on commutative algebra in this school. For
the purpose of this school, methods from commutative algebra used to study
number theoretic questions may be called algebraic number theory. We will not
mention any analytic component of the subject like the Dedekind zeta function
etc. The subject arose basically from the need to solve one particular problem
in number theory - Fermat’s last theorem. We recall the basic concepts and
results and discuss some applications in traditional number theory along the
way. One can use them often to solve Diophantine equations. The basic objects
of study are certain rings similar to (but more general than) Z like :
{a + b

√
d : a, b ∈ Z} for some square-free integer d,

{a0 +a1ζp + · · ·+ap−2ζ
p−2
p : ai ∈ Z} where p is a prime number and ζp = e2iπ/p.

The basic departure from the usual Z that concerns us is that such rings may
not have unique factorisation. It is worth recalling just a whiff of history. For
this, we decant from an article by Israel Kleiner on the history of ring theory
which appeared in Elemente der Mathematik in 1998. In a ring like the latter
one mentioned above which figures in Fermat’s equation, Kummer realized that
unique factorisation may not hold (we will see below the example of p = 23)
but he wanted to establish unique factorisation of some kind. As he wrote to
Liouville, “unique factorisation can be saved by the introduction of new kind
of complex numbers which I have called ideal numbers.” Kummer’s result was
that every element is a unique product of “ideal primes.” However, the notion
of “ideal numbers” was implicit and unclear. Kummer said that they were
like ‘free radicals’ in chemistry which can be discerned only by their effects.
Moreover, Kummer’s decomposition theory into ‘ideal primes’ was valid only
for these above rings. It was Dedekind who devised a way to define such a
notion for general rings of algebraic integers. To begin with, he showed that in
a field Q(α) where α is an algebraic integer, the ring Z[α] which was hitherto
studied was the wrong object ! For example, he showed that Kummer’s theory
did not apply correctly to the ring Z[

√−3]. At that time, the notion of algebraic
numbers was well-understood but not that of algebraic integers. He showed that
the right object in Q(α) which had similar properties to Z was the ring of all
algebraic integers there - the integral closure in modern language. He showed
that instead of Kummer’s ideal number, one needs to look at the whole set of
algebraic integers ‘divisible’ by such an ideal number. This was the birth of the
theory of ideals. Indeed, Dedekind defined for the first time rings axiomatically
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(although it was done only inside number fields and he called them ‘orders’).
To cap it, Dedekind defined perhaps the most important notion of commutative
algebra - that of prime ideals. The important point about his definition of
‘ideals’ is their intrinsic definition. He defined an ideal I to divide another
ideal J if I contains J . Later, he refined it by showing that this is the same
as saying that J = IK for some ideal K. Using the definition of prime ideals,
he was able to prove that every non-zero ideal in the full ring of algebraic
integers in a number field is a product of prime ideals in a unique manner.
These are the notions and the notations prevalent in the modern day. Dedekind
believed in focussing on intrinsic or conceptual properties rather than concrete
representations or formulae. His work was the culmination of 70 years of work on
unique factorisation by several mathematicians and led to the birth of algebraic
number theory.

We first start with formal definitions. Some of these are already covered in the
earlier lectures on commutative algebra but they bear repetition. Moreover,
for the sake of completeness, these notes are far more detailed than what can
actually be covered in this 1

3 -course.

Before beginning in earnest, let us what our appetite by proving the following
beautiful theorem due to Sophie Germain :
Theorem (Sophie Germain).
Assume p > 2 is a prime such that 2p + 1 is also a prime. Then, if x, y, z are
integers satisfying the equation xp + yp + zp = 0, then p|xyz.
Proof.
Suppose p does not divide any of x, y, z. Then, we may assume that x, y, z
are pairwise coprime. In that case, it is easy to see that x + y and xp+yp

x+y

are coprime as well. Therefore x + y = ap, xp+yp

x+y = Ap for certain integers
a,A. So, xp + yp = (aA)p. Similarly, we have y + z = bp, z + x = cp and
yp + zp = (bB)p, zp + xp = (cC)p. Now, if 2p + 1 does not divide x, then
xp equiv ± 1 mod 2p + 1 by Fermat’s little theorem. Thus, if 2p + 1 does not
divide xyz, then xp + yp + zp ≡ ±1 ± 1 ± 1 mod 2p + 1 and this can never be
zero as 2p + 1 6= 3. Thus, 2p + 1 divides one of them, say x. Therefore, it does
not divide yz. Hence

bp = y + z ≡ (x + y) + (x + z) = ap + cp mod 2p + 1.

This means once again as before that one of a, b, c must be divisible by 2p + 1.
As 2p+1 divides x and not y and Z, it is clear that 2p+1 divides b. Thus, y+z
is a multiple of 2p+1 which we write as z ≡ −y mod 2p+1. As yp +zp = (bB)p,
we get

(bB)p = yp−1 − yp−2z + · · ·+ zp−1 ≡ pyp−1 mod 2p + 1.

As 2p + 1 does not divide bB, we get

pyp−1 ≡ ±1 mod 2p + 1.
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But ap = x + y ≡ y mod 2p + 1. Since y is a p-th power modulo 2p + 1 of
something which is coprime to 2p+1, we must have (why?) p ≡ ±1 mod 2p+1,
an impossibility.

Definition. A Dedekind domain (DD for short) is an integral domain A in
which all ideals are finitely generated (i.e., A is Noetherian), elements of the
quotient field of A which are not in A do not satisfy any monic polynomial over
A (i.e., A is integrally closed) and all nonzero prime ideals are maximals (i.e.,
A is of dimension 1.)

Exercises.
(a) Any PID is a DD.
(b) Z[X] is not a DD.

A finite extension K of Q is usually called an algebraic number field and the
integral closure of Z in K (that is, the set of a ∈ K which satisfy a monic
integral polynomial) is called its ring of integers. It is easy to see that K is
the quotient field of its ring of integers OK . Also, each nonzero ideal I in OK

contains some natural number and if I is a prime ideal, it contains a unique
prime number.
For, if 0 6= a ∈ I satisfies an + an−1a

n−1 + · · ·+ a1a + a0 = 0 with ai ∈ Z, then
a0 ∈ I ∩ Z. Moreover, if I is prime, some prime factor of a0 must be in I; if
there are two such primes p, q then the GCD 1 would also be in I.

Proposition. The ring of integers in any algebraic number field is a DD. More
generally, if A is a DD and L is a finite extension of the quotient field K of A,
then the integral closure B of A in L is a DD.
Proof when L/K is separable.
We already know that B must have dimension 1 and must be integrally closed.
To show that B is Noetherian, we prove the stronger statement that B is an
A-submodule of a free A-module of rank n = [L : K]. If this is proved, it
would follow that B is a Noetherian A-module. Any ideal of B is, in particular,
an A-submodule of B and, therefore, finitely generated as an A-module (and
therefore as a B-module). Thus, it suffices to show that B is an A-submodule
of a free A- module of rank n. To see this, let e1, · · · , en be any K-basis of L
lying in B (Why is it possible to choose such a basis?). Then, if e∗1, · · · , e∗n is its
dual basis with respect to the trace form i.e., if TrL

K(eie
∗
j ) = δij , then any x ∈ L

is of the form
∑

i Tr(xei)e∗i . If x ∈ B, then all the coefficients Tr(xei) ∈ A as
they are integral over A. Therefore, B ⊂ ∑

i Aei which is a free A-module of
rank n (as ei’s are linearly independent over K). Thus, the proof is complete.

Remarks
It can happen that OL is not a free OK-module for number fields K ⊂ L.

Definition. If A is an integral domain and if K denotes its quotient field,
one defines a fractional ideal to be a non-zero A-submodule I of K such that
I ⊂ d−1A for some d 6= 0 in A. A principal fractional ideal is the A-module xA
for some x ∈ K.
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Remarks.
(a) Each finitely generated A-submodule of K is a fractional ideal.
(b) If A is Noetherian, then fractional ideals are none other than the finitely
generated A-submodules of K.
(c) If I, J are fractional ideals, then so are I ∩ J, I + J, IJ . Moreover, IJ = JI
and I(JK) = (IJ)K.
Warning :
Although fractional ideals have several properties similar to usual ideals, it is
not true generally that IJ ⊂ I ∩ J .

Proposition. Let A be a DD and let P be a non-zero prime (= maximal) ideal.
If K denotes the quotient field of A, then the set

P ′ := {x ∈ K : xP ⊂ A}
is a fractional ideal of A and properly contains A. Further, P ′ is the unique
fractional ideal such that PP ′ = P ′P = A.
Proof.
Proof. It is trivial to see that P ′ is an A-module. Moreover, evidently P ′ ⊂
d−1A for any d 6= 0 in P . Thus, P ′ is a fractional ideal and clearly contains A.
We shall show now that A 6= P ′. For this, we make use of the following:
Claim: Every non-zero ideal of A contains a finite product of non-zero prime
ideals.
The claim is proved as follows. If there are exceptions to the claim made above,
consider the family of ideals which fail to contain a product as claimed. As A is
Noetherian, there exists a maximal such ideal M . So, M itself cannot be prime.
If ab ∈ M with neither a nor b in M , then the ideals M + (a) and M + (b)
contain products of prime ideals. As M contains their product, M contains
a product of prime ideals, which contradicts our assumption. Therefore, the
claim is indeed true. Now, let a 6= 0 be in P . Then, the ideal (a) ⊃ P1P2 · · ·Pn

with n minimal possible and Pi’s non-zero primes. So, P ⊃ P1 · · ·Pn. As P
is prime, we have P ⊃ Pi for some i, say P ⊃ P1. As Pi are maximal, we
obtain P = P1. Writing I = P2 · · ·Pn or A according as n > 1 or n = 1, we
get I 6⊂ (a) by the minimality of n. Choose any b ∈ I \ (a). Then, ba−1 6∈ A.
Now, PI ⊂ (a) ⇒ Pb ⊂ (a) i.e., ba−1 ∈ P ′. Hence, we have shown that A 6= P ′.
Further, we have P = PA ⊂ PP ′ ⊂ A so that PP ′ is an (actual) ideal of A
containing P . It must, therefore, be either equal to P or to the unit ideal A. If
x ∈ P ′ \ A, we must have xP 6⊂ P . The reason is that, otherwise, A[x]P ⊂ P
and A[x] would be a finitely generated A-module (and so x is integral over A),
a contradiction of the fact that x 6∈ A. This means that xp ∈ P ′P \ P for
some p ∈ P . Thus, PP ′ = A. Finally, if P0 is any fractional ideal such that
PP0 = P0P = A, then P ′ = AP ′ = (P0P )P ′ = P0(PP ′) = P0A = P0 which
proves uniqueness also.

Notation. One uses the notation P−n instead of P ′n for any n. Then, (like
ideals) one has AP−n = P−n.

Theorem. Let A be a DD. Then, any fractional ideal I 6= A can be uniquely
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written as I = Pn1
1 · · ·Pnk

k where ni are non-zero integers and Pi are distinct
prime ideals.
In other words, the unique factorisation can be regained in the sense of ideals
in the ring of integers of a number field.
Proof.
The uniqueness is easy to prove as follows.
If Pn1

1 · · ·Pnk

k = Qm1
1 · · ·Qmr

r , then one can shift all the negative powers on each
side to the other side to obtain an equality where all powers are positive. Then,
a simple induction on the sum of the exponents yields uniqueness.
We prove the existence of the prime ideal decomposition by contradiction. First,
we assume that there is an (actual) ideal I which is not expressible as a product
of prime ideals. By using the fact that A is Noetherien, we obtain an ideal I
which is maximal with respect to this property. Of course, I is not a prime
ideal. If I ⊂ P with P maximal, then I = AI ⊂ P−1I ⊂ P−1P = A. Now, if
x ∈ P−1 \A, then xI 6⊂ I by the argument we saw earlier and, so xi ⊂ P−1I \ I
for some i ∈ I. Hence P−1I is an (actual) ideal which contains I properly.
By the choice of I, we obtain that P−1I must be a product of prime ideals.
Therefore, clearly I itself is such a product, which manifestly contradicts the
choice of I. Therefore, every ideal in A is, indeed, a product of prime ideals.
Finally, if J is any fractional ideal, there is some d 6= 0 in A such that dJ
is an ideal of A. So, if (d) = P a1

1 · · ·P ar
r and dJ = Qb1

1 · · ·Qbs
s , then J =

P−a1
1 · · ·P−ar

r Qb1
1 · · ·Qbs

s . This proves the theorem.

Remarks. (a) Thus, the fractional ideals of an algebraic number field K form a
group and the quotient group modulo the subgroup of principal fractional ideals
is known as the ideal class group of the number field. We shall see shortly that
this is a finite group and its order is called the class number of K. Thus, a finite
group measures the deviation from unique factorisation into prime elements.
More generally, for a non-zero fractional ideal I, one considers the part of the
ideal class group which is generated by prime ideals not dividing I. The quotient
of this by the ray 1+ I is the ray class group ClI(K). That the ray class groups
are also finite is a consequence (exercise to be discussed in tutorial session) of
the finiteness of Cl(K) together with an application of the Chinese remainder
theorem for commutative rings.
(b) In any DD, P ⊃ P 2 ⊃ P 3 · · · is a strictly decreasing chain (exercise).
(c) Every fractional ideal in a DD can be generated by two elements one of
which can be taken to be any arbitrary element.
Idea: Enough to prove this for ideals I; in this case if a ∈ I and if (a) =
P a1

1 · · ·P ar
r and I = P b1

1 · · ·P br
r , then ai ≥ bi ≥ 0. We can use the Chinese

remainder theorem to choose an appropriate element b in I so that I = (a, b).
(d) A DD which has only finitely many prime ideals is a PID.
Idea : If P1, · · ·Pn are all the prime ideals, use the Chinese remainder theorem
to choose xi ∈ Pi, xi 6∈ P 2

i and xi ≡ 1 mod Pj for i 6= j. Then, Pi = (xi).
(d) Z[

√−5] := {a+b
√−5 : a, b ∈ Z} is not a PID as it is not a UFD. Therefore,

by (c), it follows that there are infinitely many prime numbers (!)
Thus, the infinitude of prime numbers is a consequence of algebraic number
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theory !

An application :
Let us now use the uniqueness of decomposition into ideals to solve the equation
y2 = x3 − 2 in integers.
It can be proved that Z[

√−2] which is the ring of integers of Q(
√−2) is a PID.

In fact, it is even a Euclidean domain as can be proved using the size function
N(a + b

√−2) = a2 + 2b2.
Now, for any possible solution, let us read the equation mod 8; it follows that
both x and y must be odd.
Write x3 = y2 +2 = (y +

√−2)(y−√−2). The ideals (y +
√−2) and (y−√−2)

must be coprime. Otherwise we can find a (usual) integer n dividing both these
elements in Z[

√−2] and, this implies that n divides 2
√−2; then the norm of n

would be a factor of 8 whereas it divides y2 + 2 which is odd.
Thus, by the uniqueness of factorisation into ideals, both (y +

√−2) and (y −√−2) must be cubes of ideals. As they are principal, the elements y +
√−2

and y − √−2 must themselves be cubes of elements upto units. Of course,
the units in Z[

√−2] are just 1 and −1 both of which are units. Writing out
y +

√−2 = (a + b
√−2)3, we get

y = a3 − 6ab2,

1 = b(3a2 − 2b2).

It trivially follows that b = 1 and a = ±1. Therefore, the solutions are (x, y) =
(3,±5).

Prime decomposition in extension fields

Let K be an algebraic number field and OK be its ring of integers. One has the
following very interesting fact :
Proposition.
A DD can be a UFD only if it is a PID.
Proof.
Let A be a DD which is also a UFD. To show it is a PID, it suffices to show that
prime ideals are principal (Exercise - why?). Let P be a non-zero prime ideal of
A and let 0 6= a ∈ P . Write a = pa1

1 pa2
2 · · · par

r where pi are irreducible elements.
Now pi ∈ P for some i as P is a prime ideal. So (pi) ⊆ P . But evidently (pi) is
a nonzero prime (=maximal) ideal. Hence P = (pi).

Definition. For a field extension L/K of degree n, and an n-tuple of elements
v1, · · · , vn of L, one defines the discriminant of the n-tuple v1, · · · , vn to be the
element DL

K(v1, · · · , vn) = det(M) of K where Mij = TrL
K(vivj). This is an

important concept, and let us start with a few easy exercises to see its use.

Exercises. Let L,K, vi be as above.
(a) Show that DL

K(v1, · · · , vn) 6= 0 if, and only if, v1, · · · , vn form a K-basis of
L.
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(b) If K = Q and vi form a Z-basis of the ring of integers (this always exists
as we observed), then DL

K(v1, · · · , vn) is an integer which is independent of the
choice of the Z-basis.
(c) If σ1, · · · , σn are the K-embeddings of L in C, then DL

K(v1, · · · , vn) =
det(N)2 where Nij = σi(vj).

Definition. The discriminant DK of an algebraic number field K is the dis-
criminant of any Z-basis of its ring of integers. By the exercise (b) above, it
is well-defined. Moreover, it is clear that if {v1, · · · , vn} are in OK and satisfy
DK = DK

Q (v1, · · · , vn), then {vi} form an integral basis (Why?).

Exercise. (a) For a square-free integer d, show that the discriminant of Q(
√

d)
is d or 4d according as whether d ≡ 2, 3 mod 4 or d ≡ 1 mod 4.
(b) Let K = Q(α) be an algebraic number field. Suppose the minimal (monic)
polynomial of α is f(X) =

∏n
i=1(X − αi). Then, prove that

DK
Q (1, α, · · · , αn−1) =

∏

i<j

(αi − αj)2 = (−1)n(n−1)/2NK
Q f ′(α)

where N denotes the norm map.
(c) Use (b) to show that for any n, and K = Q(ζn) with ζn a primitive n-th
root of unity, one has DK

Q (1, ζ, · · · , ζφ(n)−1) divides nφ(n).
(d) Let K be an algebraic number field and let α1, · · · , αn be a Q-basis of K
contained in OK , the ring of integers of K. Then,

OK ⊂ {
∑

miαi/d : mi ∈ Z, d|m2
i }

Here d stands for DK
Q (α1, · · · , αn).

Hint: Write any α ∈ OK as
∑

i tiαi with ti ∈ Q. Apply the various embeddings
of K to this equation and solve the system of linear equations by Cramer’s rule.
(e) If K, L have degrees m,n over Q and if KL has degree mn, then OKL ⊂
1
dOKOL where d is the GCD of DK and DL.
Hint: Use the fact (implied by the hypothesis [KL : Q] = mn) that each
embedding of K in C has a unique extension as an embedding of KL which
restricts to the identity on L. Then, use the same idea as for (d).

Lemma. For any positive integer n, consider the field K = Q(ζ) where ζ =
e2iπ/n. Then, OK = Z[ζ].
Proof. By the exercises (c) and (e) above, and the fact that Euler’s phi-function
is multiplicative, it suffices to prove the lemma when n is a power of a prime.

Let us use the notation disc(α) when we talk about DK
Q (1, α, · · · , αm−1) for

some number field K = Q(α) of degree m. Let n = pr and ζ be a primitive n-th
root of unity. From an earlier exercise, we have disc(ζ) = disc(1−ζ). Moreover,
p =

∏
(k,p)=1(1− ζk) as seen by evaluating the corresponding cyclotomic poly-

nomial at 1. Here, the product is over k less than φ(pr). Evidently, 1− ζk is an
associate of 1− ζ for any k coprime to p. Therefore, p equals (1− ζ)φ(pr) upto

7



a unit in Z[ζ]. Now, by an exercise above, every element of OK is of the form
∑

i<φ(pr)

mi(1− ζ)i−1/d,

where d = disc(ζ). Note that d is a power of p. If OK 6= Z[1 − ζ], then there
exists an element x ∈ OK for which not all mi are divisible by d. If all the
mi’s are divisible by p, we can divide them all by p and proceeding this way
we finally arrive at an element in OK of the form x =

∑
i≥j mi(1 − ζ)i−1/p

with j ≥ 1 and mj not a multiple of p. Now, we noted in the beginning of the
proof that p is an associate of (1 − ζ)φ(pr) in Z[ζ]. This means, in particular,
that p/(1 − ζ)j ∈ Z[ζ] ⊂ OK . Hence, we have xp/(1 − ζ)j ∈ OK . Hence, we
get from the expression for x that mj/(1 − ζ) ∈ OK . So, NK

Q (1 − ζ) divides

NK
Q (mj) = m

φ(pr)
j i.e., p|mj , which is a contradiction. This proves the lemma.

Some definitions. Let A be a DD, K its quotient field and L a finite, separable
extension. Let B denote the integral closure of A in L. For any non-zero prime
ideal P of A, as B is a DD, one can write PB = P e1

1 · · ·P eg
g where all ei > 0.

The integer ei is called the ramification index of Pi and sometimes denoted by
e(Pi/P ) to make its dependence clear. P is said to be unramified in B if each
ei = 1; otherwise it is said to be ramified. P is said to be totally ramified
if g = 1 and e1 = [L : K]. The primes Pi lie over P and these are all the
primes lying over P . The degree fi (denoted by f(Pi/P )) of the field extension
B/Pi ⊃ A/P is evidently at the most equal to the degree of L over K. The
finite field A/P (it is indeed finite) is called the residue field of K at P . The
field extension B/Pi ⊃ A/P is called the residue field extension at Pi and fi is
called the residue field degree of Pi over P or the relative degree of Pi over P .

Proposition. Let A be a DD, K its quotient field and L a finite separable
extension. Let B denote the integral closure of A in L. For a non-zero prime
ideal P of A, writing PB = P e1

1 · · ·P eg
g we have

∑g
i=1 eifi where fi = [B/Pi :

A/P ].
Proof.
The trick is to localize at P i.e. consider S−1A and S−1B where S = A \ P .
Now S−1B is the integral closure of S−1A in L, and S−1A/S−1P ∼= A/P . Note
also that PS−1B = Qe1

1 · · ·Qeg
g where Qi = PiS

−1B and that S−1B/Qi
∼= B/Pi

Thus, to prove the proposition we may replace A,B by S−1A,S−1B. In this
case, A,B are PIDs as they are DDs with only finitely many primes! Therefore,
B which is a submodule of a free A-module is, itself, free of rank n (the rank is n
as B contains a K-basis of L). Let v1, · · · , vn be an A-basis of B. If v̄i denotes
the image of vi modulo PB, we have B/PB =

∑n
i=1(A/P )v̄i. Moreover, if∑n

i=1 āiv̄i = 0 in B/PB, then
∑n

i=1 aivi ∈ PB. This forces each ai to be in P
since vi’s form a basis of B. Thus, v̄1, · · · , v̄n is a basis of the A/P -vector space
B/PB. Thus, dimA/P B/PB = n. Let us count this same dimension in another
way. By the Chinese remainder theorem, one has B/PB = B/

∏
P ei

i
∼= ⊕B/P ei

i

as rings as well as as A/P -vector spaces. We need to count the dimension of
each B/P ei

i . Now, since P ⊂ Pi, we have PP r
i ⊂ P r+1

i for all r ≥ 1. Hence,
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P r
i /P r+1

i is an A/P -vector space. Thus, as A/P -vector spaces, we have

B/P ei
i
∼= B/Pi ⊕ Pi/P 2

i ⊕ · · · ⊕ P ei−1
i /P ei

i

Further, as B is a PID, one can write Pi = (πi). Then, for each r, the multipli-
cation by πr

i gives an A/P -isomorphism from B/Pi onto P r
i /P r+1

i . Hence, we
have dimA/P B/P ei

i = eifi which gives that n =
∑

eifi.

Definition. A maximal ideal P of A is said to split completely in B if ei = 1 =
fi; so PB is a product of n distinct prime ideals.

Remarks.
(a) The e’s and the f ’s multiply in towers.
(b) Let p be a prime, ζ = e2iπ/p and K = Q(ζ). Then, p is totally ramified in
K.
Idea: Show that p =

∏p−1
i=1 (1− ζi) and that each 1− ζi is a unit times 1− ζ.

Proposition.
If, in addition, L/K is a Galois extension, then all the ei’s are equal and all the
fi’s are equal. Hence n = efg for some positive integers e, f, g.
Proof.
The Galois group Gal(L/K) acts transitively on the set {P1, · · · , Pg}. For, if it
does not, there exist i 6= j such that gPi 6= Pj for all g ∈ Gal(L/K). Then,
choose, by the Chinese remainder theorem, an element b ∈ Pj such that b ≡ 1
mod gPi for each g ∈ G. But then the element a = NL

K(b) =
∏

g g(b) is in
A on the one hand, and is in Pj on the other. As A ∩ Pj = P , this means
that

∏
g g(b) ∈ P ⊂ Pi i.e. some g(b) ∈ Pi, which contradicts the choice of b.

Hence, it follows that the Galois group acts transitively. Then, if gPi = Pj ,
the observation PB = g(PB) along with the uniqueness of decomposition into
prime ideals in B yields ei = ej . Therefore, all the ei’s are equal. Finally, if
g(Pi) = Pj , then g induces an A/P -isomorphism from B/Pi to B/Pj and so
fi = fj . The corollary is proved.

The decomposition group of Pi is the subgroup DPi := {g ∈ Gal(L/K) : g(Pi) =
Pi}. The Galois group induces a natural homomorphism θPi from DPi to
Gal((B/Pi)/(A/P )). The kernel TPi is called the inertia group of Pi. If the
inertia group TPi is trivial, one defines the Frobenius element FrPi at Pi as
the inverse image under the isomorphism θPi of the Frobenius automorphism
t 7→ t#(A/P ) which generates Gal((B/Pi)/(A/P )).

Remarks.
(a) The above homomorphism from DPi to Gal((B/Pi)/(A/P )) is surjective.
Idea: Use the Chinese remainder theorem.
(b) The DPi ’s are mutually conjugate and #DPi = ef, #TPi = e for all i.

For any algebraic number field K and a non-zero ideal I, the norm N(I) of I
is defined to be the cardinality of the finite ring OK/I.

Proposition. Let K be an algebraic number field. Then,
(a) if I, J are non-zero ideals, N(IJ) = N(I)N(J).
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(b) if P is a maximal ideal, N(P ) = pf where p is the prime number lying below
P and f = f(P/p).
(c) if L/K is an extension of degree n, then for any non-zero ideal I of OK ,
N(IOK) = N(I)n.
(d) if x 6= 0 is in OK , N((x)) =| NK

Q (x) |.
Proof.
Exercise.

Why is Fermat’s last theorem not trivial to prove?

Let p be an odd prime and ζ = e2iπ/p. The element S =
∑p−1

i=1 (i/p)ζi of
K = Q(ζ) satisfies S2 = (−1/p)p. Hence, every quadratic extension of Q is
contained in a cyclotomic extension.
Now, let K = Q(

√−23), L = Q(ζ) where ζ = e2iπ/23. Then K ⊂ L by the above
remark. Also, 2OK = PP̄ where P = (2, 1+

√−23
2 ) and P̄ = (2, 1−√−23

2 ). If a
prime Q in L lying over P is principal, then P f is principal where f = f(Q/P ).
As P is not principal and P 3 = (−3+

√−23
2 ), P f cannot be principal as f divides

[L : K]. So OL is not a PID.

Indeed, it turns out that for every prime ≥ 23, the ring of integers of the
corresponding cyclotomic field fails to be a PID.

Remarks. When K is the quotient field of a DD A, and L is a finite, separable
extension of K and B the integral closure of A in L, the following remarkable
theorem of Kummer provides a way to read off the decomposition of a prime
ideal in terms of the decomposition of the minimal polynomial of α modulo P .
Here L = K(α) and α ∈ B and the theorem is valid under a mild assumption.

Theorem (Kummer). Let A,K, L = K(α), B, P, f be as before. Assume,
in addition, that B = A[α]. Write f̄ = p̄e1

1 · · · p̄eg
g where p̄i are irreducible

polynomials in (A/P )[X] and f̄ denotes the image of f mod P . Then,

PB = P e1
1 · · ·P eg

g

where Pi’s are prime ideals and f(Pi/P ) = deg(p̄i). Indeed, Pi = PB + (pi(α))
where pi’s are arbitrary lifts of p̄i’s.

Before proceeding to prove it, let us look at some applications to see really how
powerful this is.

Applications of Kummer’s theorem

I. Prime decomposition in quadratic fields

As we saw earlier, if K = Q(
√

d) with d square-free, then OK = Z[α] where
α =

√
d or 1+

√
d

2 according as d ≡ 2, 3 mod 4 or d ≡ 1 mod 4. The minimal
polynomial f is X2 − d in the first case and X2 − X + 1−d

4 in the second. If
d ≡ 2 or 3 mod 4, f(X) = X2−d is a square modulo any prime p dividing d and
also modulo 2. Thus, 2 and primes dividing d are (totally) ramified. If an odd
prime p does not divide d, then f modulo p is reducible or irreducible according

10



as whether d is a square modulo p or not. Thus, these primes, respectively, split
completely and remain inert. Similarly, one can argue for the case X2−X + 1−d

4
corresponding to d ≡ 1 mod 4.
For any odd prime p, denote by (a/p) the Legendre symbol. To sum up :
(a) if p|d, p is (totally) ramified i.e. pOK = P 2 where the prime ideal P =
(p,
√

d),
(b) if p is odd and coprime to d, it is unramified and splits completely or remains
a prime according as whether (d/p) = 1 or not,
(b)′ if d = q is a prime ≡ 1 mod 4, and p is an odd prime, then (q/p) = 1 ⇔
the polynomial X2 − X + 1−q

4 has a solution mod p ⇔ Q(
√

q) is fixed by the
Frobenius Frp ⇔ (p/q) = 1.
(c) if d is odd, 2 is ramified if d ≡ 3 mod 4, splits completely if d ≡ 1 mod 8
and remains a prime if d ≡ 5 mod 8.
(d) One can prove the whole of quadratic reciprocity law by proving a corre-
sponding version of (b)′ for primes ≡ 3 mod 4.

II. Dedekind’s discriminant criterion for ramification

Theorem. Suppose K = Q(α) is an algebraic number field and assume that
OK = Z[α] for some α. Then, a prime p ramifies in K if, and only if, p divides
Disc(K).
Proof.
Let f(X) =

∏
i(X − αi) be the minimal polynomial of α. We have seen that

disc(K) = disc(f) = ±∏
i 6=j(αi − αj). By Kummer’s theorem, a prime ramifies

in K if, and only if, f has a multiple root modulo p. This is so if, and only if,
disc(f̄) ≡ 0 mod p i.e. if, and only if, p divides disc(f). Here f̄ denotes the
reduction of f modulo p.

Proof of Kummer’s theorem.
Consider the ring homomorphisms

A[X] → (A/P )[X] → (A/P )[X]/(p̄i(X))

Call the composite map φi. Note that (A/P )[X]/(p̄i(X)) ∼= (A/P )[αi] for
any root αi of p̄i. Therefore, Ker(φi) is a maximal ideal as φi is evidently
surjective. Moreover, it is clear that P ⊂ Ker(φi) and pi(X) ∈ Ker(φi) for
any arbitrary pi ∈ A[X] which maps to p̄i. Further, it is clear from the
definition of φi that Ker(φi) is the ideal generated by P and pi in A[X].
Now, by the hypothesis, f̄ = p̄e1

1 · · · p̄eg
g which implies that f ∈ (P, pi) =

Ker(φi). Therefore, φi factors through (f) to give a surjective homomorphism
θi : A[X]/(f) → (A/P )[X]/(p̄i(X)). Note that we have assumed that B = A[α]
which gives that A[X]/(f) ∼= B where X maps to α. So, we have obtained
θi : B → (A/P )[X]/(p̄i(X)) which is surjective and has kernel Ker(θi) =
PB + pi(α)B. Thus, Pi :== PB + pi(α)B = Ker(θi) are maximal ideals in
B. As they contain P , they lie over P . Note that f(Pi/P ) = [B/Pi : A/P ] =
dimA/P (A/P )[X]/(p̄i(X)) = degp̄i. We shall prove now that Pi exhaust all the
maximal ideals of B lying over P and have ramification indices equal to ei.
Note first that the assumption f̄ = p̄e1

1 · · · p̄eg
g gives, on comparing degrees that
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∑
i eifi = deg(f) = [L : K]. The same thing also gives for arbitrary lifts

pi that f − pe1
1 · · · peg

g ∈ P [X] which, in turn gives, on evaluation at α, that
p1(α)e1 · · · pg(α)eg ∈ PA[α] = PB. So, if Q is any prime ideal of B lying over
P , we have p1(α)e1 · · · pg(α)eg ∈ PB ⊂ Q. Then, pi(α) ∈ Q for some i. But
then, Pi = PB + pi(α) ⊂ Q and, as both are maximal ideals, they must be
equal.
Finally, let PB = P d1

1 · · ·P dg
g . Then,

P e1
1 · · ·P eg

g = (P, p1(α))e1 · · · (P, pg(α))eg

⊂ PB + (p1(α)e1 · · · pg(α)eg ) = PB = P d1
1 · · ·P dg

g .

Thus, ei ≥ di. As
∑

eifi = [L : K] =
∑

difi, this forces di = ei. The proof is
complete.

The discriminant criterion was generalized by Dedekind to the situation when
the integral closure B of A in a finite, separable extension L may not satisfy the
condition B = A[α] for any α. The following example shows that the condition
B = A[α] may not hold for any α.

Example. Let K denote the unique subfield K of L = Q(ζ31) of degree 6 over
Q. Then, OK 6= Z[α] for any α.
Idea:
In general, if E/F is a finite Galois extension, and D is the decomposition group
at some prime Q of E, then, P = Q ∩ OF splits completely in ED.
Returning to our situation, look at the prime 2 which is unramified. As the
order of 2 modulo 31 is 5, 2 splits in OL into φ(31)/5 = 6 primes. Therefore,
the decomposition group D at any prime of L lying over 2 has order 5. As
Gal(L/Q) is cyclic, it has a unique subgroup of order 5 (indeed, of order any
divisor of 30). Thus the fixed field LD is of degree 6 over Q and must be K.
By the observation made in the beginning, it follows that 2 splits completely
(into 6 primes) in K. Hence, if OK were of the form Z[α], it would follow by
Kummer’s theorem that the minimal polynomial of α would split modulo Q∩Z
into six distinct linear factors. However, over Z/2, there are only two linear
polynomials! This contradiction establishes the validity of the example.

Example.
For any n, let Φn denote the n-th cyclotomic polynomial (i.e. minimal polyno-
mial of e2iπ/n over Q). Note that Xn − 1 =

∏
d|n Φd(X). Let p be a prime not

dividing n and a ∈ Z. Show that p divides Φn(a) if, and only if, a has order n
in (Z/p)∗. Moreover, this happens for some p, a if, and only if, p ≡ 1 mod n.
Hence, there are infinitely many primes p ≡ 1 mod n.
For any n, and any prime p ≡ 1 mod n, p splits completely in the cyclotomic
field Q(ζn) into the prime ideals Pi = (p, ζn− i), where i has order n in (Z/p)∗.

Remarks.
Let K be a number field, A its ring of integers, and suppose that L is a finite
extension of K. Let B denote the ring of integers of L and let P ⊂ A be a
maximal ideal. If PB = (P1 · · ·Pg)e in B, then there are fields E, F such that
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K ⊂ F ⊂ E ⊂ L with [L : E] = e, [E : F ] = f , [F : K] = g. Further, such E,F
exist with the properties: (i) P splits completely in F into the product of the
primes of F lying below P1, · · · , Pg,
(ii) each prime of F lying above P remains a prime in E,
and (iii) each prime of F lying above P totally ramifies in L.
Idea:
Look at the fixed fields under the decomposition group and the inertia group of
any Pi.

Minkowski’s bound and Dirichlet’s unit theorem.

The class group (that is, the group of fractional ideals) of an algebraic number
field is finite. Its order, called the class number, gives a measure of the devia-
tion from the unique factorisation property. Although the finiteness is easy to
establish, the easy proof gives a somewhat large bound. A much better bound
was obtained by Minkowski using a geometric method.

Theorem. For an algebraic number field K, the class group is finite.
Proof. Fix an integral basis {v1, · · · , vn} of OK . Let I 6= 0 be any ideal and
consider the subset S of OK consisting of all

∑n
i=1 mivi with 0 ≤ mi ≤ N(I)1/n.

Evidently, # S > N(I) = # (OK/I). Therefore, there exist a 6= b ∈ S such
that a− b ∈ I. Notice that a− b =

∑
i mivi for some integers mi which satisfy

| mi |≤ N(I)1/n. Let us compute its norm over Q. We have NK/Q(a − b) =∏
i σi(

∑
j mjvj) where σi’s are the embeddings of K in C. Therefore,

| NK/Q(a− b) | =
∏

i

|
∑

j

mjσi(vj) | ≤
∏

i

∑

j

| mj | | σi(vj) | ≤ N(I)C,

where C =
∏

i

∑
j | σi(vj) | is a constant independent of the ideal I; it depends

only on K. Now a − b ∈ I ⇒ (a − b) = IJ for some non-zero ideal J . Thus
NK/Q(a − b) = N(I)N(J) ≤ N(I)C and we get N(J) ≤ C. As J is just
the inverse of I in the class group, it runs through the class group when I
does. Therefore, we have shown that any element of the class group has a
representative ideal whose norm is at the most the constant C. As there are
only finitely many ideals with the norm bounded by an absolute constant, the
theorem follows.

Example. Let K = Q(
√

2). Then, OK = Z[
√

2] has {1,
√

2} as a Z-basis. The
constant C above is C = (1+

√
2)2 = 5.8.... So, every ideal has a representative

I with norm at the most 5. Thus, the prime ideals dividing I must have norm
≤ 5 which means that they are among those lying over 2, 3 and 5. Now, 3, 5
are unramified and must, therefore, be either inert or split. As 2 is not a square
mod 3, 3 remains prime. So is the case with 5 also. Finally, 2 is the square of
the prime ideal (

√
2). Thus, we have shown that every ideal class contains a

representative ideal which is principal. Thus, the class group is trivial, i.e. OK

is a PID.
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The bound given above is somewhat large. One can do rather better; proceeding
as in the proof of the theorem, one can write out the matrix M of a − b with
respect to the basis {v1, · · · , vn}. M =

∑
i miMi where Mi is the matrix of

vi with respect to the same ordered basis. Note that all the entries of Mi

are integers whose absolute values are bounded by a constant depending only
on the basis {vi} and not on the ideal I. Then, by definition, | NK/Q(a −
b) | = | det(M) | ≤ C0N(I). This constant C0 is better than the constant
C in the proof of the theorem. For example, when K = Q(

√−5), we have
C = 10, C0 = 6. But, in fact, a method due to Minkowski gives a much better
bound. In this example, it will give a constant less than 3 which will enable us
to conclude quite easily that the class number is 2.

Definitions. A lattice Λ in the Euclidean space Rn is the Z-span of an R-basis
of Rn. Clearly, the group GLn(R) of invertible n× n matrices acts transitively
on the set of all lattices. Thus, any lattice can be identified with gZn for some
g ∈ GLn(R). Given a lattice Λ, a fundamental parallelotope for it is the set of
vectors {∑i tiei : 0 ≤ ti < 1} for any basis {ei} of Λ. As any two Z-bases are
transforms of each other under a matrix in GLn(Z) = {γ ∈ Mn(Z) : det(γ) =
±1}, the volume of the lattice Λ = gZn is the well-defined non-zero real number
| det(g) |. We write Vol(Rn/Λ) for the volume of Λ.

Lemma. Let K be an algebraic number field. Let σ1, · · · , σr, τ1, · · · , τs, τ̄1, · · · , τ̄s

be the embeddings of K in C. Here, the σi’s take real values and the τj’s take
nonreal values. Then, the map θ : t 7→

(σ1(t), · · · , σr(t), Re(τ1(t)), · · · , Re(τs(t)), Im(τ1(t)), · · · , Im(τs(t)))

from K to Rn embeds OK as a lattice. Its volume is
√
| disc(K) |/2s. In

particular, K embeds densely in Rn.
Proof.
Let v1, · · · , vn be a Z-basis of OK . We show that θ(v1), · · · , θ(vn) are linearly
independent. If we write θ = (θ1, · · · , θn) to mean the obvious, look at the
matrix M with mij = θi(vj). Elementary column operations transform M to
the matrix whose i-th row is

(1/2i)s(σ1(vi), · · · , σr(vi), τ1(v1), τ̄1(vi), · · · , τs(vi), τ̄s(vi))

This gives the result that the determinant of M is (1/2i)s
√

disc(K);
so Vol(Rn/θ(OK)) =

√
| disc(K) |/2s.

Definition and Remarks. Given a positive integer n and non-negative inte-
gers r, s such that r+2s = n, define a norm on Rn by Nr,s(x) = x1 · · ·xr(x2

r+1+
x2

r+2) · · · (x2
n−1 + x2

n). Thus, in the situation of a number field K of degree n
over Q and r, s, θ as above, we have Nr,s(θ(t)) = NK/Q(t) for all t ∈ OK .

Theorem (Minkowski). Every lattice Λ in Rn contains x 6= 0 with Nr,s(x) ≤
n!
nn ( 8

π )sVol(Rn/Λ).

For the proof of Minkowski’s theorem, one needs the following beautiful lemma
on convex bodies which is of independent interest:
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Minkowski’s lemma. Let Λ be a lattice in Rn, E a convex, measurable,
centrally symmetric subset of Rn such that Vol(E) > 2nVol(Rn/Λ). Then, E
contains some non-zero point of Λ. Further, if E is also compact, then the strict
inequality in the hypothesis can be weakened to ≥.
Proof. Let F be a fundamental parallelotope for Λ. Then, we have Rn =⊔

x∈Λ(x + F ). Now, 1
2E =

⊔
x∈Λ( 1

2E ∩ (x + F )). By the hypothesis,

Vol(F ) <
Vol(E)

2n
= Vol(

E

2
) =

∑

x∈Λ

Vol(
1
2
E ∩ (x + F )) =

∑

x∈Λ

Vol((
1
2
E − x) ∩ F )

Therefore, as x runs over Λ, the sets ( 1
2E−x)∩F are not all disjoint. Thus, we

get x 6= y in Λ so that 1
2a − x = f = 1

2b − y for some a, b ∈ E, f ∈ F . Clearly,
then we get 0 6= x− y = 1

2a + 1
2 (−b) ∈ E ∩ Λ. This proves the main assertion.

For the case when E is also compact, one may consider the sets (1 + 1
n )E and

obtain lattice points xn 6= 0 as above. Evidently, then all the xn ∈ 2E ∩ Λ
which is a finite set. Thus, for some n0, xn0 ∈ (1 + 1

n )E for infinitely many n
i.e. xn0 ∈ Ē = E. The proof is complete.

Corollary. Suppose that Ω is a compact, convex, centrally symmetric subset of
Rn such that V ol(Ω) > 0 and such that | Nr,s(a) |≤ 1 ∀ a ∈ Ω. Then, every
lattice Λ contains a non-zero vector x with

| Nr,s(x) |≤ 2n V ol(Rn/Λ)
V ol(Ω)

.

The proof is immediate from Minkowski’s lemma applied to the set E = tΩ
where tn = 2n V ol(Rn/Λ)

V ol(Ω) .

Proof of Minkowski’s theorem. Let Ω be the subset of Rn defined by the
inequality

∑r
i=1 | xi | +2

√
(x2

r+1 + x2
r+2) + · · ·+ 2

√
(x2

n−1 + x2
n) ≤ n. We shall

prove that Ω is convex, and that | Nr,s(a) |≤ 1 ∀ a ∈ Ω. Then, we shall compute
its volume and apply the above corollary.
Step I: Ω is convex
¿From the definition of Ω, it is easy to see that if midpoints of any two points
of Ω are in Ω, then Ω is convex. Let (x1, · · · , xn), (y1, · · · , yn) ∈ Ω. Then, we
have

r∑

i=1

| xi | +2
√

(x2
r+1 + x2

r+2) + · · ·+ 2
√

(x2
n−1 + x2

n) ≤ n,

r∑

i=1

| yi | +2
√

(y2
r+1 + y2

r+2) + · · ·+ 2
√

(y2
n−1 + y2

n) ≤ n.

Adding and using the triangle inequality
√

(a2 + b2) +
√

(c2 + d2) ≥
√

((a + c)2 + (b + d)2)

one concludes that (x1+y1
2 , · · · , xn+yn

2 ) ∈ Ω.
Step II: | Nr,s(a) |≤ 1 ∀ a.
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This is clear from the usual inequality A.M ≥ G.M .
Step III: V ol(Ω) = (2n)n

n! (π
8 )s.

Let Vr,s(t) denote the volume of the set Ωt defined in a similar fashion to Ω but
with n replaced by the real number t > 0. It is easy to see from the definition
that Vr,s(t) = Vr,s(1)tr+2s. Now, if r > 0, then

Vr,s(1) = 2
∫ 1

0

Vr−1,s(1− x)dx

= 2Vr−1,s(1)
∫ 1

0

(1− x)r−1+2sdx =
2

r + 2s
Vr−1,s(1).

Proceeding inductively, one obtains finally that Vr,s(1) = 2r

(r+2s)···(2s+1) .
Similarly, if s > 0, then

V0,s(1) =
∫ ∫

x2+y2≤1/4

V0,s−1

(
1− 2

√
(x2 + y2)

)
dxdy

=
∫ 2π

0

∫ 1/2

0

V0,s−1(1− 2ρ)ρdρdθ.

Once again, iterating inductively, one finally obtains V0,s(1) = (π
2 )s 1

(2s)! . Then,

V ol(Ωt) = tnVr,s(1) = tn2r−sπs 1
n! which gives that V ol(Ω = Ωn) = nn 2n

23s πs 1
n! =

(2n)n

n! (π
8 )s. The proof of Step III and, along with it, that of Minkowski’s theorem,

is complete.

Corollary. Let [K : Q] = n and r, s have the usual meaning. Then,
(a) Every non-zero ideal I contains x 6= 0 with

| N(x) |≤ n!
nn

(
4
π

)s √
| disc(K) | N(I).

(b) Every ideal class contains an ideal I with

| N(I) |≤ n!
nn

(
4
π

)s √
| disc(K) |.

(c) disc(K) > 1 if K 6= Q.
(d) If K 6= Q, then some prime number p ramifies in K.
Proof.
Using the lemma above, OK can be viewed as a lattice in Rn whose volume
has also been computed. Therefore, both (a) and (b) are direct consequences
of Minkowski’s theorem. To prove (c), just observe that the number nn

n! (
π
4 )s >

1
n! (

nπ
4 )n > 1 for n > 1. Finally, (d) follows from Dedekind’s theorem which

showed that prime numbers which divide the discriminant of K must ramify in
K.

Examples. (I) Let K = Q(
√−11).

The discriminant is −11 and the Minkowski bound is 2
π

√
11 = 2.11....
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Look at ideals of norm 2. As 2 remains prime, there are no ideals of norm 2.
Hence the class number is 1.
(II) Let K = Q(

√−5).
Then, the Minkowski bound shows that each ideal class contains a representative
ideal I of norm N(I) ≤ 4

√
5

π < 3. So, one need only consider the ideals lying
above 2 viz., (2, 1±√−5). It is easy to see that these are not principal and thus
it follows that K has class number 2.

Application:
Let us use the fact that K = Q(

√−5) has class number 2 to show that the
equation y2 = x3 − 5 has no integral solutions.
Reading a solution mod 4 tells us that x must be odd. Also, if x, y had a
common prime factor p, then p = 5. But then the powers of 5 dividing y2 and
x3−5 are unequal. Thus, (x, y) = 1. Write (y+

√−5)(y−√−5) = x3, and look
at a prime ideal P dividing both the principal ideals (y +

√−5) and (y −√−5)
in Z[

√−5]. Then P divides (2y). As P divides (x3) and x is odd, P does not
divide (2) (compare norms again). Thus, P divides (y). But then P divides (y)
as well as (x3) = (x)3 which means P divides (x), a contradiction. Thus, the
ideals (y +

√−5) and (y − √−5) are coprime. Since their product is a cube,
both the elements y +

√−5 and y −√−5) are cubes in Z[
√−5] since the only

units are 1 and −1 both of which are cubes.
Writing y +

√−5 = (a + b
√−5)3 in Z[

√−5], we have

1 = b(3a2 − 5b2).

This is impossible in integers a, b. Thus, the equation has no integral solutions.

Dirichlet’s unit theorem

Now, we use Minkowski’s method to find the structure of the units in any
algebraic number field K. Recall that we embedded OK as a lattice Λ0 in Rn

by means of θ : a 7→ (σ1(a), · · · , σr(a), Reτ1(a), Imτ1(a), · · · , Reτs(a), Imτs(a)).
Here n = [K : Q] and σ1, · · · , σr, τ1, τ̄1, · · · , τs, τ̄s are the distinct embeddings
of K in C. Clearly, if a is a unit in OK , then both u and u−1 map to vectors
which are linearly dependent. Thus, one needs to go to a subspace of Rn to be
sensitive to the units.

Lemma. Consider the composite map L in

O∗K ⊂ OK \ 0 θ→ Λ0 \ 0 → Rr+s

where the last map is (x1, · · · , xn) 7→
(log(| x1 |), · · · , log(| xr |), log(x2

r+1 + x2
r+2), · · · , log(x2

n−1 + x2
n) ). Then,

(i) the image of L : O∗K → Rr+s is contained in the hyperplane H of vectors
(x1, · · · , xr+s) such that

∑r+s
i=1 xi = 0.

(ii) L is a homomorphism.
(iii) Im(L) ∼= Zd for some d ≤ r + s− 1.
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(iv) Ker(L) ∼= µ(K), the group of roots of unity in K and O∗K ∼= µ(K)×Zd for
some d ≤ r + s− 1.
Proof. (i) follows since units must have norm ±1. (ii) is obvious. To see that
(iii) holds, let R be any bounded region in H ⊂ Rr+s and let L(u) ∈ R. Then,
all the conjugates of u have absolute values bounded by a constant depending on
R. As the coefficients of the minimal polynomial of u are symmetric functions
of the various conjugates of u, this means that there are only finitely many
polynomials satisfied by units whose images under L lie in the bounded region
R. In other words, R ∩ Im(L) is finite i.e. Im(L) is discrete in H. Now, (iii)
follows by the easy exercise below. The first assertion of (iv) is trivial and the
second one follows because one can check easily that units u1, · · · , ud mapping
under L to a basis of Im(L) have to generate a free abelian group.

Exercise. Show by induction on n that a discrete subgroup of Rm is isomorphic
to Zd for some d ≤ m.

Dirichlet’s unit theorem. O∗K = µ(K)× V where V ∼= Zr+s−1.

In other words, the image of O∗K under L is actually a lattice in H. This
will be seen by actually showing the existence of r + s − 1 units whose images
under L are linearly independent.

Lemma. Fix any k ≤ r + s. Then, ∀ α 6= 0 in OK , there exists β ∈ OK with
| N(β) |≤ ( 2

π )s
√
| disc(K) | and satisfies βi < αi ∀ i 6= k. Here αi, βi denote

the co-ordinates of their images under L.
Proof. Let ci be constants such that 0 < ci < eαi ∀ i 6= k and ck =
( 2

π )s
√
| disc(K) |/ ∏

i 6=k ci. Consider the set Ω ⊂ Rn defined by

| xi |≤ ci, ∀ i ≤ r , x2
r+1 + x2

r+2 ≤ cr+1, · · · , x2
n−1 + x2

n ≤ cr+s.

Then,

Vol(Ω) = (2c1) · · · (2cr)(πcr+1) · · · (πcr+s) = 2nVol(Rn/Λ0).

Applying Minkowski’s lemma, one gets some t 6= 0 in Ω ∩ Λ0. Then, choose
β ∈ OK corresponding to t.

Lemma. Fix any k ≤ r + s. Then, ∃ u ∈ O∗K such that L(u) = (u1, · · · , ur+s)
satisfies ui < 0 ∀ i 6= k.
Proof. Start with any α1 6= 0 in OK and apply the previous lemma to get some
β as above; call that α2. Repetitively, one gets a sequence {αn} in OK such
that for all i 6= k, the i-th co-ordinate of L(αn+1) is less than that of L(αn). By
the lemma, | N(αn) | are bounded above as n → ∞. Therefore, the principal
ideals (αn) are only finitely many. Taking any n < m so that (αn) = (αm), we
have αm = αnu for some unit u. Evidently, u does the job.

The proof of Dirichlet’s unit theorem is completed as follows. Observe that the
units uk, k ≤ r + s, obtained by the previous lemma have the property that the
(r + s)× (r + s) matrix A = (aij) whose k-th row is L(uk) satisfies aij < 0 for
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all i 6= j and each row sums to 0. It is an easy elementary exercise to see that
the rank of A must be r + s− 1.

Remark
Indeed, Dirichlet’s theorem has a more general version. If S is any finite set
of places (equivalence class of valuations) of an algebraic number field which
contains all the archimedean places, then the group of units of the ring OS :=
{a ∈ K : v(a) ≥ 0∀ v 6∈ S} is finitely generated and has rank |S| − 1.
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The Brahmagupta equation and continued fractions

For a natural number d, the Brahmagupta equations x2−dy2 = ±1 (also called
Pell’s equation erroneously - considering that Pell came 1000 years later and
had nothing to do with this equation!) are solved by finding the fundamental
unit of Q(

√
d). The latter problem has been successfully tackled by using the

notion of continued fractions. First, we recall that a continued fraction is an
expression

a0 +
1

a1+
1

a2+
· · · · · · · · ·

which is to be interpreted as the limit of the rational numbers

a0 +
1

a1+
1

a2+
· · · 1

an

as n →∞. The rational number

a0 +
1

a1+
1

a2+
· · · 1

an

is called the n-th convergent of the original continued fraction - the latter is
generally denoted as [a0, a1, · · ·] and the n-th convergent Cn is denoted by
[a0, a1, · · · , an]. It is easy to see that when ai are positive integers, the sequence
{Cn} of n-th convergents does converge. It is also easy to see using the greedy
algorithm that every positive irrational (real) number has a unique continued
fraction expansion with all ai’s positive integers. The crucial property relevant
to us is that a continued fraction of positive integers is eventually perdiodic if
and only if, it converges to an element in a real quadratic field. We will talk
henceforth only of continued fractions with ai’s positive integers. The following
properties are easy exercises :
(i) Writing pn and qn for the numerator and denominator of the n-th convergent
Cn, one has pnqn−1 − qnpn−1 = (−1)n−1.
(ii) The integers pn and qn (coprime by (i)) satisfy:

(
a0 1
1 0

)(
a1 1
1 0

)
· · ·

(
an 1
1 0

)
=

(
pn pn−1

qn qn−1

)

The basic result we need is :

Let d be a square-free positive integer. Let
√

d = [a0, a1, · · · , · · ·] be the C.F. and
suppose it has period n (that is, for some N ≥ 0, ak = ak+n for all k ≥ N and
n is the least such). Then,
all integer solutions of x2 − dy2 = ±1 are given by x + y

√
d = ±(pn−1 +

qn−1

√
d)l for some integer l. Further, if d 6≡ 1 mod 4, then pn−1 + qn−1

√
d is

the fundamental unit of Q(
√

d).

What is to follow - a peek !
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Now, we give a sketch of what is to come later. It can be read after this school.

Abelian class field theory

This is a powerful theory which describes the abelian extensions of an algebraic
number field K in terms of invariants of K itself. We do not discuss it here but
describe some consequences of it. Let us begin with the notion of a reciprocity
law of which the quadratic reciprocity law is an example.
We discussed Kummer’s theorem on the decomposition of prime ideals and saw
that the quadratic reciprocity law could be proved using the ramification of
a prime in quadratic extensions. For instance, the set of odd primes modulo
which the polynomial X2 + 1 has roots, consists precisely of all primes in the
arithmetic progression 4n + 1. This is equivalent to

p ≡ 1 mod 4 ⇔ (
−1
p

) = 1.

Further, we can prove statements like :

p ≡ 1 or 3 mod 8 ⇔ (
−2
p

) = 1.

p ≡ ±1 or ± 3 or ± 9 mod 28 ⇔ (
7
p
) = 1.

Thus, we have a nice criterion to decide when a prime splits completely in a
quadratic extension. The criterion is in terms of some congruences. One of the
principal aims of ramification theory is to give a ‘nice’ criterion for a prime to
split completely in a given extension; one calls such a criterion to be a reciprocity
law. The reason that one is interested in a criterion to decide which primes split
completely is that given K, the set of primes of K which split in L determine
L uniquely. The last fact mentioned is deep in general and the proof requires
class field theory. We describe one particular case.

A Cyclotomic reciprocity law. Let n be a positive integer and p be a prime
not dividing n. Denote by ζ a primitive n-th root of unity. Then, p is unramified
in K = Q(ζ) and splits into φ(n)/f primes where f is the order of p in the unit
group of Z/n and φ is Euler’s phi function. In particular, p splits completely in
K if, and only if, p ≡ 1 mod n.

Primes expressible as a2 + 27b2

Like the quadratic reciprocity law, one has higher power reciprocity laws also.
For instance, from the cubic reciprocity law, we can show that 2 is a perfect
cube modulo a prime p ≡ 1 mod 3 if, and only if, p = a2 +27b2 for some integers
a, b. Using this, it follows for instance that the equation x3 − 2y3 = 23zn has
no solutions in coprime integers x, y, z for any n.

Let f be a monic integral polynomial of degree n. Suppose that f has distinct
roots α1, · · · , αn ∈ C; equivalently, the discriminant disc(f) 6= 0. Let K =
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Q(α1, · · · , αn), the subfield of C generated by the roots. We look at the Galois
group of f , denoted by Gal(f). For instance, if f(X) = X2 − a for some
nonsquare integer a, then K = Q(

√
a) where

√
a denotes a square root of a in

C and G has two elements I, σ where σ interchanges
√

a and −√a. In general,
although G is a subgroup of Sn, the permutations which belong to G are rather
restricted; for example if f is irreducible over Q, then a permutation in G is
necessarily transitive on the αi’s. If p 6 |disc(f), then the decomposition type of
f modulo p gives a partition of n. On the other hand, each element of G has
a cycle decomposition as an element of Sn and, thus defines a partition of n as
well. Frobenius’s wonderful idea is to relate the numbers of such partitions for
a particular type. This will be expressed in terms of a notion of density of a set
of prime numbers.

A set S of primes is said to have density δ if
∑

p∈S
1/p∑

all p
1/p

→ δ as s → 1+. Here

1+ means the limit when s tends to 1 from the right. For instance, any finite
set of primes has density 0. Using this notion of density, we have the :

Frobenius density theorem
The set of primes p modulo which a monic integral, irreducible polynomial f
has a given decomposition type n1, n2, · · · , nr, has density equal to N/O(Gal(f))
where N = |{σ ∈ Gal(f) : σ has a cycle pattern n1, n2, · · · , nr}|.
An application.
Let us show using this that if f is an irreducible integral polynomial which does
not have roots modulo infinitely many primes, then it is linear.
Suppose not; then the theorem shows that each σ has a cycle pattern of the form
1, n2, · · · This means that each element of Gal(f) fixes a root. Since the roots
of f are transitively moved around by Gal(f), this group would be the union of
the conjugates of its subgroup H consisting of elements which fix a root of f ,
say α1. However, it is an elementary exercise that a finite group cannot be the
union of conjugates of a proper subgroup. Thus, in our case H = Gal(f). This
means that Gal(f) fixes each αi and is therefore trivial. That is, f is linear.

There is a stronger result due to Chebotarev. To state Chebotarev’s theorem,
we use the Frobenius map. For any prime number p, the p-th power map Frobp

is an automorphism of the field F̄p which is identity on Fp. Therefore, Frobp

permutes the roots of any polynomial over Fp. Indeed, the Galois theory of
finite fields amounts to the statement that if g is a polynomial over Fp with
simple roots, then the cycle pattern of Frobp viewed as a permutation of the
roots of g coincides with the decompoasition type of g over Fp. In our case, we
start with an integral polynomial f and look at it modulo p for various primes p.
The above basic theory of algebraic numbers shows that whenever p 6 |disc(f),
the automorphism Frobp gives rise to a conjugacy class in Gal(f), called the
Frobenius conjugacy class modulo p.
In Frobenius’s density theorem, one cannot distinguish between two primes
p, q defining different conjugacy classes C(x) and C(y) but some powers of x
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and y are conjugate. For instance, for the polynomial X10 − 1, the decom-
position type modulo primes congruent to 1, 3, 7, 9 mod 10 are, respectively,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1; 1, 1, 4, 4; 1, 1, 4, 4; 1, 1, 2, 2, 2, 2.
Frobenius’s theorem cannot distinguish between primes which are 3 mod 10 and
those which are 7 mod 10; they define different conjugacy classes in Gal(X10−1).
Thus, it would imply that the number of primes ≡ 3 or 7 mod 10 is infinite but
doesn’t say whether each congruence class contains infinitely many primes. This
is what Chebotarev’s theorem asserts.

Chebotarev’s density theorem.
Let f be monic integral and assume that disc (f) does not vanish. Let C be a
conjugacy class of Gal(f). Then, the set of primes p not dividing disc (f) for
which σp ∈ C, has a well-defined density which equals |C|

|G| .

Illustrations of Chebotarev’s theorem

Illustration I.

Look at the imaginary quadratic field Q(i) where i is a square root of −1.
Therefore, for every prime p, the decomposition group Dp is either trivial or the
full Galois group according as Frobp is trivial or not. Now, for a prime p 6= 2,
Q(i)⊗Q Qp is a field precisely when −1 is not a square in Qp. Moreover, in this
case, Dp can be identified with the Galois group Gal(Q(i)/Q) ∼= Z/2. Hence,
Frobp is trvial or not according as −1 is a square mod p or not. The latter is
equivalent respectively to whether p ≡ 1 mod 4 or p ≡ 3 mod 4. Therefore, the
density theorem asserts in this case that there are as many odd primes of the
form 4k + 1 as are of the form 4k + 3.

Illustration II.

Look at the quadratic extension Q(
√

p) of Q for an odd prime p. Now, Gal
(Q(

√
p)/Q) = {1, σ} ∼= Z/2 where σ :

√
p 7→ −√p. An odd prime l 6= 2 either

splits completely or remains a prime accordingly as to whether p is a square
mod l or not. Once again, therefore, for every prime l 6= p, the decomposition
group Dl is either trivial or the full Galois group according as Frobl is trivial
or not.
If l is such that p is a square mod l, then Q(

√
p) ⊗Q Ql is not a field; so the

decomposition group Dl is trivial.
If, on the other hand, p is not a square mod l, then Q(

√
p)⊗Q Ql is a quadratic

extension of Ql and the corresponding Galois group can be naturally identified
with Dl = {1, F robl}.
In other words, Frobl is trivial or not, according as p is, or is not, a square mod
l. The statement of Chebotarev’s theorem in this case is simply that a given
prime p is a square modulo exactly half the proportion of primes.

Illustration III.

For n ∈ N and a primitive n-th root of unity ζn, consider the cyclotomic

23



field extension Q(ζn) of Q. Chebotarev’s theorem, in this case, asserts that for
each a coprime to n, primes in the congruence class a mod n have density 1

φ(n)

where φ(n) is the order of Gal(Q(ζn)/Q). It is not very difficult to show that
the last statement implies Dirichlet’s theorem on prime numbers in arithmetic
progressions.

We state here without proof two results which can be proved with the aid of
Chebotarev’s density theorem. These concrete applications are :
(I) The set of primes which are expressible in the form 3x2+xy+4y2 for integers
x, y, has density 1/5.
(II) The set of primes p for which the decimal expansion of 1/p has odd period,
has density 1/3.
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