INTRODUCTION TO ALGEBRAIC GEOMETRY NOTES

SOURADEEP MAJUMDER

Notations and Conventions

1. Rings and Ideals

1.1. Basics

1.2. Prime and Maximal Ideals
1.3.  Operations on Ideals

1.4. Extension and Contraction
2. Modules

2.1. Basics

2.2.  Operations on Modules
2.3. Finitely Generated Modules
2.4. Exact Sequences

2.5. Tensor Product
Localisation

Chain Conditions

Primary Decomposition
Integral Extensions
Dimension Theory

Affine Varieties

Projective Varieties

O X NG W

CONTENTS

O 0 0 ON Ul =W WN



2 S. MAJUMDER

NOTATIONS AND CONVENTIONS

Z,Q, R, C denote respectively the ring of integers, the field of rational numbers, the field
of real numbers and the field of complex numbers.

Unless otherwise stated a ring will always be commutative with an identity element. Any
ring homomorphism must take the identity element to the identity element.
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1. RINGS AND IDEALS
1.1. Basics.

Definition 1.1.1. A ring A is a set with two binary operations (addition and multiplication)
such that :

(i) Ais an abelian group with respect to addition (denoted by +);

(ii) multiplication (denoted by -) is associative and distributive over addition.
We will only consider rings with an identity element (denoted by 1) with respect to multi-
plication and further the rings are commutativei.e. -y =y -z forall z,y € A.

Remark 1.1.2. If we have 1 = 0 in a ring, then we get the so called “zero” ring.

Definition 1.1.3. A ring homomorphism between two rings is a map between the two sets
which respects addition, multiplication and the identity element.
An isomorphism between two rings is defined in the usual way.

Remark 1.1.4. We have a unique ring homomorphism from Z to any ring. On the other hand
we have a unique map from any ring to the zero ring.

Lemma 1.1.5. Composition of two ring homomorphisms is a ring homomorphism.

Definition 1.1.6. A subset of a ring is called a subring if it is closed under addition and
multiplication and contains the identity element.

Remark 1.1.7. If a subset is a subring then inclusion map is a ring homomorphism.

Definition 1.1.8. An ideal of a ring is a subset which is closed under addition and closed
under multiplication by any element of the ring.

Lemma 1.1.9. Let I be an ideal of a ring A. Then the quotient group A/I inherits a unique multi-
plicative structure from A such that the quotient map m : A — A/I is a surjective ring homomor-
phism.

Definition 1.1.10. Rings of the form A/I with the induced ring structure from A are called
quotient rings.

Proposition 1.1.11. There is a one-to-one order preserving correspondence between the ideals of A
which contain I and the ideals of A/I.

Proposition 1.1.12. Let f : A — B be a ring homomorphism. Then ker(f) is an ideal of A, im(f)
is a subring of B and f induces a ring isomorphism A/ker(f) = im(f).

Theorem 1.1.12.1. Let A be a ring and I be an ideal of A. Then the quotient ring A/I satisfies the
following universal property : for any ring homomorphism f : A — B such that f(I) = 0, there
exists a unique ring homomorphism g : A/I — B such that f = g o w. This property defines the
quotient ring upto unique isomorphism.

Definition 1.1.13. Let A be a ring.

(i) Anelement x € A is called a zero-divisor if there exists a non zero element y € A such
that zy = 0. A ring with no zero-divisors # 0 is called an integral domain.
(ii) Anelement x € A is called nilpotent if for some integer n > 0 we have 2" = 0.
(iii) An element of a ring is called a unit if it has a multiplicative inverse.
(iv) A field is a ring in which 1 # 0 and every non-zero element is a unit.
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Proposition 1.1.14. Let A be a ring # 0. Then TFAE :
(i) Aisa field,
(ii) the only ideals of A are 0 and A,
(iii) any ring homomorphism from A to a non-zero ring is injective.
1.2. Prime and Maximal Ideals.
Definition 1.2.1. Anideal p of Ais called primeifp # Aandzyep =z €p or y € p.
Anideal m of A is called maximal if m # A and there is no ideal a of A such thatm C a C A.
Proposition 1.2.2. Let p, m be ideals of A. Then :
(i) pis a prime ideal < A/yp is an integral domain.
(i) m is a maximal ideal < A/mis a field.
Remark 1.2.3. Maximal ideals are always prime, but the converse is not true in general.
Lemma 1.2.4. Let f : A — B be a ring homomorphism and let q be a prime ideal of B. Then f~'(q)
is a prime ideal of A.
Remark 1.2.5. Inverse image of a maximal ideal need not be maximal.

Theorem 1.2.5.1. Every ring A # 0 has a maximal ideal.

Corollary 1.2.6.

(i) Let a # A be an ideal. Then there is a maximal ideal of A containing a.
(ii) Every non-unit of A is contained in a maximal ideal.

Definition 1.2.7. A local ring is a ring with exactly one maximal ideal. It is usually denoted
by (A, m).

For a local ring (A, m), the quotient field A/m is called the residue field.
Proposition 1.2.8.

(i) Let m # A be an ideal of A such that every element of A — m is a unit. Then A is a local ring
with m being the maximal ideal.

(i) Let m be a maximal ideal of A such that every element of 1 + m is a unit. Then A is a local
ring.

Definition 1.2.9. An ideal generated by a single element is called a principal ideal.
An integral domain in which every ideal is principal is called a principal ideal domain.

Definition 1.2.10. The set of nilpotent elements of a ring is called the nilradical of the ring.
For a ring A we denote its nilradical by Nil(A) or 1/0.

Proposition 1.2.11. Let A be a ring. Then Nil(A) is an ideal of A and A/Nil(A) has no nilpotent
elements.

Proposition 1.2.12. Let A be a ring. Then Nil(A) is the intersection of all the prime ideals of A.

Definition 1.2.13. The intersection of all the maximal ideals of a ring is called its Jacobson
radical.
For a ring A we denote its Jacobson radical by J(A).

Proposition 1.2.14. z € J(A) & 1 — zy isa unit forall y € A.
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1.3. Operations on Ideals.

Definition 1.3.1. Given any family {a;};c; (possibly infinite) of ideals of A we define their
sum to be :

Z a; = {Z xi:x; € a; Vi € I and almost all of the z; are zero}.
iel iel
It is the smallest ideal of A which contains all the ideals a;.

Remark 1.3.2. The intersection of any family {a; };c; of ideals is an ideal.

Definition 1.3.3. Given any finite family {a; },c; of ideals of A we define their product to be :
Hai:{Hxi::ri ca; ViGI}
i€l i€l

Remark 1.3.4. We can talk about the powers a” (n > 0) of any ideal a. By convention a’ = A.

Proposition 1.3.5.
(i) The three operations defined above are all commutative and associative.
(ii) a(b + ¢) = ab + ac for any ideals a, b, c.
Definition 1.3.6. Two ideals a, b are said to be coprime (or comaximal) if a + b = A.

Definition 1.3.7. Given a family {A;}ic4 of rings we define their direct product to be :

HAZ' = {(xi)iel cx; € A; Vioe I}.

el
We define addition and multiplication to be componentwise. Then [[,.; A; is a commutative
ring with identity element (1);c;.

Theorem 1.3.8. Let A be aring and ay, ..., a, ideals of A. We can define a homomorphism

n
gb A — H A/al
i=1
by the rule ¢(z) = (x + a1, ...,z + ay). Then :
(i) if a;, aj are coprime whenever i # j, we have [ [, a; = (i, ai;
(i) ¢ is injective < (', a; = (0);
(iii) ¢ is surjective < a;, a; are coprime whenever i # j.
Proposition 1.3.9. Let p1, ..., p, be prime ideals and let a be an ideal such that a C |J;"_, p;. Then
a C p; for some i.

Proposition 1.3.10. Let ay, ..., a, be ideals and let p be a prime ideal such that p D (., a;. Then
p D a; for some i. If p = (i a; then p = a; for some 1.
Definition 1.3.11.
(i) Let a, b be ideals. Their ideal quotient is defined as (a: b) = {xr € A: zb C a}.
(ii) Let a be an ideal. The annihilator of a is defined as Ann(a) = {z € A : za = 0}.
(iii) The radical of a is defined to be r(a) = {x € A: 2" € a for some n > 0}.
Remark 1.3.12.
(i) Note that r(a) is an ideal. It is also denoted by +/a.
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(ii) Ann(a) = (0: a).
(iii) 7(a) is an ideal.

Proposition 1.3.13.

(1) aC (a:b);
a:b)b Ca;
(a:b):¢c)=(a:bc)=((a:c):b)
Miai ) = (o : b);
5) (a:32;0:) =;(a: b).
Proposition 1.3.14.

(1) r(a) 2 a;

(2) r(r(a)) = r(a),
(3; r(ab) = r(a1b) = r(a)(r(b);

)

(@) (
3 (
(

4) r(a) = (1) & a = (1),

(5) r(a+b) =r(r(a) +7(b));

(6) if p is a prime, then r(p™) = p for all n > 0.
Proposition 1.3.15. The radical of an ideal a is the intersection of the prime ideals which contain a.
Proposition 1.3.16. Let D be the set of zero-divisors of A. Then D = J,_,o Ann(z) = U, . r(Ann(z)).
Proposition 1.3.17. Let a, b be ideals of A such that r(a),r(b) are coprime. Then a, b are coprime.

1.4. Extension and Contraction.

Definition 1.4.1. Let f : A — B be a ring homomorphism. For an ideal a of A we define its
extension a® to be the ideal generated by f(a) in B. For an ideal b of B we define its contraction
b to be the ideal f~1(b).

Lemma 1.4.2. Contraction of a prime ideal is prime.
Remark 1.4.3.
(1) Extension of a prime ideal need not be prime.
(2) Contraction of a maximal ideal need not be maximal.
Proposition 1.4.4.
(1) a Ca® b Db
(2) aé = aece7 b¢ = beee;
(3) There is a bijective correspondence between the set of contracted ideals of A and the set of
extended ideals of B given by a — a® and b — b respectively.

Proposition 1.4.5. Let a1, as be ideals of A. Then :
(1) (a1 +a2)® = af +as;
(a1 Na2)¢ Cafay;
(3) (a1a2)® = afas
(4) (a1 :a2)° C (af : af);
(5) r(a)® C r(a®).
Proposition 1.4.6. Let by, by be ideals of B. Then :
(1 (bl + [12) D b + b5,

2) (b1 b2)¢ = b§ ﬂ bS;
(3) (b1b2)° D b{bS;
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2. MODULES
2.1. Basics.

Definition 2.1.1. Let A be a ring. An A-module is an abelian group M (written additively)
along with a multiplication map A x M — M, (a,x) — a -z, satisfying the following axioms

a-(x+y)=a-z+a-y,(a+b)-z=a-x+b-y,(ab)-x=0a-(b-2),1-2=2x
(a,b € A;z,y € M).
Equivalently, an A-module M is an abelian group together with a ring homomorphism

A — Endap(M), the ring of endomorphisms of the abelian group M.
Remark 2.1.2.

(1) Anideal a of A is an A-module.
(2) If A =k, a field, then A-module = k-vector space.
(3) A = Z, then Z-module = abelian group.
(4) A = k[z] where £ is a field; the A-module = k-vector space with a linear transforma-

tion.

Definition 2.1.3. Let M, N be A-modules. A map f : M — N is an A-module homomorphism
(or is A-linear) if f(z +y) = f(x) + f(y), f(a-z) =a- f(z) foralla € A,z,y € M.
Proposition 2.1.4.
(1) Composition of two A-module homomorphisms is again an A-module homomorphism.
(2) The set Hom4 (M, N) of all A-module homomorphisms from M to N has the structure of an
A-module.
(3) There is a natural isomorphism Homy (A, M) = M.
@) Ifu: M — M isan A-module homomorphism, then we have an induced morphism of
A-modules u* : Homa(M', N) — Hom (M, N) given by u*(f) = f o u.
5)Ifv : N — N is an A-module homomorphism, then we have an induced morphism of
A-modules v, : Hom (M, N) — Hom (M, N') given by v.(g) = v o g.

Definition 2.1.5. Let M be an A-module. A submodule M' of M is a subgroup which is closed
under multiplication by elements of A.

Lemma 2.1.6. Let M’ be a submodule of M. Then the quotient group M/M' inherits a natural
A-module structure from M.

Definition 2.1.7. Modules of the form M /M with the inherited module structure are called
quotient modules.

Proposition 2.1.8. Let M, N be A-modules and let M be a submodule of M.
(1) The natural map 7 : M — M /M’ is a surjective A-module homomorphism.
(2) There is a one-to-one order preserving correspondence between submodules of M which con-
tain M and submodules of the quotient module M /M .
(3) Given any A-module homomorphism f : M — N such that f(M ') = 0, there exists a
unique morphism ' : M/M' — N of A-modules satisfying f = f o n. Quotient modules
are characterized by this universal property.

Definition 2.1.9. Let f : M — N be an A-module homomorphism.
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(1) The kernel of f is the set Ker(f) = {x € M : f(z) = 0}.
(2) The image of f is the set Im(f) = f(M).
(3) The cokernel of f is the set Coker(f) = N/Im(f).

Lemma 2.1.10. Ker(f) is a submodule of M. Im(f) is a submodule of N. Coker(f) is a quotient
module of N.

Proposition 2.1.11. Let f : M — N be an A-module homomorphism and let M’ be a submodule of
M such that M’ C Ker(f). Then we have an induced A-module morphism f': M/M' — N with
Ker(f') = Ker(f)/M’. Further, we have an isomorphism of A-modules M /Ker(f) = Im(f).

Proposition 2.1.12. Let L O M O N be A-modules. Then
(L/N)/(M/N) = L/M
2.2. Operations on Modules.

Definition 2.2.1. Let M be an A-module and let {};};c; be a family of submodules of M.
Their sum ;. ; M; is defined as the set of all sums ) _,_; x; where z; € M; for all i € I and
almost all the z; are zero.

> _icr M; is the smallest submodule of M containing all of the M;’s.

Remark 2.2.2. The intersection (] M; is again a submodule of M.
Proposition 2.2.3. Let My, M be submodules of M. Then (M + M) /My = My /(M () M2).

Definition 2.2.4. Let a be an ideal of A and let M be an A-module. We define the product aM
to be the set of all finite sums ) |, _; a;z; where a; € a,2; € M foralli € I.

It is a submodule of M.
Definition 2.2.5.

(1) Let N, P be submodules of M. We define (N : P) to be the set of all @ € A such that
aP C N. Itis an ideal of A.
(2) We define the annihilator of M to be the set of all a € A such that aM = 0. Itis an
ideal denoted by Ann(M). In fact Ann(M) = (0 : M).
(3) An A-module M is called faithful if Ann(M) = 0.
Lemma 2.2.6.

(1) Let a be an ideal of A such that a C Ann(M). Then M has a natural structure of A/a-
module. If Ann(M) = a, then M is faithful as an A/a-module.
(2) Ann(M + N) = Ann(M)(Ann(N), (N : P) = Ann((NV 4+ P)/N).

Definition 2.2.7. Let {M,},c; be a family of A-modules.

(1) We define their direct product [ [, ; M; to be the set of all families (x;);cr such that z; €
M; for all i € I. [],c; M; has a natural A-module structure given by componentwise
addition and scalar multiplication.

(2) We define their direct sum @), ; M; to be the set of all families (x;);cr such that z; € M;
for all i € I and almost all z; are zero. @),.; M; has a natural A-module structure
given by componentwise addition and scalar multiplication.

Remark 2.2.8. Direct product and direct sum are the same if the index set [ is finite. But it is
not true in general.
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2.3. Finitely Generated Modules.

Definition 2.3.1. Let M be an A-module. A set of elements {z; };¢c; is said to generate M if ev-
ery element of M can be expressed as a finite linear combination of the x;’s with coefficients
in A.

M is said to be finitely generated if it has a finite set of generators.

Definition 2.3.2. A free A-module is one which is isomorphic to an A-module of the form
,c; M;, where each M; is isomorphic to A as an A-module. It is sometimes denoted by A”.

Remark 2.3.3. A finitely generated free A-module is therefore isomorphicto A@---P A (n
summands), which is denoted by A™. By convention A° is the zero module.

Proposition 2.3.4. M is a finitely generated A-module if and only if M is isomorphic to a quotient
of A™ for some n € N.

Definition 2.3.5. An A-module M is said to be finitely presented if M is a quotient of A" for
some n € N and the kernel of the quotient map is a finitely generated A-module.

Proposition 2.3.6. Let M be a finitely generated A-module, let a be an ideal of A, and let ¢ be an
A-module endomorphism of M such that $(M) C aM. Then ¢ satisfies an equation of the form
A+ a1+ ..+ an_1¢ + a, = 0 where the a; € a.

Corollary 2.3.7. Let M be a finitely generated A-module and a be an ideal of A such that aM = M.
Then there exists x = 1(mod a) such that zM = 0.

Corollary 2.3.8. Let M be a finitely generated A-module and a be an ideal of A contained in the
Jacobson radical of A. Then aM = M implies M = 0.

Corollary 2.3.9. Let M be a finitely generated A-module, N a submodule of M and a be an ideal of
A contained in J(A). Then M =aM + N = M = N.

Proposition 2.3.10. Let (A, m) be a local ring with with residue field k. Let M be a finitely generated
A-module. Then

(i) M/mM is naturally a finite dimensional k-vector space.
(ii) Let {z;}}_, be elements of M whose image in M /mM form a k-basis for this vector space.
Then {z;}_, generate M.

2.4. Exact Sequences.

Definition 2.4.1. A sequence of A-modules and A-morphisms

HM@_IMMZAMZJFI_)

is said to be a complex if f; o f;_; = 0, or in other words Im(f;_;) C Ker(f;).
It is said to be exact at M; if Im(f;_1) = Ker(f;). The sequence is called exact if it is exact at

each M.
Lemma 2.4.2.

1) 0 — M L M s exact iff f is injective;

) M L5 M" —s 0 is exact iff g is surjective;

B30 — M LM L M — 0 s exact iff f is injective, g is surjective and Im(f) =

Ker(g).
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Remark 2.4.3. A sequence of the type as the last sequence in the above Lemma is called a
short exact sequence.

Any long exact sequence can be split up into short exact sequences.
Proposition 2.4.4.

(1) Let M' - M - M" — 0 be a sequence of A-modules and homomorphisms. Then it
is exact iff for all A-modules N, the sequence 0 —s Hom(M", N) AN Hom(M, N) -
Hom(M', N) is exact.

(2) Let 0 — N -5 N - N" be a sequence of A-modules and morphisms. Then it is
exact iff for all A-modules M, the sequence 0 —s Hom(M, N') > Hom(M, N) =
Hom(M, N") is exact.

Definition 2.4.5. An A-module M is called a projective module if for any short exact sequence
0— N % N - N" — 0of A-modules, the induced sequence 0 — Hom(M, N') %
Hom(M, N) % Hom(M, N") — 0 is exact.

An A-module N is called a injective module if for any short exact sequence 0 —» M —%
M 5 M" — 0 of A-modules, the induced sequence 0 — Hom(M", N) AN Hom(M, N) SN
Hom(M', N) — 0 is exact.

Proposition 2.4.6. Let

0 M M2 M 0
ol
0 N %Y~ N-—"- N 0

be a commutative diagram of A-modules and morphisms, with exact rows. Then there exists an exact
sequence

0 —> Ker(f') - Ker(f) — Ker(f") N Coker(f') - Coker(f) — Coker(f") — 0
where u, v are restrictions of u, v and u' , v’ are induced by u' v

Remark 2.4.7. This is the so called Snake Lemma. The morphism ¢ is called the boundary
morphism or connecting morphism.

Proposition 2.4.8. We have natural isomorphism of A-modules :
(1) Homy (M, Ny @ N2) =2 Hom 4 (M, N1) x Hom (M, Na);
(2) Homy (M & M2, N) =2 Homy (M, N) x Hom(Ma, N);
(3) Homy (M, Hlel i) = [ e Homa (M, N;);
(4) Homa (P, Mi, N) = [[,c; Homa(M;, N).

Definition 2.4.9. A short exact sequence 0 — M’ Ly M -2 M — 0 of A-modules is
said to be split exact if there exists a morphism h : M — M such that go h = 1.

Proposition 2.4.10. Let 0 — M’ Ly M % M" — 0 bea short exact sequence. TFAE :
(1) the above sequence is split exact;
(2) there exists a morphism m : M — M’ such that f o = L,

(3) we have a natural direct sum decomposition M = f(M')®Ker(M") such that the inclusion
map induces f and the projection map induces g.
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2.5. Tensor Product.

Definition 2.5.1. Let M, N, P be A-modules. A mapping f : M x N — P is said to be A-
bilinear if for each x € M the map y — f(x,y) of N — P is A-linear, and for each y € N the
map z — f(x) of M — P is A-linear.

Theorem 2.5.2. Let M, N be A-modules. Then there exits a pair (T, 0) consisting of an A-module
T and an A-bilinear map 6 : M x N — T with the following universal property :

given any A-module P and any bilinear map f : M x N — P, there exists a unique A-linear
mapping f : T — P such that f = f o 6.

Such a pair (T, 6) is unique upto unique isomorphism.

Definition 2.5.3. The pair (7', 0) as described in the above Theorem is called the tensor product
of M and N. It is denoted by M ®4 N.

Corollary 2.5.4. Let x; € M,y; € N (1 <i < n)besuchthat) , x; ®y; =0in M @4 N. Then
there exist finitely generated submodules My of M and No of N such that ), x; ®y; = 0in My® Ny.

Proposition 2.5.5. Let M, N, P be A-modules. Then there exist unique isomorphisms :
(1) A®a M = M;
(2) M®a N=N®sM;
B) (M®N)®4aP~(M®yP)d (N P);
4) MRAN)®AP=M®4(N®@aP)=ZM®sN®®yP.
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