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Abstract— It is well known that multi-temporal series of SAR data are able     
to provide interesting clues about temporal evolution of some land covers.     
In this work, a per-segment approach based on the use of ancillary Geographic 
Information System data is proposed. Two test cases show the effectiveness of 
the technique and its usefulness for quickly detecting changes in urban areas 
and discriminating to some extent different urban dynamics. 

1 INTRODUCTION 
The availability of long time series of SAR data is a very interesting effect of the long and 
successful missions carried out  by national and international space agencies. ERS-1 and 
ERS-2 has been providing a consistent data set of observation of the earth surface since 
1992, when the first of these two satellites was launched. Similar time series are available 
from the Canadian RADARSAT-1 or from Japanese JERS-1 archives. For each of these 
missions, future coverage is secured by follow-on missions: ENVISAT-1 and Sentinel-1 
for ESA, RADARSAT-2 for the Canadian Space Agency, ALOS for JAXA. Moreover, 
since past and to some extent future data are not the result of systematic acquisitions, 
JAXA has devised (Rosenqvist et al. (2007)), a background mission for the PALSAR 
sensor, meant to overcome this shortcoming.  

Still, the data already in the archives is a huge collection of information which has been 
underexploited so far. This research work is meant to evaluate other means to use these 
data, focusing on a specific environment, i.e. urban areas, and a specific problem, i.e. 
change detection and image mining. 

The definition of a long ``multi-temporal'' SAR data series is basically ``a set of scenes 
of the same area observed by the same SAR sensor on the same track with the same 
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viewing angle". Given the configuration of the ERS missions, and the fact that both 
satellites were placed on the same orbit and carried the same radar sensor, the same 
portion of the earth surface was possibly imaged every 35 days since 1992. A quick search 
in ESA archives shows, for instance, that 11 images were collected by ERS-1 covering the 
town of Pavia in northern Italy from tracks in an ascending orbit. Additionally, 32 images 
were collected by ERS-2, and 30 more by ENVISAT-1 so far. Summing up, there are 73 
images available (and many more considering descending passes) that covers from July 
1992 to July 2008, with time lags generally in the range between 24 hours and 35 days, 
except a few longer gaps. 

Similarly, the entire African continent has been fully covered every one or two months 
by the ERS missions, which means that radar measurements, thanks to their all-weather 
and night-and-day capabilities, offer a continuous record of observations increasingly 
important for regional and/or global models requiring graphically dense inputs available 
from radar data. 

Indeed, many important applications of these long series of data have been already 
designed, the most famous being Differential SAR Interferometry (Colesanti et al. (2003), 
widely used for subsidence monitoring (Ferretti et al. (2000), Berardino et al. (2002)) and, 
more generally, for monitoring changes in terrain/structure heights with a rather long 
temporal scale. Similarly, SAR data series have been used for the analysis of long-term 
behavior of urban areas by means of interferometric coherence (Usai (2000)). These 
applications fully exploited the spatial resolution of the data. They refer also to natural 
phenomena with rather long temporal scale, well captured by the long while often 
discontinuous temporal sampling of the available spaceborne SAR data series.  

Other applications, too, such as forest mapping (Quegan et al. (2000)) and rice 
monitoring (Kurosu et al. (1995), Le Toan et al. (1997)), have proved themselves feasible, 
because the SAR data temporal sampling is adequate to capture the temporal behavior of 
vegetation species. Little or no attempt was done, however, in all these applications to 
exploit the spatial content of SAR images. Fewer attempts were made to analyze temporal 
changes in spatial patterns. Most recent techniques in signal processing (notably, wavelet 
decomposition) have shown that different combinations of spatial and temporal scales 
exist that are capable of characterizing a signal (in this research a natural phenomenon). 
For instance, to complement the already mentioned long-term analysis at the pixel level of 
urban areas, block-level change detection has proved to be effective for quick damage 
assessment after natural disasters (Gamba et al. (2007), Gamba and Trianni (2008)).  

As a matter of fact, there is no general scheme and analysis in technical literature 
designed to track different land covers using long multitemporal SAR sequences. Reason 
is that the spatial scale of each land cover is different, and the temporal behavior is 
different as well. Multitemporal change detection between two dates has been widely 
analyzed at the segment level (Pagot et al. (2007), Pesaresi et al. (2007)), but long 
multitemporal per segment analysis is a rather new research subject. In principle, the 
problem may be approached by using a suitable segmentation of the scene at each date 
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followed by a complex tracking mechanism, like in tracking applications (Nastar and 
Ayache (1996)). SAR scene segmentation is however a very complex task, and even the 
most effective approaches (Oliver and Quegan (1998)) have not been tested on long 
sequences. They are also very dependent on scale parameters connected to the statistical 
properties of the segments. In the experience of the authors (Macri Pellizzeri et al. (2003)) 
it is difficult, especially in inhomogeneous scenes, to find a unique set of parameters. 
Some sets will result in oversegmentation in some portions of the scene and other ones in 
undersegmentation of other parts. Multiple segmentations and thus multi-scale tracking 
would be required.  

This research line, while extremely interesting, is not directly suitable for quick 
multitemporal sequence data mining, for instance looking for sequences with a specific 
land cover change temporal patterns. A simpler way to focus the attention of the analysis 
to the right scale for each land cover is required. To this aim, this work is devoted to the 
analysis of long temporal series of intensity ground range SAR data using Geographic 
Information System (GIS) data. Where GIS data are available, a per-segment analysis 
might be easily performed. In many situations this is exactly what is available for most 
man-made features and for parcel boundaries, both within and outside urban areas. Just to 
give an example, Corine Land Cover (CLC) data, ubiquitous all over Europe, is freely 
available and could be used as a time stamp of a consistent segmentation, at least at a 
regional or national level, of European land covers, according to its scale (1:100,000). 

The methodology to extract spatial information from long temporal SAR series using 
GIS data will be introduced in next section, and results for two test cases will be presented 
in Section III. The focus will be on urban areas and thus on urban change detection, but 
the approach may be adapted to different situations and it could be explored for other 
environments as well, as pointed out in the conclusions. 

2. MULTI-TEMPORAL SAR SERIES AND LAND COVER MAPPING  
Let us assume that an hyper-temporal data series nX is available, with 

{ }1, , , 1n N N∈ . The simplest approach that could be taken with these data is the 

same as per multi-spectral images, where ( ),nX i j has no longer the meaning of a 

``spectral'' response, but it is now the ``temporal'' response of the ground area imaged in 
the  pixel of the area. Unlike multi-spectral images, however, where the bands 

are acquired simultaneously, here the spatial alignment of the pixels belonging to each 
temporal band to the previous and the following bands is not guaranteed. Luckily, this 
problem has been already studied, as for SAR data is concerned, for differential 
interferometric applications (Sansosti et al. (2006).  

( ),i j th−

A second, well-known problem in SAR images is speckle noise; in a per-segment 
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approach, though, despeckling is a less critical step, since recovery of the information 
hidden by speckle noise is entrusted to the spatial analysis. As a matter of fact, joint 
segmentation and despeckling have been already proposed and efficiently implemented 
(Oliver and Quegan (1998)). In a GIS-aided segmentation, however, segments are not 
related to the statistical properties of backscattered SAR signal, since they are 
independently obtained (often from interpretation of optical data). A general speckle-
removing routine is thus a natural option to reduce speckle effects. For a long temporal 
sequence, the most suitable choice is a multitemporal algorithm (Gamba and Trianni 
2008). While the optimal approach would require to compute the complex correlation 
between any pair of images to achieve the largest possible improvement in the Equivalent 
Number of Looks (ENL), the simplified assumption that each image is uncorrelated to the 
previous one allows using the simplified form 

 

( ) ( )
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where Jk is the filtered version of the k-th original image Xk, and kσ  and iσ are the 
intensity mean values, estimated in a MXM neighborhood of the current (x,y) position (M 
to be defined as a function of spatial sampling of the data). 

As noted in (Quegan and Yu (2001)), the assumption is invalid in urban areas, where 
coherence is high over long time periods (Usai (2000)). This means -naturally- that the 
suboptimal approach will not achieve the predicted improvement in these areas; it does 
however contribute to cleaning up the data, and still performs satisfactorily on non-urban 
areas, relevant in our case to e.g. land cover change analysis. Many works on multi-
temporal analysis of urban areas using SAR (Macri Pellizzeri et al. (2003), Gamba and 
Dell’Acqua (2006)) confirm that per-pixel analyses in these environments for 
classification purposes show very poor performances notwithstanding speckle filtering. 

After speckle noise reduction, the following step of the procedure, schematically 
depicted in fig. 1, is GIS-aided segmentation. This basically results into substituting pixel 
values with segment values for any of the bands in the multitemporal sequence. Let us use 
the same notation as in previous equations and let us define s as the generic segment 
inside the set S obtained via the GIS data. Then, the analogue to equ.~(1) would be 

( ) ( )(
( ),

1,s
k

x y ss

J x y F X x y
N ∈

= ∑ ),k      (2) 

where F( ) stands for a generic operator, and Ns is the number of pixels belonging to 
segment s. 

Assuming F( ) as the log( ) operator, the spatial analysis would result in the effect of 
fig. 2(b) for the same sample area in fig. 2(a). In a more general way, and in order to 
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preserve the richness of the original data within any segment, the operator F( ) might be 
chosen to be one or the combination of more measures of the textural information 
pertaining to each segment.  

The more general choice, however, is the variance (or standard deviation) of the 
intensity values. More complex features, e.g. co-occurrence texture measures, would be 
too peculiar to one or another of the land covers which underlies the GIS segments, and 
would make the procedure too class-specific. The variance is instead a basic statistical 
quality of the data belonging to a segment, and thus it may be used to extract information 
which is related to other parameters of any model best fitting the land cover (urban, 
agricultural, forested or other) of the spatial segment under test.  

 

Fig.1: Overall structure of the per-segment approach to the analysis of multi-temporal 
SAR sequences. 
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Fig.2: Subsample of (a) original SAR intensity data and (b) the corresponding GIS-aided 
segmentation result (Logarithmic mean values of backscattered intensity are assigned to 

each segment). 

As stated in the introduction, the significance of such statistic measures on every 
segment would be best if the boundaries were extracted in accordance to some consistent 
segmentation procedure based on the SAR data itself. However, in this work the boundary 
information is obtained from a GIS layer which represents instead a totally independent 
source. This replacement, essential to apply a meaningful segmentation to the 
multitemporal scene, in fact makes the choice of representative parameters less critical. As 
a consequence, since the mean and the standard deviation of the intensity values are well-
known and robust indexes (Oliver and Quegan (1998)) for SAR data in a homogeneous 
segment, in the following we will focus on these. 

3. EXPERIMENTAL RESULTS AND APPLICATIONS TO URBAN AREAS 
The data sets used in this project refer to two different test areas, both in the North of 
Italy, and to two different situations. The first set is composed by a comparatively short 
temporal SAR data sequence, manually co-registered in a small area of interest. The 
second one is instead a much longer SAR sequence on a wider area, obtained as a side 
result of long-term differential interferometric processing.  

The first test set is made of ERS-1 and ERS-2 images over an area of the Lombardy 
region in Northern Italy, centered around the city of Pavia. They were acquired on the 
following dates: 

� August 13th, 1992 (ERS-1), 
� October 22nd, 1992 (ERS-1), 
� June 24th, 1993 (ERS-1), 
� November 21st, 1993 (ERS-1), 
� October 3rd, 1994 (ERS-1), 
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� November 9th, 1994 (ERS-1), 
� July 22nd, 1995 (ERS-1), 
� October 29th, 2000  (ERS-2). 

The original SAR images were collected to study the effects of the 1992, 1993, 1994 
and 2000 floods of the Ticino river, flowing South of Pavia (Dell’Acqua et al. (2004)). 
After a precise manual co-registration, the multitemporal sequence was elaborated by 
using a GIS layer, extracted from the above mentioned Corine Land Cover and referring 
to year 1990. The boundaries of the segments in that layer belonging to the urban land 
cover classes are represented in fig. 3(a), and were used, together with those belonging to 
other classes, as input to the segmentation of the SAR data series. For each segment, as 
exemplified again for some urban areas in fig. 3, the computed statistical values form 
``time trajectories'' able to provide condensed yet useful information. 

Of course, due to the temporal sparsity and short duration of the sequence, the spatio-
temporal analysis of the these time trajectories is relevant for areas whose statistical 
properties are likely to be stable or underwent changes in the considered time frame: For 
this reason, the most useful set of segment to look at is again those belonging to human 
settlements. Fig. 3(b,c) show time trajectories for the logarithmic mean and variance of 
their intensity values, respectively. To make the analysis more significant, in the largest 
towns more segments were considered, while small cities were analyzed as a whole.  

 

Fig.3: The extents of human settlements extracted from the Corine Land Cover for the 
area covered by the first SAR multitemporal data set (a), and temporal trends of 

logarithmic mean (b) and variance (c) values for a few segments. 

The graphs show that of the logarithmic mean values are higher for the homogeneous 
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areas, namely, the centers of the cities. For example, zone 1 refers to the city center of 
Pavia, the biggest town in the area, and the temporal trend for this zone shows that it has 
always the highest backscattered field values in the area. We can also notice that almost 
all of the areas show a regular temporal trend, even considering variance values. The 
sudden changes for some of these areas correspond to the above mentioned flood events 
(Dell’Acqua et al. (2004)). Since some parts of Pavia and other settlements along the 
Ticino river were flooded, the presence of water temporarily changed the backscattering 
properties of the corresponding segments. 

This first test shows therefore that there is some interest in working on temporal 
patterns of SAR intensity focused by means of GIS land cover layers. It may be expected 
that the analysis of a longer image sequence may result in more discriminating power 
among different land cover classes.  

To prove the point, a second data set was considered. It is a long, multi-temporal 
intensity SAR sequence, made out of overlapping portions from 73 ERS-1 or ERS-2 
scenes, recorded between years 1992 to 2000. This temporal sequence is also oddly 
spaced, and time lags as short as 1 day or as long as one year are both found. Since there 
is no real need to know each date of acquisition, they are not reported here. It suffices here 
to say that all the images are precisely co-registered, as a side product of differential 
interferometric processing. The available data portion refers to a geographic area located 
in the North of Italy, spanning between the two cities of Milano and Bergamo, located at 
its Western and Eastern extremes, respectively. The area is a rapid changing one, in terms 
of land cover and land use, with impervious surfaces quickly expanding at the expense of 
arable land. 

Knowledge about the area is again available through a Geographical Information 
System (GIS) data provided for the whole Lombardy region by the Regional Agency for 
Environmental Protection (ARPA Lombardia). These GIS layers are available for two 
dates, year 1999 and 2004, and are the result of the continuous monitoring efforts by the 
regional environmental authorities, in order to control the territory. They were obtained by 
manual photointerpretation of diverse remote sensing data sources, namely aerial 
campaigns and spaceborne VHR optical imagery. The land cover legend used in these 
layers is very detailed (19 classes), but was reduced to 5 basic classes (urban areas, water 
bodies, urban vegetation, seasonal vegetation, other vegetation) for this research work. 

By combining the multi-temporal SAR sequence and the GIS land cover map, a per-
segment analysis can be easily performed, producing time trajectories. As note above 
these trajectories describe changes in backscattered electromagnetic intensity. Thanks to 
the above mentioned temporal despeckling filter, these trajectories should not be affected 
by data noise to an unacceptable extent. However, in order to take into account effects by 
full-developed speckled that may not be completely cancelled by the previous processing 
steps, this work is based just on the comparison among temporal patterns of different 
segments. In other words, we do not trust completely the data, but assume that remaining 
speckle effects at one date will equally affect all segments. 
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First of all, fig.~4 propose different trajectories for ``stable'' segments, i.e.~segments 
that did not undergo any change in their land cover during this period. They were selected 
by means of the available GIS layers. The graphs in fig. 4(a,b) depict logarithmic mean 
and the standard deviation for the full SAR sequence. 

� Urban areas (in red) show the largest values for both the indexes, but 
also a negligible change over time.  This is consistent with the strong 
backscattering effects in urban areas, dominated by double bounces between 
the ground surface and the building walls.  The high variability of the 
urban landscape would have suggested a large variance, but the coarse 
resolution of the data and the ground range projection mask this effect, 
providing a surprisingly low value, and moreover stable along time.  

� Water bodies (in blue) are less stable in their temporal behavior, because of 
Bragg scattering due to wind conditions, but with lower mean values, due to 
their specular scattering effect in the microwave region.  

� Vegetated areas (in green) feature an intermediate behavior, in terms of 
index range, but also with a wide interannual variability. 

It is apparent that the study of these trajectories provides insights about some of the 
physical properties of the land surface in areas belonging to the same land cover class. 
This allows a better characterization of each segment or, in case, a quick check of the 
consistency of the backscattering temporal behavior with the class to which the segment is 
known to belong to. 
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Fig.4: Some of the time trajectories for segments belonging to different land cover classes 
for mean (a) and variance (b) of the logarithmic intensity values (color legend is provided 

in the text), (c) time trajectories for the mean of the logarithmic intensity value of areas 
subject to change towards the ``urban'' land cover class between 1999 and 2004. 

Some complementary -and maybe more interesting- analyses can also be carried out. 
One of these is quick change analysis in urban areas. According to what discussed above, 
urban areas undergoing changes in the time period spanned by the multi-temporal series 
should be detected by looking to urban areas in 2004 with a time pattern that does not fit 
the above highlighted patterns. In the specific case, the approach should be able to detect 
by means of this ``backward analysis'' the areas which changed from rural to urban (or 
from low to high-density urban, or any other change). 

This idea is confirmed by looking at time trajectories of areas labelled as ``urban'' only 
in the 2004 map, shown in fig. 4(c). Please note that in that graph only 21 images are 
considered, referring to the time frame between 1999 and 2000, the only portion of our 
ERS multi-temporal sequence that overlaps with the changes available from GIS maps. A 
visual analysis of these time trajectories shows that they are different from those of stable 
urban segments in fig. 4(a). A more detailed analysis allows extrapolating that changes 
took place at different dates. In fact, while the patterns are similar, there are significant 
differences in the location and shape of the slope change. 

 The above-introduced time trajectories could be considered as the temporal signature 
of each spatial element in the scene, and studied accordingly. Similarly to spectral 
signatures of objects in multispectral images, these temporal signatures in multi-temporal 
SAR sequences could be manipulated for image mining and ``temporal unmixing'', with a 
procedure parallel to spectral unmixing in multiband data. Like multiband optical data are 
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used to estimate the vegetation surface fraction (Schmid et al. (2005)), we could use 
hyper-temporal time trajectories to estimate ``change fractions'', i.e. to evaluate the 
similarity of each of the segment to a known change pattern. 

 

Fig.5:``Temporal unmixing'' of time trajectories looking for changes from rural to urban 
land cover class in the 1999-2000 time frame. 

Just to give here an example, we assume we know the temporal pattern referring to an 
area that changed from arable to urbanized land between 1999 and 2000. This known time 
trajectory (one of those in fig. 4) is used as input to a well-known algorithm for similarity 
checking in multi-spectral and hyperspectral signatures, the Spectral Angle Mapper 
(SAM) classifier. Results are shown in fig. 5, where the red color highlights the most 
similar temporal behavior to the known one. In the background, the image shows the 
similarity of each segment, with lighter grey levels meaning lower similarity values. 
Validation of these segments have been carried out using the GIS maps, showing good 
agreement. 
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4. CONCLUSIONS 
This paper shows that interesting information about land cover temporal patterns may be 
extracted from multi-temporal SAR sequences provided GIS data of the same area is 
available. GIS is able to solve the problem of scale which make date-by-date segmentation 
and segment tracking a highly complex task for SAR data. 

On the contrary, by substituting the data-driven segmentation with a GIS-aided 
focusing on the segments available in available data layers, it may be possible to track the 
temporal behavior of land cover segments without the need of a date-by-date, error-prone 
classification. We stress the fact that, depending on the temporal samples in the sequence, 
the time trajectories may or may not be able to capture temporal features of a specific land 
cover. For urban area applications, given that urban areas usually undergo slow changes in 
time, long unequally sampled multi-temporal sequence are still useful. 

Therefore, we have shown that this approach can be exploited for quick identification 
of temporal trajectories of human settlements and to some extent detect when a specific 
area underwent a change. Moreover, it can be used for a fairly easy mining of the 
temporal SAR intensity sequences, already available in on-line archives. By  looking for 
temporal patterns similar to a known sample, e.g.~a known urban change pattern, similar 
patterns can be located and areas of interest extracted with their temporal behavior. 

So far, the crucial point of the procedure is the availability of an independent 
segmentation of the area, coherent with the actual boundaries between different land 
covers. A need thus emerges to better link the two sources of information (the radar 
backscattered values and the GIS layers), and this is going to be one of the leading 
pathways of the research on this subject in the future. In turn, this would require an 
investigation about different statistical (and presumably textural) features of the SAR 
images to be considered for data interpretation in the per-segment approach. 
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