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Abstract We construct certain elements in the motivic cohomology group H3
M(E × E′, Q(2)), where

E and E′ are elliptic curves over Q. When E is not isogenous to E′ these elements are analogous to
circular units in real quadratic fields, as they come from modular parametrizations of the elliptic curves.
We then find an analogue of the class-number formula for real quadratic fields, which specializes to the
usual quadratic class-number formula when E and E′ are quadratic twists.
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1. Introduction

The classical formulae of Dirichlet and Dedekind give interpretations to the special values
of the zeta functions of number fields. For example, one has

ζ∗
K(0) =

−hKRK

WK
, (1.1)

where ζ∗
K(0) is the first non-zero term in the Taylor expansion around s = 0 of the zeta

function ζK(s), hk is the class number, RK is the regulator, and WK is the number of
roots of unity in K.

In some special cases, one has a more precise expression for the value of the zeta
function. For example, if K is a real quadratic field and χ is its quadratic character of
conductor N , one has

L′(0, χ) = log |Uχ|, (1.2)
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where ξ = e2πi/N and

Uχ =
∏

k mod N
(k,N)=1

(1 − ξk)−χ(k)/2 = N
Q(ξ)
K

(√
1 − ξb

1 − ξ

)

is the norm of a cyclotomic unit called a circular unit. Here b is any non-square modulo N .
This gives the formula

L′(0, χ) = log
∏

k mod N
(k,N)=1

|1 − ξk|−χ(k)/2 =
∑

k mod N
(k,N)=1

− 1
2χ(k) log |1 − ξk|. (1.3)

Beilinson [2], expanding on the work of others, formulated conjectures which gener-
alized part of (1.1). His conjectures give an interpretation of the special values of the
L-functions of an algebraic variety in terms of certain groups associated to the variety.
In particular, Beilinson made the following generalization of the Tate conjecture.

Conjecture 1.1 (Beilinson). Let X be a smooth projective variety defined over Q

and let m be an integer. Let L(H2m(X), s) denote the L-function defined by H2m(X)
and let Bm(X)Q denote the Q-vector space generated by the codimensional m-cycles
modulo homological equivalence. Then

(i) r̃D(Bm(X)Q ⊕ H2m+1
M (X, Q(m + 1))Z) induces a Q-structure on

H2m+1
D (X/R, R(m + 1));

(ii) ords=m L(H2m(X), s) = dimQ H2m+1
M (X, Q(m + 1))Z;

(iii) ords=m+1 L(H2m(X), s) = − dimQ(Bm(X)Q) (Tate);

(iv) L∗(H2m(X), s)s=m ∼Q∗ cX(m).

Here r̃D is a certain ‘thickened’ regulator map which generalizes the usual regulator
map for number fields, H2m+1

M (X, Q(m + 1))Z is the ‘integral’ motivic cohomology, which
is the motivic cohomology of a regular proper model, if it exists. Otherwise there is
an unconditional definition due to Scholl [12], and H2m+1

D (X/R, R(m + 1)) is the ‘real’
Deligne cohomology which is a real vector space of dimension

ord
s=m

L(H2m(X), s) − ord
s=m+1

L(H2m(X), s)

over R. Here L∗(H2m(X), s)s=m is the first non-zero term in the Taylor expansion and
cX(m) is an element of R∗/Q∗ related to the covolume of the image of r̃D. More generally,
the conjecture can be stated for motives—namely individual pieces of the cohomology
group which are, in particular, Galois invariant. A good reference for the background
behind the conjectures is the paper of Schneider [11].

If K is a number field and X = Spec(K) and m = 0, we recover the classical results.
Beilinson proved his conjectures in some special cases, including that of the product of
two modular curves and m = 1, from which they follow for the case of the product of two
Elliptic curves over Q. The aim of this paper is to show that formulae analogous to (1.2)
and (1.3) also exist.
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Theorem 1.2. Let E and E′ be non-isogenous elliptic curves over Q correspond-
ing to modular forms f and g of level N1 and N2, respectively. Let M = gcd(N1, N2)
and N = lcm(N1, N2). Assume N/M �= 1. There is an element Ψ∗(Ξ0(N1, N2)) in
H3

M(E × E′, Q(2)), an analogue of a circular unit, such that

L′(H1(E) ⊗ H1(E′), 1) =
− deg(ψ)

12c(φ)c(φ′)[Γ : Γ0(N/M)]
〈rD(ψ∗(Ξ0(N1, N2))), ωE ∧ ω̄E′〉,

where ψ is the map from X0(N) × X0(N) to E × E′ and c(φ), c(φ′) are the constants
coming from the modular parametrization.

One also has an analogue of (1.3). Let

logq(t) = 1
24 log |qt| +

∞∑
n=1

log |1 − qnt|, (1.4)

where q = e2πiz.

Theorem 1.3. Let E, E′ be non-isogenous elliptic curves over Q corresponding to
modular forms f and g of level N1 and N2, respectively, and let ξ be a primitive (N/M)th
root of unity, where N = lcm(N1, N2) and M = gcd(N1, N2). Then

L′(H1(E) ⊗ H1(E′), 1) = − 1
2

∑
k mod(N/M)
(k,N/M)=1

1
2πi

∫
X0(N)

logq(ξ
k)f(q)g(q)

dq

q

dq̄

q̄
.

Furthermore, one can find elements of H3
M(X1(N)×X1(N), Q(2)) such that the integral

can be interpreted as the regulator of those elements. These elements are analogues of
cyclotomic units.

In fact there appears to be a correspondence between quadratic fields and products
of elliptic curves with the product of non-isogenous elliptic curves behaving like real
quadratic fields and isogenous elliptic curves behaving like imaginary quadratic fields. In
the last section we have a table which illustrates this correspondence.

The proof follows by looking at Ogg’s [10] original proof of the Tate conjecture for
products of two elliptic curves more carefully and using Kronecker’s first limit formula.
We also show that we can recover the usual class-number formula (1.3) by specializing
to the case of the product E × Eχ, where Eχ is a real quadratic twist of E.

2. Part I: special values of L-functions

2.1. Preliminaries

Let E and E′ be the two elliptic curves over Q. Let ωE and ωE′ be Néron differentials
corresponding to the global minimal Weierstrass models. These are defined up to ±1.
Let f and g be the Hecke eigenforms of weight 2 of levels N1 and N2, corresponding to
E and E′, respectively. We can assume that they are normalized newforms of levels N1

and N2, respectively, and we will assume that they are square free.
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Let N = lcm(N1, N2) and let M = gcd(N1, N2). We will think of f and g as modular
forms for Γ0(N). Let φ and φ′ be the modular parametrizations from X0(N) to E and
E′, respectively. Define c(φ) and c(φ′) in Q∗ by

φ∗(ωE) = c(φ)2πif(z) dz and φ′∗(ωE′) = c(φ′)2πig(z) dz,

where by i we denote a choice of a
√

−1 that we make once and for all. It turns out that
c(φ) and c(φ′) are actually in Z\{0}.

Let X0(N) denote the modular curve with level N structure. This is an algebraic
curve defined over Q whose complex points can be identified with the compactification
of the fundamental domain for Γ0(N). On occasion we will also use this to represent the
complex manifold X0(N)(C). Let

f(z) =
∞∑

n=1

anqn and g(z) =
∞∑

n=1

bnqn

be the Fourier expansions of f and g. Define

δ(f, g) := f(z)g(z) dxdy = 1
2 if(z)g(z) dz dz̄,

where z = x + iy. Define the Petersson inner product (f, g) by

(f, g) =
1

[Γ : Γ0(N)]

∫
X0(N)

δ(f, g).

We will use the following two theorems of Ogg [10].

Theorem 2.1 (Ogg). If f and g are normalized of levels N1 and N2, respectively,
and (f, g) �= 0, then f = g (and N1 = N2).

Theorem 2.2 (Ogg). If f =
∑∞

n=1 anqn is a normalized cusp form of square-free level
N and p | N , then ap = ±1.

Let L(H2(E ×E′), s) be the L-function of the product of the two elliptic curves. Then
one has

L(H2(E × E′), s) = ζ(s − 1)2A(s − 1)Lf,g(s − 1), (2.1)

where ζ(s) is the Riemann zeta function, ζN (s) is the same function with the primes
dividing N removed,

Lf,g(s) = ζN (2s)
∞∑

n=1

anb̄n

ns+1 , (2.2)

and A(s) is a term depending on primes dividing N , related to the L-factor at the primes
of bad reduction. In general these factors can be quite complicated, but Ogg [10] proves
a functional equation in a special case. This suggests that the L-factors should be as
follows.

If p | M , then the L-factor is

1
(1 − apbpp−s)(1 − apbpp−(s+1))

,
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while if p | (N/M), it is
1

(1 − apbpp−(s+1) + p−1−2s)
,

at least when E has multiplicative reduction at p. Recall that if p | N , ap is 0, 1 or
−1 depending on whether the reduction is additive, split multiplicative or non-split mul-
tiplicative. Since we have assumed that the levels are square free, all the reduction is
multiplicative.

Remark 2.3. Since bn is in Q, writing b̄n is redundant, but, as in general it is the
complex conjugate that appears in the Rankin–Selberg convolution of two modular forms,
we have chosen to leave it in.

2.2. The Rankin–Selberg convolution

Using the Rankin–Selberg convolution [10] we get the following integral representation
of Lf,g(s):

Φ(s) :=
(

2π√
N

)−2s

Γ (s)Γ (s + 1)Lf,g(s) = 2π
∑
d|N

µ(d)
ds

∫
X0(N)

δ(f, g)E∗
∞

(
Nz

d
, s

)
, (2.3)

where E∗
∞(z, s) is the Eisenstein–Kronecker–Lerch series or the Epstein zeta function:

E∗
∞(z, s) =

(
1
π

)s

Γ (s)
∑

γ∈Γ/Γ∞

Im(γz)s =
(

1
π

)s

Γ (s)
∑′

m,n

ys

|mz + n|2s
.

It converges for Re(s) > 1, has a meromorphic continuation to the entire complex plane
and satisfies the functional equation

E∗
∞(z, s) = E∗

∞(z, 1 − s).

Furthermore, it has a simple pole with residue 1 at s = 1 independent of z. A good
reference for all these facts is Lang’s book Elliptic functions [6].

From this one can see that the residue of Φ(s) at s = 1 is a constant multiplied by
(f, g) and one has the following.

Theorem 2.4 (Rankin). The function

Lf,g(s) = ζN (2s)
∞∑

n=1

anb̄nn−(s+1)

is entire if (f, g) = 0 and is entire except for a simple pole at s = 1 if (f, g) �= 0. In this
case the residue is a rational multiple of (f, g).

Using this, the following theorem holds.

Theorem 2.5 (Ogg). We have Lf,g(1) �= 0 if (f, g) = 0.

Using these results and an observation on the non-vanishing of A(1), Ogg [10] proved
the Tate conjecture.
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2.2.1. Functional equation

We are interested in the value of L∗(H1(E) ⊗ H1(E′), s) at s = 1. For this we need
the functional equation for Lf,g(s).

Theorem 2.6 (Ogg). Let f and g be normalized cusp forms of square-free level N1,
N2. Let N = lcm(N1, N2) and M = gcd(N1, N2). Recall

Φ(s) :=
(

2π√
N

)−2s

Γ (s)Γ (s + 1)Lf,g(s)

and set
Φ+(s) = Φ(s)A(s),

where
A(s) =

∏
p|M

(1 − apbpp
−s)−1. (2.4)

Then
Φ+(s) = Φ+(1 − s).

Furthermore, one has the following expression for Φ+(s):

Φ+(s) = 2π
∑

d|(N/M)

µ(d)
ds

∫
X0(N)

E∗
∞

(
Nz

d
, s

)
δ(f, g). (2.5)

Proof. The formula (2.5) is immediate from the proof of the theorem in [10]. �

Since Φ+(s) satisfies a simple functional equation, it is a good candidate for the com-
pleted zeta function of L(H1(E) ⊗ H1(E′), s + 1). From this one can guess the local
factors at the primes of bad reduction. A generalization of this theorem for arbitrary N

was proved in [7].
From this point on we will treat Φ+(s − 1) as the completed zeta function of L(H1(E)⊗

H1(E′), s) and we will consider three cases, namely, when E is isogenous to E′, when E

is not isogenous to E′ over Q̄, and, finally, when E is not isogenous to E′ over Q, but is
isogenous over some finite, necessarily quadratic, extension. In the third case the level is
no longer square free but we can still handle it.

2.3. E is isogenous to E′

In this case N1 = N2 = N , f = g and N/M = 1. From Rankin’s Theorem, Lf,g(s) =
Lf,f (s) has a pole at s = 1 and, from the motivic decomposition, we have

L(H1(E) ⊗ H1(E), s) = L(H2(E), s)L(Sym2(E), s).

So, from (2.1) above, we have that

L(Sym2(E), s) =
N−(s−1)Φ+(s − 1)

(2π)−2(s−1)Γ (s − 1)Γ (s)ζ(s − 1)
, (2.6)
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and, using the integral expression (2.5), that

Φ+(0) = lim
s→0

2π

∫
X0(N)

δ(f, f)E∗
∞(Nz, s).

Since E∗
∞(Nz, 0) has a simple pole with residue 1 at s = 0 independent of z and ζ(0) = − 1

2
we have

L(Sym2(E), 1) = −4π lim
s→0

1
Γ (s)

∫
X0(N)

δ(f, f)E∗
∞(Nz, s) = −4π[Γ : Γ0(N)](f, f). (2.7)

From the relation between the canonical differential and the modular form one has

[Γ : Γ0(N)](f, f) =
i deg(φ)
8π2c(φ)2

∫
E(C)

ωE ∧ ω̄E′ .

Using this in (2.7) one gets

L(Sym2 E, 1) =
deg(φ)
c(φ)2

1
2πi

∫
E(C)

ωE ∧ ω̄E′ . (2.8)

Remark 2.7. From [4] we have that the constant

cSym2(E)(1) =
1

2πi

∫
E(C)

ωE ∧ ω̄E′ ,

so part (iv) of Beilinson’s conjecture follows from this calculation.

2.4. E is not isogenous to E′ over Q̄

In this case N1 and N2 are square free and N/M is the product of the primes dividing
N1 or N2, but not both. We make the added assumption that N/M �= 1. The expression
for Φ+(s) and the fact that Lf,g(s) has a simple zero at s = 0 show that L(H1(E) ⊗
H1(E′), s) has a simple zero at s = 1 and L′(H1(E) ⊗ H1(E′), 1) = Φ+(0).

To compute Φ+(0) from (2.5), we need to understand the behaviour of the Eisenstein
series E∗

∞(z, s) as s approaches 0. For this we need Kronecker’s First Limit Formula.

Theorem 2.8 (Kronecker). Let

E∗
∞(z, s) = π−sΓ (s)

∑′

m,n

ys

|mz + n|2s

and

η(z) = q1/24
∞∏

n=1

(1 − qn),

where q = e2πiz, and let γ be Euler’s constant. Then

E∗
∞(z, s) = Γ (s)π−s

(
π

s − 1
− log y + 2π(γ − log 2) − 4π log |η(z)| + O(s − 1)

)
. (2.9)
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Proof. The proof of this theorem can be found in Lang [6, p. 273]. �

Using the limit formula, we get an expression for the special value Φ+(0). Let ∆(z)
be the usual cusp form of weight 12 for SL2(Z). We have ∆(z) = η(z)24. Define, for
N = lcm(N1, N2) and M = gcd(N1, N2) as before,

∆N1,N2(z) :=
∏

d|(N/M)

∆

(
Nz

d

)µ(d)

.

This is a modular unit as
∑

d|(N/M) µ(d) = 0 and its divisor is supported on the cusps
of X0(N).

Theorem 2.9. Let f , g, N and M be as above. Then

Φ+(0) = − 1
3π

∫
X0(N)

log |∆N1,N2(z)|δ(f, g). (2.10)

Proof. From the functional equation, we have

E∗
∞

(
Nz

d
, s

)
= E∗

∞

(
Nz

d
, 1 − s

)
.

Combining this with the limit formula (2.9), we have

lim
s→0

E∗
∞

(
Nz

d
, s

)
= lim

s→0
E∗

∞

(
Nz

d
, 1 − s

)

=
1

−s
− log

Ny

d
+ 2(γ − log 2) − 4 log

∣∣∣∣η
(

Nz

d

)∣∣∣∣ + O(−s). (2.11)

Using result (2.5) we have

Φ+(0) = 2π

∫
X0(N)

∑
d|(N/M)

µ(d)
(

1
−s

− log
Ny

d
+ 2(γ − log 2) − 4 log

∣∣∣∣η
(

Nz

d

)∣∣∣∣
)

δ(f, g).

(2.12)
This simplifies to

Φ+(0) = 2π

∫
X0(N)

∑
d|(N/M)

µ(d)
(

−4 log
∣∣∣∣η

(
Nz

d

)∣∣∣∣
)

δ(f, g) (2.13)

as (f, g) = 0, and by assumption (N/M) > 1 so
∑

d|(N/M) µ(d) = 0 and

∏
d|(N/M)

(
N

d

)µ(d)

=
∏

d|(N/M)

(
N

Md

)µ(d)

Mµ(d) = 1.

From the expression for ∆N1,N2(z) we see that the Eisenstein series tends to

1
8 log |∆N1,N2(z)|
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and one has
Φ+(0) = − 1

3π

∫
X0(N)

log |∆N1,N2(z)|δ(f, g). (2.14)

�

Let
ψ : X0(N) × X0(N) → E × E′

be induced by the modular parametrizations φ and φ′ and let ωE and ωE′ be the canon-
ical differentials on E and E′, respectively. Then one has φ∗(ωE) = 2πic(φ)f(z) dz and
φ′∗(ωE′) = 2πic(φ′)g(z) dz, giving

δ(f, g) =
deg(ψ)

8π2ic(φ)c(φ′)
ωE ∧ ω̄E′ .

Here deg(ψ) denotes the degree of the map ψ|diagonal.
Therefore, one has

L∗(H1(E) ⊗ H1(E′), 1)

= Φ+(0)

= − 1
3π

∫
X0(N)

log |∆N1,N2(z)|δ(f, g) (2.15)

= − 2
3π2i

1
2πi

∫
X0(N)

log |∆N1,N2(z)|δ(f, g)

= − 2
3π2i

1
2πi

∫
ψ∗(X0(N))

log |ψ∗(∆N1,N2(z))| deg(ψ)
8π2ic(φ)c(φ′)

ωE ∧ ω̄E′

=
− deg(ψ)

12c(φ)c(φ′)
1

2πi

∫
ψ∗(X0(N))

log |ψ∗(∆N1,N2(z))|ωE ∧ ω̄E′ . (2.16)

3. Part II: elements of K-theory and regulators

Now we show that the special value of the L-function (2.16) can be interpreted as the
regulator of explicit elements of the motivic cohomology of the product of the two elliptic
curves. We will also show a formula analogous to the class-number formula for quadratic
fields.

3.1. Elements of H3
M(X, Q(2))

Let X be a surface defined over Q. The group H3
M(X, Q(2)) has several different

descriptions: first, in terms of a graded piece of K1(X); second, as the higher Chow
group CH2(X, 1); and, finally, as the K-cohomology group H1(X, K2). From the third
description and the Gersten–Quillen resolution, an element of the group is represented
by a formal sum

∑
(C, f), where C are curves on X and f are functions on these curves

subject to the cocycle condition ∑
div(f) = 0.
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This is a generalization of the fact that elements of F ∗ are elements of K1 of a number
field F .

3.2. Products of modular curves

Let N be a square-free integer. In this section we will use the function

∆N (z) :=
∏
d|N

∆

(
Nz

d

)µ(d)

on X0(N) to construct an element of H3
M(X0(N) × X0(N), Q(2)) of the sort described

above, using the diagonal embedding of X0(N) into X0(N) × X0(N).
Since N is square free, the cusps are indexed by the set of divisors. Let Pd denote

the cusp represented by the class of 1/d. From [8] (though such calculations can also be
found in [9]), one has that, for N ′ | N ,

ord
Pd

(∆(N ′)) = N
gcd(d, N ′)
lcm(d, N ′)

, (3.1)

where by ∆(k) we mean the function ∆(kz). Using this we can compute the orders of
various products and quotients of the ∆ function. In particular,

div(∆N ) =
∏
p|N

(p − 1)
(∑

d|N
µ(N/d)Pd

)
.

Define a simple unit to be a modular unit with divisor of the form k(P − Q) for some
cusps P and Q and natural number k. From the Manin–Drinfel’d Theorem, we know
that there is a number κ such that ∆κ

N can be decomposed as a product of simple units.
However, for our purposes, we need a more explicit description.

Theorem 3.1. Let

N =
r∏

i=0

pi and κ =
r∏

i=1

(pi + 1).

The function ∆κ
N is given by

∆κ
N =

∏
d|(N/p0)

Fd,

where Fd are simple units with divisors

div(Fd) = (p0 − 1)µ(N/d)
r∏

i=1

(p2
i − 1)(Pd − Pdp0).

Proof. The proof is algorithmic. Let p0 be a prime dividing N . If N = p0, then
∆N (z) = ∆(p0z)/∆(z), there are two cusps P1 and Pp0 and one has

div(∆p0) = (p0 − 1)(Pp0 − P1).
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In general, suppose that q �= p0 is a prime dividing N . The set of cusps can be partitioned
into two sets of equal cardinality, one corresponding to d | N with (d, q) = 1 and the
other corresponding to d | N with (d, q) = q.

Now consider the product

∏
d|(N/q)

(
∆(qdz)q

∆(dz)

)µ(N/qd)

=
∏

fd(z)µ(N/qd),

where fd(z) = ∆(qdz)q/∆(dz).
We claim that this function has a divisor supported on only those cusps Pd′ with q | d′.

This is because, if (q, d′) = 1,

ord
Pd′

(∆(qd)q) = qN
gcd(d′, qd)
lcm(d′, qd)

= qN
gcd(d′, d)

q lcm(d′, d)
= N

gcd(d′, d)
lcm(d′, d)

= ord
Pd′

(∆(d)).

Similarly, the function ∏
d|(N/q)

(
∆(qdz)
∆(dz)q

)µ(N/qd)

is supported on the set of cusps with (q, d′) = 1. Let gd(z) = ∆(qdz)/∆(dz)q. Repeating
the procedure with fd and gd for all primes q | N , q �= p0, we see that we end up with
a product of simple functions. At every stage we have to multiply the divisor by q + 1,
which gives us our result. �

Remark 3.2.

(1) The choice of the prime p0 is arbitrary, so there are several different ways of decom-
posing a power of ∆N .

(2) This shows that one can find explicit annihilators of divisors of the form Pd − Pp0d

for any prime p0. Since the difference of any two cusps can be expressed as a
sequence of such differences, one can use this to find annihilators of that and hence
a ‘new’ proof of the Manin–Drinfel’d Theorem.

For example, if N = pq, the function

∆pq(z) =
∆(pqz)∆(z)
∆(pz)∆(qz)

can be factored as

∆pq(z) =
∆(pqz)p

∆(qz)
∆(z)

∆(pz)p

∆(pqz)
∆(qz)p

∆(z)p

∆(pz)
with

div
(

∆(pq)p

∆(q)
∆(1)
∆(p)p

)
= (q2 − 1)(p − 1)(Ppq − Pq)

and

div
(

∆(pq)
∆(q)p

∆(1)p

∆(p)

)
= (q2 − 1)(p − 1)(P1 − Pp).



46 S. Baba and R. Sreekantan

3.2.1. An element of the motivic cohomology

Let ∆0(N) denote the diagonal on X0(N) × X0(N) and

Ξ0(N) := (∆0(N), ∆κ
N )−

( ∑
d|(N/p0)

(X0(N)×Pd, Fd ×Pd

)
+(Pdp0 ×X0(N), Pdp0 ×Fd)),

where by Fd ×Pd we mean the function Fd being considered as a function on X0(N)×Pd.
This is an element of H3

M(X0(N) × X0(N), Q(2)) as, from the decomposition above, the
sum of the divisors is a sum of multiples of terms of the form

(Pd, Pd) − (Pdp0 , Pdp0) + (Pdp0 , Pd) − (Pd, Pd) + (Pdp0 , Pdp0) − (Pdp0 , Pd),

which cancel out.

3.2.2. A mild generalization

Let N1 and N2 be two square-free integers and let N = lcm(N1, N2) and let M =
gcd(N1, N2). Assume that N/M �= 1. We now generalize this method to construct an
element in H3

M(X0(N) × X0(N), Q(2)) using the unit ∆N1,N2 . We first observe

∆N1,N2(z) = ∆(N/M)(Mz), (3.2)

where the function ∆(N/M) is being thought of as a function on X0(N).
On X0(N) one has the Atkin–Lehner operators, which act on the cusps as follows [8]:

for d, a dividing N ,
wd(Pa) = Plcm(d,a)/gcd(d,a). (3.3)

We have the following proposition.

Proposition 3.3. Let N1, N2 be square-free integers and let N = lcm(N1, N2) and
let M = gcd(N1, N2). Assume that N/M �= 1. Then

div(w∗
M (∆N/M )) = div(∆N1,N2).

Proof. From (3.2), it suffices to prove that for any a | N and d | (N/M),

ord
Pa

w∗
M (∆(d)) = ord

Pa

∆(Md).

This follows immediately from (3.1) and (3.3). �

Let π denote the degeneracy map π : X0(N) → X0((N/M)). Define an element
Ξ0(N1, N2) of H3

M(X0(N) × X0(N), Q(2)) as follows:

Ξ0(N1, N2) := w∗
M (π∗(Ξ0(N/M))). (3.4)

Note that, when M = 1, this is the same as Ξ0(N).



An analogue of circular units for products of elliptic curves 47

3.3. Regulators

The regulator map is a generalization of the cycle class map to the motivic cohomology
groups. In our case, the regulator of an element of the group H3

M(X, Q(2)) can be realized
as a current on the space of (1, 1)-forms. If Ξ =

∑
(C, f) is an element of H3

M(X, Q(2))
and ω is a (1, 1)-form, the regulator is

〈rD(Ξ), ω〉 =
∑ 1

2πi

∫
C

log |f |ω.

In particular, if ω = f dz ∧ ḡ dz̄, where f and g are modular forms of weight 2 for Γ0(N),
we have

〈rD(Ξ0(N1, N2)), ω〉 =
1

2πi

∫
∆0(N)

κ log |∆N1,N2 |ω,

as, since the form restricts to 0, the integral on the vertical and horizontal curves
Pdp0 × X0(N) and X0(N) × Pd vanish.

Comparing this with (2.15) and observing that, since N/M is square free, κ = [Γ :
Γ0(N/M)], we have the following.

Lemma 3.4. If f and g are eigenforms of weight 2 for Γ0(N) and f �= g, then one has

L′(H1(E) ⊗ H1(E′), 1) =
−2π2i

3[Γ : Γ0(N/M)]
〈rD(Ξ0(N1, N2)), δ(f, g)〉.

Combining this with (2.16) we have our next result.

Theorem 3.5. Let E, E′, f , g be as in (1.2). One has

L′(H1(E) ⊗ H1(E′), 1) =
− deg(ψ)

12c(φ)c(φ′)[Γ : Γ0(N/M)]
〈rD(ψ∗(Ξ0(N1, N2))), ωE ∧ ω̄E′〉,

where ψ is the map from X0(N) × X0(N) to E × E′.

This formula is analogous to the formula (1.2) as it expresses the special value in terms
of a regulator of an explicit element of the self-product of the modular parametrization.
The product of the two non-isogenous elliptic curves is akin to the real quadratic field and
the self-product of the modular parametrization is akin to the cyclotomic field containing
the quadratic field.

Remark 3.6. Beilinson [2] shows that cH1(E)⊗H1(E′)(1) is the regulator of an element
of the motivic cohomology, so part (iv) of his conjecture follows from this calculation.

3.4. A ‘class-number formula’

To add credence to our claim that the element we have is an analogue of a cyclotomic
unit, we show that there is a ‘class-number formula’ analogous to the expression (1.3)
for ζ ′

K(0).
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We have the following curious product formula for our function ∆N (z) which can be
found in [1]:

∆N1,N2(z) =
∑

d|(N/M)

∆

(
Nz

Md

)µ(d)

= qφ(N/M)
∞∏

n=1

Φ(N/M)(qnM )24,

where φ(N) is Euler’s totient function, ΦN (X) is the Nth cyclotomic polynomial, and
q = e2πiz. This follows from the Möbius inversion formula applied to the identity∑

d|(N/M)

log Φd(X) = log(1 − X(N/M)).

The inversion formula implies that

log(Φ(N/M)(X)) =
∑

d|(N/M)

µ(d) log(1 − XN/Md).

We also have

Φ(N/M)(X) =
∏

k mod(N/M)
(k,(N/M))=1

(1 − ξkX),

where ξ = eM2πi/N .
Define the q-logarithm for q = e2πiz as in (1.4). Combining this with the formula for

L′(H2(E × E′), 1), we get the following result.

Theorem 3.7 (an ‘elliptic class-number formula’). Let E, E′, f , g be as in (1.2).
We have

L′(H1(E) ⊗ H1(E′), 1) = − 1
2

∑
k mod(N/M)
(k,N/M)=1

1
2πi

∫
X0(N)

logq(ξ
k)f(q)g(q)

dq

q

dq̄

q̄
.

Proof. From (2.10) and (2.15) we have

L′(H1(E) ⊗ H1(E′), 1) = −4π2i
1

2πi

∫
X0(N)

φ((N/M)) log |q|δ(f, g)

= −4π2i
1

2πi

∫
X0(N)

∞∑
n=1

∑
k mod(N/M)
(k,(N/M))=1

log |1 − ξkqn|δ(f, g).

So the result follows from the definition of logq(t). Note the similarity to (1.3). �

In fact, a finer result holds. Up to a constant C, logq(ξk) is simply the logarithm of a
product of Siegel units [5], gα,β :

logq(ξ
k) = C log

( ∏
a mod N

g(a/N),(k/N)(z)
)

,

which are certain modular units on X1(N). The divisor can be computed using the
formula in [5, p. 40]. Using this one can construct elements of H3

M(X1(N)×X1(N), Q(2))
which are direct analogues of cyclotomic units.



An analogue of circular units for products of elliptic curves 49

3.5. The case where E′ is a twist of E

This case—when E is not isogenous over Q but is isogenous over an extension field,
this necessarily being a quadratic extension—is interesting as it is half way between the
other two cases. We assume the quadratic character χ has conductor r prime to the
level N1 of E. Then the level of E′ = Eχ is N2 = N1r

2. Let Q(χ) be the fixed field of χ.
Since the corresponding modular forms f and fχ are newforms of different levels, their
Petersson inner product is 0, so Lf,fχ

(s) has a simple zero at 0. This is also clear from
the Tate conjecture as there are only two cycles in B1(E ×Eχ) defined over Q, the third
cycle coming from the isogeny being only defined over Q(χ).

The conjectures then imply that there is a non-trivial element of the motivic coho-
mology H3

M(E × Eχ) whose regulator should equal the value of L′
f,fχ

(0) up to some
well-understood factors. Of course there is a cyclotomic element as above, but, in this
case, as for the L-function factors, there is a simpler description, at least in the case
when Q(χ) is real quadratic.

The L-function factors as

Lf,fχ(s) = L(s, χ)L(Sym2(f) ⊗ χ, s + 1), (3.5)

from which one has

L′
f,fχ

(s) = L′(s, χ)L(Sym2(f) ⊗ χ, s + 1) + L(s, χ)L′(Sym2(f) ⊗ χ, s + 1). (3.6)

At s = 0, if χ is even, L(0, χ) = 0 and, from (1.3),

L′(0, χ) = log
∏

k mod r
(k,r)=1

|1 − ξk|−χ(k)/2 =
∑

k mod N
(k,N)=1

− 1
2χ(k) log |1 − ξk| := log |Uχ|, (3.7)

where ξ = e2πi/r. Furthermore, from [3] one has

L(1, Sym2(f) ⊗ χ) ∼Q∗
π(f, f)
g(χ)

, (3.8)

where g(χ) is the Gauss sum. Putting (3.6) and (3.8) together shows that

L′
f,fχ

(0) ∼Q∗ log |Uχ|π(f, f)
g(χ)

. (3.9)

This is nothing but the regulator of the decomposable element (Cχ, Uχ), where Cχ

is the graph of the isogeny and Uχ is the circular unit! This also shows that our class-
number formula can be thought of as a generalization of the usual class-number formula,
as it specializes to the usual class-number formula in this case.

In the case of imaginary quadratic extensions, the zero comes from the twisted sym-
metric square L-function and not from the Dirichlet L-function of χ. Here one has to
understand the value of L′(1, Sym2(f) ⊗ χ). It appears in this case that the only way to
compute it is in terms of the Beilinson elements, as the element does not decompose.



50 S. Baba and R. Sreekantan

Table 1. Correspondence between quadratic fields and elliptic curves

classical object elliptic analogue

quadratic field K E × E′

O∗
K = H1

M(Spec(K)Q(1))Z H3
M(E × E′, Q(2))Z

real quadratic K E × E′ non-isogenous
circular unit Uχ element Ξ0(N1, N2)
L′(χ, 0) L′(H1(E) ⊗ H1(E′), 1)
cyclotomic units in Q(ξN ) ‘Siegel’ elements in X1(N)2

imaginary quadratic field E × E′ isogenous
Gauss sum Flach–Mildenhall elements
class group Mildenhall’s class group
hK order of Mildenhall’s group?
class-number formula ?

4. Epilogue or preface

In Table 1 we summarize the analogy between products of elliptic curves and quadratic
fields. While there appear to be analogues of every classical object, much less is known
about the case of products of elliptic curves. For example, Mildenhall [8] defines a class
group for products of elliptic curves which should be finite, but that is not known in
general. He shows that the group is torsion in the case of E × E, but nothing is known
about any other case.

The analytic class-number formula (1.3) shows that the index of the group of circular
units is the class number of the quadratic field. This is the starting point of the theory
of circular units of Sinnott [13]. Perhaps there is a similar theory here. However, in this
case there is no known analogue of Dirichlet class-number formula. Thaine [14] proved
that the circular units give annihilators of the class group without using L-functions.
Perhaps his methods could be applied to show that the Mildenhall class group is torsion
or finite using the analogues of circular units here. It is likely that Kolyvagin’s theory of
Euler systems would have to be used.
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