ESSENTIAL DIMENSION OF ABELIAN VARIETIES OVER NUMBER FIELDS

PATRICK BROSnan AND RAMESH SREEKANTAN

Abstract. We affirmatively answer a conjecture in the preprint “Essential dimension and algebraic stacks,” proving that the essential dimension of an abelian variety over a number field is infinite.

Let k be a field and let Fields_k denote the category whose objects are field extensions L/k and whose morphisms are inclusions $L \hookrightarrow M$ of fields. Let $F : \text{Fields}_k \to \text{Sets}$ be a covariant functor. A field of definition for an element $a \in F(L)$ is a subfield M of L over k such that $a \in \text{im}(F(M) \to F(L))$. The essential dimension of $a \in F(L)$ is $\text{ed} a := \inf\{\text{trdeg}_k M | M$ is a field of definition for $a\}$. The essential dimension of the functor F is $\text{ed} F := \sup\{\text{ed} a | L \in \text{Fields}_k, a \in F(L)\}$.

If G is an algebraic group over k, we write $\text{ed} G$ for the essential dimension of the functor $L \mapsto H^1_{\text{fppf}}(L, G)$. That is $\text{ed} G$ is the essential dimension of the functor sending a field L to the set of isomorphism classes of G-torsors over L. The notion of essential dimension of a finite group was introduced by J. Buhler and Z. Reichstein. The definition of the essential dimension of a functor is a generalization given later by A. Merkurjev. In [3] (which the reader could consult for further background), a notion of essential dimension for algebraic stacks was introduced. In the terminology of that paper, $\text{ed} G$ is the essential dimension of the stack $\mathcal{B}G$.

The purpose of this paper is to generalize the following result.

Theorem 1 (Corollary 10.4 [3]). Let E be an elliptic curve over a number field k. Assume that there is at least one prime p of k where E has semistable bad reduction. Then $\text{ed} E = +\infty$.

Note that another equivalent way of stating the theorem is to say that $\text{ed} E = +\infty$ for all elliptic curves E such that $j(E) \in \mathbb{Q} \setminus \{\text{algebraic integers}\}$. The result was proved by showing that Tate curves have infinite essential dimension. However, this method does not apply to elliptic curves with integral j invariants. Nonetheless, Conjecture 10.5 of [3] guesses that $\text{ed} E = +\infty$ for all elliptic curves over number fields. This conjecture is answered by the following.

Theorem 2. Let A be a non-trivial abelian variety over a number field k. Then $\text{ed} A = +\infty$.

Note that if A is an abelian variety over C, then $\text{ed} A = 2\text{dim} A$. This is the main result of [2].

The theorem is an easy consequence of the following result whose formulation does not involve essential dimension. To state it, for a positive integer m, let μ_m denote the group scheme of m-th roots of unity; and, for a rational prime l, let μ_{l^∞} denote the union $\bigcup_{n \in \mathbb{Z}_+} \mu_{l^n}$. Theorem 2 will follow.
Theorem 3. Let A be a non-trivial abelian variety over a number field k. Then there is an odd prime ℓ and an algebraic field extension L/k such that

1. $\mathbb{Q}_\ell / \mathbb{Z}_\ell \subset A(L)$.
2. $1 < |\mu_{\ell\infty}(L)| < \infty$.

In the first section, we derive Theorem 2 from Theorem 3. The technique used is a result of M. Florence concerning the essential dimension of \mathbb{Z}/ℓ^n. In section 2, we prove Theorem 3. Here the main results used are those of Bogomolov and Serre on the action of the absolute Galois group $\text{Gal}(k)$ on the Tate module $T/\ell A$.

Note. The recent preprint [7] of Karpenko and Merkurjev provides another way to show that the essential dimension of an abelian variety over a number field is infinite. To be precise, by generalizing the results of that paper slightly, one can use them to compute the essential dimension of the group scheme $A[n]$ of n-torsion points of an abelian variety. In fact, using this idea one can show that the essential dimension of an abelian variety over a p-adic field is also infinite. However, the present proof of Theorem 2 is shorter than a proof using [7] would be and we hope that Theorem 3 is independently interesting.

Acknowledgments. It is a pleasure to thank Z. Reichstein and A. Vistoli for useful conversations and J.–P. Serre for valuable editorial comments. We are also extremely grateful to N. Fakhruddin. After seeing a primitive version of this paper proving Theorems 2 and 3 for elliptic curves (using Serre’s results on Galois representations for ordinary elliptic curves and the theory of complex multiplication for elliptic curves with CM), he pointed out that Bogomolov’s results could be applied to prove the same theorems for abelian varieties.

1. **Theorem 3 implies Theorem 2**

As mentioned above, we will use the following result [6, Theorem 4.1] of M. Florence.

Theorem 4. Let ℓ be an odd prime and r a positive integer. Let L/\mathbb{Q} be a field such that $|\mu_{\ell\infty}(L)| = \ell^r < \infty$. Then, for any positive integer k,

$$\text{ed}_L \mathbb{Z}/\ell^k = \max\{1, k - r\}.$$

Corollary 5. Let A be an abelian variety over a field L of characteristic 0. Let ℓ be an odd prime and suppose that the statements in the conclusion of Theorem 3 are satisfied; i.e:

1. $\mathbb{Q}_\ell / \mathbb{Z}_\ell \subset A(L)$.
2. $1 < |\mu_{\ell\infty}(L)| < \infty$.

Then $\text{ed}A = +\infty$.

Proof. Since L satisfies (2), $\text{ed}_L \mathbb{Z}/\ell^n \to \infty$ as $n \to \infty$. By (1), there is an injection $(\mathbb{Z}/\ell^n)_{L} \to A$. Therefore, by [1, Theorem 6.19], $\text{ed}A \geq \text{ed}_L \mathbb{Z}/\ell^n - \dim A$ for all n. Letting n tend to ∞, we see that $\text{ed}A = +\infty$. \hfill \Box

Proof of Theorem 2 assuming Theorem 3. Let A be a non-trivial abelian variety over a number field k. Using Theorem 3 and Corollary 5, we can find a field extension L/k such that $\text{ed}A_L = +\infty$. This implies that $\text{ed}A = +\infty$ (by [1, Proposition 1.5]).
2. Galois representations and the proof of Theorem 3

Before proving Theorem 3, we fix some (standard) notation. We write $G := \text{Gal}(\overline{k}/k)$ for the absolute Galois group of the number field k. For a rational prime ℓ, we write $T_{\ell}A$ for the Tate-module $\lim_{\rightarrow} A[\ell^n]$ of the abelian variety A. We write $V_{\ell}A$ for $T_{\ell}A \otimes_{\mathbb{Z}_\ell} \mathbb{Q}_\ell$. For an integer n, we write $\mathbb{Z}/n(1)$ for μ_n, and for $j \in \mathbb{Z}$, $\mathbb{Z}/n(j)$ for $\mu_n^{\otimes j}$. We write $\mathbb{Z}_\ell(j) := \lim_{\rightarrow} \mathbb{Z}/\ell^m(j)$.

For any prime p of k where A has good reduction, write T_p for the corresponding Frobenius torus [4, Definition 3.1 and p. 326]. Suppose that A is non-trivial. Then, by [4, Proposition 3.2], T_p contains a rank 1 torus $D \cong \mathbb{G}_m$ such that, for every rational prime $\ell \not\equiv p$, $D(\mathbb{Q}_\ell) \subset \text{GL}_2(V_{\ell}A)$ is the set of homotheties (i.e. scalar matrices).

Lemma 6. Let p be a prime of k such that the reduction A/p of A at p is good but not supersingular and non-trivial. Then the rank of T_p is strictly greater than 1.

Proof. This follows directly from [4, Proposition 3.3].

The following proposition was suggested to us by N. Fakhruddin.

Proposition 7. Let V be an n-dimensional vector space over a field F, and let T be an F-split torus in GL_V of rank at least 2 containing the homotheties. Then there is a non-zero vector $v \in V$ and a rank 1 subtorus $S \subset T$ such that

1. S fixes v;
2. the determinant map $\det : S \to \mathbb{G}_m$ is surjective.

Proof. We can find a basis e_1, \ldots, e_n of V and characters $\lambda_1, \ldots, \lambda_n \in X^*(T)$ such that $i e_i = \lambda_i(t)e_i$ for $t \in T, i \in \{1, \ldots, n\}$. Since $T \subset \text{GL}_V$, the λ_i generate $X^*(T)$. Since T contains the homotheties, det is a non-trivial character of T. Moreover, since $T \subset \text{GL}_V$, the λ_i generate $X^*(T)$. Since $\dim X^*(T) \otimes \mathbb{Q} \geq 2$, it follows that there exists i such that $\lambda_i \not\subset \text{det}^\perp$. Thus we can find a cocharacter ν such that $\langle \nu, \lambda_i \rangle = 0$ but $\langle \nu, \text{det} \rangle \neq 0$. Set S equal to the image of ν in T and $v = e_i$.

Proof of Theorem 3. Let A be a non-trivial abelian variety over a number field k. We can find a prime p in k such that A has good reduction at p but A/p is not supersingular. (This is well-known if $\dim A = 1$: the case where A has CM is standard and otherwise it follows from the exercise on page IV-13 of [8].) Thus the Frobenius torus T_p has rank at least 2. Using Tchebotarev density, it is easy to see that $T_p \otimes \mathbb{Q}_\ell$ is a split torus for all rational primes ℓ in a set of positive density. Thus, we can find an odd rational prime ℓ such that $\ell \not\equiv p$ and $T_p \otimes \mathbb{Q}_\ell$ is split. Now, set $F = k(\zeta_\ell)$ where ζ_ℓ is a primitive ℓ-th root of unity. Note that T_p is the Frobenius torus for A_F as Frobenius tori are invariant under finite extension of the ground field.

Now, using Proposition 7, we can find a rank 1 subtorus $S \subset T_p \otimes \mathbb{Q}_\ell$ and a vector $v \in T(A_F)$ such that S fixes v and $\det : S \to \mathbb{G}_m$ is surjective. Let $\rho : \text{Gal}(F) \to \text{Aut}(V(A_F))$ denote the Galois representation on the Tate module and let $H = \{ g \in \text{Gal}(F) | \rho(g)v = v \}$. By a theorem of Bogomolov [4, Theorem B] (and the fact that S fixes v), it follows that the $\text{Lie}(S) \subset \text{Lie}(\rho(H))$.
where Lie(S) denotes the Lie algebra of S as an algebraic group and Lie(ρ(H)) denotes the Lie algebra as an ℓ-adic group. Therefore the intersection of S(Qℓ) with ρ(H) contains an open neighborhood of the identity in S(Qℓ). In particular, det(H) contains a neighborhood of the identity in Qℓ∗. Set L := F̄H. Then, from the fact that ν is fixed by H, it follows that Qℓ/Zℓ ⊂ A(L). On the other hand, since χ_{2T_ℓA} \cong Z_ℓ(\dim A), the fact that det(H) contains an open subset of the identity in Qℓ∗ implies that μ_{L}(L) is finite. This completes the proof of Theorem 3.

REFERENCES

(Brosnan) DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF BRITISH COLUMBIA, 1984 MATHEMATICS ROAD, VANCOUVER, B.C., CANADA V6T 1Z2

(Sreekantan) SCHOOL OF MATHEMATICS TATA INSTITUTE OF FUNDAMENTAL RESEARCH, 1 HOMI BHABHA ROAD, COLABA, MUMBAI 400 005, INDIA

E-mail address, Brosnan: brosnan@math.ubc.ca
E-mail address, Sreekantan: ramesh@math.tifr.res.in