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Abstract

In this paper we define two notions of multiple L-functions of modular forms and
study their special values. For one type we show that some of the special values can
be expressed as periods of integrals and hence obtain some algebraicity results for these
values. We also show that there are relations between them coming from ‘shuffle’ and
‘stuffle’ products. Finally, we speculate on the relation between these values and periods
of mixed Hodge structures on the fundamental group of modular curves.

Multiple Zeta Values (MZVs) have been studied a great deal lately [Gon01],[KZ01],[Wal00].
A starting point of the study of the space of multiple Zeta values is the expression of an MZV
as an iterated integral, due to Kontsevich in the most general form. This expression, combined
with the shuffle product structure on the space of iterated integrals, gives relations between
different MZVs which are called the shuffle relations. There are certain other relations that
come from directly expanding the result of multiplying two series. Those are called the stuffle
relations. These two, along with a third type of relation coming from a combination of the
two, conjecturally gives all possible relations.

The situation for Multiple L-values (MLVs) is somewhat different. To start with, there
are two kinds of natural definitions of the MLVs. In this paper we find an expression for one
kind in terms of iterated integrals. Combining this with the shuffle product gives us shuffle
relations between these kinds of MLVs. However it is not clear if there is a direct way of
expressing the product of two such MLVs in terms of such MLVs.

For the second kind, one can express the result of directly multiplying and expanding the
series in terms of similar series, except that one has to add the naive Rankin-Selberg product
of such series. So the algebra of such MLVs has stuffle relations.

From Kontsevich’s expression [KZ01] for a multiple Zeta value as an iterated integral, it
is clear that those values are periods. For the multiple L values, this is not at all clear. For
some of the multiple L-values, a generalization of the notion of critical L-values of L-functions
of modular forms, we show that this is the case.

Of course there is a lot more to the theory of MZVs - there is a deep link between the
algebra of the MZV’s and the geometry of the mixed Hodge structure on the fundamental
group of P1 − {0, 1,∞}. So one might expect there is some geometry underlying the algebra
of multiple L-values as well. At the end of this paper we speculate on the possible geometry
underlying the algebra of multiple L-values of the first kind. This is being worked out in
[DS04].
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Arakawa and Kaneko [AK04] study a different type of multiple L-function for Dirichlet
characters.

1 Multiple L-Values

Let Γ be a congruence subgroup of SL2(Z). In analogy with Multiple Zeta values (MZVs )
we define Multiple L-values for Γ as follows. There are of two kinds.

Let s = (s1, . . . sk) be a ordered tuple of positive integers and F = (f1, f2, . . . fk) be an
ordered tuple of modular forms of weight w for Γ with L-functions

L(fk, s) =
∞∑

n=1

a(fk)n

ns
(1)

for i = {1, . . . , k}. We further demand that a(f1)0 = 0, or equivalently, f1 vanishes at ∞.
The Multiple L-Values of the first kind are sums of the form

L•(F, s) =
∞∑

n1=1,n2...,nk=0

a(f1)n1 . . . a(fk−1)nk−1
a(fk)nk

ns1
1 (n1 + n2)s2 . . . (n1 + n2 + · · ·+ nk)sk

Multiple L-values of the second kind are sums of the form

L∗(F, s) =
∞∑

n1,n2...,nk=1

a(f1)n1 . . . a(fk−1)n1+···+nk−1
a(fk)n1+···+nk

ns1
1 (n1 + n2)s2 . . . (n1 + n2 + · · ·+ nk)sk

More generally these two type of definitions can be made in defining multiple Dirichlet
series and correspondingly multiple Dirichlet values. In this paper though we will only be
concerned with Dirichlet series coming from L-functions of modular forms. Note that the two
definitions agree when k = 1 or in the case of multiple Zeta values.

Define the order of the multiple L-value to be |s| =
∑

i si. Let M•
r(Γ, w) denote the Q-

vector space of multiple L-values of the first kind of order r of modular forms of weight k for
Γ. Let

M•(Γ, w) =
∞⊕

r=1

M•
r(Γ, w)

In the next section, we express such multiple L-values in terms of iterated integrals.
There is also a space of multiple L-values of the second kind. However, we need to consider

additional series, so we will leave that for later.

2 Iterated Integrals

Let F = (f1, . . . , fk) be an ordered tuple of modular forms as before and s = (s1, . . . , sk) a
tuple of complex numbers. Consider the following iterated integral -

Λ(F, s) =

∫ ∞

0

fk(izk)z
sk−1
k

∫ ∞

zk−1

fk−1(izk−1)z
sk−1−1
k−1 . . .

∫ ∞

z2

f1(iz1)z
s1−1
1 dz1 . . . dzk (2)
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This integral is related to the L-function of certain higher order modular forms studied in
more detail in [DS04]. The higher order modular forms, though arise independently, are the
analogues of multiple poly-logarithms in this context. A special case of a variant of such a
function has been considered by Harris [Har88].

To state the theorem, we need to make a few remarks about k-tuples of integers. Let s =
(s1, . . . , sk) denote a k-tuple of order |s|. Let si denote the ith partial sum and [s] = [s1, . . . , sk]
the k-tuple of partial sums. Note that knowing [s] is equivalent to knowing s so on occasion
we will use that. We have a partial ordering on the set of k-tuples of order |s| defined as
follows. r′ < r if r′i ≤ ri for all i and r′i0 < ri0 for some i0. This is not a total order.

We then have the following theorem, which relates the iterated integrals above to multiple
L-values.

Theorem 2.1. The values of Λ(F, s) for s = (s1, . . . , sk) a k-tuple of positive integers can be
expressed in terms of the multiple L-values L•(F, r) where r = (r1, . . . , rk) runs through all
k-tuples of order |s| which are less that or equal to s. Precisely, we have

Λ(F, s) =
1

(2π)|s|

∑
r ≤ s

L•(F, r)
(s1 − 1)!(s2 − r1 − 1)! . . . (sk − rk−1 − 1)!

(s1 − r1)! . . . (sk−1 − rk−1)!
(3)

Proof. The proof is by an explicit computation using properties of the (upper) incomplete
Γ-function.

Lemma 2.2. Let Γ(a, s) =
∫∞

a
e−zzs−1dz denote the (upper) incomplete Γ-function. Then, it

satisfies the functional equation

Γ(a, s) = e−aas−1 + (s− 1)Γ(a, s− 1) (4)

In particular, if s is a positive integer, we have

Γ(a, s) = (s− 1)!e−a

(
s∑

t=1

as−t

(s− t)!

)
(5)

Proof. Integration by parts. We remark that here we use the convention that 00 = 1.

To prove the theorem, we first expand the functions fi into their Fourier series and observe
that Λ(F, s) is of the form

k∑
i=1

∞∑
ni=0

a(f1)n1a(f2)n2 . . . a(fk)nk

(2π)sk

∫ ∞

0

e−2πnkzkzsk−1
k

∫
. . .

∫ ∞

z2

e−2πn1z1zs1−1
1 dz1 . . . dzk

The innermost integral can be evaluated using (5) to get∫ ∞

z2

e−2πn1z1zs1−1
1 dz1 = (s1 − 1)!e−2πn1z2

s1−1∑
r1=1

zs1−r1
2

(2πn1)r1(s1 − r1)!
(6)

We then replace the innermost integral by the expression (6) and repeat the process. We
finally end with the expression (3).
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We can ‘invert’ the situation to get an expression for L•(F, s) in terms of the Λ(F, s′) and
in particular, as an iterated integral. Kontsevich found an expression for the multiple Zeta
values as an iterated integral which is the starting point of the study of the algebra of multiple
zeta values. This can be viewed as the analogue of that formula for multiple L-values.

Theorem 2.3.
k∏

i=1

(si − 1)!L•(F, s) = (2π)|s|Λk−1(F, s) (7)

where Λk−1(F, s), defined below, is certain integral linear combination of the Λ(F, r)’s. Hence
this gives an iterated integral expression for the multiple L-value.

Proof. Let r be a k-tuple ≤ s. Note that r has the property that rk = |s|. The proof is by
systematically eliminating those L•(F, r) of k-tuples r whose last few partial sums ri are not
si. Finally we will end up with an expression which has only terms L•(F, r) whose partial
sums ri agree with si for all i. There is only one such term, namely s.

If k = 1, there is only one such tuple, namely r = s = s1 and the theorem is immediate
from 2.1.

Now let k = 2. Let r be a 2-tuple of order |s| such that r ≤ s. For any r′ ≤ r, From 2.1,
observe that the coefficient of L•(F, r′) in Λ(F, r) depends only on r′1 and

Λ(F, r)− 1

(2π)|s|

(
r1 − 1

r′1

)
L•(F, r′) (8)

has no L•(F, r′) term. Employing this idea systematically, define

Λ1(F, (s1, s2)) =

s1−1∑
t=0

(−1)t

(
s1 − 1

t

)
Λ(F, (s1 − t, s2 + t))

From (8), observe that this has only a term corresponding to L•(F, (s1, s2)) as all the rest
have been eliminated. We have

Λ1(F, (s1, s2)) = (s1 − 1)!(s2 − 1)!L•(F, (s1, s2))

Note that this procedure ensures that the last two partial sums are the same.
More generally, if (r1, . . . , rk−2, ∗, ∗) is a set of k-tuples with the same first k − 2 terms,

so the sequence of partial sums is [r1, . . . , rk−2, ∗, sk] differing only at one place, then by the
above procedure, if ρk−1 = sk−1 − rk−1 we can define

Λ1(F, (r1, . . . , rk−2, ρk−1, sk)) =

ρk−1−1∑
t=0

(−1)t

(
ρk−1 − 1

t

)
Λ(F, (r1, . . . , rk−2, ρk−1 − t, sk + t))

This has the property that it has precisely one term of the form L•(F, (r′1, . . . , r
′
k−2, ∗, ∗))

namely the largest one, for any k-tuple (r′1, . . . , r
′
k−2, ∗, ∗) ≤ (r1, . . . , rk−2, ρk−1, sk). So it is a

sum of terms L•(F, r) with rk−1 = sk−1 and rk = sk.
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Finally, let Λ0(F, r) = Λ(F, r) and

Λi(F, (r1, . . . , rk−(i+1), ρk−i, sk−i−1, . . . , sk) = (9)

=

ρk−i−1∑
t=0

(−1)t

(
ρk−i − 1

t

)
Λi−1(F, (r1, . . . , rk−(i+1), ρk−i − t, sk−(i−1) + t, sk−i−2, . . . , sk))

where ρk−i is such that ρk−i +
∑k−i−1

i=1 ri = sk−i. From a repeated application of (8), we have
that Λi is a sum of terms whose last i + 1 partial sums are sk−i, . . . , sk. Continuing in this
manner, we end up with a Λk−1 such that the surviving term has partial sums (s1, . . . , sk).
There is only one such L-function, namely L•(F, s) and one has

Λk−1(F, s) =
k∏

i=1

(si − 1)!L•(F, s)

For example, for f1 and f2 two forms,

Λ(f1, f2, 1, 3) =
1

(2π)4
2L•(f1, f2, 1, 3)

Λ(f1, f2, 2, 2) =
1

(2π)4
(2L•(f1, f2, 1, 3) + L•(f1, f2, 2, 2))

Λ(f1, f2, 3, 1) =
1

(2π)4
(2L•(f1, f2, 1, 3) + 2L•(f1, f2, 2, 2) + 2L•(f1, f2, 3, 1))

so eliminating, we get

2L•(f1, f2, 1, 3) = (2π)4Λ(f1, f2, 1, 3)

L•(f1, f2, 2, 2) = (2π)4 (Λ(f1, f2, 2, 2)− Λ(f1, f2, 1, 3))

2L•(f1, f2, 3, 1) = (2π)4 (Λ(f1, f2, 3, 1)− 2Λ(f1, f2, 2, 2) + Λ(f1, f2, 1, 3))

3 The Shuffle Product

Iterated integrals have a multiplicative property called a Shuffle Product. If k and r are two
positive integers a shuffle of type (k, r) is a permutation σ of the set {1, 2, . . . , k + r} which
preserves the relative order:

σ−1(1) < · · · < σ−1(k)

σ−1(k + 1) < · · · < σ−1(k + r)

We have the following lemma which shows that one can multiply iterated integrals.

Lemma 3.1 (Ree). ([Hai87], Lemma 2.11) If
∫

w1 . . . wk and
∫

wk+1 . . . wk+r are two iterated
integrals, then, for any path α one has∫

α

w1 . . . wk

∫
α

wk+1 . . . wk+r =
∑

σ

∫
α

wσ(1) . . . wσ(k+r)

where σ runs through all shuffles of type (k, r)
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Proof. This follows from from observation that an iterated integral of length k over α is the
integral over the simplex ∆k ⊂ [0, 1]k of the product of the pullbacks α∗wi of the 1-forms wi

and the fact that

∆k ×∆r =
∐
σ

{{tσ(1), . . . , tσ(k+r)}|0 ≤ t1 ≤ · · · ≤ tk+r ≤ 1}

where σ runs through all shuffles of type (k, r).

This product gives relations between iterated integrals. We can use this coupled with
Theorem 7 to get some relations between Multiple L-Values. We also observe that from (7),
that if L1 is in M•

s1
(Γ, w) and L2 is in M•

s2
(Γ, w) then the shuffle product of L1 and L2 lies

in M•
s1+s2

(Γ, w).
For example, If f1 and f2 are two modular forms of weight w which vanish at ∞, then the

shuffle product gives∫ ∞

0

f1(iz1)z
s1−1
1 dz1

∫ ∞

0

f2(iz2)z
s2−1
1 dz2 =

∫ ∞

0

f1(iz1)z
s1−1
1 f2(iz2)z

s2−1
2 dz2dz1

+

∫ ∞

0

f2(iz2)z
s2−1
2 f1(iz1)z

s1−1
1 dz1dz2

However, if s1 and s2 are positive integers, then the left hand side is

L•(f1, s1)L
•(f2, s2)

while the right hand side can be expressed in terms of MZV s using 2.1. One then has, for
example, if s1 = s2 = 2,

L•(f1, 2)L•(f2, 2) = 6L•((f1, f2), (2, 2)) + 2L•((f1, f2)(1, 3)) (10)

+ 6L•((f2, f1), (2, 2)) + 2L•((f2, f1)(1, 3))

If further, f1 and f2 are modular forms of level N and weight 2, then they satisfy the functional
equation

N
si−1

2 L(si, fi) = −N
1−si

2 L(2− si, fi|WN
)

where WN is the Atkin-Lehner involution and i ∈ {1, 2}. So one has the following functional
equation for the Λ(f1, f2, s1, s2)

N
s1+s2−2

2 (Λ(f1, f2, s1, s2) + Λ(f2, f1, s2, s1))

= −N
2−(s1+s2)

2 (Λ(f1|WN
, f2|WN

, 2− s1, 2− s2) + Λ(f2|WN
, f1|WN

, 2− s2, 2− s1))

3.1 The Stuffle relations

Now we study the second kind of MZVs. We can get relations between the L∗ functions
though this involves the Rankin-Selberg product L-function.
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We define the naive Rankin-Selberg product of f1, f2, . . . , fk with Fourier expansions as in
(1) to be the series

Lf1,...,fk
(s) =

∞∑
n=1

a(f1)n . . . a(fk)n

ns

Directly multiplying, we observe that

L∗(F, s)L∗(F ′, s′) =
∑
s′′

L∗(F ′′, s′′) (11)

where the notation is as follows: s′′ runs through all possible tuples (s′′1, . . . , s
′′
k′′) obtained

from s and s′ by inserting, in all possible ways, some zeroes in the tuples s = (s1, . . . sk) and
s′ = (s′1, . . . , s

′
k′) with max{k, k′} ≤ k′′ ≤ k + k′ and by adding the sequences term by term.

So s′′ consists of terms of the form si,s
′
j or si + s′j. F ′′ consists of forms such that if the

term is si, the numerator is given by the coefficients of fi, if it is s′j, the numerator is given
by the coefficients of f ′

j and if it is si + s′j, the numerator is given by the coefficients of the
Rankin-Selberg product of fi and f ′

j. This is the basic stuffle relation.
For example, if f1 and f2 are two forms, we have

L∗(f1, s1)L
∗(f2, s2) = L∗((f1, f2), (s1, s2)) + L∗((f2, f1), (s2, s1)) + Lf1,f2(s1 + s2) (12)

Since L∗(fi, si) = L•(fi, si) = L(fi, si) for i = {1, 2}, combining this with (10) we get an
expression for some of the special values of the Ranking-Selberg convolution in terms of the
multiple L-values. If s1 = s2 = 2, for example, we have

Lf1,f2(4) = 6L•((f1, f2), (2, 2)) + 2L•((f1, f2)(1, 3)) (13)

+ 6L•((f2, f1), (2, 2)) + 2L•((f2, f1)(1, 3))

− L∗((f1, f2), (2, 2)) + L∗((f2, f1), (2, 2)).

This can be generalized to products of several such functions.
To get a set that is closed under multiplication, we let M∗

r(Γ, k) to be the rational vector
space generated by multiple L-values of order r along with the the functions Lf1,...,fk

(r). Let

M∗(Γ, k) =
⊕

r

M∗
r(Γ, k)

4 Some Functional Equations

In this section we prove a functional equation for the Λ(F, s) where F = (f1, . . . , fk) is a
k-tuple of Hecke eigenforms of weight w and level N such that the constant term in their
Fourier expansion around ∞ is 0.

Theorem 4.1. Let F = (f1, . . . , fk) denote a k-tuple of Hecke eigen-forms of weight w and

level N . Let τN denote the Atkin-Lerner operator, represented by the matrix

(
0 −1
N 0

)
. For

1 ≤ j ≤ k Define
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• F j = (f1, . . . , fj) and F j = (fj+1, . . . , fk) and F j|τN
= (f1|τN

, . . . , fj|τN
)

• sj = (s1, . . . , sj) and sj = (sj+1, . . . , sk).

and for an j-tuple sj = (s1, . . . , sj), let w − sj = (w − s1, . . . , w − sj). Then one has the
following functional equation.

k∑
j=0

i−jw
√

N
(−|sj |+|w−sj |)

Λ(F j|τN
, sj)Λ(F j, w − sj) = 0 (14)

Proof. The idea is the same as the classical case of k = 1. We compute

Λ(F 0|τN
, s0) = Λ(F |τN

, s) =

∫ ∞

0

fk|τN
(izk)z

sk−1
k

∫ ∞

zk

. . .

∫ ∞

z2

f1|τN
(iz1)z

s1−1
1 dz1 . . . dzk (15)

Consider the innermost integral∫ ∞

z2

f1|τN
(iz1)z

s1−1
1 dz1 =

∫ ∞

z2

(
√

Niz1)
−wf(

i

Nz1

)(z1)
s1−1dz1

Using the substitution u1 = 1
Nz1

we can simplify the integral to

√
N

w−2s1
i−w

∫ 1/Nz2

0

f(iu1)u
w−s1−1
1 du1

Replacing
∫ 1/Nz2

0
by
∫∞

0
−
∫∞

1/Nz2
we get

√
N

w−2s1
i−w

(
Λ(f1, w − s1)−

∫ ∞

1/Nz2

f1(iu1)u
w−s1−1
1 du1

)
(16)

Multiplying (15) by
√

N
−|s|

and replacing the innermost integral by (16) we get

√
N

−|s|
Λ(F 0|τN

, s0) = i−w
√

N
−|s1|+|w−s1|

Λ(F 1|τN
, s1)Λ(f1, w − s1)

−
∫ ∞

0

fk|τN
(izk)z

sk−1
k . . .

∫ ∞

z3

f2|τN
(iz2)z

s2−1
2

∫ ∞

1/Nz2

f1(iu1)u
w−s1−1
1 du1dz2 . . . dzk (17)

Now consider the innermost two integrals of the last integral. Simplifying, using u2 = 1/Nz2

we get∫ ∞

z3

f2|τN
(iz2)z

s2−1
2

∫ ∞

z2/N

f1(iu1)u
w−s1−1
1 du1dz2 =

√
N

w−2s2
i−w

∫ 1/Nz3

0

f2(iu2)u
w−s2−1
2 du2

(18)

Once again, replacing
∫ 1/Nz3

0
by
∫∞

0
−
∫∞

1/Nz3
in (17) the integral becomes

Λ(f1, f2, w − s1, w − s2)−
∫ ∞

1/Nz3

f2(iu2)u
w−s2−1
2

∫ ∞

u2

f1(iu1)u
w−s1−1
1 du1du2 (19)
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Putting this in (17) we get

√
N

−|s|
Λ(F 0|τN

, s0) = i−w
√

N
−|s1|+|w−s1|

Λ(F 1|τN
, s1)Λ(F 1, w − s1)

− i−2w
√

N
|s|−|2w−2s1−2s2|

Λ(F 2|τN
, s2)Λ(F 2, (w − s2, w − s1)

+ i−2w
√

N
|s|−|2w−2s1−2s2|

∫ ∞

0

fk|τN
(izk)z

sk−1
k . . .

∫ ∞

1/Nz3

f2(iu2)u
w−s2−1
2∫ ∞

u2

f1(iu1)u
w−s1−1
1 du1du2dz3 . . . dzk (20)

Continuing in this manner we finally end up with the expression (14).

5 Periods

In light of the work on multiple Zeta values and the work of Kontsevich and Zagier [KZ01]
one can speculate whether the multiple L values of modular forms are periods in the sense of
Kontsevich and Zagier. From the formula (7) it suffices, at least as far as the the L•(F, s) values
go, to show that the values of the functions Λ(F, s) are periods. In this direction one has that
the values Λ(F, (1, 1, . . . , 1) are periods of the mixed Hodge structure on π1(X0(N)−{cusps})
based at ∞ with tangent vector ~0∞ when F is a tuple of modular forms of weight 2 .

Conjecture: If s is a k-tuple of positive integers and F is a k-tuple of modular forms of
weight w and level N then the multiple L values L•(F, s) are periods.

Remark 5.1. In the case when k = 1, for weight w forms and 0 < s < w, s 6= w/2, this
is due to Eichler, Shimura and several others. If s ≥ w this is due to Beilinson [Bĕı86] for
weight 2 and Deninger and Scholl [DS91] for higher weights. For s = w/2, that is, at the
center of the critical strip, not much is know in general.

Remark 5.2. We have no idea how to interpret the values L∗(F, s).

As evidence for the conjecture we have the following observation of an analogue of a
theorem of Shimura.

In light of the functional equation for Λ(F, s) We say a k-tuple of integers s = (s1, . . . , sk)
is critical for F if 0 < si < w for all i. This is a generalization of the classical definition of
critical. At the moment it is not clear how to attach a motive to F but perhaps if that were
possible, this would be a special case of the definition of Deligne [?] or Scholl [DS91]. We have
the following theorem. The proof was suggest to me by M.V. Nori [?].

Theorem 5.3. Let F = (f1, . . . , fk) be a k-tuple of modular forms of weight w and s =
(s1, . . . , s2) a k-tuple of integers which are critical for F .Then the values L(F, s) are periods.
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Proof. It suffices to show that the values Λ(F, s) are periods.
First let k = 1. If f is a modular forms of weight w with coefficients in a number field

K, by a theorem of Deligne one has ω = 2πif(z)dzdt1 . . . dtw−2 is a K-rational differential
form on Ew−2 → X0(N) where Ew−2 is the self product of the universal elliptic curve over the
modular curve X0(N). On each elliptic curve E there are two 1-cycles (0, 1) and (0, z). Let
{(0,∞), m− 1} denote the cycle

(0,∞)× (0, z)× · · · (0, z)︸ ︷︷ ︸
m−1 times

× (0, 1) · · · (0, 1)︸ ︷︷ ︸
w−1−m times

Then one has for m ∈ {1, . . . , w − 1}

2πiΛ(f, m) =

∫ ∞

0

2πif(iz)zm−1dz =

∫
{(0,∞),m−1}

2πif(iz)dz

From the de Rham isomorphism theorem, this lies in K(πw−1)
Now let k > 1 and assume that the f ′

is are defined over a field K. We first recall that
an iterated integral is an integral over a simplex. Let υ : [0, 1] → X0(N) denote the curve
parameterizing (0,∞) and υk : [0, 1]k → X0(N)k. Let ∆k ⊂ [0, 1]k denote the k-simplex.
Consider the cycle

Υ = {υk(∆k), m1 − 1, . . . ,mk − 1} ⊂ (Ew−2)k

which consists of the image of the k-simplex and (mi − 1) times the cycle (0, z) and (w −
1 − mi) times the cycle (0, 1) in the universal family over the ith copy of X0(N). Let ωi =
2πifi(z)dzdt1 . . . dtw−2. Then

(2πi)kΛ(F, s) =

∫
Υ

p∗1(ω1) . . . p∗k(ωk)

where pi : (Ew−2)k → Ew−2 is the ith projection. This lies in K(π(w−1)k
).

Remark 5.4. For k = 1 and f an eigenform, more is known. The periods of the Λ(f, s) for
0 < s < w depend only on the parity of s.

Remark 5.5. For si ≥ w the situation appears to be more difficult as even the case of k = 1
follows only from the known cases of Beilinson conjectures. One realizes the special value as
the regulator of some elements in the K-theory of the universal family of the modular curve
and this gives the expression as a period.

6 Final remarks

The structure of the multiple Zeta values is intimately connected with the geometry of P1 −
{0, 1,∞} - they appear as the periods of the mixed Hodge structure on the group ring of
π1(P1−{0, 1,∞}, ~01), the fundamental group based at a cusp with respect to the tangent vector
~01. Analogously one might expect that there is some geometry underlying the structure of
the multiple L-values. For M•(Γ0(N), 2) the natural candidate is the mixed Hodge structure
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on the fundamental group of X0(N) − {cusps} based at ∞ with tangent vector
−→
0∞. The

definition of Λ(F, s) in (2) also seems to suggest that. That is still work in progress. A
generalization of this may work for higher weights. However, for M∗(Γ, w) we have no idea.

In the case of MZVs one has conversely that any period of the MHS on π1(P1−{0, 1,∞}, ~01)
can be expressed as a multiple Zeta value. It is not clear what the situation is in this case.
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